CA2154473C - Carboxymethylcellulose wound dressings - Google Patents

Carboxymethylcellulose wound dressings

Info

Publication number
CA2154473C
CA2154473C CA 2154473 CA2154473A CA2154473C CA 2154473 C CA2154473 C CA 2154473C CA 2154473 CA2154473 CA 2154473 CA 2154473 A CA2154473 A CA 2154473A CA 2154473 C CA2154473 C CA 2154473C
Authority
CA
Grant status
Grant
Patent type
Prior art keywords
wound
textile filaments
filaments
fabric
dressing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CA 2154473
Other languages
French (fr)
Other versions
CA2154473A1 (en )
Inventor
Hardev Singh Bahia
Thomas Richard Burrow
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ConvaTec Ltd
Original Assignee
Acordis Speciality Fibres Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/00004Non-adhesive dressings
    • A61F13/00008Non-adhesive dressings characterized by the material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/00004Non-adhesive dressings
    • A61F13/00034Non-adhesive dressings characterized by a property
    • A61F13/00042Absorbency
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/36Surgical swabs, e.g. for absorbency or packing body cavities during surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION, OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/22Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing macromolecular materials
    • A61L15/28Polysaccharides or their derivatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION, OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES
    • A61L26/00Chemical aspects of, or use of materials for, wound dressings or bandages in liquid, gel or powder form
    • A61L26/0009Chemical aspects of, or use of materials for, wound dressings or bandages in liquid, gel or powder form containing macromolecular materials
    • A61L26/0023Polysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/06Bandages or dressings; Absorbent pads specially adapted for feet or legs; Corn-pads; Corn-rings
    • A61F13/064Bandages or dressings; Absorbent pads specially adapted for feet or legs; Corn-pads; Corn-rings for feet
    • A61F13/069Decubitus ulcer bandages
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F2013/00089Wound bandages
    • A61F2013/00182Wound bandages with transparent part
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F2013/00361Plasters
    • A61F2013/00727Plasters means for wound humidity control
    • A61F2013/00731Plasters means for wound humidity control with absorbing pads
    • A61F2013/00744Plasters means for wound humidity control with absorbing pads containing non-woven
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F2013/00361Plasters
    • A61F2013/00727Plasters means for wound humidity control
    • A61F2013/00748Plasters means for wound humidity control with hydrocolloids or superabsorbers
    • A61F2013/00753Plasters means for wound humidity control with hydrocolloids or superabsorbers superabsorbent fabric of cloth
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F2013/00361Plasters
    • A61F2013/00846Plasters with transparent or translucent part
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F2013/00361Plasters
    • A61F2013/00902Plasters containing means
    • A61F2013/0091Plasters containing means with disinfecting or anaesthetics means, e.g. anti-mycrobic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/53Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium
    • A61F2013/530481Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium having superabsorbent materials, i.e. highly absorbent polymer gel materials
    • A61F2013/530583Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium having superabsorbent materials, i.e. highly absorbent polymer gel materials characterized by the form
    • A61F2013/530613Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium having superabsorbent materials, i.e. highly absorbent polymer gel materials characterized by the form in fibres
    • A61F2013/53062Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium having superabsorbent materials, i.e. highly absorbent polymer gel materials characterized by the form in fibres being made into a paper or non-woven

Abstract

A wound dressing is characterised in that the wound-contacting surface thereof comprises carboxymethyl cellulose filaments capable of absorbing at least 15 times their own weight of 0.9 % by weight aqueous saline solution (as measured by the free-swell absorbency test) to form a swollen transparent gel. The dressing when thus swollen to form a transparent gel retains sufficient fibrous character to be removed as a coherent dressing from a wound. The carboxymethyl cellulose filaments can be used to treat a traumatic surgical or chronic wound.

Description

WO 94/16746 ~ ~ ~ ~ PCTlGB94/00114 WOUND DRESSINGS
Technical Field This invention relates to wound dressings, which term also includes bandages and swabs for application to wounds including wounds consequent upon surgical operations, and to the use of absorbent fibre in dressings. The invention is especially applicable to dressings for deep-seated or chronic wounds such as ulcers.
Background Art The use of absorbent materials, particularly absorbent polysaccharide materials, at the wound-contacting surface of wound dressings is known. Dressings comprising alginate fibres are described, for example, in GB-A-1394742, GB-A-2103993, US-A-4421583, EP-A-227955, EP-A-236104, EP-A-243069 and WO-89/12471. GB-A-1329693 describes a dressing comprising a substrate bearing a haemostatic material comprising an alginate and a water-soluble polymer such as sodium carboxymethyl cellulose.
US-A-3731686 describes an absorbent dressing including a compressed body comprised of absorbent fibres of an alkali metal salt of carboxyalkyl cellulose having an average degree of substitution greater than 0.35 carboxyalkyl radicals per anhydroglucose residue, said absorbent fibres of an alkali metal salt of carboxyalkyl cellulose being heat-treated so as to become insoluble but swellable in water at room temperature. The dressing is typically a tampon, sanitary napkin or diaper having a core of the compressed absorbent fibres. US-A-3589364 relates to bibulous water-insoluble cellulosic fibres which retain the fibrous form of the original cellulose raw material and are prepared by wet-crosslinking fibres of a water-soluble carboxymethyl cellulose salt. The fibres are suggested for use in a tampon, surgical dressing, surgical sponge, catamenial napkin or diaper. US-A-4634438 and US-A-4634439 describe a hygienic pH-regulating product for topical application, particularly a catamenial device, comprising a homogeneous mass of carboxyalkyl-modified cellulose fibres of degree of substitution 0.01 to 0.30 wherein the carboxyalkyl groups are in the free acid forth.
Wound dressings containing a water-absorbent polymer such as sodium carboxymethyl cellulose are described in GB-A-1548678 and EP-A-92999 and in the books "Wound Management and Dressings" by S. Thomas (The Pharmaceutical Press) at pages 55-61 and "Advances in Wound Management" edited by T.D. Turner et. al (J. Wiley) at pages 89-95, and in the article by S. Thomas in J. Wound Care, Vol.l (1992) No. 2, pages 27-30. These dressings, generally known as hydrocolloid dressings, contain the water-absorbent polymer in powder form in an elastomeric and/or adhesive matrix such as polyisobutylene; the resulting material fortes the wound-contacting layer of the hydrocolloid dressing. The hydrocolloid dressing takes up wound fluid to form a gel that produces a moist environment which facilitates healing.
The absorbent component of the dressing is also produced in the form of granules or paste for the treatment of small cavities.
Disclosure of Invention According to the present invention, a wound dressing is characterised in that the wound-contacting surface thereof comprises carboxymethyl cellulose filaments capable of absorbing at least 15 times their own weight of 0.9% by weight aqueous saline solution (as measured by the free-swell absorbency test) to form a swollen transparent gel and that the dressing when thus swollen to form a transparent gel retains sufficient fibrous character to be removed as a coherent dressing from a wound. The filaments may be in the form of continuous filaments or cut fibre, for example staple fibre, or of strands or fabrics made therefrom. The strands can be any linear textile material forttted from the filaments or fibre, for example a yarn, sliver, roving or WO 94/16746 ~ "~ 3 PCTlGB94/00114 rope. The carboxymethyl cellulose filaments can for example be used as a tow or as a fabric.
In the free-swell absorbency test, 0.5g of the carboxymethyl cellulose filaments, which have been conditioned at 65a relative humidity and 20°C before being tested, is dispersed in 30cc 0.9o by weight aqueous saline solution and left for 5 minutes. The dispersion is then filtered through a sintered Mark 1 funnel of pore sire 100-160 microns and is left for 5 minutes, or until it stops dripping, whichever is the longer. The water filtered through the funnel is weighed and the weight of water absorbed by the filaments is calculated by subtraction.
The tow, strand or fabric of carboxymethyl cellulose filaments forming the wound-contacting surface of the dressing is preferably capable of absorbing at least 25 times its own weight of 0.9o by weight aqueous saline solution as measured by the free-swell absorbency test. The carboxymethyl cellulose filaments are preferably at least 15 mm long, most preferably at least 30 mm long, although cut fibre of shorter staple length down to 6 mm or even 3 mm can be used in certain nonwoven fabric constructions.
Dressings according to the invention using carboxymethyl cellulose filaments at the wound-contacting surface have many of the advantages in wound-healing properties of known hydrocolloid dressings based on carboxymethyl cellulose powder and have additional advantages of being easier to handle and apply to a wound.
The filaments do not need to be mixed with any other material such as the adhesive used in known hydrocolloid dressings. The dressings of the invention are also easier to remove from a wound without causing mess, or damage to f the wound. A dressing in which the carboxymethyl cellulose filaments are used as the only layer covering the wound has the additional advantage that the dressing can form a transparent gel in use, allowing observation of the wound without disturbing the dressing.

