CA2143434A1 - Steel having excellent corrosion resistance and steel having excellent corrosion resistance and workability - Google Patents

Steel having excellent corrosion resistance and steel having excellent corrosion resistance and workability

Info

Publication number
CA2143434A1
CA2143434A1 CA002143434A CA2143434A CA2143434A1 CA 2143434 A1 CA2143434 A1 CA 2143434A1 CA 002143434 A CA002143434 A CA 002143434A CA 2143434 A CA2143434 A CA 2143434A CA 2143434 A1 CA2143434 A1 CA 2143434A1
Authority
CA
Canada
Prior art keywords
steel
corrosion resistance
workability
excellent corrosion
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002143434A
Other languages
French (fr)
Inventor
Kenji Kato
Akihiro Miyasaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CA2143434A1 publication Critical patent/CA2143434A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium

Abstract

The present invention relates to a steel having excellent corrosion resistance and workability and more particularly to a steel having excellent corrosion resistance and workability in an exhaust system of internal combustion engines in, for example, internal combustion engines in automobiles and ships.
A steel having excellent corrosion resistance and a steel having excellent corrosion resistance and workability, characterized by comprising Si: not less than 0.01 to less than 1.2%, Mn: 0.1 to 1.5%, Cr: 2.5 to 9.9%, and Al: more than 3.0 to 8.0%, and, reduced to, C:
not more than 0.02%, P: not more than 0.03%, S: not more than 0.01%, and N: not more than 0.02%, and further comprising 0.01 to 0.5% in total of Nb, V, Ti, Zr, Ta, and Hf so as to meet a particular conditional formula, or further comprising at least one member selected from Cu, Mo, Sb, Ni, W, rare earth elements, and Ca, with the balance consisting of Fe and unavoidable impurities.

Description

~143434 - DESCRIPTION

Steel Having Excellent Corrosion Resistance and Steel Having Excellent Corrosion Resistance and Workability TECHNICAL FIELD
The present invention relates to a steel having excellent corrosion resistance and a steel having excellent corrosion resistance and workability. More particularly, the present invention relates to a steel having excellent corrosion resistance in exhaust systems of, for example, internal combustion engines in automobiles and ships and a steel which is excellent in corrosion resistance as well as in workability required for working the steel into components.
PRIOR ART
A steel comprising a common steel plated with aluminum or zinc for the purpose of avoiding internal or external corrosion has hitherto been used in an exhaust system of internal combustion engines including those of automobiles from the viewpoint of preventing the steel from being internally or externally corroded. In order to prevent environmental pollution, however, a catalyst or the like has been provided for exhaust gas purification purposes in an exhaust system, rendering the corrosion resistance of the above plated steel product unsatisfactory. Japanese Unexamined Patent Publication (Kokai) Nos. 63-143240, 63-143241, and 2-156048 and the like disclose steels containing 3 to 12% of Cr for improving the corrosion resistance of a steel substrate in an exhaust system. Prolongation of the period of service and the term of guarantee of vehicles in recent years has led to extensive use of a high grade stainless steel containing Cr in an amount up to about 18~ and/or Mo in an exhaust system. Even such a stainless steel oftèn undergoes pitting type local corrosion, and, hence, ;

~143434 the corrosion-resistance thereof is not always satisfactory. Further, since the above stainless steel contains large amounts of Cr and Mo, they have poor workability, making it very difficult to produce members having a complicate shape, for examples, those for an exhaust system. This complicates the production process, entailing increased working cost. Furthermore, the above stainless steel cannot be worked into some shapes and, at the same time, brings about increased material cost.
A steel incorporating a certain amount of Cr, which is a representative example of a steel used in the above exhaust system, is likely to unfavorably undergo local corrosion when exposed to an aggressive environment. In order to solve this problem, it is common practice to increase the Cr or Mo content to improving the corrosion resistance.
DISCLOSURE OF THE INVENTION
In view of the above problems, the present invention has been made to provide a steel which has high resistance to aggressive environments in exhaust systems of internal combustion engines and the like and is cost effective, or a steel which has high resistance to aggressive environments in exhaust systems of internal combustion engines and the like and, at the same time, excellent workability and cost effectiveness.
In order to solve the above problems, the present inventors have studied from various viewpoints steels having excellent corrosion resistance under aggressive environments including those of exhaust systems. At the outset, the present inventors studied aggressive environments in exhaust systems and, as a result,-faund that the corrosion of the exhaust system in the internal combustion engines occurs in an environment in which chlorides, sulfate ions, and the like contained in an exhaust gas are heated to 80 to 150C. Further, they conducted various studies on means to improve the corrosion resistance of the steel under aggressive 21~3~3~

environments and, as a result, found that, in contrast to conventional stainless steel, when the Cr content is reduced to 2.5 to 9.9% and Al is added in an amount of more than 3.0 to 8.0%, the resultant steel has excellent corrosion resistance under aggressive environments including those in exhaust systems.
In order to develop a better steel, the present inventors made further studies. As a result, they found that, in the above steel, a reduction in the C and N
contents and, at the same time, the addition of Nb, V, Ti, Zr, Ta, and Hf in amounts meeting a particular requirement result in improved corrosion resistance and improved workability. Further, they found that better corrosion resistance can be provided by adding to the above steel at least one member selected from Cu, Mo, Sb, Ni and W and at least one member selected from REM and Ca and, further, Si and Mn are proper as a deoxidizing and strengthening element.
The present invention has been made mainly on the above finding, and the subject matter of the first invention resides in a steel having excellent corrosion resistance, characterized by comprising by weight Si: not less than 0.01 to less than 1.2%, Mn: 0.1 to 1.5%, Cr: 2.5 to 9.9%, and Al: more than 3.0 to 8.0%, and, other elements with the following upper limits:
C: not more than 0.02%, P: not more than 0.03%, S: not more than 0.01%, and N: not more than 0.02%, with the balance consisting of Fe and unavoidable impurities.
The subject matter of the second invention resides in a steel comprising the same ingredients as those constituting the steel of the first invention and as an ~113~3~
.

