CA2149030A1 - Multilayer graphic article with color layer - Google Patents

Multilayer graphic article with color layer

Info

Publication number
CA2149030A1
CA2149030A1 CA 2149030 CA2149030A CA2149030A1 CA 2149030 A1 CA2149030 A1 CA 2149030A1 CA 2149030 CA2149030 CA 2149030 CA 2149030 A CA2149030 A CA 2149030A CA 2149030 A1 CA2149030 A1 CA 2149030A1
Authority
CA
Grant status
Application
Patent type
Prior art keywords
layer
graphic article
color
binder
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA 2149030
Other languages
French (fr)
Inventor
Chia-Tie Ho
Carl W. Mcmullen
Raymond Michael Sawka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3M Co
Original Assignee
Chia-Tie Ho
Carl W. Mcmullen
Raymond Michael Sawka
Minnesota Mining And Manufacturing Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/12Reflex reflectors
    • G02B5/126Reflex reflectors including curved refracting surface
    • G02B5/128Reflex reflectors including curved refracting surface transparent spheres being embedded in matrix
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B44DECORATIVE ARTS
    • B44CPRODUCING DECORATIVE EFFECTS; MOSAICS; TARSIA WORK; PAPERHANGING
    • B44C1/00Processes, not specifically provided for elsewhere, for producing decorative surface effects
    • B44C1/16Processes, not specifically provided for elsewhere, for producing decorative surface effects for applying transfer pictures or the like
    • B44C1/165Processes, not specifically provided for elsewhere, for producing decorative surface effects for applying transfer pictures or the like for decalcomanias; sheet material therefor
    • B44C1/17Dry transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B44DECORATIVE ARTS
    • B44CPRODUCING DECORATIVE EFFECTS; MOSAICS; TARSIA WORK; PAPERHANGING
    • B44C1/00Processes, not specifically provided for elsewhere, for producing decorative surface effects
    • B44C1/16Processes, not specifically provided for elsewhere, for producing decorative surface effects for applying transfer pictures or the like
    • B44C1/165Processes, not specifically provided for elsewhere, for producing decorative surface effects for applying transfer pictures or the like for decalcomanias; sheet material therefor
    • B44C1/17Dry transfer
    • B44C1/1712Decalcomanias applied under heat and pressure, e.g. provided with a heat activable adhesive
    • B44C1/1716Decalcomanias provided with a particular decorative layer, e.g. specially adapted to allow the formation of a metallic or dyestuff layer on a substrate unsuitable for direct deposition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B44DECORATIVE ARTS
    • B44CPRODUCING DECORATIVE EFFECTS; MOSAICS; TARSIA WORK; PAPERHANGING
    • B44C5/00Processes for producing special ornamental bodies
    • B44C5/04Ornamental plaques, e.g. decorative panels, decorative veneers
    • B44C5/0446Ornamental plaques, e.g. decorative panels, decorative veneers bearing graphical information
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B44DECORATIVE ARTS
    • B44FSPECIAL DESIGNS OR PICTURES
    • B44F1/00Designs or pictures characterised by special or unusual light effects
    • B44F1/02Designs or pictures characterised by special or unusual light effects produced by reflected light, e.g. matt surfaces, lustrous surfaces
    • B44F1/04Designs or pictures characterised by special or unusual light effects produced by reflected light, e.g. matt surfaces, lustrous surfaces after passage through surface layers, e.g. pictures with mirrors on the back
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; MISCELLANEOUS COMPOSITIONS; MISCELLANEOUS APPLICATIONS OF MATERIALS
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J123/00Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers
    • C09J123/02Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers not modified by chemical after-treatment
    • C09J123/04Homopolymers or copolymers of ethene
    • C09J123/08Copolymers of ethene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M7/00After-treatment of prints, e.g. heating, irradiating, setting of the ink, protection of the printed stock
    • B41M7/0027After-treatment of prints, e.g. heating, irradiating, setting of the ink, protection of the printed stock using protective coatings or layers by lamination or by fusion of the coatings or layers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2666/00Composition of polymers characterized by a further compound in the blend, being organic macromolecular compounds, natural resins, waxes or and bituminous materials, non-macromolecular organic substances, inorganic substances or characterized by their function in the composition
    • C08L2666/28Non-macromolecular organic substances
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/14Layer or component removable to expose adhesive
    • Y10T428/1438Metal containing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/28Web or sheet containing structurally defined element or component and having an adhesive outermost layer
    • Y10T428/2848Three or more layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31786Of polyester [e.g., alkyd, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31786Of polyester [e.g., alkyd, etc.]
    • Y10T428/31797Next to addition polymer from unsaturated monomers

Abstract

A multilayer graphic article (10) comprises a substrate, at least one color layer (12) disposed on the substrate (16), and a protective surface layer (18) that overlies the substrate and the color layer. The color layer is visible through the surface layer and comprises a color agent in a copolymeric binder. The binder comprises the copolymerization product of an olefinic monomer and a second monomer having a pendant carboxyl group. The substrate may be a polymeric film, an adhesive or a temporary, removable liner.
The protective surface layer may be formulated to impart interior surface protection properties to the graphic article or it may be formulated to render the graphic article weatherable and resistant to chemical exposure.

Description

i"' ~If' ~
WO 94/13496214 9 0 3 ~ PCT/IJS93111530 ,; .

~; :
5MULTILh.YER GRAPXIC ARTICLE WITH COLOR LAYER
, :`: BACKGROUND OF THE INVENTION
. ~ .
Field of the Invention In general, this invention relates to multilayer graphic articles and, more particularly, to , multilayer graphi~ articles which comprise a substrate, a color layer disposed on the substrate, and an overlying protective surface layer.
Description of Related Art Multilayer graphic articles may be applied to a ~' variety of surfaces for decora~ive, informational, and/or functional reasons. These multilayer .~, 20 constructions often contain one or more continuous or ~, nvn-continuous color layers coated, print~,Pd or laminated on a plastic film, which itself may be colored.
Decorative graphic articles are typically highly 25 contrasting polychromatic constructions that enhance the visual appeal of surfaces to which they are applied, such as motor Yehicles, marine craft, commercial or residential real estate, signs, store ~ displays and the like. Informational graphic 5~ 30 articles provide directions, location indicia, in-etructions, and identification when used, for ~ example, to construct road signs and license plates.
`~ Functional graphic articles impart weather protection ~~
.~ and wear resistance to surfaces to which they are ; 35 applied, especially outdoor surfaces. I
Color layers in presently known graphic articles !, often contain a poly(vinyl chloride) (PVC) binder blended with various color agents, volatile organic /

, W094/13496 2 i ~ ~ 0 3 ~ PCT~S93/11530 solvents and plasticizers. PVc solvents typically provide from 40 to 60 weight percent (wt. %) of the color layer formulation. However, for various environmental and health reasons, it is desirable to reduce or eliminate the use of these solvents.
Similarly, it is desirable to reduce or eliminate the use of PVC plasticizers. Plasticizers can migrate into adjacent layers of the graphic and cause visual changes to both the color layer and surrounding surfaces. The physical stability of the color layer may be adversely affected. Finally, PVC plasticizers are not considered environmentally friendly.
Presently known color layer formulations are compatible with only a limited class of substrates, primarily PVC, acrylics and urethanes. These substrates can have poor flexibility and PVC is not environmentally desirable.
Accordingly, a substantial need exists for eliminating or reducing the use of PVC-based materials (and their associated solvents and plasticizers) in both color layer formulations and graphic articles.

SUMMARY OF THE INVENTION
In general, this invention relates to a multilayer graphic article comprising a substrate, at least one color layer disposed on the substrate, and ~ a protective surface layer that overlies the j substrate and the color layer, the color layer being 1 30 visible through the surface layer. The color layer 3 comprises a color agent in a copolymeric binder.
~ Broadly, the binder comprises the copolymerization ~`
3 product of an olefinic monomer (preferably ethylene) and a second monomer having a pendant carboxyl group 35 (preferably acrylic or methacrylic acid). The first monomer provides from 99 to 70 mol-% (more preferably, 9l to 97 mol-%) while the second monomer W094/13496 2 1 ~ 9 0 3 0 PCT~593/11530 correspondingly provides from 1 to 30 mol-~ (more - preferably from 9 to 3 mol-%) of the binder. The copolymeric binder may be supplemented with a secondary binder such as a polyurethane dispersion.
Numerous color agents are useful within the scope of the invention including organic pigmer.ts, inorganic pigments, metallic (for example, aluminum) flakes, pearlescent materials, inks and dyes.
The graphic article may include multiple color layers each of which may be continuous or discontinuous relative to the substrate on which it is disposed and any other color layers in the graphic article. Such constructions are particularly ' preferred for providing multicolored graphic articles.
The substrate on which the color layer(s) is disposed may be provided by materials as varied as a polymeric film, an adhesive, or a temporary, removable, liner. Useful polymeric film substrates ~- 20 includes alpha-olefins, ethylene-modified copolymers 1~ and terpolymers, polyurethanes, and rubbery polymers.
However, ionomers of olefin/vinyl carboxylate copolymers such as ionomers of ethylene/acrylic acid and ethylene/methacrylic acid copolymer are - 25 preferred. Even those constructions which include a polymeric film substrate may comprise an adhesive, such as a pressure sensitive adhesive, for bonding ~ the graphic article to a surface.
9 The protective surface layer may be formulated 30 so as to provide the graphic article with interior surface protection properties; that is, resistance to ~i interior cleaning solutions, food, cosmetics, etc. 5`
7~ Surface layer materials which provide interior surface protection properties include, for example, 35 polyurethane-based materials that comprise the ; reaction product of an aromatic diisocyanate and a polyether polyol.

