CA1334215C - Concentrator - Google Patents

Concentrator

Info

Publication number
CA1334215C
CA1334215C CA 590237 CA590237A CA1334215C CA 1334215 C CA1334215 C CA 1334215C CA 590237 CA590237 CA 590237 CA 590237 A CA590237 A CA 590237A CA 1334215 C CA1334215 C CA 1334215C
Authority
CA
Canada
Prior art keywords
coil
concentrator
portion
parts
loop member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA 590237
Other languages
French (fr)
Inventor
Graham Alexander Munro Murdoch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Magellan Tech Pty Ltd
University of Western Australia
Original Assignee
Magellan Tech Pty Ltd
University of Western Australia
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to AUPI658188 priority Critical
Priority to AUPI6581 priority
Application filed by Magellan Tech Pty Ltd, University of Western Australia filed Critical Magellan Tech Pty Ltd
Application granted granted Critical
Publication of CA1334215C publication Critical patent/CA1334215C/en
Anticipated expiration legal-status Critical
Application status is Expired - Fee Related legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/526Electromagnetic shields
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
    • H01Q7/04Screened antennas

Abstract

A concentrator adapted to concentrate signals for reception by a receiver means, said concentrator comprising a conductive portion juxtaposed said receiver means, said concentrator being aligned so as to receive said signals and cause further signals to impinge on said receiver means, and thereby enhance reception of said signals by said receiver means.
Also disclosed is a shield for substantially eliminating magnetic field radiation from within a predetermined area, the field being diverted from the area by means of conductive strip.

Description

CONCENTRATOR
FIELD OF INVENTION
The present invention relates to magnetic field concentration apparatus, particularly signal enhancement 5 and/or apparatus for confining magnetic flux within an aperture, and/or to shield magnetic flux from components, and/or to means for improving signal reception. The present invention has a particular application to passive devices, such as tokens, transponders or smart cards.

It is well known that metal placed in the proxi~ity of a magnetic field receiving coil will substantially reduce the amount of magnetic field received by the coil. For example, metal placed between a source of the magnetic field 15 and the coil can operate to prevent any magnetic field from being picked up by the coil as shown in Figure 1. The metal sheet serves to absorb and deflect the flux radiated from the driver coil or magnetic field source.
Figure 2 shows another situation where a metal 20 sheet serves to reduce signal reception. The metal sheet is placed behind the coil. The metal sheet acts to reduce the amount of flux received by the coil by radiating an opposing flux field. The closer the metal sheet, to the coil, the larger the opposing flux field and the less signal flux is 25 received by the coil. In effect the metal sheets serve to proportionately nullify the driver coil radiated flux.
U.S. Patent 4,373,163 discloses an electrostatic shield with an antenna loop therein (Figure 1). The antenna is surrounded by a metal shield. The specification does not 30 disclose a conductor plate proximate and in substantially the same plane as an antenna to enhance signal reception, in accordance with the present invention as will be described in more detail hereinafter.
U.S. Patent 4,486,731 discloses a signal 35 enhancement apparatus in the form of a coil having magnetically permeable material disposed in overlapping relationship with a coil. The coil is influenced by strips 23 and 24 when the coil is oriented parallel to the - 3 ~ 1 334 2l 5 direction of impinging flux (column 2, lines 23 to 41).
However, U.S. Patent 4,486,731 relates to the problem of coil reception when the coil is in the same plane as the impinging flux, whereas the present invention relates to increasing the reception of flux by a coil by providing a concentrator in juxtaposition to and in substantially the same plane as the coil.
U.S. Patent 4,754,284 discloses an automobile antenna system for use in receiving high frequency bands in excess of 50 MHz.
SUMMARY OF INVENTION ~`
An object of the present invention is to provide a concentrator which can be associated or juxtaposed a coil without deleterious effect on the coil's ability to receive signals or magnetic fields.
Another object of the present invention is to provide improved concentrator performance.
The present invention in one form provides a concentrator adapted to concentrate signals for reception by a receiver means, said concentrator comprising an electrically conductive portion juxtaposed said receiver means, said concentrator being aligned so as to receive said signals and cause further signals to impinge on said receiver means, and thereby enhance reception of said signals by said receiver means.
The present invention further provides a magnetic field concentrator comprising an electrically conductive portion, said concentrator being orientated to receive a magnetic field and cause flux to be radiated from said portion, the concentrator being juxtaposed a receiver means, adapted to also receive said field, such that said receiver means operates to receive said flux in addition to said field.
The electrically conductive portion is preferably made of metal, for example aluminium or copper.
The present invention also provides a magnetic field concentrator adapted to surround a receiver means, the concentrator comprising a loop having first and second interconnected portions, wherein :