WO 94/16746 ~, PCT/GB94/00114~
~.~5~~ l 4 _ The dressings of the invention are distinguished from materials described in US-A-3731686 and US-A-3589364 in that the carboxymethyl cellulose filaments used in the present invention need not be crosslinked in order to be effective.
The fibres described in US-A-3731686 and US-A-3589364 are generally derived from natural cellulose sources, and they w are most commonly short fibres such as wood pulp fibres.
When carboxymethylated, such short fibres require crosslinking to prevent complete dissolution and to maintain a coherent structure. The crosslinked fibres are water swellable but are not water-soluble. The non-crosslinked carboxymethyl cellulose filaments used in the present invention will partially dissolve in aqueous liquids just as the carboxymethyl cellulose powder in known hydrocolloid dressings does. When long filaments (at least 15 mm) are used according to the present invention they prevent complete dissolution of the dressing and give a gel which is sufficiently coherent to be removable in one piece. A
dressing according to the invention containing somewhat shorter filaments which are not crosslinked but are held securely in a nonwoven fabric construction can also form a gel which is removable as a coherent dressing. Crosslinking may, however, be used to alter the properties of the filaments used in the present invention, for example to reduce or eliminate dissolution of the fibres.
The carboxymethyl cellulose filaments are generally prepared by reacting cellulose filaments with a strong alkali and with monochloroacetic acid or a salt thereof.
The preferred cellulose filaments are solvent-spun cellulose filaments spun from a solution of cellulose in a solvent, as opposed to regenerated cellulose fibres which ~
are spun from a solution of a cellulose derivative (cellulose xanthate) which is re-converted to cellulose in a spin bath into which the fibres are spun. Examples of solvents for cellulose are tertiary amine N-oxides, N,N
dimethyl formamide/nitrogen tetroxide mixtures, dimethyl sulphoxide/paraformaldehyde mixtures and solutions of WO 94/I6746 ~ PCT/GB94/00114 lithium chloride in N,N-dimethyl acetamide or N-methyl pyrrolidone. The preferred solvents for use in producing solvent-spun cellulose filaments are tertiary amine N-. oxides. The production of solvent-spun cellulose filaments is described for example in US-A-4246221 and US-A-4196281 . which give examples of preferred tertiary amine N-oxides.
The solution of cellulose is spun through an air gap into a bath of a non-solvent for cellulose, usually water, where the cellulose is precipitated in fibre form.
The carboxymethyl cellulose filaments can alternatively be produced from regenerated cellulose filaments, cuprammonium rayon or cotton fibres but carboxymethyl cellulose filaments produced from solvent-spun cellulose have higher absorbency and superior physical properties. The absorbency of 0.9o by weight saline solution, as measured by the free-swell method, of carboxymethyl cellulose filaments derived from solvent-spun cellulose can for example be 20-40 grams per gram, combined with a tenacity in the range 25-lScN/tex. Viscose rayon or cotton fibres carboxymethylated by the same process have absorbencies only in the range 8-13 g/g and a lower tenacity. Carboxymethyl cellulose filaments formed from polynosic viscose rayon have increased absorbency and tenacity compared to carboxymethyl cellulose filaments formed from other types of viscose rayon, but they have less absorbency and tenacity compared to carboxymethyl cellulose filaments formed from solvent-spun cellulose. Solvent-spun cellulose filaments have a substantially uniform structure across their cross-section and have greater crystallinity than regenerated cellulose or cotton fibres, which both have a structure which includes a relatively dense skin at the surf ace of the f fibre .
When carrying out carboxymethylation the alkali and the monochloracetic reagent can be applied to the cellulose filaments simultaneously or secruentially. The cellulose filaments are preferably in the forth of a tow, but they can alternatively be in the form of yarn, staple fibre or 2~~~~'~~