additional ingredient at least one member selected from, by weight, Cu: 0.05 to 3.0%, Mo: 0.05 to 2.0%, Sb: 0.01 to 0.5%, Ni: 0.01 to 2.0%, and W: 0.05 to 3.0%.
The subject matter of the third invention resides in a steel comprising the same ingredients as those constituting the steel of the first or second invention and as an additional ingredient at least one member selected from, by weight, rare earth element: 0.001 to 0.1%, and Ca: 0.0005 to 0.03%.
The subject matter of the fourth invention resides in a steel having excellent corrosion resistance and workability, characterized by comprising by weight Si: not less than 0.01 to less than 1.2%, Mn: 0.1 to 1.5%, Cr: 2.5 to 9.9%, and Al: more than 3.0 to 8.0%, and, other elements with the following upper limits:
C: not more than 0.02%, P: not more than 0.03%, S: not more than 0.01%, and N: not more than 0.02%, and 0.01 to 0.5% in total of at least one element selected from Nb, V, Ti, Zr, Ta, and Hf, provided that a requirement represented by the following formula is met:
Nb V Ti Z r Ta H~ C N
-- + -- +-- + -- + -- + -- - 0.8 X [--+ --] 2 o with the balance consisting of Fe and unavoidable impurities.
The subject matter of the fifth invention resides in a steel comprising the same ingredients as those constituting the steel of the fourth invention and as an ~lq3434 additional ingredient at least one member selected from, by weight, Cu: 0.05 to 3.0%, Mo: 0.05 to 2.0%, Sb: 0.01 to 0.5%, Ni: 0.01 to 2.0%, and W: 0.05 to 3.0%.
The subject matter of the sixth invention resides in a steel comprising the same ingredients as those constituting the steel of the fourth or fifth invention and as an additional ingredient at least one member selected from, by weight, rare earth element: 0.001 to 0.1%, and Ca: 0.0005 to 0.03~.
Best Mode for Carrying Out the Invention The present invention provides a steel member having sufficiently high corrosion resistance to cope with use under a harsh corrosive environment recently found in the above automobile exhaust gas system and a steel member having excellent corrosion resistance and workability.
The reason for the limitation of chemical ingredients, which are technical features of the present invention, will now be described in detail.
si Si, when added to a steel having a Cr content of not less than 2.5%, effectively serves as a deoxidizer and a strengthening element. However, when the Si content is less than 0.01%, the deoxidization effect is unsatisfactory. On the other hand, when it is not less than 1.2%, the effect is saturated and, at the same time, the workability is deteriorated. For this reason, the Si content is limited to not less than 0.01 to less than 1.2%.
Mn:
Mn is necessary as a deoxidizer for steèl and should be contained in an amount of not less than 0.1%.
However, when the Mn content exceeds 2.0%, the effect is saturated and; at the same time, the presence of excessive Mn deteriorates the workability of the steel.
For this reason, the upper limit of the Mn content is 1.5%.
Cr:
Cr should be incorporated in an amount of not less than 2.5% for ensuring the corrosion resistance of the steel. The incorporation of Cr in an amount exceeding 9.9% uselessly incurs an increase in cost and, at the same time, deteriorates the workability of the steel.
For this reason, the upper content of Cr is 9.9%.
Al:
Al, as with Cr, is an element important to the present invention from the viewpoint of ensuring the corrosion resistance. As described above, when the Al content is not more than 3.0%, the effect of preventing the pitting corrosion is unsatisfactory. On the other hand, when the amount of Al added exceeds 8.0%, the above effect is saturated and, at the same time, the workability of the steel is deteriorated. For this reason, the Al content is limited to more than 3.0 to not more than 8.0%.
C, N:
C and N deteriorate the workability of the steel sheet. Further, C combines with Cr to form a carbide which deteriorates the corrosion resistance of the steel.
Further, N deteriorates the toughness of the steel. For this reason, the lower the C and N contents, the better the results, and the upper limits of the C and N contents are both 0.02%.
P:
P, when present in a large amount, deteriorates the toughness. Therefore, the lower the P content, the better the results, and the upper limit of the P content is 0.03%.
S :

~143434 S too deteriorates the pitting corrosion resistance when it is present in a large amount. Therefore, the lower the S content, the better the results, and the upper limit of the S content is 0.01%.
Nb, V, Ti, zr, Ta, Hf, Nb, V, Ti, Zr, Ta, and Hf serve to fix, as a carbide, C and N contained in a high Cr steel, thereby significantly improving the corrosion resistance and the workability. They may be added alone or in combination. However, for the addition of these elements alone or in combination, no effect can be attained when the total amount of the elements added is less than 0.01%. When the total amount exceeds 0.5%, the cost is uselessly increased and, at the same time, a flaw or the like is likely to occur during rolling. For this reason, the upper limit of these element is 0.5%.
Further, in order to effectively improve the workability, the total amount of the Nb, V, Ti, Zr, Ta, and Hf added should satisfy a requirement represented by the following formula:

