Connect public, paid and private patent data with Google Patents Public Datasets

Adjustment drive

Info

Publication number
CA2083796C
CA2083796C CA 2083796 CA2083796A CA2083796C CA 2083796 C CA2083796 C CA 2083796C CA 2083796 CA2083796 CA 2083796 CA 2083796 A CA2083796 A CA 2083796A CA 2083796 C CA2083796 C CA 2083796C
Authority
CA
Grant status
Grant
Patent type
Prior art keywords
gear
housing
drive
driver
lid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA 2083796
Other languages
French (fr)
Other versions
CA2083796A1 (en )
Inventor
Peter Michel
Karlheinz Muller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/02Toothed gearings for conveying rotary motion without gears having orbital motion
    • F16H1/04Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members
    • F16H1/12Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members with non-parallel axes
    • F16H1/16Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members with non-parallel axes comprising worm and worm-wheel
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05FDEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION; CHECKS FOR WINGS; WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05F15/00Power-operated mechanisms for wings
    • E05F15/60Power-operated mechanisms for wings using electrical actuators
    • E05F15/603Power-operated mechanisms for wings using electrical actuators using rotary electromotors
    • E05F15/665Power-operated mechanisms for wings using electrical actuators using rotary electromotors for vertically-sliding wings
    • E05F15/689Power-operated mechanisms for wings using electrical actuators using rotary electromotors for vertically-sliding wings specially adapted for vehicle windows
    • E05F15/697Motor units therefor, e.g. geared motors
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05YINDEXING SCHEME RELATING TO HINGES OR OTHER SUSPENSION DEVICES FOR DOORS, WINDOWS OR WINGS AND DEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION, CHECKS FOR WINGS AND WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05Y2900/00Application of doors, windows, wings or fittings thereof
    • E05Y2900/50Application of doors, windows, wings or fittings thereof for vehicles
    • E05Y2900/53Application of doors, windows, wings or fittings thereof for vehicles characterised by the type of wing
    • E05Y2900/55Windows
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/19Gearing
    • Y10T74/19633Yieldability in gear trains
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/19Gearing
    • Y10T74/19642Directly cooperating gears
    • Y10T74/19698Spiral
    • Y10T74/19828Worm

Abstract

To simplify the design and assembly of an adjustment drive with a gear wheel mounted to rotate in a gear housing with a gear housing lid and with a driver provided with a power take-off element (e.g., a pinion) being in a drive connection with it on the output side, directly or indirectly, present invention provides that the driver is simultaneously structured as a power take-off shaft and is mounted to rotate with at least one bearing region in the gear housing or in the gear housing lid, respectively. In a further embodiment, the gear wheel is a one-piece component of the driver and is preferably placed into a drive connection with it via spring web type spokes in the form of tangential stop damping.