1~ ~

WO94/13496 PCT~S~3/11~30 2 ~ 3 1~ ~;

Alternatively, the protective surface layer may be formulated to render the graphic article weatherable and resistant to chemical exposure. In this regard, polyurethane-based material~, such as the reaction product of an aliphatic diioscyanate and either a polyester p~lyol, a polycarbonate polyol or a polyacrylic polyol are preferred.
The graphic articles of the invention may be applied to a wide variety of substrates including motor vehicles, marine craft, snowmobiles, sign faces and the like.
q ` BRIEF DESCRIPTION OF THE DRAWINGS
The invention will be more fully appreciated with reference to the following drawings in which similar reference numerals designate like or analogous components throughout and in which:
FIG. l is an enlarged elevational view of one embodiment of a multilayer graphic article according to the invention and showing several optional layers thereof; and FIG. 2 is an enlarged elevational view of a second embodiment of a multilayer graphic article according to the invention and showing several optional layers thereof.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
In a broad aspect of the invention, the multilayex graphic article comprises a substrate, a color layer disposed on the substrate, and a clear or transparent, protective surface layer that overlies both the color layer and the substrate. The color layer may comprise several independent color layers and may be positioned between the surface layer and the substrate or beneath both the surface layer and the substrate. In embodiments of the former kind, the substrate can be permanent or temporary.

WO 94/13496 ~ ~ Ll ~ 0 3 Q PCT~S~3/11530 `-5 _ Consequently, the substrate may be as varied as a polymeric film, an adhesive layer, or a temporary liner. The protective surface layer may be formulated to render the graphic article sultable for use in outdoor environments or it may be designed for less demanding interior applications. By "clear" or "transparent" it is meant that the underlyin~ color layer(s) can be seen through the surface layer such that the surface layer does not detract from the appearance of the color layer(s).
The many embodiments of the present invention will be more easily understood with reference to the following description and the accompanying drawings.
Turning now to the drawings, FIG. l illustrates one embodiment of a multilayer graphic article lO
according to the invention, the illustrated embodiment including several optional elements, as will be explained more fully hereinbelow~ Graphic Iarticle lO comprises a first color layer 12 and a 120 second color layer 14 disposed on a substrate such as ¦a polymeric film layer 16. A clear protective surface layer 18 overlies both film layer 16 and 'color layers l~ and 14. Graphic article lO further comprises an adhesive layer 20 and a temporary, j25 removable release liner 22 that protects the adhesive.
In a broad embodiment of the invention, only one of color layers 12 and 14 need be provided. However, in many preferred graphic articles, more than one color layer is desirable, especially where a multicolored graphic article is sought. Similarly, whereas FIG. l illustrates two color layers 12 and 14, the invention is not so limited and graphic articles according to the invention may comprise '~
35 three or more color layers, the specific number often `
being dictated by the desired visual appearance, manufacturing simplicity, cost, and the like.

~vog4/134s6 PCT/US93/11530 -- 6 ~
Furthermore, each color layer may be continuous or discontinuous relative to the substrate on which it is disposed and any other color layers in the article. Discontinuous color layers are especially r 5 preferred in constructions utilizing more than one color layer so as to permit the several different color layers to be viewed simultaneously.
In general, each color layer may be provided by a similar formulation. Consequently, the following l0 discussion of the composition of color layers useful in the invention pertains equally to color layers 12 and 14 (as well as other color layers which may be included in the graphic articles but which are not separately illustrated in the drawings).
Y 15 Color layers useful in the invention may be '3' provided by an aqueous solution, emulsion or dispersion comprising a binder, a color agentt and 1, various optional ingredients. Whether a mixture is 3 classified as an aqueous solution, a microdispersion, ~ 20 a microemulsion, a dispersion or an emulsion depends I primarily on the particle size of the material in the continuous phase. The binder includes a copolymeric binder that preferably comprises the copolymerization product of an olefinic monomer and a second monomer 25 containing a pendant carboxyl group. These copolymeric binders have the following formula:
J R~ COOH
X~(CH2~CH)~~tCH2~c)m~y (I) ; 30 , R~

whexein R~ is either H or a Cl~ alkyl group; R2 is H, a C~ alkyl group, -CN, an ester group, or R3-COOH, wherein R3 is any alkyl group; X and Y are independently a residue of the olefinic monomer or a residue of the second monomer; n is a number selected such that the olefinic monomer provides from about 70 to 99 mole percent (mol-%) of the copolymeric ~inder;

WO9~/13496 2 14 9 0 3 ~ PCT~S93/11530 .. .. ., . 1 and m is a number selected such that the second monomer correspondil1gly provides from about l to 30 mol-% of the copolymeric binder.
dvantageously, such materials may display hot melt adhesive properties which provide manufacturing benefits as explained below. Consequently, the utility of these materials as binders may be influenced by their melt index which preferably is selected to provide good quality hot melt adhesive characteristics. If the melt index is too high, the resulting binder may be too soft, have reduced temperature resistance, and may not be creep resistant. On the other hand, if the melt index is too low, the binder may be too stiff to be useful as a hot melt adhesive and may not form a good bond to the substrate on which it is disposed. Within these guidelines, a melt index (as measured by AST~-l238-88) of about 50 to 2000 is preferred, with a melt index of about 50 to l500 even more preferred.
(While the melt index has been expressed as a i -~ function of the binder, the addition of a color agent or other material is not expected to significantly alter the melt index of the color layer.
Consequently, the melt index of the binder may also be regarded as indicative of the melt index of the color layer as a whole.~
The most preferred copolymeric binders are ethylene acrylic acid and ethylene methacrylic acid copolymers. In these materials, the ethylene monomer preferably provides from about 9l to 97 mol-% of the binder while the acrylic acid or methacrylic acid monomer (as the case may be) correspondingly provides ~--from about 3 to 9 mol-%.
Suitable, commercially available copolymeric ~-binders include Adcote~-50T4983 having approximately 20 wt.% (9 mol-%) acrylic acid and a melt index of 300, Adcote~-50T4990 having 20 wt.% acrylic acid (9 ~ WO94/13496 PCT~S93/11530 : 2149~30 - 8 - `~ I
mol-%) and a melt index of 1300, and Adcote~-56220 having 13 wt.~ (7.5 mol-%) methacrylic acid and a melt index of 60. Each of these materials is available from Morton International. Also useful is 5 MICA~G-9~7 having 20 wt.% acrylic acid (9 mol-%) and a melt index of 30Q, available from Mica Corp.
~ The commercially available copolymeric binders i' are typically provided as a salt in which the -, carboxylic acid functionality has been neutralized ~- lO with a base so as to improve the aqueous dispersibility of the resin. Consequently, it will be understood that formula I above includes basic salts thereof. Useful bases for neutralizing the carboxylic acid functionality include ammonia and 15 other amines. Sodium hydroxide and potassium hydroxide may also be used but are less preferred due to concerns of moisture sensitivity and non-I evaporation of the metal ion.
The copolymeric binder may be blended or 20 supplemented with an additional, secondary binder to improve the tensile strength, heat resistance, and environmental weather resistance of the color layer as well as its adhesion to the substrate on which it ~ is disposed. Particularly use~ul in this ~egard are 3 25 polyurethane dispersions that comprise the reaction ¦ product of an aliphatic or aromatic polyisocyanate }~ (preferably a diisocyanate) and an active hydrogen containing material such as a polyether polyol or, more preferably, a polyester polyol or a ~ f ~ i 30 polycarbonate polyol. Such reactive systems may also include short chain diols (e.g., 1,4 butanediol) and/or short chain diamines to modify polymer ~-properties.
The color layer further comprises a color agent 35 such as colored (including white and black), fluorescent, organic and inorganic pigments;

WO9S/13496 9 030 PCT~593/11530 metallic, for example, aluminum, flakes; pearlescent materials; inks; dyes and the like.
Optionally, the copolymeric binder may be crosslinked. By crosslinking the carboxyl functionality of the binder with either covalent or ionic crosslinking agents, various physical properties of the color layer can be beneficially influenced. For example, by controlling the amount of crosslinking, the stiffness (i.e., modulus), dimensional stability (in response to changes in temperature and humidity), hot melt adhesive properties (e.g., melting temperature), tensile - strength, adhesion and heat resistance can be improved.
Useful covalent crosslinking agents typically comprise polyfunctional aziridines, polyfunctional ~ carbodiimides, epoxies, melamines, or mixtures of r~ these agents. However, the binder is preferably crosslinked with a monovalent or polyvalent ionic crosslinking agent. Ionic crosslinking is preferred because at elevated temperatures the ionic bonds reversibly dissociate thereby permitting thermoplastic lamination of the color layer to a substrate, the hot melt adhesi~e properties of the ~' 25 copolymeric binder being useful in this regard.
Ionic crosslinking agents are preferably based on metal cations including cations of lithium, sodium, potassium, calcium, barium, titanium, ; zirconium, iron, aluminum, zinc and other similarly reacting metals. These crosslinking agents are often supplied as aqueous dispersible salts or organometallic complexes. In a salt the metal cation is combined with any of a number of anionic materials such as chloride, nitrate, sulfate, borate, phosphate, acetate, octanoate, stearate, oleate, and methoxy ethoxy carbonate oxide as well as other organic and inorganic anions. Suitable Wo94/1349~ 4 9 0 3 0 PCT~593/11530 ,~