Nb V Ti Zr Ta Hf C N
- + - + - + - + + - - 0.8 x [ - + - ] 2 o The above elements are fundamental ingredients of the steel having excellent corrosion resistance or the steel having excellent corrosion resistance and workability contemplated in the present invention.
Further, steels with the following elements being optionally added for the purpose of further improving the properties are also contemplated in the present invention.
Cu:
Cu, when added in an amount of not less than 0.05%
to a steel having a Cr content of not less than 2.5% and an Pl content exceeding 3.0%, has the effect of improving the resistance to general corrosion. However, when the Cu content exceeds 3.0%, the contemplated effect is saturated and, at the same time, the hot workability of ;

214343~

the steel is deteriorated. For this reason, the upper content of Cu is 3.0%.
Mo:
Mo, when added in an amount of not less than 0.05%
to a steel having a Cr content of not less than 2.5% and an Al content exceeding 3.0%, has the effect of inhibiting the occurrence and growth of pitting.
However, when the Mo content exceeds 1.5%, the contemplated effect is saturated and, at the same time, the workability of the steel is deteriorated. For this reason, the upper content of Mo is 1.5%.
Sb:
Sb, when added in an amount of not less than 0.01%
to a steel having a Cr content of not less than 2.5% and an Al content exceeding 3.0%, has the effect of improving the resistance to pitting corrosion and general corrosion. However, when the Sb content exceeds 0.5%, the hot workability of the steel is deteriorated. For this reason, the upper content of Sb is 0.5%.
Ni:
Ni, when added in an amount of not less than 0.01%
to a steel having a Cr content of not less than 2.5% and an Al content exceeding 3.0%, has the effect of preventing the pitting corrosion. However, when the Ni content exceeds 2.0%, the contemplated effect is saturated and, at the same time, the hot workability of the steel is deteriorated. For this reason, the upper content of Ni is 2.0%.
W:
W, when added, in an amount of not less than 0.05%, in combination with ~ther additive elements, to a steel having a Cr content of not less than 2.5% and an Al content exceeding 3.0%, has the effect of significantly inhibiting the occurrence and growth of pitting.
However, when the--W content exceeds 3.0%, the contemplated effect is saturated and, at the same time, the workability of the steel is deteriorated. For this reason, the upper content of W is 3.0%.
Rare earth elements (REM), Ca:
Rare earth elements and Ca are elements having the effect of improving the hot workability and the pitting corrosion resistance. No satisfactory effect can be attained when the content is less than 0.001% for the rare earth element and less than 0.0005% for Ca. On the other hand, when the content exceeds 0.1% for the rare earth element and 0.03% for Ca, coarse nonmetallic inclusions are formed to unfavorably deteriorate the hot workability and the pitting corrosion resistance. For this reason, the upper limit of the content is 0.1% for the rare earth element and 0.03% for Ca. In the present invention, the term ~rare earth element" is intended to mean elements with atomic numbers 57 to 71 (lanthanoids), atomic numbers 89 to 103 (actinoids), and atomic number 39 (Y).
The steel of the present invention, when used in an exhaust system of internal combustion engines, may be first produced in a steel sheet form, formed by means of a press or the like into a predetermined shape, and further worked and welded to provide a product.
Alternatively, the steel sheet may be first formed into a steel pipe, for example, a seam welded steel pipe, and then fabricated, welded, or subjected to other steps to provide a product. All the steels having a composition and a combination of elements, including the process, specified in the present invention, are contemplated in the present invention. Further, it is also possible to select the optimal production process by taking into consideration the cost, the production equipment restrictions, and the like, but if another production process is selected, the selected process should not deviate from the scope of the claims of the present invention. Furthermore, the steel of the present invention can be applied to, in addition to an exhaust system of internal combustion engines, various other corrosive environments, such as an environment wherein an aqueous solution containing chlorides, sulfate ions, or the like is exposed to high temperatures or an environment wherein heating and cooling are repeated.
The present invention will now be described in more detail with reference to the following example and comparative examples.
~ MPLE
Steels comprising ingredients specified in Tables 1 to 9 were prepared by the melt process and subjected to conventional steel sheet production steps, such as hot rolling and cold rolling, to provide 1 mm-thick steel sheets which were then annealed at 850C. Test pieces having a width of 50 mm and a length of 70 mm were prepared from these steel sheets and applied to a corrosion test. The corrosion test was carried out by immersing a test piece to half the height thereof in an aqueous solution (50 cm3) containing 100 ppm of a sulfate ion, 100 ppm of a chloride ion, and 500 ppm of a bicarbonate ion in the form of an ammonium salt, holding the whole testing container in an atmosphere of 130C to completely evaporate and volatilize the testing solution, and repeating the above procedure 20 times. This test is a simulation of corrosive conditions in an automobile exhaust system.
In the results of the corrosion test given in Tables 1, 2, 3, 5, 7, and 9, ~3 represents that the maximum corrosion depth was not more than o.lo mm, O represents that the maximum corrosion depth was not more than 0.15 mm, and X represents that the maximum corrosion depth exceeded 0.15 mm.
The workability was evaluated based on whether or not cracking occurred in a cup reduction test with a reduction ratio of 1.8.
The test results are also shown in Tables 5, 7, and 9. In the test results for workability given in these 214343~

tables, O repEesents that the results of the cup reduction test were good, and x represents that cracking occurred in the cup reduction test.
As is apparent from Tables 1, 2, 3, 5, 7, and 9, steel Nos. 1 to 36 of the present invention listed in Tables 1 and 2 and steel Nos. 50 to 86 of the present invention listed in Tables 4, 5, 6, and 7 had good corrosion resistance even in an exhaust gas environment which was a very harsh corrosive environment. Further, steel Nos. 50 to 86 of the present invention listed in Tables 4, 5, 6, and 7 were excellent also in workability.
By contrast, steel Nos. 37 to 49 as comparative steels listed in Table 3 had poor corrosion resistance, and steel Nos. 87 to 98 as comparative steels listed in Tables 8 and 9 were poor in corrosion resistance as well as in workability.