Description

ADJUSTMENT DRIVE
BACKGROUND OF THE INVENTION
The present invention relates to an adjustment drive, and in particular, to a setting drive in a motor vehicle.
In an adjustment drive for a motor vehicle window raising mechanism described in DE-U-89 03 714.6, a gear wheel 3 and a driver 4 provided with an outside pinion 5 on the driver's power take-off side are rotatably mounted on an axially projecting axle bolt. This axle bolt is molded in one piece to the bottom of the gear housing and includes an axial shaft collar projecting out of the gear housing lid to the outside. The driver is sealed both radially outward relative to the gear housing lid, and radially inward relative to the axle bolt, by a dynamic seal 6.
The dynamic seal 6 is a discrete O-ring held with a positive lock.
An adjustment drive, particularly a seat adjustment drive in a motor vehicle, is described in DE-C2-36 11 568. In that adjustment drive, a driver is connected in one piece with the worm gear shaft as a solid part and is axially mounte~~ ~ ~
n each of its sides via separate bearing holders in housing walls of the gear housing. To couple on a power take-off pinion (i.e., a pinion which provides power to external elements), the pinion is inserted, as a separate component with outside gear teeth, into corresponding inner gear teeth on the circumference of an axial bore through the driver.
The present invention provides an adjustment drive requiring significantly reduced design and assembly times while still guaranteeing a complete moisture proof seal of the gear housing.
SUMMARY OF THE INVENTION
The design and assembly effort for such an adjustment drive can be significantly reduced by providing an adjustment drive including a gear housing, a gear housing lid, a gear wheel, a driver, and a damping element. The gear housing lid is adapted to close off said gear housing. The gear wheel is rotatably accommodated in the gear housing and includes a bearing sleeve. The driver includes a power take-off element (i.e., an element which provides power to external elements) on its output side, is simultaneously structured as a drive shaft, and forms a drive connection between the gear wheel and the power take-off element. The damping element is at least tangentially elastic and is provided between the gear wheel and the driver to provide a tangential stop damping.
The gear wheel and the driver are formed as separate components and placed in ~0~~''~ ~~.
reciprocal rotational drive, but may be integrally formed as well. The driver is rotatably mounted directly in the gear housing with a first bearing region and indirectly in the gear housing lid via the concentric bearing sleeve of the gear wheel with a second bearing region. In an alternate embodiment, the design and assembly effort for such an adjustment drive can be significantly reduced by providing an adjustment drive including a gear housing, a gear housing lid, a gear wheel, a driver, and spring web spokes. The gear housing lid is adapted to close off the gear housing. The gear wheel is rotatably accommodated in the gear housing. The driver is str~tw~ed as a drive shafts includes a power take-off element at its output side, and forms a drive connection between the power take off element and the gear wheel. The spring web type spokes connect, in one piece, the gear wheel and the driver. The gear wheel and the driver are placed in reciprocal rotational drive with tangential stop damping. The driver is rotatably mounted directly in the gear housing with a first bearing region and directly in the gear housing lid with a second bearing region. Since the driver performs the bearing functions itself, as a rotating part, at least partially also directly relative to the gear housing or gear housing lid, in the adjustment drive, separate axles and, if applicable, bearings for mtational mounting of the additional drive or power take-off parts to be held by the axle and a dynamic seal between the driver and an aide bolt molded an in the gear housing can be eliminated:
The design and assembly effort can be even further reduced when the gear wheel is a one-piece component of the driver. When tangential stop damping between the gear wheel and the driver does not have to be eliminated, if, according to a development of the invention, the driver forms a drive connection with the gear wheel in the sense of tangential stop damping, via spring web type spokes.
In accordance with one aspect of this invention there is provided an. adjustment drive comprising: a gear housing; a gear housing lid, said gear housing lid adapted to close off said gear housing; a gear wheel, said gear wheel being rotatably accommodated in said gear housing, and including a concentric bearing sleeve; a driver, said driver including a power take-off element on its output side, being simultaneously structured as a drive shaft, and forming a drive connection between said gear wheel and said power take-off element; and a damping element, said damping element being at least tangentially elastic, and being provided between said gear wheel and said driver thereby providing tangential stop damping, wherein said gear wheel and said driver are formed as separate components and placed in reciprocal rotational drive, and wherein said driver is rotatably mounted directly in said gear housing with a first bearing region, and indirectly in said gear housing lid via said concentric bearing sleeve of the gear wheel with a second bearing region.
In accordance with another aspect of this invention there is provided an adjustment drive comprising:
a gear housing; a gear housing lid, said gear housing lid being adapted to close off said gear housing; a gear wheel rotatably accommodated in said gear housing; a driver, said driver being structured as a drive shaft, including a power take-off element at its output side, and forming a drive connection between said power take-off element and said gear wheel; and spring web type spokes connecting, in one piece, said gear wheel and said driver, wherein said gear wheel and said driver are placed in reciprocal rotational drive with tangential stop damping, wherein said driver is rotatably mounted directly in said gear housing with a first bearing region, and directly in the gear housing lid with a second bearing region.
In accordance with a further aspect of this invention there is provided an adjustment drive powered by a worm shaft of a commutator motor comprising: a gear housing; a gear housing lid, said gear housing lid closing off said gear housing; a gear wheel adapted to be powered by said worm shaft; a driver, said driver having a first bearing region being directly rotatably mounted in said gear housing, having a second bearing region being directly rotatably mounted in said gear housing lid, and having a power take-off element; at least one spoke, said at least one spoke radially extending from said driver to said gear wheel; and a dynamic seal, said dynamic seal being disposed between a part of said gear housing lid and a third region of said driver.
In accordance with another further aspect of this invention there is provided an adjustment drive powered by a worm shaft of a commutator motor comprising: a gear housing; a gear housing lid, said gear housing lid closing off said gear housing; a gear wheel, said gear wheel adapted to be powered by said worm shaft, including at least one drive pocket, and including a bearing sleeve; a damping element, said damping element being accommodated in said at least one drive pocket; a driver, said driver having a first bearing region being directly rotatably mounted in said gear housing, having a 4a second bearing region being indirectly rotatably mounted in said gear housing lid via said bearing sleeve of said gear wheel, having at least one drive cam, said at least one drive cam being adapted to fit into said drive pocket; a dynamic seal, said dynamic seal being provided between said gear housing lid and said driver; and a static seal, said static seal being provided between said gear housing lid and said gear housing.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG 1 is an axial, partial cut away view of_a motor vehicle window lifting mechanism drive or motor vehicle sun roof drive, with an electric commutator motor which is connected, via flanges, to a gear mechanism in accordance with an embodiment of the present invention.
FIG 2 illustrates the drive of FIG 1 in cross-section along the line II-II.
FIG 3 illustrates an alternate embodiment of FIG 2.
FIG 4 illustrates an axial end view of the gear housing lid with a first and second sealing edge scorched (i.e., pre-vulcanized) onto it.
FIG 5 is the embodiment of FIG 4 in cross-section along the line VI-VI.
FIG 6 is an enlarged view of the second sealing edge shown in FIG 5.
DETAILED DESCRIPTION
FIG 1 is an axial, partial cut-away view of the basic structure of an electric motor adjustment drive for a 4b motor vehicle, which, for example, can be used as a window raising mechanism drive or a sun roof drive in a motor vehicle. At one side of the commutator motor (indicated only schematically with its motor housing 1) a gear housing 2 is connected (e. g., via flanges). The rotor shaft 11 of the commutator motor projects into the gear housing 2.
The rotor shaft 11 is 4c w ~08~~~~
formed as a worm gear which engages a gear wheel 3 which is rotatably mounted in the gear housing 2, As shown in combination with the cross-sectional representation pursuant to FIG