organomeiallic complexes include zinc oxide, ~r zirconium dioxide, magnesium oxide, aluminum oxide, and calcium oxide.
.
-~1 Highly preferred ionic crosslinking agents are 5 based on zirconium and include zirconium hydroxide, zirconium nitrate, zirconium dioxide, zirconium silicate, zirconium sulfate, zirconium carbonate, zirconium acetate, and ammonium zirconium carbonate.
The crosslinking agent (whether ionic or lO covalent) is typically included at a level of from about 0 to 35 parts per l00 parts (phr) of the copolymeric binder, more preferably 0.05 to l0 phr, and most preferably 0.l to 4.5 phr.
Other optional additives which can be 15 incorporated into the color layer include cosolvents, surfactants, defoamers, antioxidants, light stabilizers, ultraviolet light absorbers, biocides, etc. Suractants can improve the dispersibility of ~ the color agents in the binder prior to application 3 20 of the color layer to a substrate and can improve wet ¦ out o~ the ~olor layer.
1 With continued reference to FIG. l, graphic ¦~ article l0 ~urther comprises a substrate. As noted ~ above and as explained more fully below, the j 25 substrate may take various forms. In the embodiment ! - of FIG. 1, the substrate comprises a polymeric film 16 that enhances the strength and/or flexibility of the graphic article. Materials suitable for providing a polymeric film substrate include alpha-30 olefins such as polyethylene, polypropylene, and blends and copolymers thereof; ethylene modified -copolymers such as ethylene-vinyl acetate, ethylene- ~c acrylic acid, ethylene-methacrylic acid, ethylene-methylacrylate and blends and mixed polymers of these 35 materials such as ethylene-methylacrylate-acrylic acid terpolymers; polyurethanes; poly(vinyl chloride); and rubbery polymers such as ethylene ~V094/13496 2~ ~9 03~ PCT~S93/11530 propylen~ diene monomer terpolymer, rubber modified polyolefins (e.g., ethylene-propylene rubber, thermoplastic olefins, etc.), and styrene-butadiene rubber.
- 5 Particularly preferred substrates include -ionomers of olefin~vinyl carboxylate copolymers such as ethylene-acrylic acid and ethylene-methacrylic acid copolymers combined with various metal c~tions ~ including cations of lithium, sodium, potassium, zinc, aluminum and calcium. Suitable commercial ionomer resins include the Surlyn~ family of materiais available from E.I. duPont de Nemours & Co.
Referring again to FIG. 1, graphic article lO
optionally, though highly preferably, includes an adhesive layer 20. Conventionally, adhesive layer 20 bonds graphic article 10 to a surface (not shown separately in the drawings). As noted above, film ~3~ layer 16 is also an optional element of graphic article 10 and, in conjunction with FIG. 1, was ~, 20 described as the substrate upon which the color ~ layers were disposed. If film layer 16 is not 3~ provided but adhesive layer 20 is provided, then the adhesive layer may function as the substrate for the ~t color layers.
Adhesive 20 may be provided by any of a wide ; variety of adhesives conventionally employed to bond ¦ graphic articles to a surface. Pressure-sensitive adhesive~s are particularly useful in this regard.
Adhesives based on acrylics, natural rubbers, styrene-isoprene-styrené block copolymers, and silicone-based adhesives such as polydimethylsiloxane and polymethylphenylsiloxane may be used- Adhesives t~""`,, useful in the invention may incorporate additives such as ground glass, titanium dioxide, silica, glass beads, waxes, tackifiers, low molecular weight thermoplastics, oligomeric species, plasticizers, pigments, metallic flakes, metallic powders, etc. so W094/13496 PCT~S93/11530 1-2~4903~ - 12 - f,~
long as they are provide~ in an amount that does not materially adversely affect the ability of the adhesive to bond the graphic film to a surface.
The surface of the adhesive which is to be applied to a substrate may be treated to permit repositioning of the graphic article before a permanent bond is formed. Adhesive respositionability may be achieved by providing a layer of minute glass bubbles on the adhesive v 10 surface, as illustrated in U.S. Pat. No. 3,331,729 to Danielson et al.
Also shown in FIG. 1 is a removable liner 22 which typically functions to protect adhesive layer 20 from dirt and other contaminants prior to application of graphic article 10 to a surface.
Useful liners include silicone coated paper or polymeric films. If neither film layer 16 nor adhesive layer 20 is provided, liner 22 may function as the substrate for the color layer~s).
With continuing reference to FIG. 1, - transparent, protective surface layer 18 may be provided by various materials, depending in ~f significant part on the degree of protection which must be afforded to underlying layers of the graphic article andt to a lesser extent, the nature of the graphic article. For example, graphic articles intended for outdoor use may need to be weatherable, abrasion resistant, and resistant to chemical exposure. Graphic articles intended for interior use may be exposed to less harsh conditions.
In general, polyurethane-based surface layers are useful. Polyurethane-based surface layers ! -comprise the reaction product of a polyisocyanate and an active hydrogen containing material. Aliphatic and aromatic polyisocyanates may be used. The former are preferred for exterior applications; the latter are preferred for interior uses as discussed below.

WO94/13496 ~ 0 3 ~ PCT~593/11530 i~

-- Suitable aliphatic diisocyanates may be selected from isophorone d~isocyanate, l,6-hexamethylene diisocyanate and bis-(4-isocyanato cyclohexyl)methane, and 1,4-cyclohexyl diisocyanate.
5 Useful aromatic polyisocyanates include diphenylmeth~ne-4,4'-diisocyanate, toluene 5! diisocyanate, p-tetramethylxylene diisocyanate, and naphthalene diisocyanate~
~ Useful active hydrogen containing compounds ;' lO include polyester polyols, polycarbonate polyols and polyacrylic polyols, as well as blends of any of these materials for exterior applications and, for interior uses, polyether polyols.
Reactive systems for providing polyurethane-; 15 based surface layers may include short chain diols ~ (e.g~, 1,4-butane diol) and short chain diamines i (e.g., ethylene diamine) for modifying polymer properties. It will be understood that the concept of a polyurethane reaction product encompasses the 20 presence of such materials.
I Two-part, solvent-based polyurethanes provide '?~ useful surface layers. Conventional solvent systems , include those which use xylene~ methyl isobutyl ketone, methyl ethyl ketone, glycol ethers such as 1 25 propylene glycol monomethylether acetate and ?f diethylene glycol ethylether acetate, as well as blends and mixtures of the foregoing materials.
However, aqueous-based polyurethane dispersions are preferred because they are more environmentally 30 compatible than their solvent-based counterparts.
Aqueous-based polyurethane dispersions may contain minor amounts of organic cosolvents.
Polyurethane-based surface layers having utility in the invention include polyurethane/acrylic resin 35 dispersion blends and polyurethane/aqueous epoxy blends. In these blends, the polyurethane component predominates and provides a continuous phase in which w09i/13496 2~4~030 PC~593111530 arP dispersed islands or microdomains of the acrylic or epoxy component. The acrylic or epoxy component typically provides no more than about 25 to 30% of the blended surface layer.
Surface layers useful for outdoor environments may also be used for interior a~plications. However, various non~polyurethane-based protective surface layers may also ~e used indoors. Such materials include olefin/vinyl carboxylic acid copolymers such . lO as ethylene/acrylic acid and ethylene/methacrylic acid copolymer as well as ionomeric versions thereof in which the copolymers have been combined with various metal cations, including cations of lithium, sodium, potassium, zinc, aluminum and calcium. The lS Surlyn~ family of ionomer resins are suitable commercial materials. Also useful are polyesters (e.g., polyethylene terephthalate), polyolefins te.g., polyethylene), ethylene/vinyl acetate, and ethylene/methylacrylate. Turning now to FIG. 2, 20 there is illustrated a second embodiment of a multilayer graphic article 24 according to the ~ invention. Graphic article 24 comprises a first j color layer 12, a second color layer 14, a polymeric film layer 16, a transparent protective surface layer 18, an adhesive layer 20, and a removable liner 22, ~ all as des ribed more fully above. The construction Y of FIG. 2 differs from the construction of FIG. l in that the color layers 12 and 14 are positioned below polymeric film layer 16 rather than above, such a 30 construction sometimes being referred to as a "buried graphic." Buried graphics afford underlying color , layers 12 and 14 additional protection against environmental weathering, chemical exposure and abrasion relative to the construction of FIG. l 35 because both protective surface layer 18 and polymeric film layer 16 are present. In FI~. 2 either film layer 16 or adhesive layer 20 may ~e -.~. - . ~. - . . - - .. -WO94/13496 1 ~ 9 3 0 PCT~S93/11530 regarded as the substrate on which the color layers ~ are disposed.
The multilayer graphic articles of the invention ' may be readily manufactured in a variety of approaches. For example, a protective surface layer may be prepared and cast onto a removable liner. The .4 color layer may be applied to the surface layer by direct coating, hot transfer lamination or screen printing. If multiple color layers are included they may be applied sequentially. If the color layer includes pearlescent materials or metallic flakes as a color agent, application of the color layer by hot transfer lamination is preferred.
Alternatively, the color layer and the surface i~ 15 layer may be coated in tandem. Tandem coating can be a two~stage pxocess of coating, drying or partially ~ drying the surface layer followed by overcoating and ,i drying the color layer. Another tandem coating process involves simultaneously coating the surface layer and the color layer from a laminar flow coater.
The adhesive may then be coated onto the color layer or separately cast onto a removable liner and transfer laminated to the color layer.
Furthermore, the order of the manufacturing , 25 steps may be varied. For example, the adhesive can i be cast and dried on a removable liner and then overcoated with the color layer or the two materials may be tandem coated. The surface layer can then be coated, sprayed or screen printed onto the color , layer and dried. Alternatively, the surface layer ` may be laminated to the color layer.
Furthermore, although not shown separately in ~ the drawings, the multilayer graphic article may i include one or more tie layers between otherwise adjacent layers of the construction. Tie layers may be incorporated to enhance adhesion between the otherwise adjacent layers in the event that there is ;

W094/134g6 PCT~S93/11530 ~1~9030 1`-insuffic ent adhesion therebetween. Tie layer - materials may be coated onto previously formed or provided layers which comprise the multilayer graphic article or may be coextruded therewith depending on the particular means of manufacturing the article.
Sui~able tie layer materials may include maleic anhydrides grafted on polypropylenes, ethylene acrylic acid copolymers, polyurethanes, ethylenelvinyl alcohol copolymers, and melamine acrylics.
Alternatively, adhesion between adjacent layers of the article may be promoted through various oxygenating treatments such as corona discharge and plasma exposure. In such instances, the further inclusion of tie layers may be unnecessary.
For those constructions which include a ; polymeric film layer substrate, the film layer may be cast, extruded, calendared or blown and subsequently primed or otherwise treated to improve adhesion to subsequently applied layers, if necessary. The color ! layer(s) can be coated, screen printed or transfer laminated to the film layer as can the protective tl surface layer and the adhesive. The order of these manufacturing steps may be varied. For example, the film layer maybe extruded onto a previously provided ' color layer~ In general, manufacturing procedures in i which the color layer is involved in transfer lamination are desirable because they beneficially utilize the hot melt adhesive characteristics of the color layer binder.
The multilayer graphic articles of the invention may be applied to many structures. The structures j-;
may be flat or have a compound, contoured surface in three dimensions. For application to these latter complex surfaces, the graphic article needs to be sufficiently flexible to conform thereto without delaminating or lifting off. The actual requisite . ~.. .. . , . -, . ., . ~ . - .