~~ _ 4 _ l 33421 5 the first portion has first and second regions, the first portion being continuous between said first and second regions, the first region being juxtaposed and spaced from said second region, the first portion being adapted to surround said receiver means, the second portion having third and fourth regions, the second portion being continuous between said third and fourth regions, the third region being juxtaposed and spaced from said fourth region, the second portion being adapted to 10 substantially encircle said first portion, first and second interconnection portions, the ~
first interconnection portion being adapted to couple said first region to said third region, the second interconnection portion being adapted to couple said second region and said fourth region, the loop being formed in a continuous manner and having a space provided between said first and second interconnection portions.
The concentrator described above may, upon being incident with a magnetic field, have substantially no magnetic field pass between said first and second portions, the field being diverted through said first portion and incident said receiver means.
The present invention also provides a magnetic field concentrator adapted to enhance field reception by a receiver means, the concentrator being juxtaposed and adapted to influence said receiver means, wherein the concentrator comprises a metal portion adapted to substantially surround said receiver means in one plane, the metal portion being further adapted to encircle the receiver means in the plane in a discontinuous manner, wherein, upon radiation by said field, the concentrator generates flux which is received by the receiver means in addition to said field.
The present invention may provide a shield for alleviating radiation from magnetic fields within a predetermined area, the shield comprising a loop having first and second portions and third and fourth interconnecting portions, ~ _ 5 _ l 3342 1 5 the first portion having first and second regions, the first portion being continuous between said first and second regions, the first region being substantially opposingly juxtaposed and spaced from said second region, the first portion substantially encircling said predetermined area, the second portion having third and fourth regions, being aligned with the first and second regions respectively, the second portion being continuous between 10 said third and fourth regions, the third region being substantially opposingly juxtaposed and spaced from said~
fourth region, the second portion being adapted to substantially encircle said first portion, the first interconnection portion being adapted to 15 couple said first and fourth regions and the second interconnecting portion being adapted to couple said second and third regions, wherein said magnetic fields are substantially excluded from the area bounded by the first portion.
The portions of the shield and concentrators described above may in one form be substantially "C" shaped in configuration.
The present invention also provides a shield for substantially eliminating magnetic field radiation from 25 within a predetermined area comprising a first conductive portion substantially encompassing said area and a second conductive portion substantially encompassing and being spaced from said first portion, end regions of said first and second portions being coupled in an overlapping 30 arrangement so as to form one continuous strip, whereby, upon radiation by a magnetic field, the field is substantially diverted from said area.