Table 1 Ingredients, wt.% Max.
corrosion No. C Si Mn P S Al Cr W Cu MO Sb Ni Ca REM N depth 1 0.011 0.12 0.21 0.015 0.005 4.15 2.6 0.013 2 0.008 1.02 0.41 0.017 0.007 4.08 2.6 2.99 2.28 1.7 0.29 1.l 0.019 0.017 3 0.003 0.60 0.31 0.015 0.010 3.16 2.7 1.59 0.007 O
4 0.014 1.14 0.23 0.010 0.008 7.40 3.0 0.9 0.015 0.008 0.39 1.41 0.010 0.008 6.37 3.0 1.31 1.6 0.008 6 0.005 1.18 1.26 0.019 0.006 3.48 3.3 1.0 0.006 O
7 0.009 0.98 0.81 0.023 0.006 3.53 3.4 0.42 2.05 0.1 0.026 0.015 Steel 8 0.008 0.65 1.46 0.014 0.006 4.07 3.5 0.37 0.28 0.058 0.009 O
of 9 0.005 0.31 0.81 0.010 0.005 6.11 3.6 0.5 0.009 0.008 inven-10 0.020 0.67 1.49 0.019 0.004 3.17 3.6 0.80 2.01 0.7 0.18 0.002 0.016 tion 11 0.005 0.93 1.47 0.026 0.010 5.99 3.8 1.48 1.10 0.010 0.011 12 0.014 0.52 1.13 0.020 0.004 3.51 4.0 1.35 0.009 ~ r~
13 0.003 0.67 1.01 0.023 0.007 3.06 4.1 2.88 2.30 1.1 0.017 ~ ~, 14 0.012 0.42 0.87 0.025 0.008 5.65 4.2 0.17 0.014 ~ ~C-0.018 0.63 1.19 0.024 0.003 4.06 4.4 0.55 0.9 0.006 0.004 ~ C~
16 0.013 0.27 0.30 0.018 0.009 4.33 4.6 0.47 0.048 0.016 ~i 17 0.014 0.62 0.34 0.028 0.004 3.914.7 2.66 1.70 1.4 0.03 0.4 0.027 0.041 0.003 18 0.006 0.28 0.57 0.018 0.009 3.824.9 0.6 1.5 o.oog Table 2 Ingredients, wt.% Max No. C Si Mn P S Al Cr W Cu Mo Sb Ni Ca REM N depth 19 0.007 0.92 1.14 0.016 0.008 6.39 5.3 0.019 0.058 0.011 20 0.006 0.44 0.64 0.022 0.008 6.09 5.5 0.83 2.0 0.07 O.g 0.012 21 0.010 0.72 0.33 0.010 0.007 4.27 5.7 1.3 0.08 0.018 22 0.017 0.14 0.31 0.020 0.006 5.58 5.9 0.013 23 0.016 1.02 0.21 0.027 0.004 3.62 6.4 1.35 1.5 0.44 0.013 24 0.008 0.63 1.19 0.025 0.003 4.09 6.8 2.84 1.5 0.077 0.0150.014 0.28 1.21 0.028 0.004 7.72 7.3 1.18 0.7 0.35 0.076 0.016 Steel 26 0.013 0.57 0.65 0.015 0.008 6.94 7.4 0.15 0.003 0.008 Of 27 0.011 0.99 0.62 0.018 0.008 4.12 7.6 2.05 0.5 0.6 0.017 inven- 28 0.012 0.51 1.13 0.013 0.007 5.50 7.7 0.06 1.0 0.016 tion 29 0.003 0.88 1.49 0.022 0.010 5.39 7.8 0.012 O
0.016 0.56 1.06 0.020 0.009 7.08 8.4 0.014 31 0.018 0.27 1.12 0.012 0.009 4.77 8.5 0.99 0.014 0.014 ~ ~a~
32 0.018 0.81 0.90 0.024 0.009 7.82 8.6 1.9 0.028 0.006 33 0.009 0.50 0.38 0.022 0.005 4.18 9.0 1.48 0.92 0.4 0.10 1.2 0.092 0.011 ~ C~
34 0.012 0.13 0.97 0.016 0.008 4.62 9.4 1.3 0.098 0.010 `i 35 0.006 0.15 0.92 0.021 0.009 4.70 9.4 0.54 0.013 0.013 36 0.013 0.35 1.23 0.020 0.004 5.36 9.8 2.55 1.77 0.19 0.007 Table 3 Ingredients, wt.% Max No. C Si Mn P S AlCr W Cu Mo Sb Ni Ca REM N depth 37 0.009 0.49 0.64 0.028 0.005 0.04 7.5 0.011 X
38 0.005 0.45 1.09 0.026 0.003 0.25 7.3 0.08 0.003 X
39 0.016 0.49 0.73 0.028 0.004 0.21 7.5 0.15 2.5 0.008 X
40 0.016 0.13 0.50 0.035 0.005 0.22 9.3 0.013 X
Compar- 41 0.020 0.15 0.41 0.032 0.007 0.29 5.2 0.032 0.008 X
ative 42 0.014 0.14 1.21 0.031 0.005 0.03 9.8 0.003 0.011 X
steel 43 0.010 0.18 0.68 0.038 0.004 0.29 9.3 2.1 0.005 X
44 0.045 0.21 1.18 0.037 0.006 0.04 8.6 0.32 0.006 X
45 0.013 0.29 1.27 0.032 0.005 0.22 9.2 1.10 0.007 X
46 0.013 0.18 0.69 0.039 0.003 0.03 9.8 1.4 0.006 X
47 0.020 0.45 0.70 0.037 0.006 0.2111.5 1.40 0.006 X
48 0.017 0.47 0.87 0.045 0.003 0.3010.5 0.80 1.20 1.1 0.010 0.010 X
49 0.010 0.51 1.04 0.037 0.005 0.0511.8 1.10 0.41 1.5 0.05 0.4 0.011 X
_.j 2143~3~