fabric, for example a woven, knitted or nonwoven fabric.
Any finish present on the tow, yarn, fibres or fabric should preferably be removed by scouring before the carboxymethylation reaction, particularly if it is a hydrophobic finish. The yarn, tow or fibre can be a blend of the cellulose filaments with another fibre such as polyester or nylon, which is unaffected by the carboxymethylation process. A tow can be of dry filaments as commercially sold or it can be a tow of never-dried filaments, that is filaments which have not been dried after filament formation. The rate of uptake of reagents by the filaments may be somewhat faster using never-dried filaments.
The alkali and the monochloroacetic reagent are preferably applied from aqueous solution or from solution in a mixture of water and a polar organic solvent. The alkali is preferably an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide and is preferably used at a concentration of at least 2 o by weight, most preferably 5 a or more, up to 15~ by weight, most preferably up to lOg. The monochloroacetic reagent is preferably used in salt form, usually the salt corresponding to the alkali used, for example sodium monochloroacetate with sodium hydroxide. The monochloroacetate is preferably used at a concentration of at least 5a by weight, most preferably at least 100, up to 35% by weight, most preferably up to 250.
The alkali, for example sodium hydroxide, and monochloroacetic reagent, for example sodium monochloroacetate, are preferably applied to the cellulose filaments simultaneously. A solution containing the required concentration of sodium hydroxide and sodium monochloroacetate can be prepared by mixing solutions of these reagents which have been separately prepared or by dissolving sodium hydroxide in a solution of sodium monochloroacetate. when preparing a reagent solution in aqueous organic solvent, sodium hydroxide can for example be WO 94/16746 ~ ~ ~ l~ ~ 3 PCTIGB94/00114 dissolved in water at up to 35o by weight and sodium monochloroacetate at up to 45o by weight and the solutions can be diluted with an alcohol such as ethanol or industrial methylated spirits to give the required concentration of reagents in the aqueous organic solvent mixture. The mixed solution can be applied by immersion of the filaments in the reagent solution in a reaction vessel at elevated temperature, for example at least 50°C up to the boiling point of the solution, for a time sufficient to carrv out the carboxymethylation reaction, for example from 10 minutes to 8 hours, preferably 0.5 to 4 hours. Reaction in solution in this manner generally gives good uniformity of degree of substitution as between filaments, and compressed air may be bubbled through the reagent solution to enhance this uniformity. This type of reaction is generally carried out as a batch process.
Alternatively, the reagent solution can be applied by padding, for example to a liquid takeup of 50-3000 by weight, optionally followed by mangling, and drying at elevated temperature, for example 50-200°C, preferably at least 80°C and up to 150°C. The filaments are preferably dried to a moisture content of 5 to 20o by weight to avoid brittleness. The solution containing both sodium hydroxide and sodium monochloroacetate should preferably not be held for an extended time at an elevated temperature. The sodium hydroxide and sodium monochloroacetate solutions can be mixed just before application to the filaments, or the separate solutions can simultaneously be sprayed onto the filaments, for example by sprays arranged at right angles to each other. If the mixed solution of sodium hydroxide and sodium monochloroacetate has to be stored, it is preferably held at a temperature of 20°C or below, for example 0 to 5°C. Storage at 20-40°C of filaments treated with both the alkali and the monochloroacetate is preferably avoided. It is usually most convenient to heat the filaments immediately after padding to, effect the carboxymethylation reaction.
Alternatively, the padded filaments can be stored at a temperature below 20°C, preferably in the range 0 to 5°C, before heating. It may be preferred to carry out padding at a temperature below 20°C, for example 0 to 10°C.
The degree of substitution of the cellulose filaments achieved is preferably at least 0.15 carboxymethyl group per glucose unit, and is most preferably at least 0.2 and less than 0.5. A degree of substitution in the range 0.25 to 0.45 may be particularly suitable. Higher degrees of substitution than 0.5 carboxymethyl group per glucose unit can be used, for example up to 1.0, but they may lead to filaments which are too readily water-soluble rather than water-swellable.
It is believed that the degree of carboxymethylation is not uniform across the cross-section of the filaments;
the filaments generally have a higher degree of substitution in the surface region than at the core of the filament.
This may be advantageous since the less substituted core contributes greatly to the strength of the filaments in the swollen state. This strength allows the dressing to be pulled from the wound as a coherent dressing. This is an advantage of cellulose filaments which have been carboxymethylated, as against a swellable polymer which has been formed into filaments.
After the carboxymethylation process, the filaments are usually washed to remove any unreacted alkali or chloroacetate or any by-products such as sodium chloride or sodium glycollate. An aqueous wash is generally used, preferably a mixture of water with a water-miscible organic solvent . The washing medium may contain a surfactant and/or an acid. A low molecular weight mono-alcohol such as ethanol or methanol is preferably used as water-miscible organic solvent, for example a preferred washing medium is based on a mixture of water and ethanol in weight ratio 2:1 to 1:2. If a surfactant is used it is preferably a non-ionic surfactant such as a polyalkylene oxide adduct of an alcohol or phenol, although anionic or cationic surfactants can be used. Any surfactant used should preferably be 21~~473 _ g _ hydrophilic rather than hydrophobic. Examples of preferred surfactants are those sold under the Trade Marks "Tween 20"
and "Atlas 61086". Any acid used during washing to ~ neutralise the alkalinity of the carboxymethylated filaments is preferably a weak acid, for example an organic carboxylic acid such as acetic acid or citric acid. The carboxymethylated filaments are preferably neutral for use in most wound dressings; the filament pH is preferably in the range 5.5 to 8. At this pH the carboxymethyl groups are mainly in the anion form rather than free acid form.
Dressings of acidic or alkaline pH, as well as neutral dressings, have been suggested for particular wounds, and the amount of acid used in the washing medium can be adjusted to give the desired pH for the filaments.
As an alternative to inclusion of a surfactant in the wash liquid, it may be preferred to apply a surfactant subsequently as a finish. It can for example be applied as a solution in alcohol or in an aqueous alcohol mixture, for example the mixture used to wash the filaments, or a liquid surfactant can be applied undiluted. The finish can be applied by immersion of the filaments in the finish, or it can be applied by lick roller or by spray. If the surfactant is applied as a finish, the filaments are preferably pressed to remove any excess wash liquor, for example by mangling, before applying the finish.
After the required washes, the filaments are generally dried, preferably to a moisture content of 5-20o by weight.
The forth of the carboxymethylated filaments after swelling in an aqueous liquid such as saline solution depends on the absorbency of the filaments and the diameter of the filaments. Absorbency generally increases with increasing t carboxymethyl group content. At high levels of absorbency, particularly if the filaments are of a low decitex, the swollen filaments tend to form a coherent gel in which the identity of individual filaments cannot be discerned, although the gel retains sufficient fibrous character to be WO 94/16746 ~ ~ ~ ~ ~ PCTlGB94/00114~