The present invention may also provide a magnetic field concentrator which may be used to confine an 35 alternating magnetic flux within an aperture and/or concentrate a magnetic flux in a coil and/or shield components from the flux. The concentrator may be useful where a large coil for collecting flux is more expensive than a concentrator and smaller coil or where the coil size presents problems. The concentrator may preferably be made from a material with good electrical conductivity which thereby improves the concentrator's performance. The degree of conductivity may determine the amount of flux radiated from the concentrator. Non-magnetic or magnetic conductors may also be contemplated.
Preferred embodiment(s) of the present invention will now be described with reference to the accompanying 10 drawings, wherein :
Figures 1 and 2 show prior art arrangements. ~
Figures 3 to 14 show various exemplary (only) forms of concentrator according to the present invention.
Throughout this document, the term "coil" should be 15 construed in a non-limiting way. The term "coil" may include, for example, any signal receiving apparatus or magnetic field receptor as the present invention has many applications. As can be appreciated, the shape of the metal herein described should not be limited to a particular 20 configuration. The shape of metal is dependent on its application or use.
Also, throughout this document, the terms "signal"
or "signals" include within their scope any form of electromagnetic radiation. The signal may, for example, be 25 a powering signal or a data or informational signal.
Although metal placed proximate a receiving coil is known to reduce the coil's receptive ability, a metal sheet placed in juxtaposition and/or in substantially the same plane as the coil as will be hereinafter detailed will not 30 have a negative effect on the coil's receptive ability.
Figure 3 shows a metal sheet placed in the same plane as the coil. The metal serves to increase the amount of flux, impinging the coil. The increase of flux on the coil due to the metal is inversely proportional to the spacing between 35 the metal and the coil.
Figure 4 shows a coil surrounded in the coil's plane by metal. As can be seen, the additional fluxes produced by circulating currents, opposes and reduces the '-- 1 33421 S
applied currents. Accordingly, no flux enhancement is produced for the coil the metal surrounds.
Figure 5 shows metal similar in shape to that previously mentioned, however, a slot or gap is provided in the metal so that the metal surrounds the coil in a discontinuous manner.
The gap in the metal surrounding the coil causes the eddy currents (produced in response to impinging flux) to produce a field that serves to increase the flux impinging the coil.
Figure 6 shows a concentrator similar to that hereinbefore described.
The concentrator may be preferably constructed in two forms :-15 (i) A metal plate with a hole cut to allow the magnetic flux to pass through. A slot of slots are cut from the hole out to the perimeter to alleviate circulating currents, which causes a drastic reduction in flux, from encircling the hole. The slot(s) may overlap, as long as there is substantially no continuous conduction path around the central hole (Figures 5, 6 and 7). Co-pending Canadian Applications SN 585,702 filed Dec. 12, and SN 593,519 filed March 13, 1989 INDUCTIVE
ELEMENT FOR USE AS AN ANTENNA IN TRANSPONDERS filed in the name of Magellan Corporation (Australia) Pty. Limited disclose a method of simultaneously fabricating electrical coils and capacitors, and now forming PCT specification No. PCT/AU89/00095.
Transponders, identification devices or the like employ resonant circuits which comprise interconnected inductors or coils and capacitors, and optionally include interconnected active circuitries embodied in VLSI integrated circuit chips. The resonant circuits are adapted to receive electrical power from an external electromagnetic field generated by some ,~