- 15 ~

r ~ u~ r r r In r o _l o o o o o o o o o o o o o o o o o o o o o o o o co ~ ~ ~ r r ~
~ o o o o o o o o o E~ . . . . . . . . .
o o o o o o o o o rr u7 cou~ ~ ~ ~ ~ ~ a~~
oo o o o ~ o o o ~ o o oo o o o o o o o o o o O ~ --I O
;~ .. ... .. . .
o o ooo o o o o o ~ ~
3 3 o~ r ~D
~ ~ o u, ~, r a~ o~ ~ro~ ~ ~ ~ r r o _l ~

o ~ a~ r ~u~~~o ~ ~ ct) ~ o , ~
H o O ~ r o a~
E~ ~oo~oooo~ooooooooo u~ooooooooooooooooooo .
ooooooooooooooooooo ~ o u ) Lo ~ ~ r ~ ~ ~ o o ~ o a~ r a~
~ ~ o ~ o ~ ~ ~ o P~ooooooooooooooooooo ooooooooooooooooooo ~ u~ ~ a~ ~ r r ~ r ~ o ~ ~ Ln r ~ r ~
O~OO~OOO_IOOO~OO--10 ~n .................. .
ooo_Iooooooooooooo~o ~ ~ m o a) m 0 ~O ~O r ~ r ~ ul tD ~
~ oo~_l~ooo~o~o~oo~
c~ooooooooooooooooooo ooooooooooooooooooo O ~ ~ ~ D r co ~ o ~ ~ r c~

o z ~ a~ ~
a~ ~ o rQ O ~

Table 5(Continuation of Table 4) Ingredients, wt.%X value Work- Max.
x 10000 abily corrosion NO. Hf CU Mo Sb Ni CaREM N depth 1.78 0.0580.0075.97 510.22 0.47 0.0000.014 9.61 O
52 1.20 1.60 0.015 6.55 O O
53 0.008 0.0730.005 6.86 O O
54 0.13 0.0350.013 7.73 O O
1.21 0.016 12.75 O O
56 0.0100.0145.24 O
Steel 570.09 1.05 1.06 0.017 26.73 0 of 580.07 1.84 0.011 0.015 1.80 inven- 59 2.97 1.35 0.21 0.016 0.013 15.12 tion 60 1.44 0.20 0.391.630.010 0.009 20.81 O
61 0.14 1.25 0.020 4.90 O O
620.17 0.49 0.44 0.010 13.71 0 0 63 1.22 0.0650.01918.55 0 ~ ~
64 1.24 0.00519.23 O ~ W
0.0036.85 0 0 C~
660.02 2.19 0.24 0.011 0.004 8.94 O O
670.07 1.75 0.023 0.020 29.62 680.05 0.50 0.09 0.22 0.081 0.016 10.74 O O
Note: X value in the table was calculated by the following formula:
Nb V Ti Zr Ta Hf C N
- + - + - + - + + - 0.8 X [ - + - ] 2 0 214343~

. . .
--f frf~D ¢~ ~tf f-d~tf O O
O O O O O
ff~D ¢)rf'~f 0' S f _. OO O O O O O --.
~; .. . . . . . . . .
O O O O O O O O O
~f r ¢ff-~f ~ .f f'rf frf '~- O O O O O _.O O O
f O O O O O OO O O
f'~f nf'f('-f ~`if n ~
~, O O O O ~. O O
O O O O O O O
rf.'`i rf ~f f~-f ¢~ _~,f O--f O O O --f O
O O O O O O O
d~
¢f ~f O O O fff ¢I f,~f 3 , ~ o f rf ~, ~f r N
--. O(~. _f O f,'~ ;f U~ S f~ff~f r ~ tf ~f r~f -f~ ~f~D ¢If~ O ~ frf f_f--fI-.f U`ffr.f U~ ~Cf ~ D r ¢~ 0 ¢f f~f ¢l ¢f a~ f~ f~
o _. 0 r ~ff~f f'~;f ~; rr Na~ f~r --- ~ --.
f~,,f IJ ¢ ~D r rf'') ~D ~f0 r~o ¢'1' t~; ¢f --- ¢1 ~
f~ f-rf r~f f7 r r~f ~D~D f f fl'f f7~f n ~D f'-f ~D
f~ r 0 r f'rf ¢f ~ ~ffrff'~f ~D ¢f r ~ ~ ~f r ooo_._.ooooooooooooo f t~ O O O O O O O O O O O O O O O O O O
O O O O O O O O O O O O O O O O O O