removed as a coherent dressing. For example, filaments of initial decitex 1.7 per filament and having an absorbency (free-swell) of 28, corresponding to treatment with 19.20 by weight C1CH~COONa and 6.5% NaOH, swell to such a gel. ' Filaments of the same initial decitex, treated with 13.3s C1CH=COONa and 4.5o NaOH and having an absorbency of 20, , remain as discrete swollen gel filaments. Filaments of initial decitex 6.0, treated with 22.10 C1CH,COONa and 7.5°s NaOH and having an absorbency of 27, also remain as discrete swollen gel filaments. Dressings according to the invention using carboxymethyl cellulose filaments are effective whether they swell to a coherent gel or to discrete gel filaments.
The carboxymethyl cellulose filaments can be used in the dressings in the form of a tow, strand or fabric, for example a yarn of continuous filaments or a yarn formed from staple fibres, or a strand which is a sliver or roving or rope of corded staple fibre, provided that the strand is sufficiently coherent when dry and when swollen to be applied to and removed from a wound, or as a woven, knitted or nonwoven fabric. For example, a cut length of carboxymethyl cellulose filament tow, usually of length at least 3 cm and preferably greater than 10 cm, for example in the range 15 to 30 cm, can be applied directly to the surface of a wound and spread out to cover the whole of the wound. If the wound-contacting surface is formed from a tow of carboxymethyl cellulose filaments, the filaments preferably extend right across the dressing. A rope of carboxymethyl cellulose filaments formed by carding carboxymethyl cellulose staple fibre of length at least 15 mm may be used in a similar way. A dressing of this type would be covered in use with a secondary dressing which is preferably transparent, such as a transparent, water-vapour-permeable film, for example an adhesive-coated polyurethane film such as that sold under the Trade Mark "OpSite".
The carboxymethyl cellulose filaments may be processed into the forth of a woven, knitted or nonwoven fabric to produce a flat dressing which may be applied directly to the surface of a wound. .A nonwoven fabric can for example be formed by randomly laying, for example dry-laying, or crosslaying the filaments followed by needling. An alternative nonwoven fabric can be formed by crosslaying the carboxymethyl cellulose filaments while partially wet with water, followed by drying, optionally under pressure.
The tow, strand or fabric which forms the wound-contacting surface layer of the dressing of the inver_tion most preferably consists essentially of the carboxymethyl cellulose filaments without any other type of filaments and without any other added material such as adhesive. In such a layer consisting essentially of 100% carboxymethyl cellulose filaments the filaments are generally at least 15 mm long. Alternatively, a woven, knitted or nonwoven fabric dressing may contain up to 80%, preferably up to 50a, by weight, based on total weight, of physiologically inert fibres such as non-carboxymethyl cellulose fibres, polyester fibres, nylon fibres or polyolefin fibres. In such a fabric, the carboxymethyl cellulose filaments are preferably at least 15 mm long, but shorter filaments, for example 10 mm staple fibre, can be used, particularly in a nonwoven fabric. A nonwoven fabric can, for example, be formed by dry-air-laying a mixture of carboxymethyl cellulose fibres and thermoplastic fibres on a permeable conveyor above suction apparatus and consolidating the layer so fornled by heating to fuse the thermoplastic fibres at their point of contact. The thermoplastic fibres are preferably polyolefin fibres, for example polyethylene or polypropylene fibres or the bicomponent polyolefin fibres sold under the Trade Mark "Celbond". The dry-laid fabric can alternatively be bonded by consolidating with a latex adhesive.
A fabric of carboxymethyl cellulose filaments for use as a dressing can alternatively be produced by treating a fabric of cellulose filaments with a strong alkali and with monochloroacetic acid or a salt thereof. The fabric treated can for example be a woven, knitted, needled or WO 94/16746 PCT/GB94/00114~
_ 12 hydroentangled fabric and can consist wholly of cellulose filaments or may include another fibre, such as polyester, nylon or polyolefin, which is physiologically inert and unaffected by the carboxymethylating reagents. Such other fibre can for example be present at up to 80%, preferably up to 50%, by weight of the fabric.
The carboxymethyl cellulose filaments may be used as one component of a composite dressing in which the carboxymethyl cellulose filament component, for exampi~ tow, staple fibre or a rope or fabric, is secured to a backing material such as fabric or a flexible plastics material.
The carboxymethyl cellulose filament wound-contacting material, for example in tow or fabric form, can extend across a backing in the form of a frame, for example a polymer foam frame of the type described in EP-A-236104.
This may be advantageous for observation of the wound without removal of the dressing if the layer of carboxymethyl cellulose filaments is uncovered or has a transparent film backing extending across the frame.
The wound dressing of the invention can be packaged and sterilised by known techniques, for example by gamma-irradiation. The wound-contacting layer of the dressing can be moistened by sterilised water before application to the wound if desired.
Upon application to the moist surface of a wound the carboxymethyl cellulose filaments absorb the fluid which is exuding from the wound and forth a transparent gel. This gel maintains the surface of the wound in a condition which will encourage the natural healing process of the body, that is the surface of the wound is kept in a moist condition without the presence of excess liquid. When the dressing is saturated, or when there is some other reason for its removal, it can be removed from the surface of the wound in one piece due to its inherent strength. Such removal will not damage the newly forming tissue at the surface of the wound because the gel at the surface of the filaments WO 94/1674b PCT/GB94/00114 releases readily from the tissue.
Industrial Applicability Dressings according to the invention are suitable for . the treatment of traumatic, surgical and chronic wounds.
The preferred application is for wounds which are exuding moderate to high levels of exudate from their surface.
Examples of such wounds are venous ulcers, decubitus ulcers, diabetic ulcers, donor graft sites and infected post-operative wounds.
The carboxymethyl cellulose filaments have a further advantage in giving slow release of additives which may be required in a dressing, for example an antiseptic agent or a deodorant, particularly if the additive is applied to the filaments while they are in a swollen state. The additive can for example be included in the last wash liquor applied to the carboxymethyl cellulose filaments, or it can be included in a finish bath if a finish is subsequently applied to the filaments before drying.
Examgles The invention is illustrated by the following Examples, in which percentages and ratios are by weight.
Easample 1 A 33s aqueous solution of sodium hydroxide, a 42%
aqueous solution of sodium monochloroacetate and a 95/5 mixture of alcohol (industrial methylated spirits, IMS) and water were mixed to produce an aqueous alcoholic solution containing &.Oo sodium hydroxide and 17.8°s sodium monochloroacetate. The solution was added without delay to a reaction vessel containing a dried tow of 1.7 decitex solvent-spun cellulose filaments (spun from tertiary amine oxide solution) and heated to 50°C. The tow was allowed to react at this temperature for 180 minutes.

WO 94I16~46 ~ ~ PCT/GB94/00114 The tow of carboxymethyl cellulose filaments produced was washed in a solution containing 56% IMS, 43% water, 0.7%
acetic acid and 0.3% citric acid. The tow was dried to a moisture content of 15%. The filaments had a free-swell absorbency in 0.9% saline solution of 40 g/g.
The tow was cut to 50 mm lengths and a wound dressing was formed by first carding the cut fibre to fornl an approximately 18 g.m-2 web, then cross folding this web and needling to give a resultant nonwoven fabric of approximately 100 g.m-2, and then a 10 cm x 10 cm square was cut from the fabric. The square of fabric was packaged in a conventional heat-sealed pouch and sterilised using a gamma radiation dose of 25 kGy.
Alternatively, the tow itself, cut for example to 25 cm lengths, can be used, after packaging and sterilisation, as the wound-contacting surface of a dressing.
Example 2 A tow of solvent-spun filaments having a dry filament decitex of 1.7 was obtained in a never-dried state. The tow was passed through a hand mangle. The amount of water left on the tow after mangling was 62%. This wet tow was put in a solution containing 7.5% sodium hydroxide and 22.1% sodium monochlo.roacetate at room temperature (20°C) for 2 minutes.
The padded tow was mangled again. The total pick-up after mangling was 75%. The padded and mangled tow was then reacted in a conditioning cabinet set at 23% RH (relative humidity) and 90°C for five minutes. The amount of water retained on the tow after the treatment was 13%.
After heat treatment the tow was washed in a solution containing 55°s industrial alcohol, 42% water, 2.5% acetic acid and 0.5% citric acid. Washed tow was then treated with a finish containing 99% industrial alcohol and 1% Atlas 61086 emulsifier. After this, the tow was dried at a low temperature, leaving some residual moisture on the filaments. The filaments had a tenacity of 17.5 cN/tex and an extensibility of 12%. The degree of substitution was 0.405 carboxymethyl group per glucose unit. The moisture regain of fully dried filaments at 65% RH was 17%. The free-swell absorbency of the filaments in 0.9% saline solution was 38 g/g.
A dressing was formed from the resulting tow as described in Example 1.
Example 3 Following the procedure of Example 2, a tow of never-dried 1.7 decitex solvent-spun filaments was reacted with a solution containing 6.5% sodium hydroxide and 19.2% sodium monochloroacetate. The carboxymethyl cellulose filaments produced had a free-swell absorbency in 0.9% aqueous saline solution of 28 g/g and a degree of substitution of 0.375.
A dressing was formed from the resulting tow as described in Example 1.
Another dressing was formed by cutting the tow to 50 mm staple fibre and carding the resultant fibre to form a sliver or rope. 25 cm lengths of the sliver were packaged and sterilised as described in Example 1.
Example 4 The process of Example 2 was repeated using a tow of never-dried solvent-spun filaments of dry decitex 3Ø The carboxymethyl cellulose filaments produced had a free-swell absorbency in 0.9% aqueous saline solution of 31 g/g.
Dressings in fabric or cut tow form were produced from the treated tow, as described in Example 1.