2, the radial outside gear crown of the gear wheel 3 is a one-piece injection molded part. This one-piece part also includes spring web type spokes 41 and a driver 4, A first side of the driver 4 is directly rotatably mounted radially within a corresponding bearing holder 221 of a gear housing lid 21. The first side of the driver 4 project through a center opa~ing of the gear housing lid 21 and includes a pinion 5 as the outermost drive element. The pinion 5 couples onto an activation element which actuates a motor vehicle window or a motor vehicle sun roof. As with the spring web type spokes 41, the pinion 5 is also a one-piece component of the driver 4. A second side of the driver 4 is directly rotatably mounted in a portion of the gear housing 2. In a preferred embodiment, the driver 4 consists of a material which performs bearing functions well, and in particular,~the driver 4 consists of a corresponding plastic (e.g., a POM
plastic, such as/polyoxymethylene or ployacetal) or a sintered material, satutated with oil.
Instead: of the one-piece connection between the gear wheel 3 and the driver 4 by means of the spring: web type spokes 41, a drive connection can also be provilded, within the scope of the present invention, such that radial drive webs of one of the two elements reach tangentially overlapping drive forks of the other element, where either the drive webs and/or the drive forks can be structured ~a~~~ ~~;
elastically in the form of tangential stop damping.
FIG 3 shows an alternate driver 4 connected to be driven by the rotation of the gear wheel 3 via a separate damping intermediate layer 6. For this drive connection, axially projecting drive cams 44 of the driver 4 engage corresponding drive pockets 32 provided over the circumference of the gear wheel 3. The damping element 6, particularly in the form of a rubber disk, is laid between the drive cams 44 and the drive pockets 32. The driver 4 is directly rotatably mounted within the coning bearing holder 22 of the gear housing 2 with a first bearing region 42 at one side, and indirectly mounted rotatably with a second bearing region 43, via a bearing sleeve 31 axially molded x onto the gear wheel 3 on its other side. Here, the pinion 5 provided as a power take-off element formed separately from the driver 4. The pinion is inserted $om the other side into a holder opening of the driver 4 such that a positive rotational lock is formed with the driver 4. To axially secure the position of the driver 4, the gear wheel 3 rests against a step of the driver 4 on the other side and on the gear housing lid 21 on the one side.
To afford a moisture-tight seal between the gear housing 2 and the gear housing lid 21, only a first, radially inside first sealing edge 7 functioning as a dynamic seal in the region of the center opening of the gear housing lid 21, as well as a radially outside, second sealing edge 8 functioning as a static seal in the seal region 23 of the reciprocal contact of the gear housing 2 and the gear housing lid 21 are needy (see FIG 4). Both sealing edges 7 and 8 are scorched (i.e., pre-20~~'~~ø~
vulcanized) onto the gear housing lid 21 and are additionally anchored by penetration into perforations arranged aver the circumference of the gear housing lid 21 in the region of the sealing edges 7 and 8 as is clearly illustrated in the enlarged representation pursuant to FIG 6.
As shown in FIGS 5 and 6, the first sealing edge 7 presses against the driver with sealing lips 71 and 72. These sealing lips are preferably arranged in an opposite spread position. The second sealing edge 8 has sealing lips 81 and 82 are pressed against the gear housing 2 by the gear housing lid 21 when it is closed.