W094/13496 ~i ~3 0 ?~ PcT~593111530 flexibility will depend in large part on the nature of the structure surface. Some common structures encountered in the automotive industry include bumper facia, pillar posts, rocker panels, wheel covers, 5 door panels, trunk and hood lids, mirror housings, dashboards, floormats, door sills, etc. The graphic article lO typically includes adhesive layer 20 which is conventionally protected by removable release liner 22. The graphic article is applied to the structure, preferably in a single continuous motion, by simultaneously removing the release liner and applying the article in a smooth, flat manner. The graphic article may be squeegeed flat to remove any entrapped air and to provide a good adhesive bond with the underlying substrate.
Graphic articles according to the invention may be applied to automobiles, trucks, motorcycles, trains, airplanes, marine ~ehicles and snowmobiles.
However, the invention is not limited to vehicular settings and may be used anywhere a multilayer decorative, functional or informational graphic article is desirable, including both indoor and outdoor environments. If desired the invention may be used to provide colored retroreflective articles by forming a color layer on a retroreflective substrate.
For indoor uses, protective surface layer 18 may be formulated to impart interior surface protection properties to the graphic article. As noted above, polyurethane-based materials comprising the reaction product of aromatic diisocyanates and polyether polyols are useful in this regard as are other ! `
materials. "Interior surface protection properties"
means mar resistance and that the graphic article will not appreciably change in appearance or adhesion when subjected to interior cleaning solutions, food, cosmetics, grease, oil and plasticizers.

WO9~/13496 PCT~S93/11530 ~1~303~

With the proper formulation of surface layer 18, the graphic article is particularly suited for use in outdoor environments. Such articles are exposed to a wide variety of harsh, deteriorative conditions suc~
as environmental weathering, chemicals and abrasion.
Polyurethane-based surface layers which comprise the reaction product of aliphatic diisocyanates and either polyester polyols, polycarbonate polyols or polyacrylic polyols are useful in this regard because of their ability to provide weathering, chemical and abrasion resistance while remaining flexible.
The following tests may be used to evaluate the utility of multilayer graphic articles according to the invention in outdoor environments, especially in conjunction with motor vehicles. These tests are analogous to many which have been adopted or ~! developed by major automobile manufacturers.
J However, a graphic article which fails to pass every ,J; test may still be suitable for outdoor use depending 20 on the requirements for a given application and the standards which have been established by a particular end user. Unless alternative criteria are noted ~1 below, a graphic article is considered to have passed a particular test if it shows no objectionable ~ 25 effects including surface deterioration, excessive Y shrinkage, delamination, edge lifting, gloss or color change, adhesion loss, and cracking or crazing.
Necessarily, the results of these tests are somewhat subjective, but such tests have long been used in the 30 automotive industry to characterize exterior ; durability and observations should be consistent with ~- those standards which have come to be recognized. l--In each test, the graphic article includes a pressure sensitive adhesive (typically about 25 to 51 1, 35 ~m thick) for bonding a sample of the graphic article to a test substrate. The nature of the test substrate (its material of construction, whether it WO94/13496 ~ , PCT~S93/11530 9~

is paint2d, primed, etc.) is typically specified by the end user of the graphic article, although any test substrate specified by an automobile `
manufacturer may be used. Conventionally, the test substrates are about 30.5 cm x 10.2 cm in size with the sample of the graphic article being 8.9 cm x 8.9 cm, except as noted below. Once the sample has been ` firmly applied to the test substrate, the resulting -~ panel is preconditioned for 24 hours under ambient conditions t23C + 2C, 50% + 5% relative humidity (R.H.)). All tests are performed under ambient conditions unless noted otherwise. Furthermore, all panels are subjected to a 24 hour ambient condition recovery period at the conclusion of the test and i 15 before recording observations.
f The following tests are not listed in any ~ particular order.
A
Surface_Layer Adhesion: Color LaYer Adhesion ~0 Surface layer adhesion and color layer adhesion may be evaluated according to the same test procedure. A series of 11 parallel lines each 1 3~ millimeter (mm) apart is scored on the surface of the color layer or the surface layer, as the case may be.
A second series of 11 parallel lines, each 1 mm apart ~ and perpendicular to the first set is scored to f create a grid of 100 squares each measuring about l mm x 1 mm. Each scored line is sufficiently deep to f.
fully penetrate the layer without injury to the , 30 underlying layer. Scotch~ brand tape #610 (3M
f Company) is firmly adhered to the grid and then removed in a rapid, single, continuous motion by pulling at an angle of 90 relative to the panel.
Percent adhesion was measured as the proportion of 35 squares of the original 100 that remained.
Pre~erably the adhesion is at least 95% more preferably 100%.

WO94/13496 PCT~S93111530 2~9~30 ~` !-`;`
: - 20 -Heat Aqinq Panels are exposed for 168 hours at 800 + 2OC in an air-circulating oven.

; 5 Dimensional Stability A graphic article sample may exhibit a shrinkage of no more than 1.0% (more preferably, a shrinkage of .! no more than 0.5%) in the longitudinal direction following exposure for 30 minutes at 120 + 20C in a mechanical convection oven. The sample dimensions are measured prior to and after exposure with the initial sample having dimensions of 2.54 cm x 20 cm.

.
Moisture Resistance - 15 A panel is exposed for 168 hours at 3$ + 2C
1 and 99 + 1% R.H.
;

Thermal/Environmental Cycllng : A panel is exposed to 2 consecutive cycles each ~, 20 cycle consisting of: (i) 72 hours at 80C, (ii) 24 hours at 38aC and 99% + 1% R.H., (iii) 7 hours at -30C, ~iv) 17 hours at 38C and 99% + 1% R.H., (v) 7 hours at 80C, (vi) 24 hours at 38C and 99% + 1%
~ R.H., and (vii) 17 hours at -30C.

Gravel Resistance A panel, once having completed the thermal/environmental cycle described above, is tested in accordance with SAE J400, Jan. 1985 ("Test for Chip Resistance of Surface Coatings") and evaluated using the SAE J400 rating scale. There should be no evidence of film cut-thru to the test ~
substrate.

i Wo94/13496 ~ ~9 03 PCT~593/11530 .

Impact Resistance A panel is conditioned at -30C for 4 hours and then is impacted at 2.7 Joules with a Gardner Impact Tester.
Accelerated Weatherinq Resistance to environmental weathering (i.e., whether a graphic article is "weatherable" as that term is used herein~ may be measured in accordance with SAE Jl960 Jun. 89 "Accelerated (G-26 Type BH) j Exposure of Automotive Exterior Materials Using a Controlled Irradience Water Cooled Xenon Arc Apparatus" which provides for 2/000 hours of ac~elerated xenon exposure weathering. The test used ~! 15 2640 kiloJoules/square meter of energy exposure at 340 nm~
~J, Abrasion Resistance "Resistance to abrasion" (or "abrasion resistance") as those terms are used herein may be ~- evaluated by subjecting the graphic article to a Teledyne Taber Abraser (Teledyne, Inc.) fitted with a CS-17 abrading wheel carrying a load of 500 grams per head in accordance with SAE Jl847. Preferably, the graphic article does not exhibit any wear-thru to the test substrate after l,000 cycles.
,~
lO DaY ~ater Immersion A panel is immersed in 31~5C water for lO days.
No delamination between thé color layer and the surface layer should occur (referred to below as "surface layer delamaination"). There should also be ~``
~ no delamination between the adhesive layer and the 3 ~ layer of the graphic article to which it is adhered (referred to below as "adhesive layer delamination").
~ A graphic article of the invention may be 3~ regarded as "resistant to chemical exposure" (i.e., WO94/13496 PCT~S93/11530 21~9030 22 - ~
as having "chemical resistance~) as those terms are used herein if it passes the salt spray, fuel resistance, acid resistance and solvent resistance tests described below.

Salt SPray Resistance to a harsh salt spray is determined by spraying a panel with a 5% salt solution at 35C
for 168 hours.
'. 10 Fuel Resistance A panel is submerged 3 times for 5 minute durations with a 5 minute ambient condition recovery period between submersions in a mixture comprising 60~ îso-octane and 40% toluene.

~bi~L~ stance 3 drops of 0.1 N HCl is placed on the sample, covered with a watch glass, and heated for 30 minutes at 38C in an air-circulating oven. The panel is allowed to cool and then rinsed. The panel is compared to an unacidified and unheated control panel.

Solvent Resistance A sample of the graphic article (5.l cm x 12.7 cm) is mounted in an American Association of Textile Chemists and Colorists (A.A.T.C.C.) crockmeter and exposed separately to each of the following fluids:
(i~ windshield washer solvent (isopropanol/water l:l ~olume:volume), (ii) antifreeze (e.g. ethylene glycol), (iii) car wash detergent, (iv) oil (SAE 20), i"
and (v) #2 diesel fuel. After a 60 second penetration period, the panel is rubbed for 25 cycles 35 according to A.A.T.C.C. Test Method 8-1972, Wet Crocking Test.

~ v~

WO94/13496 1 l~o~ PCT~S93/11530 .-~

The invention will be more fully appreciated with reference to the following nonlimiting examples.
, ~ .
Examples 1 to 8 S A series of eight color layer formulations was prepared as shown below in Table l. The color layers of examples l to 4 and 8 are suitable for coating onto a substrate. Examples 5 to 7 were prepared to permit the color layer to be screen printed onto a substrateO Difference-c between coatable and screen printable color layers reside largely in the solvent ~ systems. In each example, the component amounts are ;t, stated in weight percent.
~!
~dl3 ~ .

~ j ~
:~ i J~

3 ~
,~ .