O f-.f r O r f''f ~ ~f ~ r ~Lf ¢f ~ r f~-f f"f ~f --. f~\. --. f ~. f~f f'\, f~f f7 _ . f~, O --. O (~ ~, f~f --.
.~f O O O O O O O O O O O O O O O O O O
O O O O O O O O O O O O O O O O O O
f~ ~f r ~ ¢f r ~Jf~O~17 ¢f O~;tf~Or r (~f O
f~_f f`~ f7 ¢f n (`-f ¢f~( r~tf ~ f~7 r ~ ~ ~ ~f ¢f O--f O O O O O O_.O O_. O O O O _. O
~ f r) ~f r~f ~D ~O ~Df7l~f17 0 ~, ~n '--f --f O--f ¢f --f W~f--. O r f~f~ f-rf fTf ¢f f,-~; . f f ft`
O--. O O O O _f OO OO O O O O _. _-f O
¢fl~f --fID n f7 (~(7~(f'-ff.~f rf~l ~ ~ n N r _f_f _ __._f_f _. O. _f_f O O O O --. O
f_f O O O O O O O O O OO OO O O O O O
O O O O O O O O O OO OO O O O O O
O -. N~f~f n w r 0f~f O -.N f~f ` ~ fn ~
~o r r r r r r r r rr 00 0 0 0 0 0 .

O
fl'f fl'f f,_, af ~ o 'J~f O --f ~

~D .
~ .~OO~O~O~OOOO~OO
.~ X

, o~ oooooooooooooooooo~
C ~ ~
., o O o ~ ~ ~ ~ In ~ ~ ~ ~ ~ a~ o ~ ~ o o ~ ~ O
~ o o ~ O O r X X
C t~ Oa) ~ ~ o o ~ ~n ~D ~ a) ul ~ ~ ~; I
~ O O ~ ~ I O ~ ~ --I O O O O ~ _I
oooooooooooooooooo~+
oooooooooooooooooo o ~ ~ I ~
~ o o ~ X
O o ~ a~ 0 ~ ~n ~, c~
c~ o o o O O a' O
O O O O O ~ I
0 a~
~n ~zU~ r ~ ~ ~ ~ ~ r o ~ O O o 0 ~ ~ ~ 0 0 0 U2 , 1~ Q _~ ~ o _l o _~ o I c~
n o o o o o o o I ~
U~ 0 ~ ~ 0 ~ 0 0 --I -t ~ O O O --I ~

O a~ +
--I -I o _~ ~ oo ~ E~ I
0 ~ t` 0 0 ~ '~
o o o o o o O~ O --I ~ ~ ~ m ~ ~0 o~ o --I ~ ~ d' In ~O
r ~ 0 0 0 0 0 0 0 R I
X Z
O ~ ..
o ~
v ~ ~ .~ O
u~ o ~ v ;-- Z

~14343~

E~ o o ~o ~
s~ , o . .
o o , ~ U~
o ~
o o o ~ ~ In Z . o ~
o o o dP~'2 ~
3 o ,¢o~ooo~ooooo~
oooooooooooo Q ~
E~ oooooooooooo U~oooooooooooo oooooooooooo O ~ ~ ~ ~ ~ ~ ~ ~ --I
~oooooooooooo oooooooooooo a~ o ~ ~ ~ O
~, ........... .
--~ O ~ --I O O ~ O --1 ~ O O

U~ ........... .
oooooooooo~o o o o ~ o o _~ ~ ~ ~ o --I
Uoooooooooooo o o o o o o o o o o o o t~ 0 a~ o ~ ~ ~ ~ n w t~ 0 o a V J~

214343~

.~
0n ~XXXXXXXXXXXX

O O Q O O O X X X X X X X O O
c o -,a) ~ N O ~ ~ O~ ~ ~ r m 4~
~~ O ~ Ir) 'o ~ r U~ ~ o N ~D In O
g _~ ~I N ~) ~ O 10 ~ ~ n N ~O
X X ,_~
C N ~ ~ ~ O O r co r r --~ ~ ~ ~1 ~ N --I O --I O O ~ ~
`J ZOOOOOOOOOoooC+
O O O O O O O O O O O O
N ,~ C) I
o o ~ X
~ ~ 0 au .d a O
V O ~ I
U -z O - I
a O +
Q ~ 3 E~ 1 0 a, +
~o O ~

O ~ O ~ +
~ 0 N ~
~ O. O ~ I ~

r 0 ~ O ~I N (~ 5) r a~ ~ ~
, O S ..
Z ~ a) V V O
rd un ~143434 [Industrial Applicability]
As is apparent from the above example, the present invention provides a steel having excellent corrosion resistance in an exhaust system of an internal combustion S engine in automobiles and the like or a steel having excellent corrosion resistance and workability at low cost and, hence, can greatly contribute to the development of industries.