~.~~~4'~3 Example 5 A solution of 6.5o sodium hydroxide and 19.20 sodium monochloroacetate was prepared and cooled to -2°C in a treatment bath. A tow of never-dried 1.7 decitex solvent-s spun filaments was passed at 5m/min successively through a , ' roller nip of 100 KPa (to reduce the water content to 62%
based on dry tow), the above treatment bath, a roller nip of 34 KPa (to give a total solution pick-up of 75°s) and a drying cabinet at 90°C/10% RH for 7 minutes. The treated tow was washed as described in Example 2 and was re-dried.
The carboxymethyl cellulose filaments produced had a free-swell absorbency in 0.9o saline solution of 34.1 g/g.
A dressing was formed from the tow as described in Example 1.
Examr~le 6 A hydroentangled fabric of dry weight 50 g.m-Z formed from 1.7 decitex solvent-spun cellulosic filaments was collected in the wet state. The fabric was immersed in a reagent solution as described in Example 1, heated to 50°C
and allowed to react at this temperature for 180 minutes.
The fabric of carboxymethyl cellulose filaments produced was washed in a solution containing 55% IMS, 42% water and 3%
acetic acid and dried to a moisture content of 150. A
dressing was formed by cutting a 10 cm x 10 cm square from the fabric for packaging and sterilisation as described in Example 1.
Example 7 A dry hydroentangled fabric of solvent-spun cellulose filaments was wetted with water and then immersed in the reagent solution described in Example 1 and further processed to form a dressing as described in Example 6.

2.~~~~'~3 ~WO 94/16746 PCT/GB94/00114 Example 8 A square of 5 cm x 5 cm was cut from the fabric formed ' in Example 1 and placed centrally on a 10 cm x 10 cm square of "OpSite" adhesive-coated, water-vapour-permeable, " 5 polyurethane film. The whole of the exposed surface of the adhesive and the surface of the fabric square was covered with a silicone-coated paper release material. The dressing was packaged and sterilised as in Example 1.
Example 9 The tow of carboxymethyl cellulose filaments produced in Example 1 was cut to 50 mm lengths and 50% of the cut fibre was blended with 50a 1.7 dtex 38 mm "Fibro" (Trade Mark) viscose rayon fibre. The blended fibres were carded, formed into a nonwoven fabric and packaged and sterilised as described in Example 1.
Example 10 The tow of carboxymethyl cellulose filaments produced in Example 1 was cut to 10 mm staple fibre. A blend of 800 of this staple fibre and 200 "Celbond" bicomponent polyolefin fibre was dry-laid at 40 g.m'2 by depositing an air suspension of the fibres on a permeable conveyor passing over a suction apparatus. The layer was converted into a nonwoven fabric by passing air at 130°C through the fabric while it was supported on the permeable conveyor, thereby fusing the "Celbond" fibres to bond the nonwoven fabric.
The nonwoven fabric was cut into squares, packaged and sterilised as described in Example 1.

Claims (33)