- 7a - 1 33421 5 interrogators or like apparatus. Optionally, the resonant circ~its supply the power so received and collected to the active circuitries which may then generate the appropriate electrical signals as predetermined. Such signals may further be sent to other inductors, preferably the same power receiving inductors, functioning as antennae for transmission of the signals, to be received by some external receptors, preferably the same interrogators.
Accordingly, it is of significance that in the construction and fabrication of the complete electronic circuits of the transponders, identification devices or the like, the capacitors and inductors or coils should be conveniently interconnected.
The circuit for use in a transponder, identification device or the like, can comprise at least one inductive element or coil wherein said at least one generally elongate or serpentive conductive strip is arranged on the one and same insulative substrate. The electronic circuit may further comprise at least one capacitive element, each capacitive element comprising a plurality of conductive members arranged on one or both sides of the one and same insulative substrate such that said plurality of conductive members superpose each other by folding of the substrate to form at least one capacitor.
Conveniently, the plates of capacitors so fabricated may take a substantially "C" shaped - configuration and be disposed to surround the associated coils as hereinbefore described. This technique permits the area consumed by said capacitor plates to contribute towards the flux gathering ability of said coils.
(ii) A wire loop concentrator using high conductivity X

~ 7b - 1 3342 1 5 wire, for example bent to follow the perimeter of the metal plate shown in Figures 7, 9 and 10, may _ - 8 - l 3 3 4 2 1 5 perform the same concentrating function provided the wire forms a continuous conducting path.
The operation of both exemplary forms as shown in the drawings can be described thus :-5 (i) Circulating currents induced on the surface of a metal plate prevent an alternating magnetic flux from penetrating below the skin depth. For lOOKHz on copper, this is about 0.18mm. Consequently, an alternating flux cannot penetrate thick metal plates and flows around the conducting obstacle.
With a hole cut in the metal plate, some of the~
flux interrupted by the plate is diverted through the hole increasing the flux density in that area, while the balance goes around the outer edge of the plate (Figure 8). Without the slot, the metal plate acts as a one turn short circuit. This may maintain an almost equal in magnitude, oppositely directed flux in the central hole cancelling most of the flux trying to pass through it. This may have a negative effect for magnetic field concentration purposes, but may be used to substantially exclude flux from an area.
(ii) The wire loop acts as a one turn short circuit.
The back emf generated in the wire loop ensures that the total flux passing through the space between the inner and outer loops is very small, only enough to account for ohmic losses. The flux intercepted by the loop configuration is concentrated in the inner loop in substantially the same manner as for the metal plate (Figure 9).
The wire loop concentrator may also be used to substantially exclude flux from an area. By crossing the wire connections between the inner and outer loops, without allowing them to touch, the flux passing through the inner 35 loop is drastically reduced. Figure 10 shows an example ofthis configuration.
Figure 11 shows an example of a field concentrator acting as an electrostatic Faraday shield. The coil is shown partially surrounded by a conventional Faraday shield.
The Faraday shield is extended to form a field concentrator, or may be coupled to an existing concentrator.
Electrostatic shielding reduces the capacitive sensitivity of the coil to objects in the vicinity of the coil. The Faraday shield may extend only part way around the coil in order to adjust capacitive sensitivity.
Alternatively, field concentration and electrostatic shielding can be achieved using two field 10 concentration plates. One placed in front of the coil, the other behind the coil as shown in Figure 12.
Figure 13 shows a cross-section of this arrangement. Connection between the front and back plates can be made anywhere along the plates, however, preferably 15 this is done on the inside and/or the outside of the coil.
See Figures 14A, B and C.

Claims (7)

1. A shield for alleviating radiation from magnetic fields within a predetermined area, the shield comprising an inner loop member and outer loop member, the inner loop member having first and second parts, and being continuous between said first and second parts, the first part, being opposingly juxtaposed and spaced from said second part, the inner loop member encircling said predetermined area, the outer loop member having third and fourth parts, aligned with the first and second parts respectively, the outer loop member being continuous between said third and fourth parts, the third part being opposingly juxtaposed and spaced from said fourth part, the outer loop member encircling the inner loop member, and a first interconnecting part coupling said first and fourth parts and a second interconnecting part coupling said second and third parts.
2. A shield as claimed in claim 1 wherein all of said parts are constructed of metal.
3. An improvement in magnetic field concentrating apparatus for enhancing reception of a signal, said apparatus comprising a concentrator, a coil and a capacitor, the capacitor and coil forming a resonant circuit, a portion of said coil being disposed in a plane juxtaposed said concentrator, said concentrator comprising an electrically conductive portion for causing flux resultant from said signal to impinge on said portion of said coil, said electrically conductive portion comprising a portion of a plate of said capacitor.
4. An improvement as claimed in claim 3 wherein said conductive portion substantially surrounds said portion of said coil in a discontinuous manner.
5. An improvement as claimed in claim 3 wherein said conductive portion is substantially "C" shaped.
6. An improvement in magnetic field concentrating apparatus as claimed in claim 3 wherein said conductive portion is constructed of metal.
7. A transponder, identification device, token card or actuator incorporating the improvement as claimed in claim 3.
CA 590237 1988-02-04 1989-02-06 Concentrator Expired - Fee Related CA1334215C (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AUPI658188 1988-02-04
AUPI6581 1988-02-04