Claims (6)

1. A steel having excellent corrosion resistance, characterized by comprising by weight Si: not less than 0.01 to less than 1.2%, Mn: 0.1 to 1.5%, Cr: 2.5 to 9.9%, and Al: more than 3.0 to 8.0%, and, other elements with the following upper limits:
C: not more than 0.02%, P: not more than 0.03%, S: not more than 0.01%, and N: not more than 0.02%, with the balance consisting of Fe and unavoidable impurities.
2. The steel having excellent corrosion resistance according to claim 1, which further comprises as an additional ingredient at least one member selected from, by weight, Cu: 0.05 to 3.0%, Mo: 0.05 to 2.0%, Sb: 0.01 to 0.5%, Ni: 0.01 to 2.0%, and W: 0.05 to 3.0%.
3. The steel having excellent corrosion resistance according to claim 1 or 2, which further comprises as an additional ingredient at least one member selected from, by weight, rare earth element: 0.001 to 0.1%, and Ca: 0.0005 to 0.03%.
4. A steel having excellent corrosion resistance and workability, characterized by comprising by weight Si: not less than 0.01 to less than 1.2%, Mn: 0.1 to 1.5%, Cr: 2.5 to 9.9%, and Al: more than 3.0 to 8.0%, and, reduced to, C: not more than 0.02%, P: not more than 0.03%, S: not more than 0.01%, and N: not more than 0.02%, and 0.01 to 0.5% in total of at least one element selected from Nb, V, Ti, Zr, Ta, and Hf, provided that a requirement represented by the following formula is met:

with the balance consisting of Fe and unavoidable impurities.
5. The steel having excellent corrosion resistance and workability according to claim 4, which further comprises as an additional ingredient at least one member selected from, by weight, Cu: 0.05 to 3.0%, Mo: 0.05 to 2.0%, Sb: 0.01 to 0.5%, Ni: 0.01 to 2.0%, and W: 0.05 to 3.0%.
6. The steel having excellent corrosion resistance and workability according to claim 4 or 5, which further comprises as an additional ingredient at least one member selected from, by weight, rare earth element: 0.001 to 0.1%, and Ca: 0.0005 to 0.03%.
CA002143434A 1993-07-06 1994-07-06 Steel having excellent corrosion resistance and steel having excellent corrosion resistance and workability Abandoned CA2143434A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP5-167206 1993-07-06
JP16720693 1993-07-06
JP16720793 1993-07-06
JP5-167207 1993-07-06

Publications (1)

Publication Number Publication Date
CA2143434A1 true CA2143434A1 (en) 1995-01-07

Family

ID=26491320

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002143434A Abandoned CA2143434A1 (en) 1993-07-06 1994-07-06 Steel having excellent corrosion resistance and steel having excellent corrosion resistance and workability

Country Status (5)

Country Link
EP (1) EP0658632A4 (en)
KR (1) KR0157727B1 (en)
AU (1) AU668315B2 (en)
CA (1) CA2143434A1 (en)
WO (1) WO1995002074A1 (en)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994013848A1 (en) * 1992-12-11 1994-06-23 Nippon Steel Corporation Steel of high corrosion resistance and high processability
DE19820806B4 (en) * 1998-05-09 2004-03-04 Max-Planck-Institut Für Eisenforschung GmbH Uses of a lightweight steel
DK1627931T3 (en) * 2003-04-25 2018-11-05 Tubos De Acero De Mexico S A Seamless steel tube which is intended to be used as a guide pipe and production method thereof
MXPA05008339A (en) 2005-08-04 2007-02-05 Tenaris Connections Ag High-strength steel for seamless, weldable steel pipes.
JP2007163307A (en) * 2005-12-14 2007-06-28 Denso Corp Gas sensor
KR101340165B1 (en) 2006-06-29 2013-12-10 테나리스 커넥션즈 아.게. Seamless precision steel tubes with improved isotropic toughness at low temperature for hydraulic cylinders and process for obtaining the same
US7862667B2 (en) 2007-07-06 2011-01-04 Tenaris Connections Limited Steels for sour service environments
MX2010005532A (en) 2007-11-19 2011-02-23 Tenaris Connections Ltd High strength bainitic steel for octg applications.
US8221562B2 (en) 2008-11-25 2012-07-17 Maverick Tube, Llc Compact strip or thin slab processing of boron/titanium steels
EP2325435B2 (en) 2009-11-24 2020-09-30 Tenaris Connections B.V. Threaded joint sealed to [ultra high] internal and external pressures
IT1403689B1 (en) 2011-02-07 2013-10-31 Dalmine Spa HIGH-RESISTANCE STEEL TUBES WITH EXCELLENT LOW TEMPERATURE HARDNESS AND RESISTANCE TO CORROSION UNDER VOLTAGE SENSORS.
IT1403688B1 (en) 2011-02-07 2013-10-31 Dalmine Spa STEEL TUBES WITH THICK WALLS WITH EXCELLENT LOW TEMPERATURE HARDNESS AND RESISTANCE TO CORROSION UNDER TENSIONING FROM SULFUR.
US8414715B2 (en) 2011-02-18 2013-04-09 Siderca S.A.I.C. Method of making ultra high strength steel having good toughness
US8636856B2 (en) 2011-02-18 2014-01-28 Siderca S.A.I.C. High strength steel having good toughness
US9340847B2 (en) 2012-04-10 2016-05-17 Tenaris Connections Limited Methods of manufacturing steel tubes for drilling rods with improved mechanical properties, and rods made by the same
WO2013178629A1 (en) * 2012-05-29 2013-12-05 Thyssenkrupp Steel Europe Ag Heat-resistant fe-al-cr steel
AU2013372439B2 (en) 2013-01-11 2018-03-01 Tenaris Connections B.V. Galling resistant drill pipe tool joint and corresponding drill pipe
US9187811B2 (en) 2013-03-11 2015-11-17 Tenaris Connections Limited Low-carbon chromium steel having reduced vanadium and high corrosion resistance, and methods of manufacturing
US9803256B2 (en) 2013-03-14 2017-10-31 Tenaris Coiled Tubes, Llc High performance material for coiled tubing applications and the method of producing the same
EP2789700A1 (en) 2013-04-08 2014-10-15 DALMINE S.p.A. Heavy wall quenched and tempered seamless steel pipes and related method for manufacturing said steel pipes
EP2789701A1 (en) 2013-04-08 2014-10-15 DALMINE S.p.A. High strength medium wall quenched and tempered seamless steel pipes and related method for manufacturing said steel pipes
CN105452515A (en) 2013-06-25 2016-03-30 特纳瑞斯连接有限责任公司 High-chromium heat-resistant steel
US11124852B2 (en) 2016-08-12 2021-09-21 Tenaris Coiled Tubes, Llc Method and system for manufacturing coiled tubing
US10434554B2 (en) 2017-01-17 2019-10-08 Forum Us, Inc. Method of manufacturing a coiled tubing string
KR20200065990A (en) * 2018-11-30 2020-06-09 주식회사 포스코 Corrosion resistant steel having high resistance to corrosion at sulfuric and sulfuric/hydrochloric acid condensing environment and manufacturing method the same
KR102255111B1 (en) * 2019-07-31 2021-05-24 주식회사 포스코 Ferritic steel sheet for exhaust system with excellent corrosion resistance