WO 94/13496 ~ 3 a 3 ~ PCT~593/11530 _ tD ) . O tn . N O _ O _ t~ r-1 N
O ~D r-l r~~ _l O t'~l O O O O
_ _ ___ _ t~ ~-1 O O ~_ O ~1~ O tn ~ t~ ~ N
In o o ,-, ,-, ,-, ,-, ~-1 o o o o ,.
_ _ _ _ . _ ~, ~0 O ~ O ~ O O ~ Ul r-~ t~1 r1 t.~
O t~ O r-~ r-~ O 0 r-l O O O O
.` _ _ _ _ _ _.
t~l~ ~ ~1 o o a:l o o m U~ ~1 t~ _1 N
~ L c o o ~ ~ ~ ~ ~ o o o o X ~ t.~ O O N r; O O ~n , , , N

1- -- - -- - -- _ ~ ~ o o ~ o tn u~ Irl ~-~ t~ ~-~ N
_~ O O r-l r-~ O O r-1 O O O O
_ . _ __ r-1 0 O U Ul r-~1q r1 N
tN t~O O O r; r; r; O r; O O O O
t I _ _ _ _ _~ l~_/ t~O O O O~ O O ~ U~ r~~ t r~ r_l N
~d ! I~ o o ~ ~ ~ ~ o o o o ~ ~ __ _ _ _ _ ~ i o ~t l ~ X E ~ sl , 3 l q~ ~ :~ O C l:~ E
l ~ E C _1 t~., C ~ ~Sc h O
:~ l ~I C ~r~ ~ ~ ~ ~ ~ ~_1 o .. a ~.~ c c ~1 J- c :~
~: O ~-~ tp ,-/ Ul ._~ :J E Q~
O ~)r~ 111 ~ 1~1 E-1 C O -" O G) I~ Z ~ la ~ _ . ~ ~ 5:~
,n ~ E~ O _ O ~ , E ~ E~ ~ t-a I ~ " ~ c ~ o ta o ~1 al .,~
E o u ~ Id ,~ ~ _ 9 O O m U _l ~, 9 la ,~a I Z , U ~ Ql ~a,a~ ~ _ a~ . o--_~ ,~¦ Z O R " ~ m ^ Oc 9~ o ~ _ 9~ ~, ~ ~ Q~ ~
O u ~ u,~ ." ~ 9 ~ ,~ _~ ,~ ,~ m ~ ~ ,,~ ,~SI ~ ,~ ~a.a ~ ~ ~ l o o . ~ 9 a~
I t ~0 ~-1 la ~ ~ ~ 111 E al~J (~ C r~ C ~1 tN E
I o ~ ~1u ~-~ al u ~ ~-~ o .,~ ~ o u o ~o~ a I U u ~ ~._~ c E ,~ o ,~ ,-,~,a .. ~ .,~ ~ ,~ u~
,~ ,~ ~ ~ O E c ,~ ~ ~- E ~ ~ l ,8. ~ C, L~1~ 0 ~tO Il~ E ~a o~ ~ t CU 0 ~ 1 V t~t~_1 tN ~t U U r~l ~ ~ C
l ._, 0 u a~ c I ~ o ~ ~_t ~ tl~ bt_ I ,-~ a~t -- 111 o -- L~ al o E _ :J r~l ,-~ C ~ '~ 6 o s~,-~ ,t,.~u ~1 ~u~-- -~, ~ ~,~ ~ ~1 ~1 o ~t or ,~ ~,n ~ ~ u --m ~ ~ X ,~ ~ O ~t ~
u o ~:: ~ ~o c ,~ .1 o c v:s :~ a~ v ~ v ~ ~ --u t ~,~ E In ~ C~t'~ N ~ ~ vc ~ .a J:l --m ,~ ,~ , 1 ~ ~t _ ~ E
~J E v ~ E v rJ E O c: tTJ ~ ,- O ~-~ O r-l ,-1 q:~ ~
c ~ ~ c a~ m ~ ~--O v O ~ ~ ~ ~,a .~ ,~ ~ Q ~ ~ ,~ s l ~ o ~c ~ o ~c ~ ~c ~ ~ ~ ~ ~c ~ ~c u ~ ~ ,~ ~ u u C~
:~ u ~1 ~, u ~ a.~ o c .Y ~u ~ ~ ~ E ~ ~ U E C~
s a ~J s ~a v ~ E~ 1 ~ ~ ,-~ ,-~ _1 ~ v ~ J.l ~ O ~ C O
ttS C V t'S C tJt tD ~ ~t _4 :~ ~ O O O C r-l N r-~ ~ ~--~ C :1 ~1 S U~ U~ U~ ~ ~ r~ _t ~ m ~ k~ E-t _ _= = _ _ :
u~ o ~n o u~

WO 94/13496 2~9 PCT/US93/11530 `~`
- Oc?~
- '' -`:

_ --_ . _ _ . = =

¦ 00 0 N O O O O N O O O -- u ~ N
l __ _ _ _ _ . _ _ I ~ o ~J o o o ~ o o o o ~ _ o ~
l ~1 O O O O LO O O ~1 O 1~ N ~

I ~D O ~`: O ~ O O O O O O o C~ U
l _I O O N O O O O O O _ N O
_ _ _ _ _ __ _ Ul O O 0 0' 0 O ~ O O O t~ t~ 1~
. D~ I_ _ - _ __ . _ _ _ _ ~ l .
., X I ~ O~ ~I O O O U~ O O O O _ v O O
~' I O O O O O O O _~ O a _ 0 O
_ _ _ _ _ __ _ I r~ O~ ~ O O Ln O O O O O v r~ O
l O O O O ~ O O O O O .~ In ¦_ _ N _ _ _ _ 1~ ~1~ ~
~ I ,, a~ ~ I~ o o o o o o o ~, u- u 1-1 l O O ~ O O O O O O O a N r7 ~ _ _ . __ El ~ E ~ ~ t~
E E O E O ~ ~) C
,j a~ ~1 ~ ,, ~ _, a~
.J ,_ :1 ~ Il~ .,_~ Il~ 1:~ CJ
~ ~ ~ a) aJ _1la ~ ~u ~,, ~ ~¢ IQa .a ~ ~ ~ ~ C~ ~
~ ~ _~ ~ _I ._¦ ~ ~ ~ ~ ~

I li-I E I ~ C
z Q _1 x l 3 ::~ ~ ~ ^ ~ ~ ~ o ~ ~a .. ~ ~ ~ ~ :~ ~ ~ ~ ,__~
Z_~ Id ~ ~ E ~.1 ~ a) O Q) O
t ) .~ :> ~ E S~ :~ ~1 ~ ~ U :E: 111 ~
v al O h O O O _ _ _ _ Q
O ~ ~n _~ O _~ ~ _l ~ ~ _~
.i ~) a~ ~ _~ ~ ~ ~ ~ ~ ~ ~ ~ E .
. ~ l ~ ~ ~ ~ ~ .,, ~ ._, ~ -~ o .~ t~
. ~ E ~r ~ ~ ~: ~ ~ a~ ~ ~ ~ ~. 3 E ~ ~ ~: ~: ~ o ~ e 2 E ~ ~ 1 3 _ ~ . ~ c J --~ E o E o --I c ~
c ~ c a~ ~ o ~ ~ ~ ~ ~ ~:
m ~, ~ ^ c--~ ^ e ~ ~ ~ ~ v ~ ~ ~ 4 ~1 ~
_ N ~ E e o E ~ o u~ c c c _, o c o _~ _l _1 ~ ~_i ~ ~_~ ~ C ~ ~ U ~ O U ~
_l ~ P~ o ~ o o. o o ~ ~ ~ Q ~ q ~ i~ u _, ~ v ~ ~ v ~ v ~ ~ e~ c ~ _, _, ~ ~ _, I o ~ u c ~ c ~ c _~ c ~ ~ ~. ~ ~ ~ ._~ ~
~ ~ al c ~ a~ ~ ~ c c 'I ~ ~ ~ ~ ~ ~ ~ a~ .S ~o ~o a z ~J m a. ~ ~ 3 ~ ~ ~ c~ ~ ~ ~ ~ ~ ~ 0 ~ tn ~
_ _ _ _ = . =
.~ .
_~ Ln O

s .

~
WO 9~/13496 ~ ~ CTtUS93/1 1530 :.;
) 3 0 ~ ..

In '~
, ,~:
: ~
'~

W094/13496 ~, PCT~S93/11530 0 3 ~ ,-Example g Example g describes a preferred aqueous polyurethane-based surface layer formulation suitable for use in graphic articles intended for exterior applications.

. _ . _ ~
COMPONENT PARTS
_ I
Neorez~ XR-~679 (Aqueous polyurethane 78.4 di~per~ion from ICI) Neorez~ XR-9649 (Aqueous polyurethane 8.9 dispersion from ICI) . , _ , _ Ultraviolet radiation ~tabilizer ~Tinuvin~- 0.3 123 from Ciba-GeLgy) _ .
Ultraviolet radiation absor~er (Uvinul~-539 1.0 from BASF) _ _ Solvent (Butyl carbitol) 9.5 _ _. , .
Triton~ GR-7M ~Flow agent from Union 0.3 Carbide) Neocryl~ CX-100 (Cro~linking agent from 1.6 l ICI) Example lo Example 10 describes the preparation of a multilayer graphic article according to the invention comprising a clear, protective polyurethane-based - surface layer that overlies a blue color layer and a pressure sensitive adhesive. The formulation of example 9 was wet coated onto a casting liner and dried for 2 minutes at 200F (93C), then 2 minutes at 250F (121C), and then 2 minutes at 300F (149C) to provide a 1 mil (25 ~m) thick polyurethane-based surface layer. The color layer formulation of example 2 was then wet coated onto this surface layer and dried for 2 minutes at 150F (66C), then 2 minutes at 200F (93C), and then 2 minutes at 250F
~121C) to obtain a 1 mil (25 ~m) thick blue color layer. A 25 ~m thick acrylate pressure sensitive adhesive previously coated onto a silicone release liner was transfer laminated to the color layer using WO94/l3496 ~ ~ 4 9 ~ 3 G rcT lS93/ll530 a pair of nip rollers. The color layer was previously corona discharge treated at a net power of 500 Joules/second with a line speed of 18 ,~ .
centimeters/second. The color layer was then primed with a melamine acrylic. In this example, the adhesive iayer provides the substrate on which the color layer is disposed even though the color layer was first applied to the protective surface layer.

. 10 Example 11 Example 11 describes the preparation of a multilayer graphic article according to the invention and which comprises a pressure sensitive adhesive layer, first and second color layers disposed on the adhesive, and a clear, protective polyurethane-based surface layer overlying the color layers. More specifically, an acrylate pressure sensitive adhesive was coated onto a release liner to a dry thickness of about 25 ~m. The color layer formulation of example - 20 3 was then coated onto the adhesive and dried for 2 i ! minutes at 150F (66C), then 2 minutes at 200F
i (93C), and then 2 minutes at 250F tl21C~ to provide a 1 mil t25 ~m) thick dry white color layer.
The color layer formulation of example 6 was then screen printed onto the white color layer using ultrasonic humidification and a 157 mesh screen to provide a blue and white checker board pattern. The screen printed color layer was dried for 2 minutes at 175F (79C) and then for 2 minutes at 250F (121C).
The polyurethane-based surface layer formulation of example 9 was then coated onto a presized acrylate , coated casting liner and dried for 2 minutes at 200F
f (93C~, then 2 minutes at 250F (121C), and then 2 minutes at 300F (149C) to provide a 1 mil (25 ~m) 35 thick clear, protective layer. The surface layer was then laminated to the color layers under pressure and i W094/13496 ~ 90~o PC~5931~1530 r at a temperature of about 225O to 275F (107 to 135C).