Publications (1)

Publication Number Publication Date
CA1334215C true CA1334215C (en) 1995-01-31

Family

ID=3772776

Family Applications (1)

Application Number Title Priority Date Filing Date
CA 590237 Expired - Fee Related CA1334215C (en) 1988-02-04 1989-02-06 Concentrator

Country Status (5)

Country Link
EP (1) EP0397755A4 (en)
JP (1) JPH03503467A (en)
CA (1) CA1334215C (en)
WO (1) WO1989007347A1 (en)
ZA (1) ZA8900872B (en)

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5130697A (en) * 1990-10-30 1992-07-14 Sensormatic Electronics Corporation Method and apparatus for shaping a magnetic field
GB9220409D0 (en) * 1992-09-28 1992-11-11 Texas Instruments Holland Shielded transponder
US5557279A (en) * 1993-09-28 1996-09-17 Texas Instruments Incorporated Unitarily-tuned transponder/shield assembly
US5694139A (en) * 1994-06-28 1997-12-02 Sony Corporation Short-distance communication antenna and methods of manufacturing and using the short-distance communication antenna
JP3526928B2 (en) * 1994-11-15 2004-05-17 株式会社ルネサスLsiデザイン Non-contact ic card system
JP4260917B2 (en) 1998-03-31 2009-04-30 株式会社東芝 Loop antenna
JP2001168618A (en) * 1999-12-08 2001-06-22 Smart Card Technologies:Kk Antenna device for reader/writer in non-contact type ic card system
DE10149126A1 (en) 2001-10-05 2003-04-10 Flexchip Ag Production of a screen used for a transponder comprises applying ferromagnetic particles to a region of the substrate having the spatial expansion of the antenna structure of a transponder, aligning the ferromagnetic particles, etc.
US7339120B2 (en) 2003-06-26 2008-03-04 Matsushita Electric Industrial Co., Ltd. Electromagnetic wave shield
JP2005102101A (en) * 2003-09-01 2005-04-14 Matsushita Electric Ind Co Ltd Gate antenna device
WO2007030862A1 (en) * 2005-09-12 2007-03-22 Magellan Technology Pty Ltd An attenuation device for an antenna of an interrogator
US9064198B2 (en) 2006-04-26 2015-06-23 Murata Manufacturing Co., Ltd. Electromagnetic-coupling-module-attached article
JP5104865B2 (en) 2007-07-18 2012-12-19 株式会社村田製作所 Wireless ic device
CN102037605B (en) 2008-05-21 2014-01-22 株式会社村田制作所 Wireless IC device
JP5218558B2 (en) 2008-05-26 2013-06-26 株式会社村田製作所 Authenticity determination method of a wireless ic device system and a wireless ic devices
CN102124605A (en) 2008-08-19 2011-07-13 株式会社村田制作所 Wireless IC device and method for manufacturing same
WO2010055945A1 (en) 2008-11-17 2010-05-20 株式会社村田製作所 Antenna and wireless ic device
EP2385580B1 (en) 2009-01-30 2014-04-09 Murata Manufacturing Co., Ltd. Antenna and wireless ic device
JP5510450B2 (en) 2009-04-14 2014-06-04 株式会社村田製作所 Wireless ic device
WO2010122685A1 (en) * 2009-04-21 2010-10-28 株式会社村田製作所 Antenna apparatus and resonant frequency setting method of same
WO2011001709A1 (en) 2009-07-03 2011-01-06 株式会社村田製作所 Antenna and antenna module
CN102577646B (en) 2009-09-30 2015-03-04 株式会社村田制作所 Circuit substrate and method of manufacture thereof