Claims (26)

WHAT IS CLAIMED IS:
1. An adjustment drive comprising:
- a gear housing;
- a gear housing lid, said gear housing lid adapted to close off said gear housing;
- a gear wheel, said gear wheel being rotatably accommodated in said gear housing, and including a concentric bearing sleeve;
- a driver, said driver including a power take-off element on its output side, being simultaneously structured as a drive shaft, and forming a drive connection between said gear wheel and said power take-off element; and - a damping element, said damping element being at least tangentially elastic, and being provided between said gear wheel and said driver thereby providing tangential stop damping, wherein said gear wheel and said driver are formed as separate components and placed in reciprocal rotational drive, and wherein said driver is rotatably mounted directly in said gear housing with a first bearing region, and indirectly in said gear housing lid via said concentric bearing sleeve of the gear wheel with a second bearing region.
2. The adjustment drive of claim 1, wherein said driver includes a step, and wherein said gear wheel is axially secured on its gear housing side by resting against said step of said driver, and on its gear housing lid side by resting against the gear housing lid.
3. An adjustment drive comprising:

- a gear housing;
- a gear housing lid, said gear housing lid being adapted to close off said gear housing;
- a gear wheel rotatably accommodated in said gear housing;
- a driver, said driver being structured as a drive shaft, including a power take-off element at its output side, and forming a drive connection between said power take-off element and said gear wheel; and - spring web type spokes connecting, in one piece, said gear wheel and said driver, wherein said gear wheel and said drives are placed in reciprocal rotational drive with tangential stop damping, wherein said driver is rotatably mounted directly in said gear housing with a first bearing region, and directly in the gear housing lid with a second bearing region.
4. The adjustment drive of claim 1 wherein said power take-off element is a one-piece component of said driver.
5. The adjustment drive of claim 3 wherein said power take-off element is a one-piece component of said driver.
6. The adjustment drive of claim 1 wherein said driver consists of a material which functions well as a bearing.
7. The adjustment drive of claim 3 wherein said driver consists of a material which functions well as a bearing.
8. The adjustment drive of claim 6 wherein said driver consists of a POM
plastic.
9. The adjustment drive of claim 7 wherein said driver consists of a POM
plastic.
10. The adjustment drive of claim 1 wherein said gear housing lid has a bearing region which extends axially outward, in the region of a radial inner center opening in said gear housing lid, which holds the indirect bearing region of the driver, and holding a first sealing edge on the circumference which seals the gear housing lid with regard to the driver, and wherein said gear housing includes a seal region holding a second discrete sealing edge in the region of its radial outside contact with the gear housing, thereby forming a seal between the gear housing and the gear housing lid.
11. The adjustment drive of claim 1 wherein said gear housing lid has a bearing region which extends axially outward, in the region of a radial inner center opening in sand gear housing lid, which holds the direct bearing region of the driver, and holding a first sealing edge on the circumference which seals the gear housing lid with regard to the driver, and wherein said gear housing includes a seal region holding a second discrete sealing edge in the region of its radial outside contact with the gear housing, thereby forming a seal between the gear housing and the gear housing lid.
12. The adjustment drive of claim 10 wherein said first and second sealing edges are anchored in or on the gear housing lid with a positive lock.
13. The adjustment drive of claim 11 wherein said first and second sealing edges are anchored in or on the gear housing lid with a positive lock.
14. The adjustment drive of claim 10 wherein said first and second sealing edge are glued onto said gear housing lid.
15. The adjustment drive of claim 11 wherein said first and second sealing edge are glued onto said gear housing lid.
16. The adjustment drive of claim 10 wherein said first and second sealing edge are injection molded onto said gear housing lid.
17. The adjustment drive of claim 11 wherein said first and second sealing edge are injection molded onto said gear housing lid.
18. The adjustment drive of claim 1 wherein said power take-off element is a pinion.
19. The adjustment drive of claim 3 wherein said power take-off element is a pinion.
20. An adjustment drive powered by a worm shaft of a commutator motor comprising:
- a gear housing;