1. A wound dressing having a wound-contacting surface composed of a material selected from the group consisting of a tow of continuous textile filaments at least 15 mm. long, a strand formed of textile filaments at least mm long, and a fabric formed of textile filaments at least 3 mm long, substantially all of said textile filaments being carboxymethyl cellulose textile filaments capable of absorbing at least 15 times their own weight of 0.9% by weight aqueous saline solution, as measured by the free-swell absorbency test, to form a swollen transparent gel, wherein the dressing when thus swollen to form a transparent gel retains sufficient fibrous character to be removed as a coherent dressing from a wound.
2. A wound dressing according to claim 1, in which the wound-contacting surface of the dressing is composed of a strand or fabric of carboxymethylated cellulose textile filaments which are at least 15 mm long.
3. A wound dressing according to claim 1, in which the carboxymethylated cellulose textile filaments are at least 30 mm long.
4. A wound dressing according to claim 1, in which the carboxymethylated cellulose textile filaments have a degree of substitution of 0.25 to 0.45 carboxymethyl group per glucose unit.
5. A wound dressing according to claim 1, in which the carboxymethylated cellulose textile filaments have been prepared by reacting cellulose textile filaments with a strong alkali and with monochloroacetic acid or a salt thereof.
6. A wound dressing according to claim 5, in which the cellulose textile filaments are solvent-spun cellulose filaments.
7. A wound dressing having a wound-contacting surface in which said wound-contacting surface comprises one of the group consisting of a tow of textile filaments at least 15 mm long, a strand formed of textile filaments at least 15 mm long and a fabric formed of textile filaments at least 3 mm long, said textile filaments comprising carboxymethylated cellulose textile filaments which have been prepared by reacting polynosic viscose rayon textile filaments with a strong alkali and with monochloroacetic acid or a salt thereof and which are capable of absorbing at least 15 times their own weight of 0.9% by weight aqueous saline solution, as measured by the free-swell absorbency test, to form a swollen transparent gel, wherein the dressing when thus swollen to form a transparent gel retains sufficient fibrous character to be removed as a coherent dressing from a wound.
8. A wound dressing according to claim 1, in which the carboxymethylated cellulose textile filaments are in the form of a tow, strand or fabric which is capable of absorbing at least 25 times its own weight of 0.9% by weight aqueous saline solution, as measured by the free-swell absorbency test.
9. A wound dressing according to claim 1, comprising a backing material and a tow of carboxymethylated cellulose textile filaments which extend across the wound-contacting surface of the dressing.
10. A wound dressing having a wound-contacting surface composed of a material from the group consisting of a tow of textile filaments at least 15 mm long, a strand formed of textile filaments at least 15 mm long and a fabric formed of textile filaments at least 3 mm long, substantially all of said textile filaments consisting of at least 50% by weight carboxymethylated cellulose textile filaments and up to 50% by weight physiologically inert fibres selected from the group consisting of non-carboxymethylated cellulose fibres, polyester fibres, nylon fibres and polyolefin fibres, said carboxymethylated cellulose textile filaments being capable of absorbing at least 15 times their own weight of 0.9%
by weight aqueous saline solution, as measured by the free-swell absorbency test, to form a swollen transparent gel, wherein the dressing when thus swollen to form a transparent gel retains sufficient fibrous character to be removed as a coherent dressing from a wound.
11. A wound dressing according to claim 1, in which the wound-contacting surface of the dressing is a fabric composed of textile filaments, substantially all of which are carboxymethylated cellulose textile filaments.
12. A wound dressing according to claim 11, in which the fabric is a nonwoven fabric.
13. A wound dressing according to claim 11, in which the fabric has been prepared by reacting a fabric of cellulose textile filaments with a strong alkali and with monochloroacetic acid or a salt thereof.
14. A wound dressing according to claim 11, in Which the fabric has been prepared by converting carboxymethylated cellulose textile filaments to fabric in a weaving, knitting or nonwoven fabric process
15. Use for a traumatic, surgical or chronic wound which is exuding from its surface, of a wound dressing having a wound-contacting surface composed of a fabric formed of textile filaments at least 3mm long, substantially all of the textile filaments forming the fabric being carboxymethylated cellulose textile filaments capable of absorbing at least 15 times their own weight of 0.9% by weight aqueous saline solution (as measured by the free-swell absorbency test) to form a swollen transparent gel, wherein the dressing when thus swollen to form a transparent gel retains sufficient fibrous character to be removed as a coherent dressing from a wound.
16. Use for a traumatic, surgical or chronic wound which is exuding from its surface, of a wound dressing having a wound-contacting surface composed of carboxymethylated cellulose textile filaments at least 15 mm long, the filaments being capable of absorbing at least 15 times their own weight of 0.9% by weight aqueous saline solution, as measured by the free-swell absorbency test, to form a transparent gel which retains sufficient fibrous character to be removed as a coherent dressing from the wound.
17. Use according to claim 16, wherein said carboxymethylated cellulose textile filaments are in the form of a tow of filaments or a rope of filaments in staple fibre form and said filaments are spread to cover the wound.
18. Use according to claim 16, wherein said wound is a cavity wound having an inner surface, and a tow of carboxymethylated cellulose textile filaments or a rope of carboxymethylated cellulose textile filaments in staple fibre form is provided to fill or line the inner surface of the cavity wound.
19. A wound dressing according to claim 10, in which the carboxymethyl cellulose filaments have a degree of substitution of 0.25 to 0.45 carboxymethyl group per glucose unit.
20. A wound dressing according the claim 10, in which the carboxymethyl cellulose filaments have been prepared by reacting cellulose filaments with a strong alkali and with monochloroacetic acid or a salt thereof.
21. A wound dressing according to claim 20, in which the cellulose filaments are solvent-spun cellulose filaments.
22. A wound dressing according to claim 10 in which the wound-contacting surface of the dressing is a fabric composed of the said carboxymethylated cellulose textile filaments and the said physiologically inert fibres.
23. A wound dressing according to claim 22 in which the fabric is a nonwoven fabric.
24. A wound dressing having a Wound-contacting surface comprising one of the group consisting of a tow of textile filaments at least 15 mm long, a strand formed of textile filaments at least 15 mm long and a fabric formed of textile filaments at least 3 mm long, said textile filaments comprising at least 50°!° by weight carboxymethylated cellulose textile filaments and up to 50% by weight physiologically inert fibres selected from non-carboxymethylated cellulose fibres, polyester fibres, nylon fibres and polyolefin fibres, said carboxymethylated cellulose textile filaments being capable of absorbing at least 15 times their own weight of 0.9% by weight aqueous saline solution, as measured by the free-swell absorbency test, to form a swollen transparent gel, wherein the dressing when thus swollen to form a transparent gel retains sufficient fibrous character to be removed as a coherent dressing from a wound; in Which the wound-contacting surface of the dressing is a fabric comprising the said carboxymethylated cellulose textile filaments and the said physiologically inert fibres; and in which the fabric has been prepared by reacting a fabric of cellulose textile filaments and physiologically inert fibres selected from polyester fibres, nylon fibres and polyolefin fibres with a strong alkali and with monochloroacetic acid or a salt thereof.
25. A wound dressing according to claim 22 in which the fabric has been prepared by converting carboxymethylated cellulose textile filaments and the said physiologically inert fibres to fabric in a weaving, knitting or nonwoven fabric process
26. Use for a traumatic, surgical or chronic wound which is exuding from its surface, of a wound dressing having a wound-contacting surface composed of a fabric formed of textile filaments at least 3 mm long, from 50% by weight to substantially all of the textile filaments forming the fabric being carboxymethylated cellulose textile filaments, and the balance, if any, comprising physiologically inert fibres selected from non-carboxymethylated cellulose fibres, polyester fibres, nylon fibres and polyolefin fibres, said carboxymethylated cellulose textile filaments being capable of absorbing at least 15 times their own weight of 0.9% by weight aqueous saline solution, as measured by the free-swell absorbency test, to form a swollen transparent gel, wherein the dressing when thus swollen to form a transparent gel retains sufficient fibrous character to be removed as a coherent dressing from the wound.
27. A wound dressing according to claim 1, in which substantially all of said textile filaments are non-crosslinked carboxymethyl cellulose textile filaments.
28. A Wound dressing according to claim 7, in which substantially all of said textile filaments are non-crosslinked carboxymethyl cellulose textile filaments.
29. A wound dressing according to claim 10, in which substantially all of said carboxymethylated cellulose textile filaments are non-crosslinked.
30. A Wound dressing according to claim 24, in which substantially all of said carboxymethylated cellulose textile filaments are non-crosslinked.
31. Use according to claim 15, in which substantially all of said textile filaments are non-crosslinked carboxymethyl cellulose textile filaments.
32. Use according to claim 16, in which substantially all of said carboxymethylated cellulose textile filaments are non-crosslinked carboxymethyl cellulose textile filaments.
33. Use according to claim 26, in which substantially all of said carboxymethylated cellulose textile filaments forming the fabric are non-crosslinked carboxymethyl cellulose textile filaments.
CA 2154473 1993-01-22 1994-01-20 Carboxymethylcellulose wound dressings Expired - Lifetime CA2154473C (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
GB9301258A GB9301258D0 (en) 1993-01-22 1993-01-22 Use of absorbent fibre
GB9301258.1 1993-01-22
PCT/GB1994/000114 WO1994016746A1 (en) 1993-01-22 1994-01-20 Wound dressings

Publications (2)

Publication Number Publication Date
CA2154473A1 true CA2154473A1 (en) 1994-08-04
CA2154473C true CA2154473C (en) 2005-03-15

Family

ID=10729142

Family Applications (1)

Application Number Title Priority Date Filing Date
CA 2154473 Expired - Lifetime CA2154473C (en) 1993-01-22 1994-01-20 Carboxymethylcellulose wound dressings

Country Status (9)

Country Link
US (1) US6075177A (en)
EP (1) EP0680344B1 (en)
JP (2) JP3847778B2 (en)
CA (1) CA2154473C (en)
DE (2) DE69409363D1 (en)
DK (1) DK0680344T3 (en)
ES (1) ES2115929T3 (en)
GB (1) GB9301258D0 (en)
RU (1) RU2135212C1 (en)