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3594156A (en) * 1969-05-29 1971-07-20 United States Steel Corp Stainless steel
US3690870A (en) * 1970-08-26 1972-09-12 United States Steel Corp Stainless steel
US3698964A (en) * 1970-11-04 1972-10-17 Olin Corp Oxidation-resistant articles of an iron base alloy containing chromium and aluminum and/or silicon
JPS5331812B2 (en) * 1972-03-15 1978-09-05
US3909250A (en) * 1973-06-25 1975-09-30 Armco Steel Corp Oxidation-resistant ferrous alloy
US3905780A (en) * 1973-06-25 1975-09-16 Armco Steel Corp Oxidation-resistant low alloy steel with Al coating
US4316743A (en) * 1973-10-29 1982-02-23 Tokyo Shibaura Electric Co., Ltd. High damping Fe-Cr-Al alloy
JPH03166337A (en) * 1989-11-24 1991-07-18 Nippon Steel Corp Stainless steel foil for catalyst carrier of automotive exhaust gas
DE69019502T2 (en) * 1989-12-25 1995-10-05 Kawasaki Steel Co Steel containing oxidation-resistant chrome and aluminum.

Also Published As

Publication number Publication date
AU7083994A (en) 1995-02-06
KR950703069A (en) 1995-08-23
KR0157727B1 (en) 1998-11-16
EP0658632A1 (en) 1995-06-21
WO1995002074A1 (en) 1995-01-19
AU668315B2 (en) 1996-04-26
EP0658632A4 (en) 1995-11-29

Similar Documents

Publication Publication Date Title
CA2143434A1 (en) Steel having excellent corrosion resistance and steel having excellent corrosion resistance and workability
US10752973B2 (en) Ferrite-based stainless steel with high resistance to corrosiveness caused by exhaust gas and condensation and high brazing properties and method for manufacturing same
US20170164426A1 (en) Austenitic stainless steels including molybdenum
US5609818A (en) Steel excellent in corrosion resistance and processability
CA2762899C (en) Ferritic stainless steel material for brazing and heat exchanger member
JP6895787B2 (en) Austenitic stainless steel, brazed structures, brazed structural parts and exhaust gas heat exchange parts
WO2007049915A1 (en) Corrosion resistance improved steel sheet for autmotive muffler and method of producing the steel sheet
EP3214198B1 (en) Ferrite-based stainless steel with high resistance to corrosiveness caused by exhaust gas and condensation and high brazing properties and method for manufacturing same
EP1446509A1 (en) Duplex stainless steels
JP3161417B2 (en) Duplex stainless steel with excellent pitting resistance
WO2001068929A1 (en) Corrosion resistant austenitic alloy
US5720920A (en) Steel having excellent corrosion resistance and steel having excellent corrosion resistance and workability
JP2004099921A (en) Seawater resistant steel and manufacturing method
JP3174196B2 (en) Steel with excellent corrosion resistance
JP3084589B2 (en) Steel with excellent corrosion resistance in the exhaust system of internal combustion engines
JP3120309B2 (en) Steel with excellent corrosion resistance and excellent workability in a corrosive environment in the exhaust system of an internal combustion engine
JP2689208B2 (en) Steel for internal combustion engine exhaust systems with excellent wet corrosion resistance and workability
EP0999289B1 (en) Highly corrosion-resistant chromium-containing steel with excellent oxidation resistance and intergranular corrosion resistance
JP2689207B2 (en) Steel for internal combustion engine exhaust system with excellent wet corrosion resistance
CA3114743C (en) Hot-rolled and annealed ferritic stainless steel sheet and method for producing the same
JP7271789B2 (en) Highly corrosion-resistant austenitic stainless steel with excellent impact toughness and hot workability
JP2002309352A (en) Ferritic stainless steel having excellent cold forgeability and corrosion resistance after high temperature treatment
JP3195116B2 (en) Steel with excellent corrosion resistance and workability
JP3561922B2 (en) Manufacturing method of soft magnetic stainless steel
JPH0613157B2 (en) Welding material for high Si austenitic stainless steel

Legal Events

Date Code Title Description
EEER Examination request
FZDE Dead