- a gear housing lid, said gear housing lid closing off said gear housing;
- a gear wheel adapted to be powered by said worm shaft;
- a driver, said driver - having a first bearing region being directly rotatably mounted in said gear housing, - having a second bearing region being directly rotatably mounted in said gear housing lid, and - having a power take-off element;
- at least one spoke, said at least one spoke radially extending from said driver to said gear wheel; and - a dynamic seal, said dynamic seal being disposed between a part of said gear housing lid and a third region of said driver.
21. An adjustment drive powered by a worm shaft of a commutator motor comprising:
- a gear housing;
- a gear housing lid, said gear housing lid closing off said gear housing;
- a gear wheel, said gear wheel - adapted to be powered by said worm shaft, - including at least one drive pocket, and - including a bearing sleeve;
- a damping element, said damping element being accommodated in said at least one drive pocket;
- a driver, said driver - having a first bearing region being directly rotatably mounted in said gear housing, - having a second bearing region being indirectly rotatably mounted in said gear housing lid via said bearing sleeve of said gear wheel, - having at least on drive cam, said at least one drive cam being adapted to fit into said drive pocket;
- a dynamic seal, said dynamic seal being provided between said gear housing lid and said driver; and - a static seal, said static seal being provided between said gear housing lid and said gear housing.
22. The adjustment drive of claim 3 further comprising a damping element, said damping element being at least tangentially elastic, and being provided between said gear wheel and said driver.
23. The adjustment drive of claim 6 wherein said driver consists of polyoxymethylene.
24. The adjustment drive of claim 7 wherein said driver consists of polyoxymethylene:
25. The adjustment drive of claim 6 wherein said driver consists of polyacetal.
26. The adjustment drive of claim 7 wherein said driver consists of polyacetal.
CA 2083796 1991-11-27 1992-11-25 Adjustment drive Expired - Fee Related CA2083796C (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19910120253 EP0549817B1 (en) 1991-11-27 1991-11-27 Adjusting drive, especially a motor vehicle adjusting drive
EP91120253.9 1991-11-27

Publications (2)

Publication Number Publication Date
CA2083796A1 true CA2083796A1 (en) 1993-05-28
CA2083796C true CA2083796C (en) 2003-07-22

Family

ID=8207384

Family Applications (1)

Application Number Title Priority Date Filing Date
CA 2083796 Expired - Fee Related CA2083796C (en) 1991-11-27 1992-11-25 Adjustment drive

Country Status (4)