JP5304580B2 (en) 2009-10-02 2013-10-02 株式会社村田製作所 Wireless ic device
WO2011045970A1 (en) 2009-10-16 2011-04-21 株式会社村田製作所 Antenna and wireless ic device
CN102598413A (en) 2009-10-27 2012-07-18 株式会社村田制作所 Transmitting/receiving apparatus and wireless tag reader
CN102473244B (en) 2009-11-04 2014-10-08 株式会社村田制作所 Ic wireless tag, the reader and the information processing system
JP5333601B2 (en) 2009-11-04 2013-11-06 株式会社村田製作所 Communication terminal and an information processing system
CN102549838B (en) 2009-11-04 2015-02-04 株式会社村田制作所 The communication terminal and an information processing system
WO2011108340A1 (en) 2010-03-03 2011-09-09 株式会社村田製作所 Wireless communication module and wireless communication device
JP5370581B2 (en) 2010-03-24 2013-12-18 株式会社村田製作所 Rfid system
WO2011122163A1 (en) 2010-03-31 2011-10-06 株式会社村田製作所 Antenna and wireless communication device
JP5712506B2 (en) * 2010-05-24 2015-05-07 Tdk株式会社 Proximity antenna and wireless communication device
CN105514589B (en) * 2010-06-18 2018-11-23 株式会社村田制作所 Communication terminal device
CN104752813B (en) 2010-07-28 2018-03-02 株式会社村田制作所 The antenna device and communication terminal apparatus
WO2012020748A1 (en) 2010-08-10 2012-02-16 株式会社村田製作所 Printed wire board and wireless communication system
EP2863480B1 (en) * 2010-09-07 2018-11-07 Murata Manufacturing Co., Ltd. Communication terminal apparatus comprising an antenna device
JP5630506B2 (en) 2010-09-30 2014-11-26 株式会社村田製作所 Radio ic device
CN105206919B (en) 2010-10-12 2018-11-02 株式会社村田制作所 The antenna device and a terminal device
CN102971909B (en) 2010-10-21 2014-10-15 株式会社村田制作所 The communication terminal apparatus
WO2012093541A1 (en) 2011-01-05 2012-07-12 株式会社村田製作所 Wireless communication device
WO2012096365A1 (en) 2011-01-14 2012-07-19 株式会社村田製作所 Rfid chip package and rfid tag
WO2012111430A1 (en) * 2011-02-15 2012-08-23 株式会社村田製作所 Antenna device and communication terminal device
JP5370616B2 (en) 2011-02-28 2013-12-18 株式会社村田製作所 Wireless communication device
EP2618424A4 (en) 2011-04-05 2014-05-07 Murata Manufacturing Co Wireless communication device
JP5569648B2 (en) 2011-05-16 2014-08-13 株式会社村田製作所 Wireless ic device
KR101338173B1 (en) 2011-07-14 2013-12-06 가부시키가이샤 무라타 세이사쿠쇼 Wireless communication device
WO2013035821A1 (en) 2011-09-09 2013-03-14 株式会社村田製作所 Antenna device and wireless device
WO2013080991A1 (en) 2011-12-01 2013-06-06 株式会社村田製作所 Wireless ic device and method for manufacturing same
WO2013125610A1 (en) 2012-02-24 2013-08-29 株式会社村田製作所 Antenna device and wireless communication device
JP5304975B1 (en) 2012-04-13 2013-10-02 株式会社村田製作所 Inspection method and apparatus of Rfid tag
TWI474953B (en) * 2012-05-23 2015-03-01 Taiwan Lamination Ind Inc
JP5964155B2 (en) * 2012-06-28 2016-08-03 Necトーキン株式会社 The antenna device
US20160352149A1 (en) * 2015-05-27 2016-12-01 Qualcomm Incorporated Wireless power receive coil for metal backed device

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU113079B2 (en) * 1940-05-10 1941-05-22 Standard Telephones And Cables Pty Ltd Improvements in aerial systems for wireless communication
AU144473B2 (en) * 1948-01-22 1951-12-14 Nv Philips Gloeilampenfabrieken Improvements in or relating to receiving or transmitting antennae
CA851281A (en) * 1967-10-24 1970-09-08 D. Boyd William Inductive loop signal system
JPS5226879B2 (en) * 1972-09-19 1977-07-16
US4243980A (en) * 1978-02-17 1981-01-06 Lichtblau G J Antenna system for electronic security installations
US4331285A (en) * 1980-03-24 1982-05-25 Hewlett-Packard Company Method for fabricating a magnetic shielding enclosure
US4353064A (en) * 1981-01-14 1982-10-05 Honeywell Inc. Battery operated access control card
JPS5843604A (en) * 1981-09-09 1983-03-14 Japan Radio Co Ltd Antenna element
US4549186A (en) * 1982-04-14 1985-10-22 Sensormatic Electronics Corporation Coil assembly for substantially isotropic flux linkage in a given plane
US4486731A (en) * 1982-06-10 1984-12-04 Sensormatic Electronics Corporation Coil assembly with flux directing means
US4549794A (en) 1983-05-05 1985-10-29 Schering Corporation Hydrophilic bifocal contact lens
EP0225954A1 (en) * 1985-12-18 1987-06-24 Alcan International Limited Protection for control equipment
EP0242484A3 (en) * 1986-04-23 1988-05-25 Tektronix, Inc. Electrical assembly having shielded structural sub-parts
FR2602906B1 (en) * 1986-07-29 1991-10-31 Lesage Christian Material for producing protective devices against the magnetic environment of objects of medium magnetic inscriptions, and protective devices realized with such a material

Also Published As

Publication number Publication date
EP0397755A4 (en) 1992-11-04
EP0397755A1 (en) 1990-11-22
WO1989007347A1 (en) 1989-08-10
JPH03503467A (en) 1991-08-01
ZA8900872B (en) 1990-10-31

Similar Documents

Publication Publication Date Title
JP3148168U (en) Wireless ic device
US4251808A (en) Shielded balanced loop antennas for electronic security systems
JP6197918B2 (en) Antenna element
EP1035418B1 (en) Encapsulated antenna in passive transponders
US6097347A (en) Wire antenna with stubs to optimize impedance for connecting to a circuit
JP3427663B2 (en) Non-contact ic card
EP0886232B1 (en) Reader and/or writer apparatus, power feeding system, and communication system
US9652706B2 (en) Wireless IC device
US5218173A (en) Shielding materials for electromagnetic digitizers
US4089003A (en) Multifrequency microstrip antenna
US6028564A (en) Wire antenna with optimized impedance for connecting to a circuit
US4260990A (en) Asymmetrical antennas for use in electronic security systems
US5406295A (en) Window antenna for a motor vehicle body
JP3121577U (en) Eccentric magnetic coil system
JP5772868B2 (en) Antenna device and the wireless communication device
EP2372840A2 (en) Antenna portable terminal using the same
US20080186245A1 (en) Rfid Tag Having a Folded Dipole
US5054120A (en) Receiver for personal radio paging service
EP1347533A1 (en) Antenna for rfid
JP4186149B2 (en) Auxiliary antenna for Ic card
US8798535B2 (en) NFC card sensitive to eddy currents
US6491229B1 (en) Contactless chip card associated with RF transmission means
EP0645840B1 (en) Antenna configuration of an electromagnetic detection system and an electromagnetic detection system comprising such antenna configuration
US6825754B1 (en) Radio frequency identification device for increasing tag activation distance and method thereof
US8400365B2 (en) Antenna device and mobile communication terminal

Legal Events

Date Code Title Description
MKLA Lapsed