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7048976B2 (en) * 1997-04-03 2006-05-23 Cryomed France Cooling article involving evaporation of water from a polymer absorbent
WO2000001425A1 (en) * 1998-07-01 2000-01-13 Acordis Speciality Fibres Limited Wound dressings and materials suitable for use therein
GB0017080D0 (en) * 2000-07-12 2000-08-30 Squibb Bristol Myers Co Multi layered wound dresssing
US6492573B1 (en) 2000-08-17 2002-12-10 Arthur Ashman Biocompatible oral bandage, application and method of manufacture
GB0023155D0 (en) 2000-09-21 2000-11-01 Acordis Speciality Fibres Ltd Wound dressing
US20020168911A1 (en) * 2001-05-02 2002-11-14 Tonner Kathleen C. Absorbent layer for use in hospital supplies
DE60223930T2 (en) * 2001-09-12 2008-11-06 ConvaTec Ltd., Deeside Antibacterial dressing
US6933380B2 (en) * 2001-10-19 2005-08-23 Yung-Zip Chemical Ind. Co., Ltd. Excipients containing low residual solvent and method for producing the same
GB0210233D0 (en) * 2002-05-03 2002-06-12 Acordis Speciality Fibres Ltd Wound dressings
DE10223366A1 (en) * 2002-05-25 2003-12-04 Bosch Gmbh Robert Device for detecting motorized two-wheeler seat occupants, has vehicle occupant detection arrangement; at least one vehicle component can be controlled depending on signal from detection arrangement
US7846141B2 (en) 2002-09-03 2010-12-07 Bluesky Medical Group Incorporated Reduced pressure treatment system
GB0224986D0 (en) 2002-10-28 2002-12-04 Smith & Nephew Apparatus
US20040101547A1 (en) * 2002-11-26 2004-05-27 Pendharkar Sanyog Manohar Wound dressing containing aldehyde-modified regenerated polysaccharide
GB0300625D0 (en) * 2003-01-10 2003-02-12 Squibb Bristol Myers Co Wound dressing
GB0325129D0 (en) 2003-10-28 2003-12-03 Smith & Nephew Apparatus in situ
GB2429161B (en) 2004-02-13 2008-12-24 Squibb Bristol Myers Co Multi layered wound dressing
GB2409162B (en) * 2004-10-06 2005-12-14 Bhk Holding Ltd Materials,methods,and apparatus for treating a body cavity
GB0426718D0 (en) * 2004-12-06 2005-01-12 Squibb Bristol Myers Co Wound dressing
GB0513555D0 (en) * 2005-07-01 2005-08-10 Squibb Bristol Myers Co Carboxymethylated cellulosic wound dressing garment
EP1922045B1 (en) 2005-09-07 2012-11-07 Tyco Healthcare Group LP Self contained wound dressing with micropump
CA2604623A1 (en) 2006-09-28 2008-03-28 Tyco Healthcare Group Lp Portable wound therapy system
US20080082069A1 (en) * 2006-10-02 2008-04-03 Jian Qin Absorbent articles comprising carboxyalkyl cellulose fibers having non-permanent and temporary crosslinks
US20080082068A1 (en) * 2006-10-02 2008-04-03 Jian Qin Absorbent articles comprising carboxyalkyl cellulose fibers having permanent and non-permanent crosslinks
GB0623473D0 (en) * 2006-11-24 2007-01-03 Squibb Bristol Myers Co Dissolution and processing of cellulose
GB0712763D0 (en) 2007-07-02 2007-08-08 Smith & Nephew Apparatus
US8039683B2 (en) * 2007-10-15 2011-10-18 Kimberly-Clark Worldwide, Inc. Absorbent composites having improved fluid wicking and web integrity
DE102008013191A1 (en) * 2008-03-07 2009-09-10 De, Dennis, Prof. Dr. releasably a pair with each other, linkable socks or stockings with improved durability
US8414519B2 (en) 2008-05-21 2013-04-09 Covidien Lp Wound therapy system with portable container apparatus
DE102008037888A1 (en) * 2008-08-15 2010-02-25 Birgit Riesinger Wound care products comprising textile strips with fibers with gel-forming properties as well as fibers with non-gelling properties
US8177763B2 (en) 2008-09-05 2012-05-15 Tyco Healthcare Group Lp Canister membrane for wound therapy system
EP2196224A1 (en) 2008-12-11 2010-06-16 Speciality Fibres and Materials Limited Absorbent material
GB0914171D0 (en) * 2009-08-13 2009-09-16 Smith & Nephew Ultrasound couplant
WO2011022740A1 (en) 2009-08-28 2011-03-03 Lenzing Ag Carboxyethyl cellulose fibers, their use in wound dressings and hygiene items and method for producing the same
GB2474694B (en) * 2009-10-23 2011-11-02 Innovia Films Ltd Biodegradable composites
KR101070358B1 (en) * 2009-12-24 2011-10-05 한국생산기술연구원 Surgical nonwoven material and manufacturing method thereof
EP2552497A4 (en) * 2010-03-26 2014-05-21 3M Innovative Properties Co Method of sterilization of wound dressings
US9061095B2 (en) 2010-04-27 2015-06-23 Smith & Nephew Plc Wound dressing and method of use
CN202590012U (en) * 2011-01-07 2012-12-12 佛山市优特医疗科技有限公司 High-hygroscopicity wound dressing capable of being removed integrally
CN102727925B (en) 2011-04-02 2014-09-17 佛山市优特医疗科技有限公司 Acylated chitosan wound dressing, and preparation method and application thereof
CA2841392A1 (en) 2011-07-14 2013-01-17 Smith & Nephew Plc Wound dressing and method of treatment
GB201113515D0 (en) * 2011-08-04 2011-09-21 Convatec Technologies Inc A dressing
WO2013025955A1 (en) 2011-08-17 2013-02-21 3M Innovative Properties Company A hydrophobic adhesive with absorbent fibers
RU2465921C1 (en) * 2011-10-05 2012-11-10 Российская Федерация, От Имени Которой Выступает Министерство Промышленности И Торговли Российской Федерации Method of obtaining medical napkin
GB201120693D0 (en) * 2011-12-01 2012-01-11 Convatec Technologies Inc Wound dressing for use in vacuum therapy
US20140315005A1 (en) * 2011-12-23 2014-10-23 Sca Hygiene Products Ab Double- or multiply fibrous sheet material containing superabsorbent material and a method for producing it
CN107260399A (en) 2012-03-12 2017-10-20 史密夫及内修公开有限公司 Wound dressign apparatus for reduced pressure wound therapy
RU2509784C2 (en) * 2012-04-10 2014-03-20 Общество с ограниченной ответственностью "Линтекс" Method of producing porous, film-type materials based on carboxymethyl cellulose
RU2483755C1 (en) * 2012-04-26 2013-06-10 Общество с ограниченной ответственностью "КОЛЕТЕКС" Wound tissue
US9427505B2 (en) 2012-05-15 2016-08-30 Smith & Nephew Plc Negative pressure wound therapy apparatus
ES2673223T3 (en) 2012-05-23 2018-06-20 Smith & Nephew Plc. Therapy apparatus Negative pressure wound
ES2625709T3 (en) 2012-08-01 2017-07-20 Smith & Nephew Plc. Wound dressing
KR101361629B1 (en) * 2012-12-10 2014-02-13 한국생산기술연구원 Manufacturing method of wet-laid carboxymethyl cellulose nonwoven and use of using the same
CN105008611A (en) * 2012-12-20 2015-10-28 康沃特克科技公司 Processing of chemically modified cellulosic fibres
GB201308770D0 (en) * 2013-05-15 2013-06-26 Convatec Technologies Inc Wound Dressing Comprising an Antimicrobial Composition