Country Link
US (1) US5307704A (en)
CA (1) CA2083796C (en)
DE (1) DE59100439D1 (en)
EP (1) EP0549817B1 (en)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5653144A (en) 1993-02-09 1997-08-05 Fenelon; Paul J. Stress dissipation apparatus
DE9313508U1 (en) * 1993-09-07 1994-07-07 Siemens Ag Gear motor adjusting drive, in particular motor-driven window lifter or sunroof drive
DE69721523T2 (en) * 1996-05-03 2004-04-08 Arvinmeritor Light Vehicle Systems-France Gear motor, especially for driving of threaded accessories in motor vehicles
US6073395A (en) * 1996-12-09 2000-06-13 Fenelon; Paul J. Window lift mechanism
US6389753B1 (en) 1996-12-09 2002-05-21 Paul J. Fenelon Window lift mechanism
CA2236737C (en) * 1997-05-06 2006-07-04 Elasis Sistema Ricerca Fiat Nel Mezzogiorno Societa Consortile Per Azioni Torque-dividing transmission, particularly for aircraft
CA2256147C (en) * 1997-12-23 2007-02-06 Fiatavio S.P.A. Gear-drive assembly
US6196910B1 (en) 1998-08-10 2001-03-06 General Electric Company Polycrystalline diamond compact cutter with improved cutting by preventing chip build up
DE19856100C2 (en) 1998-12-04 2001-08-23 Siemens Ag Gear motor actuator, in particular motor closing member drive for a motor vehicle
US6880932B2 (en) * 1999-11-01 2005-04-19 Praful Doshi Tinted lenses and methods of manufacture
JP2003515787A (en) 1999-11-01 2003-05-07 ドーシ,プレイフール Thin colored was the lens and manufacturing method thereof
US7267846B2 (en) 1999-11-01 2007-09-11 Praful Doshi Tinted lenses and methods of manufacture
US7048375B2 (en) * 1999-11-01 2006-05-23 Praful Doshi Tinted lenses and methods of manufacture
DE10046236A1 (en) * 2000-02-09 2001-08-16 Bosch Gmbh Robert Gear drive unit, particularly for motor vehicle adjustment devices
DE10022344C1 (en) * 2000-05-08 2001-12-06 Siemens Ag Motorized gear shift drive, in particular motor-vehicle window-lifter drive.
US6767097B2 (en) 2001-03-29 2004-07-27 Daniel G. Streibig Colored contact lens and method of making same
DE50105471D1 (en) 2001-04-25 2005-04-07 Siemens Ag Gear drive unit, in particular window lifter or sliding roof drive for a motor vehicle, as well as processes for their preparation
US6733126B2 (en) 2001-06-29 2004-05-11 Daniel G. Streibig Colored contact lens and method of making same
US6655804B2 (en) * 2001-06-29 2003-12-02 Daniel G. Streibig Colored contact lens and method of making same
US6820369B2 (en) 2002-04-18 2004-11-23 Paul J. Fenelon Window lift mechanism
US20040111970A1 (en) * 2002-04-18 2004-06-17 Fenelon Paul J. Window lift mechanism
US7098562B2 (en) * 2003-02-10 2006-08-29 Siemens Vdo Automotive Corporation Ambidextrous electronic window lift motor
US6966149B2 (en) * 2003-03-27 2005-11-22 Fenelon Paul J Window bracket for a window lift mechanism
FR2857717A1 (en) * 2003-07-16 2005-01-21 Arvinmeritor Light Vehicle Sys Back-geared motor wheel e.g. for vehicle window winder has pre-stressed elastically deformable collar to grip shaft
DE102004028610B4 (en) * 2004-06-12 2015-08-06 Robert Bosch Gmbh Gear drive unit with a worm wheel
DE102004047184A1 (en) * 2004-09-29 2006-03-30 Robert Bosch Gmbh A process for preparing a transmission, and a transmission produced by this method
US20070151158A1 (en) * 2006-01-03 2007-07-05 Fenelon Paul J Window lift mechanism
DE202006017591U1 (en) 2006-11-17 2007-02-08 Kiekert Ag Gear wheel for power transmission device of motor vehicle, has damping unit allowing rotation between driving and drift ends, and formed with plastic that is more flexible than other plastic that forms driving end
GB0912065D0 (en) * 2009-07-10 2009-08-19 Reckitt & Colman Overseas A fluid delivery system
US20130140475A1 (en) * 2011-12-03 2013-06-06 Big Horn Valve, Inc. Rotary valve adapter assembly with planetary gear system
CN103603937B (en) * 2013-11-29 2016-03-02 重庆蓝黛动力传动机械股份有限公司 A planetary gear axle pad