Example 12 Example 12 describes the preparation of a multilayer graphic article according to the invention and comprising a pressure sensitive adhesive layer, a polymeric film layer on the adhesive, first and second color layers on the film layer, and an overlying clear protective surface layer, the finished article having substantially the construction shown in FIG. l. The polymeric film layer comprised a l to 2 mil (25 to Sl ~m) thick extruded Surlyn~-1705 ionomer resin containing an ultraviolet radiation stabilizer package similar to that recommended by the polymer film resin manufacturer and comprising a pair of ultraviolet radiation absorbers, a hindered amine light stabilizer, and an antioxidant. The polymer film was then corona discharge treated at a net power of 500 Joulestsecond with a line speed of 18 centimeters/second. It was then laminated to a 25 ~m thick acrylate pressure sensitive adhesive.
The color layer formulation of example 2 was then coated onto the surface of the polymer film layer not haYing adhesive and dried for 2 minutes at 150F (66C), then 2 minutes at 200F (93C), and then 2 minutes at 250F (121C) to provide a l mil (25 ~m) thick blue color layer. The pearlescent green color layer formulation of example 5 was then screen printed onto the first color layer in a checker ~oard pattern using ultrasonic humidification and a 157 mesh screen. This color layer was then dried using the profile of example ll for the screen ' printed color layer for that example. The clear, protective polyurethane-~ased surface layer of example 3 was then cast onto a an acrylate presized WO94/13496 PCT~S93111530 C~9~3 - 30 !`
casting liner, dried and laminated to the screen printed color layer using the procedure of example 1 0 ~ , 5 Example 13 ExaI,lple 13 describes the preparation of a multilayer graphic article according to the invention and similar to that described in example ll but in which the polyurethane-based clear, protectiv~
-- lO surface layer is replaced by a surface layer provided by a 51 ~m thick extruded Suryln~-1705 film such as described in example 12. The Surlyn~ protective surface layer was laminated to the screen printed color layer in the manner described in example ll for tne polyurethane-based surface layer. The graphic ~ article of this example is particularly well suited i for interior applications having less demanding weathering, abrasion and chemical resistance requirements.
Example 14 Example 14 descri~es the preparation of a buried multilayer graphic article according to the invention and having essentially the construction illustrated in FIG. 2. More specifically, the multilayer graphic article of example 13 was prepared followed by the appli~ation of the polyurethane-based clear, protective surface layer of example ll, using the ,i procedure of example ll for this layer. The polyurethane-based protective surface layer was applied to the Surlyn~ polymer film layer. An ethylene acr~lic acid primer (Adcote~-50T4~83) was ~-provided between the surface layer and the polymer film layer.

, .1, . . ..

W094/13496 1 ~9 ~ ~ PCT~593/ll530 f - Example 15 ,~
; Example 15 illustrates the preparation of a multilayer graphic article according to the invention . and having the construGtion described in example 12 with the exception that the polyurethane-based clear, protective surface layer was wet coated ~rather than laminated) onto the color layers. The wet coated protective surface layer was dried for 2 minutes at 200F (93C) and then for 4 minutes at 250QF (121C) to a 1 mil (25 ~m) dry thickness.
The multilayer graphic articles of examples 10, 12 and 15 were subjected to the various tests described above to determine their utility for exterior uses. The results are shown below in Table , 15 2.

~ _ . . _ .~ TEST EXAMPLEEXAMPLE EXAMPLE
,:~ _ _ _ 10 12 15 Surface layer adhesion PASS PASS PASS
Color layer adhesion NT PASS PASS
Salt Sp~y~ PASS PASS PASS
Fuel Resistance PASS PASS PASS
Gasoline Resistance PASS PASS PASS
I _ i~ 10 Day Water Immersion:
)1 25 Surface layer PASS PASS PASS
delamination Adhe~ive layer PASS PASS PASS
delamination I .
Dimensional Stability PASS PASS PASS ~, Heat Aqinq PASS PASS PASS
~,i j ~ . .
.~ Acid Resistance PASS PASS PASS .
Gravel Resistance PASS PASS PASS ¦:-Abrasion Resistance PASS PASS PASS ~:
Impact Resistance PASS PASS PASS
Moisture Resistance N.T. PASS PASS ., . Thermal/Environmental N.T. PASS PASS
~. CYclinq ,~ .
.~ Accelerated Weathering '~, .~ ~

W094/13496 ~ 32 - PCT~S93/11530 NT = Not ~e~ted *Data not available beyond approximately 1,000 hours of accelerated weathexing. Graphic articles had not failed afte~
1,000 hours.
Example 16 Example 16 describes the preparation of a multilayer graphic article according to the invention and comprising a pressure sensitive adhesive layer, a polymeric film layer on the adhesive, a white color layer on the film layer, and an overlying clear, protective s~rface layer. More specifically, the polymeric film layer of example 12 was corona discharge treated at a net power of 500 Joules/sec:ond with a line speed of 18 centimeterslsecond and laminated to a 25 ~m thick acrylate pressure sensitive adhesive~ The color layer formulation of example 3 was wet coated onto the surface of the polymeric film layer not having adhesive and dried 20 for two minutes at 150F ~66C), then 2 minutes at 2Q0F (93C), and then 2 minutes at 250F (121C) to provide a 1 mil ~25 ~m) thick white color layer. The clear, protective polyurethane-based surface layer of example ~ was wet coated onto the white color layer 25 and dried for 2 minutes at 200F (93C) and then for 4 minutes at 250F (121C) to a 1 mil (25 ~m) dry thickness.
!~
¦ Example 17 Example 17 describes the preparation of a multilayer; graphic article according to the invention ~nd having the construction described in example 16 with the exception that the white color layer was replaced by the blue pearlescent color layer formulation of example 2. Furthermore, the clear, protective polyurethane-based surface layer of example 9 was screened printed onto the color layer using a 60 mesh screen under ultrasonic humidification and dried for 30 minutes at 200C.

Y WO94/l3496 ~go30 PCT~S93/11530 .

~, Example 18 Example 18 descri~es the preparation of a multilayer graphic article according to the invention and which comprises a pressure sensitive adheslve 5 layer, a polymeric film-layer on the adhesive, a ~ green pearlescent color layer on the film layer, and 3 an overlying clear, protective polyurethane-based surface layer. More specifically, the surface layer formulation of example 9 was wet coated onto a 10 casting liner and-dried for 2 minutes at 200F
(93C), and 2 minutes at 250F (121C), and then 2 minutes at 300F (149C) to provide a 1 mil (25 ~m) thick polyurethane-based surface layer. The green pearlescent color layer formulation of example 5 was 15 then wet coated onto the surface layer and dried for 2 minutes at 150F (66C), then 2 minutes at 200F
(93C), and then 2 minutes at 250F (121C) to obtain a 1 mil (25 ~m) thick color layer. The polymeric -~ film layer comprised a 1 to 2 mil (25 to 51 ~m) thick extruded Surlyn~-1706 ionomer resin that did not contain a stabilizer package and which was laminated to the color layer under pressure and at a temperature of about 225 to 275F (107C to 135C).
The exposed surface of the polymer film layer was corona discharge treated at a net power of 500 Joules/second with a line speed of 18 ~ centimeters/second and laminated to a 25 ~m thick f acrylate pressure sensitive adhesive.

Example 19 Example 19 describes the preparation of a multilayer graphic article according to the invention ~^ and having the construction described in example 18 with the exception that the green pearlescent color - 35 layer was replaced by the black color layer formulation of example l.

i ~0~4/13496 PCT~S93/11~30 2~9~ 34 _ ~ 1 , The multilayer graphic articles of examples 16 ~-, to 19 were subjected to 2,000 hours of accelerated weathering as described above. Each film passed.
~' Example 20 Example 20 describes the preparation of a multilayer graphic article according to the invention and like that described in conjunction with example 11 but with several exceptions. First, the color layer formulation of example 3 was replaced with the color layer formulation of example 8 and the first stage of the 3 stage drying cycle was for 3 minu1:es rather than for 2 minutes. Furthermore, the color layer formulation of example 6 was replaced with the ~' 15 color layer formulation of example 7.
The multilayer graphic article of example 20 was subjected to several of the tests described above.
The graphic article of this example passed the surface layer adhesion, gravel resistance and -30C impact resistance tests but failed the 10 day water immersion tests due to the surface layer having delaminated from first color layer and the adhesive layer having delaminated from the second color layer.

Example 21 Example 21 illustrates the preparation of a multilayer grap~ic article according to the invention and having the construction described in example 20 f with the exception that the polyurethane-based clear, protective surface layer was wet coated (rather than laminated) onto the color layers. Tha wet coated protective surface layer was dried for 2 minutes at 200F (93C~ and then for 4 minutes at 250 (121C) to a 1 mil (25 ~m) dry thickness.
Numerous variations and modifications are possible within the scope of the foregoing specification and drawing5 without departing from the ~:
wO 94/13496 21 19 030 PCT/U593/11530 inYention which is def ined în the accompanying clalms.
.

~ .

-~ .

a ~ ~ .
~ `,`

' ~
J~ .

f 1~^ ~ `` .

1.~;;
~ .
~ .

Claims (10)

1. A multilayer graphic article comprising a substrate, at least one color layer disposed on the substrate, and a protective surface layer that overlies the substrate and the color layer, the color layer being visible through the surface. layer, wherein the color layer comprises a color agent in a copolymeric binder, the binder comprising the copolymerization product of an olefinic monomer and a second monomer having a pendant carboxyl group, the binder having the formula:

wherein R1 is independently hydrogen or a C1-6 alkyl group; R2 is H, a C1-6 alkyl group, R3-COOH wherein R3 is any alkyl group, -CN, or an ester group; X and Y
are independently a residue of the olefinic monomer or a residue of the second monomer; n is a number selected such that the olefinic monomer provides 99 to 70 mol-% of the binder; and m is a number selected such that the second monomer correspondingly provides 1 to 30 mol-% of the binder; the formula including basic salts thereof.
2. A multilayer graphic article according to claim 1 wherein n is a number selected such that the olefinic monomer provides from 91 to 97 mol-% of the binder and further wherein m is a number selected such that the second monomer correspondingly provides from 9 to 3 mol-% of the binder.
3. A multilayer graphic article according to claim 1 wherein the color layer has a melt index of 50 to 2000.
4. A multilayer graphic article according to claim 1 wherein the olefinic monomer is ethylene and the second monomer is either acrylic acid or methacrylic acid.
5. A multilayer graphic article according to claim 1 wherein the copolymeric binder is blended or supplemented with a polyurethane dispersion.
6. A multilayer graphic article according to claim 1 wherein the binder is crosslinked with an ionic, metal cation-containing crosslinking agent.
7. A multilayer graphic article according to claim 6 wherein the crosslinking agent includes a zirconium ion.
8. A multilayer graphic article according to claim 1 wherein the substrate is formed from a material selected from the group consisting of alpha-olefins, ethylene-modified copolymers and terpolymers, polyurethanes, and rubbery polymers.
9. A multilayer graphic article according to claim 8 wherein the substrate is an ionomer of an ethylene/acrylic acid copolymer or an ethylene/methacrylic acid copolymer.
10. A multilayer graphic article according to claim 1 wherein the protective surface layer is a polyurethane-based material.
CA 2149030 1992-12-10 1993-11-30 Multilayer graphic article with color layer Abandoned CA2149030A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US07/988759 1992-12-10
US07988759 US5468532A (en) 1992-12-10 1992-12-10 Multilayer graphic article with color layer
PCT/US1993/011530 WO1994013496A1 (en) 1992-12-10 1993-11-30 Multilayer graphic article with color layer

Publications (1)

Publication Number Publication Date
CA2149030A1 true true CA2149030A1 (en) 1994-06-23

Family

ID=25534456

Family Applications (1)

Application Number Title Priority Date Filing Date
CA 2149030 Abandoned CA2149030A1 (en) 1992-12-10 1993-11-30 Multilayer graphic article with color layer

Country Status (7)

Country Link
US (1) US5468532A (en)
EP (1) EP0673323B1 (en)
JP (1) JP3332235B2 (en)
CA (1) CA2149030A1 (en)
DE (2) DE69305361D1 (en)
ES (1) ES2092886T3 (en)
WO (1) WO1994013496A1 (en)

Families Citing this family (87)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5977263A (en) * 1992-12-10 1999-11-02 3M Innovative Properties Company Thermal transfer compositions, articles and graphic articles made with same
DE4319519A1 (en) * 1993-06-14 1994-12-15 Ymos Ag Ind Produkte A process for the manufacture of painted parts
EP0773871B1 (en) * 1994-07-26 1999-09-15 Minnesota Mining And Manufacturing Company Retroreflective graphic articles and thermal transfer articles
WO1997005200A3 (en) * 1995-07-26 1997-03-27 Minnesota Mining & Mfg Radiation-cross-linkable thermoplastic composition and its use in making graphic articles
CN1093035C (en) * 1996-02-22 2002-10-23 出光石油化学株式会社 Decorative film or sheet, and decorative material and building material made by using same
US6200666B1 (en) 1996-07-25 2001-03-13 3M Innovative Properties Company Thermal transfer compositions, articles, and graphic articles made with same
US6132883A (en) * 1997-05-02 2000-10-17 3M Innovative Properties Company Transparent powder coating compositions for protecting surfaces
EP0897666A1 (en) * 1997-08-14 1999-02-24 Rohm And Haas Company Solid biocidal compositions
EP0911695A1 (en) * 1997-10-20 1999-04-28 Eastman Kodak Company Aqueous coating compositions for surface protective layers for imaging elements
US6041533A (en) * 1998-01-26 2000-03-28 Lemmond, Jr.; R. Nelson Advertising step systems
US6180228B1 (en) * 1998-03-02 2001-01-30 3M Innovative Properties Company Outdoor advertising system
DE69936863T2 (en) 1998-06-12 2008-05-15 Avery Dennison Corp., Pasadena Multilayer thermoplastic film-and its use in the shield dancing procedure
WO1999065680A1 (en) 1998-06-15 1999-12-23 Minnesota Mining And Manufacturing Company Multi-component unidirectional graphic article
US6254711B1 (en) 1998-06-15 2001-07-03 3M Innovative Properties Company Method for making unidirectional graphic article
EP1004608B1 (en) 1998-11-11 2004-10-20 Minnesota Mining And Manufacturing Company Multi-layer sheet comprising a protective polyurethane layer
US6262013B1 (en) 1999-01-14 2001-07-17 Ecolab Inc. Sanitizing laundry sour
WO2000061364A1 (en) * 1999-04-09 2000-10-19 Avery Dennison Corporation Construction and method for undersurface laser marking
US6884311B1 (en) 1999-09-09 2005-04-26 Jodi A. Dalvey Method of image transfer on a colored base
CA2284342C (en) 1999-09-29 2011-11-01 Meaney, Daniel J., Jr. Method, solution and paint for forming a metallic mirror surface or metallic luster
US6840644B2 (en) * 1999-09-29 2005-01-11 American Spray Coatings Metal salt solution for forming a metallic mirror surface on a receiving surface
WO2001023103A1 (en) * 1999-09-29 2001-04-05 American Spray Coatings Method, solution and paint for forming a metallic mirror surface or metallic luster
WO2001059744A3 (en) * 2000-02-11 2002-02-28 In Transit Communications Inc Method and apparatus for advertising on an aircraft tray table
US6723383B2 (en) * 2000-03-20 2004-04-20 Sri International Preparation of images on a substrate surface utilizing an opaque coating composition that becomes transparent upon printing
EP1274571B2 (en) 2000-04-14 2012-03-14 E.I. Du Pont De Nemours And Company Multilayer, co-extruded, ionomeric decorative surfacing
US20040091713A1 (en) * 2000-06-09 2004-05-13 Toshihiro Suwa Adherable fluorine-containing material sheet, adhesive fluorine-containing material sheet, and adhering method and adhesion structure of fluorine-containing material sheet
JP4328091B2 (en) * 2000-10-31 2009-09-09 ニーナ ペイパー インコーポレイテッド Heat transfer paper having a peelable film and crosslinked coating
JP4033771B2 (en) * 2000-10-31 2008-01-16 ニーナ ペイパー インコーポレイテッド Heat transfer paper having a peelable film and a discontinuous coating
US7045193B2 (en) * 2000-12-27 2006-05-16 Michael L. Tanel Display mat with high-definition graphics
US20050079330A1 (en) * 2000-12-27 2005-04-14 Tanel Michael L. Display mat with high-definition graphics
JP4109117B2 (en) * 2001-03-01 2008-07-02 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft Solid surface layer and an adhesive film is formed by a cover
JP2003039582A (en) * 2001-07-19 2003-02-13 Three M Innovative Properties Co Wet anti-slip sheet and wet anti-slip structure
US20040202812A1 (en) * 2001-09-07 2004-10-14 Congard Pierre M. Photoluminescent adhesive tape
US20060127666A1 (en) * 2001-12-07 2006-06-15 Fuchs Iris L Multilayer sheet comprising a protective polyurethane layer
US7316832B2 (en) 2001-12-20 2008-01-08 The Procter & Gamble Company Articles and methods for applying color on surfaces
US7709070B2 (en) 2001-12-20 2010-05-04 The Procter & Gamble Company Articles and methods for applying color on surfaces
US20030151270A1 (en) * 2002-02-14 2003-08-14 Raymond Zappe Liner apparatus and method of making a liner
US20030203165A1 (en) * 2002-04-30 2003-10-30 Nobles Joy Sharon Computer generated decorative graphic article for application to a surface
CN1655955B (en) 2002-05-13 2010-06-16 宝洁公司 Articles and methods for applying color on surfaces
JP3886121B2 (en) * 2002-07-29 2007-02-28 日東電工株式会社 Adhesive tape
US7361403B1 (en) * 2002-10-18 2008-04-22 Lowe Clifford A Multilayer graphic systems
US20040112500A1 (en) * 2002-12-04 2004-06-17 Key-Tech, Inc. Method for thermally printing a dye image onto a three dimensional object using a dye carrier sheet
EP1572466A1 (en) * 2002-12-16 2005-09-14 3M Innovative Properties Company Marking film, receptor sheet and marking film for vehicles
DE10304691A1 (en) * 2003-02-06 2004-08-26 Integrated Electronic Systems !Sys Consulting Gmbh Identification element, in particular for operating areas of devices
WO2004074008A3 (en) * 2003-02-14 2005-01-27 Avery Dennison Corp Multi-layer dry paint decorative laminate having discoloration prevention barrier
US20050196607A1 (en) 2003-06-09 2005-09-08 Shih Frank Y. Multi-layer dry paint decorative laminate having discoloration prevention barrier
US20040161564A1 (en) 2003-02-14 2004-08-19 Truog Keith L. Dry paint transfer laminate
JP4090389B2 (en) * 2003-06-10 2008-05-28 株式会社日立製作所 Nuclear magnetic resonance apparatus
CN1964845A (en) * 2003-10-07 2007-05-16 纳幕尔杜邦公司 Thermoformable multi-layer sheet
CA2541064A1 (en) * 2003-10-07 2005-04-21 E.I. Du Pont De Nemours And Company Multi-layer ionomer sheet having improved weathering
DE602004017763D1 (en) * 2003-10-07 2008-12-24 Du Pont Multi-layer film with a ionomerlage
US20050153139A1 (en) * 2004-01-12 2005-07-14 Levitt Mark D. Aqueous polyurethane coating system containing zinc crosslinked acrylic dispersion
US7527861B2 (en) * 2004-01-12 2009-05-05 Ecolab, Inc. Jobsite-renewable multilayer floor finish with enhanced hardening rate
JP4883745B2 (en) * 2004-01-27 2012-02-22 日東電工株式会社 Adhesive tape
US7229520B2 (en) * 2004-02-26 2007-06-12 Film Technologies International, Inc. Method for manufacturing spandrel glass film with metal flakes
US7244325B2 (en) * 2004-03-05 2007-07-17 Film Technologies International, Inc. Method of manufacturing an insulated glass unit
US8372232B2 (en) 2004-07-20 2013-02-12 Neenah Paper, Inc. Heat transfer materials and method of use thereof
US7258757B2 (en) * 2004-10-28 2007-08-21 Film Technologies International, Inc. Method of manufacturing an impact resistant and insulated glass unit composite with solar control and low-E coatings
US20060222829A1 (en) * 2005-04-01 2006-10-05 E Dean Roy Substrates coated with coating systems that include a treatment layer
US8765263B2 (en) 2005-04-29 2014-07-01 3M Innovative Properties Company Multilayer polyurethane protective films
DE102005027394A1 (en) * 2005-06-13 2006-12-14 Tesa Ag Double-sided pressure sensitive adhesive tapes for the production of LCD displays with light-reflecting properties and -absorbing
DE102005027350A1 (en) * 2005-06-13 2006-12-14 Tesa Ag Double-sided pressure sensitive adhesive tapes for the production and bonding of LC displays with light-absorbing properties
US7598321B2 (en) * 2005-08-10 2009-10-06 E. I. Du Pont De Nemours And Company Ethylene acid copolymer
US8545960B2 (en) 2006-10-23 2013-10-01 Entrotech, Inc. Articles comprising protective sheets and related methods
EP1937475B1 (en) 2005-10-21 2017-09-20 Entrotech, Inc. Composite articles comprising protective sheets and related methods
JP2009517505A (en) * 2005-12-02 2009-04-30 テーザ・アクチエンゲゼルシャフト Double-sided adhesive tape for manufacturing a liquid crystal panel brightness having light reflectivity and absorption properties
EP2081769B1 (en) * 2006-10-04 2016-08-10 3M Innovative Properties Company Method of making multilayer polyurethane protective film
US8647733B2 (en) * 2007-03-07 2014-02-11 3M Innovative Properties Company Adhesive-backed polymeric film storage method and assembly
US20100059167A1 (en) * 2007-09-25 2010-03-11 Mcguire Jr James E Paint Replacement Films, Composites Therefrom, and Related Methods
WO2009062106A1 (en) * 2007-11-07 2009-05-14 Ming-Liang Shiao Photovoltaic roofing elements and roofs using them
US20090148674A1 (en) * 2007-12-09 2009-06-11 Ult Technology Co., Ltd. In mold film with a 2d/3d pattern
DE102007062447A1 (en) * 2007-12-20 2009-06-25 Tesa Ag Double-sided adhesive tape for liquid crystal display systems
US20090186198A1 (en) * 2008-01-19 2009-07-23 Entrotech, Inc. Protected Graphics and Related Methods
US20090191372A1 (en) * 2008-01-24 2009-07-30 Raichart Cullen P Method and apparatus for applying graphic designs to vehicles
CN102026808B (en) 2008-03-25 2014-01-29 3M创新有限公司 Paint film composites and methods of making and using the same
KR101512214B1 (en) 2008-03-25 2015-04-14 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Multilayer articles and methods of making and using the same
US9752022B2 (en) 2008-07-10 2017-09-05 Avery Dennison Corporation Composition, film and related methods
US7739974B1 (en) 2008-09-05 2010-06-22 Brunswick Corporation Submersible object with antifouling paint configuration
DE102009021610A1 (en) * 2009-05-15 2010-11-18 Airbus Deutschland Gmbh Aircraft with lacquered outer surface and decorative film
JP5905026B2 (en) 2010-12-28 2016-04-20 スリーエム イノベイティブ プロパティズ カンパニー Decorative goods
WO2013095332A1 (en) * 2011-12-19 2013-06-27 Hewlett-Packard Development Company, L.P. Pretreatment fluids with ammonium metal chelate cross-linker for printing media
WO2013120076A1 (en) 2012-02-09 2013-08-15 Brand Bumps, LLC Decorative detectable warning panel having improved grip
US9234108B1 (en) 2012-10-16 2016-01-12 Donald D. Sloan, Trustee of the Donald D. Sloan Trust LED curable ink system for multi colored sub-surface applications
KR20160040252A (en) * 2013-08-05 2016-04-12 닛토덴코 가부시키가이샤 Adhesive sheet
WO2015143052A1 (en) 2014-03-18 2015-09-24 Brandbumps, Llc Tactile warning surface mount panel for mounting on a preformed ground surface
CN106103526A (en) 2014-03-26 2016-11-09 3M创新有限公司 Polyurethane compositions, films, and methods thereof
KR20170038005A (en) 2014-07-31 2017-04-05 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Thermoplastic polyurethane compositions, articles, and methods thereof
EP3088179A1 (en) 2015-04-30 2016-11-02 Impact Protection Technology AG Multilayer polyurethane protective films

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3795540A (en) * 1966-09-30 1974-03-05 Dow Chemical Co Cable shielding tape
US3681515A (en) * 1971-04-29 1972-08-01 Dow Chemical Co Electric cables and like conductors
US4001159A (en) * 1973-04-23 1977-01-04 Sumitomo Chemical Company, Limited Aqueous dispersion of olefin-acrylate copolymer
US4139514A (en) * 1977-06-29 1979-02-13 Union Carbide Corporation Aqueous vehicles
US4214028A (en) * 1978-02-21 1980-07-22 Congoleum Corporation Resinous polymer sheet materials having surface decorative effects and methods of making the same
US4513107A (en) * 1980-06-27 1985-04-23 Minnesota Mining And Manufacturing Company Thermally transferable ink compositions
US4542078A (en) * 1980-06-27 1985-09-17 Minnesota Mining And Manufacturing Company Transfer sheet bearing a thermally transferable ink composition and article made therefrom
US4737224A (en) * 1980-06-27 1988-04-12 Minnesota Mining And Manufacturing Company Process of dry adhesive-free thermal transfer of indicia
US4565842A (en) * 1980-06-27 1986-01-21 Minnesota Mining And Manufacturing Company Thermally transferable ink compositions
US4384065A (en) * 1980-09-25 1983-05-17 Wong Jack Y High gloss water-base coating composition
US4605592A (en) * 1982-08-19 1986-08-12 Minnesota Mining And Manufacturing Company Composite decorative article
EP0140019A1 (en) * 1983-09-01 1985-05-08 The Dow Chemical Company Adhesive and coating composition
US4762875A (en) * 1984-03-26 1988-08-09 Gold Marvin H Water based printing inks for plastic and metal surfaces
US4737225A (en) * 1985-06-12 1988-04-12 The D. L. Auld Company Method of making a substrateless decorative article
US4615754A (en) * 1985-06-12 1986-10-07 The D. L. Auld Company Substrateless decorative emblem and method of making
US4810540A (en) * 1986-10-28 1989-03-07 Rexham Corporation Decorative sheet material simulating the appearance of a base coat/clear coat paint finish
US4954556A (en) * 1987-11-23 1990-09-04 Ppg Industries, Inc. Water-based ink compositions
US4889765A (en) * 1987-12-22 1989-12-26 W. R. Grace & Co. Ink-receptive, water-based, coatings
US4973617A (en) * 1988-08-15 1990-11-27 Basf Corporation Water-borne surface printing inks containing acrylic resin and carboxylated rosin modified polyamide
JP2681805B2 (en) * 1988-09-08 1997-11-26 三恵技研工業株式会社 Plastic molding and manufacturing method thereof
US4908063A (en) * 1988-11-04 1990-03-13 Petrolite Corporation Additive composition for water-based inks
US5037680A (en) * 1989-07-10 1991-08-06 Decoma International Inc. Exterior automotive component with pigmented substrate and clear coating
US4980408A (en) * 1989-10-02 1990-12-25 Basf Corporation Water-borne surface printing inks
US5034275A (en) * 1989-11-24 1991-07-23 Pearson James M Paint coated sheet material with adhesion promoting composition
US5098478A (en) * 1990-12-07 1992-03-24 Sun Chemical Corporation Water-based ink compositions
DE69212154D1 (en) * 1991-05-17 1996-08-14 Minnesota Mining & Mfg Flexible, adaptable films on the basis of ionomeric resin

Also Published As

Publication number Publication date Type
EP0673323A1 (en) 1995-09-27 application
DE69305361T2 (en) 1997-05-15 grant
JPH08504520A (en) 1996-05-14 application
DE69305361D1 (en) 1996-11-14 grant
US5468532A (en) 1995-11-21 grant
JP3332235B2 (en) 2002-10-07 grant
WO1994013496A1 (en) 1994-06-23 application
ES2092886T3 (en) 1996-12-01 grant
EP0673323B1 (en) 1996-10-09 grant

Similar Documents

Publication Publication Date Title
US4678690A (en) Premasked decal
US6717673B1 (en) Method of color-matching
US6548164B1 (en) Removable sheeting
US6096396A (en) Decorative sheet material suitable for use as a flexible weatherable paint film or decal
US5122552A (en) Coating composition of polyesterurethane and multifunctional epoxy compound
US5393590A (en) Hot stamping foil
US6770360B2 (en) Multilayered thermoplastic film and sign cutting method using the same
US4936936A (en) Method of making thermoplastic acrylic polymer coated composite structure
US6461709B1 (en) Graffiti and/or environmental protective article having removable sheets, substrates protected therewith, and a method of use
US20020127361A1 (en) Heat-sealable laminate
US20030203230A1 (en) Polyolefin film with embossed surface
US5055346A (en) Thermoplastic acrylic polymer coated composite structure
US6607831B2 (en) Multi-layer article
US6613411B2 (en) Conformable multi-layer sheet materials
US20050003129A1 (en) Differential release system for a self-wound multilayer dry paint decorative laminate having a pressure sensitive adhesive
US6613430B2 (en) Release coated polymer film
US6531214B2 (en) Replacement for plasticized polyvinyl chloride
US5209959A (en) Surface printable polyvinyl chloride laminate with carrier and application tape
US5225260A (en) Subsurface printable laminate with carrier and application tape
US6982108B2 (en) Color-matching article
US4248917A (en) Pressure sensitive products with decorative appearance
US6200666B1 (en) Thermal transfer compositions, articles, and graphic articles made with same
US6399193B1 (en) Surfacing laminate with bonded with pigmented pressure sensitive adhesive
US4248762A (en) Pressure sensitive products with decorative appearance
US20050196607A1 (en) Multi-layer dry paint decorative laminate having discoloration prevention barrier

Legal Events

Date Code Title Description
FZDE Dead