Family Cites Families (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US244644A (en) * 1881-07-19 Geobge h
NL19083C (en) * 1924-04-04
US3005456A (en) * 1956-07-03 1961-10-24 Personal Products Corp Catamenial device
US3589364A (en) * 1968-03-14 1971-06-29 Buckeye Cellulose Corp Bibulous cellulosic fibers
GB1329693A (en) * 1969-09-27 1973-09-12 Wallace Cameron Co Ltd Haemostatic surgical dressing and a method of manaufacturing same
US3723413A (en) * 1970-10-26 1973-03-27 Personal Products Co Water-insoluble fluid-absorptive and retentive materials and methods of making the same
US3731686A (en) * 1971-03-22 1973-05-08 Personal Products Co Fluid absorption and retention products and methods of making the same
US3858585A (en) * 1971-03-22 1975-01-07 Personal Products Co Fluid absorption and retention products and methods of making the same
US3847636A (en) * 1972-06-05 1974-11-12 Fmc Corp Absorbent alloy fibers of salts of carboxyalkylated starch and regenerated cellulose
GB1394742A (en) * 1972-08-03 1975-05-21 Medical Alginates Ltd Surgical dressing material
JPS545037B2 (en) * 1972-10-03 1979-03-13
US4200557A (en) * 1973-12-07 1980-04-29 Personal Products Company Absorbent product including grafted insolubilized cellulose ether
JPS525393A (en) * 1975-06-25 1977-01-17 Ajinomoto Kk Production of carboxy alkylation substance
US3972328A (en) * 1975-07-28 1976-08-03 E. R. Squibb & Sons, Inc. Surgical bandage
US4044766A (en) * 1976-02-27 1977-08-30 Kimberly-Clark Corporation Compressed catamenial tampons with improved capabilities for absorbing menstrual fluids
DE2827069A1 (en) * 1977-06-30 1979-01-11 Bunzl & Biach Ag dressing
GB2027714B (en) * 1978-05-31 1983-03-30 Hoechst Ag Process and apparatus for the manufacture of swellable crosslinked carboxyalkylcelluloses from natural cellulose or cellulose hydrate and use thereof
US4246221A (en) * 1979-03-02 1981-01-20 Akzona Incorporated Process for shaped cellulose article prepared from a solution containing cellulose dissolved in a tertiary amine N-oxide solvent
JPS6338461B2 (en) * 1979-04-18 1988-07-29 Kootoozu Plc
JPS6357539B2 (en) * 1979-07-19 1988-11-11 Asahi Chemical Ind
JPS6015641B2 (en) * 1981-03-18 1985-04-20 Kao Soap Co
GB2103993B (en) * 1981-08-18 1985-03-27 David Philip Tong Production of alginate fibre
US4405324A (en) * 1981-08-24 1983-09-20 Morca, Inc. Absorbent cellulosic structures
US4538603A (en) * 1982-04-22 1985-09-03 E. R. Squibb & Sons, Inc. Dressings, granules, and their use in treating wounds
US4728642A (en) * 1982-04-22 1988-03-01 E. R. Squibb & Sons, Inc. Method of treating wounds with granules and dressing
JPS58206751A (en) * 1982-05-26 1983-12-02 Nippon Oil Co Ltd Wound covering material
EP0227955A3 (en) * 1982-07-21 1987-11-25 University of Strathclyde Composite wound dressing
JPS59225064A (en) * 1983-06-03 1984-12-18 Unitika Ltd Carrier for immobilizing physiologically active substance
JPS602707A (en) * 1983-06-20 1985-01-09 Unitika Ltd Hygroscopic filament yarn of regenerated cellulose having improved flexibility and its preparation
DE3337444A1 (en) * 1983-10-14 1985-04-25 Henkel Kgaa The use of ph-regulating materials
DE3337443A1 (en) * 1983-10-14 1985-04-25 Chemiefaser Lenzing Ag The ph-regulating materials and their production
JPH0144201B2 (en) * 1983-10-31 1989-09-26 Asahi Chemical Ind
JPH0526498B2 (en) * 1985-04-18 1993-04-16 Unitika Ltd
GB8605214D0 (en) * 1986-03-03 1986-04-09 Courtaulds Plc Wound dressing
GB8609367D0 (en) * 1986-04-17 1986-05-21 Johnson & Johnson Adhesive wound dressing
GB2220881B (en) * 1988-04-28 1992-07-08 Toyo Boseki Improvements in or relating to superabsorbent materials
US5197945A (en) * 1988-05-31 1993-03-30 Minnesota Mining And Manufacturing Company Alginate wound dressing of good integrity
GB8815132D0 (en) * 1988-06-24 1988-08-03 Britcair Ltd Wound dressing
JP2795349B2 (en) * 1989-04-07 1998-09-10 東海染工株式会社 Easily disintegratable nonwoven fabric readily disintegrated in the flow water
JPH03825A (en) * 1989-05-25 1991-01-07 Kao Corp Hygroscopic yarn
JPH03269144A (en) * 1990-03-20 1991-11-29 Toyobo Co Ltd Highly water-absorptive nonwoven sheet
CA2065487C (en) * 1991-04-08 1999-11-02 Mary C. Watson Absorbent, moisture transmitive occlusive dressing
GB2259464B (en) * 1991-09-11 1995-07-12 Robinson & Sons Ltd Hydrocolloid dressing
GB9126193D0 (en) * 1991-12-10 1992-02-12 Courtaulds Plc Cellulosic fibres

Also Published As

Publication number Publication date Type
DK680344T3 (en) grant
JP4499669B2 (en) 2010-07-07 grant
JPH08505790A (en) 1996-06-25 application
ES2115929T3 (en) 1998-07-01 grant
DE69409363D1 (en) 1998-05-07 grant
CA2154473A1 (en) 1994-08-04 application
EP0680344A1 (en) 1995-11-08 application
DE69409363T2 (en) 1998-10-08 grant
US6075177A (en) 2000-06-13 grant
EP0680344B1 (en) 1998-04-01 grant
JP2006110393A (en) 2006-04-27 application
JP3847778B2 (en) 2006-11-22 grant
DK0680344T3 (en) 1999-01-11 grant
GB9301258D0 (en) 1993-03-17 grant
RU2135212C1 (en) 1999-08-27 grant

Similar Documents

Publication Publication Date Title
US4984570A (en) Knitted hydrophobic web wound dressing
US4565663A (en) Method for making water-swellable composite sheet
US5658582A (en) Multilayer nonwoven tissue containing a surface layer comprising at least one hyaluronic acid ester
US6656974B1 (en) Foam materials
US4468428A (en) Hydrophilic microfibrous absorbent webs
US5851461A (en) Method of producing polysaccharide foams
US6552244B1 (en) Multi-layered wound dressing
US7745681B1 (en) Nonwoven fabrics and their manufacture and use
US7252837B2 (en) Hemostatic wound dressing and method of making same
US20090177135A1 (en) Wound dressing
US2773000A (en) Hemostatic surgical dressings
US5135472A (en) Non-linting composite gauze material
US20030149413A1 (en) Superabsorbent composite and absorbent articles including the same
US5197945A (en) Alginate wound dressing of good integrity
US5676660A (en) Absorbent product including absorbent layer treated with surface active agent
RU2222652C2 (en) High-absorbency composite sheet material and a method for manufacture thereof
US20100233248A1 (en) Clay-based hemostatic agents and devices for the delivery thereof
US4651725A (en) Wound dressing
EP0344913A1 (en) Alginate wound dressing of good integrity
US5470576A (en) Process for preparing the alginate-containing wound dressing
JPH10168230A (en) Composite material composition and its production
US6140257A (en) Composite fibres, wound dressings incorporating such fibres and a method for making same
JPH05285170A (en) Absorptive article
US20070104769A1 (en) Bioabsorbable hemostatic gauze
CN1833731A (en) Making method of and use of antibiotic surgical dressing

Legal Events

Date Code Title Description
EEER Examination request
MKEX Expiry

Effective date: 20140120