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1051336A (en) * 1950-10-11 1954-01-14 Hupp Corp Improvements to power transmission systems, particularly for windows of vehicles
US3455174A (en) * 1967-04-11 1969-07-15 Ferro Mfg Corp Window regulator motor and transmission housing
US3789690A (en) * 1972-11-17 1974-02-05 Dura Corp Overload release device for a motor drive
DE2854713C2 (en) * 1978-12-18 1987-06-19 Swf Auto-Electric Gmbh, 7120 Bietigheim-Bissingen, De
DE2915669C2 (en) * 1979-04-18 1989-11-30 Brose Fahrzeugteile Gmbh & Co Kg, 8630 Coburg, De
DE3133652A1 (en) * 1980-08-30 1982-04-15 Bosch Gmbh Robert Drive for adjusting a guided structural element
FR2532983B1 (en) * 1982-09-09 1985-03-01 Peugeot Aciers Et Outillage
JPH0721289B2 (en) * 1983-11-15 1995-03-08 松下電器産業株式会社 The impact torque absorbing device of the worm gear with motor
DE3434093A1 (en) * 1984-09-17 1986-03-27 Siemens Ag Gearing arrangement, in particular worm gearing arrangement
DE3611568C2 (en) * 1985-05-28 1989-03-16 Brose Fahrzeugteile Gmbh & Co Kg, 8630 Coburg, De
ES2014016B3 (en) * 1986-09-24 1990-06-16 Siemens Ag Placement operation, especially for window lift mechanism of a vehicle.
DE8903714U1 (en) * 1989-03-23 1990-01-25 Siemens Ag, 1000 Berlin Und 8000 Muenchen, De
JPH04165938A (en) * 1990-10-26 1992-06-11 Matsushita Electric Ind Co Ltd Shock absorber for motor

Also Published As

Publication number Publication date Type
EP0549817B1 (en) 1993-09-29 grant
US5307704A (en) 1994-05-03 grant
EP0549817A1 (en) 1993-07-07 application
CA2083796A1 (en) 1993-05-28 application
DE59100439D1 (en) 1993-11-04 grant

Similar Documents

Publication Publication Date Title
US6013961A (en) Electric motor having rotation detection sensor
US5536217A (en) Clearance take-up articulation used in automobile seats
US6242824B1 (en) Motor and manufacturing method thereof
US5725452A (en) Clearance take-up articulation for an automobile seat
US5497863A (en) Rotary damper
US5683184A (en) Thrust and cover washer, mounted on a rotor shaft, for a bearing of the rotor shaft
US4643040A (en) Worm gear train arrangement and housing
US5551927A (en) Gear mechanism for accumulator driven electric drill or electric screwdriver
US5941333A (en) Bicycle with a planetary-gear-train type transmission and an auxilliary electrical transmission
US20070210539A1 (en) Vehicle height adjusting system
US4717370A (en) Novel pulley with dampening element
US3635100A (en) Motor drive assembly for window regulators
US4690581A (en) Ball joint
US6320335B1 (en) Reciprocating drive device having relative-movement preventing unit
US6727614B2 (en) Symmetrical drive for wiper components
EP0371836A1 (en) Roller bearing with an information sensor
US5564231A (en) Power window drive device of reduced size
US6453772B1 (en) Eccentric toothed gearing
US4428250A (en) Electric drive, particularly for a window lifting mechanism in a motor vehicle
US6715832B2 (en) Geared fitting for a vehicle seat adjuster
US6629905B1 (en) Drive for adjustment devices in motor vehicles
JP2005094821A (en) Electric motor reduction gear mechanism
US20020047347A1 (en) Motor having rotational sensor
US4629028A (en) Wheel assembly with universal joint drive
US5027670A (en) Motor vehicle window-lifting drive

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed