CA1301244C - Battery vent valve - Google Patents

Battery vent valve

Info

Publication number
CA1301244C
CA1301244C CA000570943A CA570943A CA1301244C CA 1301244 C CA1301244 C CA 1301244C CA 000570943 A CA000570943 A CA 000570943A CA 570943 A CA570943 A CA 570943A CA 1301244 C CA1301244 C CA 1301244C
Authority
CA
Canada
Prior art keywords
gas
pressure
internal
chamber
skirt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA000570943A
Other languages
French (fr)
Inventor
Charles C. Montgomery
Charles P. Mccartney, Jr.
Clarence A. Meadows
Bruce A. Cole
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Motors Liquidation Co
Original Assignee
Motors Liquidation Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Motors Liquidation Co filed Critical Motors Liquidation Co
Application granted granted Critical
Publication of CA1301244C publication Critical patent/CA1301244C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/317Re-sealable arrangements
    • H01M50/325Re-sealable arrangements comprising deformable valve members, e.g. elastic or flexible valve members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K15/00Check valves
    • F16K15/14Check valves with flexible valve members
    • F16K15/144Check valves with flexible valve members the closure elements being fixed along all or a part of their periphery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K15/00Check valves
    • F16K15/14Check valves with flexible valve members
    • F16K15/144Check valves with flexible valve members the closure elements being fixed along all or a part of their periphery
    • F16K15/145Check valves with flexible valve members the closure elements being fixed along all or a part of their periphery the closure elements being shaped as a solids of revolution, e.g. cylindrical or conical
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/383Flame arresting or ignition-preventing means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/394Gas-pervious parts or elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/7722Line condition change responsive valves
    • Y10T137/7837Direct response valves [i.e., check valve type]
    • Y10T137/7879Resilient material valve
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/7722Line condition change responsive valves
    • Y10T137/7837Direct response valves [i.e., check valve type]
    • Y10T137/7879Resilient material valve
    • Y10T137/7888With valve member flexing about securement
    • Y10T137/7889Sleeve

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Gas Exhaust Devices For Batteries (AREA)

Abstract

BATTERY VENT VALVE
Abstract of the Disclosure A relief/check valve for venting an electric storage battery comprising essentially an annular sealing member having an elastomeric skirt engaging the sloping exterior surface of a valve seat. The skirt flares outwardly from the seat in direct proportion to the pressure in the battery such as to prevent excessive build up of pressure in the battery when the gassing rate is high. The skirt quickly returns to a sealing condition when the pressure within the battery drops below the opening pressure of the valve.

Description

E~ATTERY VENT VALVE
This invention relates to valves for venting electric storage batteries.
Backqround of the Invention Sealed batterie6 are well known in the art and typically include a relief/check valve for venting gases generated within the battery when the internal -pressure exceeds a predetermined superatmospheric level. Nickel-zinc batteries, for example, commonly operate with a positive internal pressure of about one half pound per square inch or more to promote oxygen recombination within the battery and to keep CO2 in the air from contaminating the electrolyte when the pres6ure in the cell falls below zero pæig. Similarly gas recombination type lead-acid batteries are known to operate at internal pressures ranging from about 1/2 psig to about 50 psig (i.e., depending on the particular application) to promote the oxygen recombination reaction and to exclude ambient oxygen from the battery. It is necessary for the prolonged life of such batteries that after the gases have been vented the relief/check valves close and re6eal as near as possible to their opening pre6sure in order (1) to prevent unneces6ary lo~ of the internal ga~es otherwise available for recombination and (2) to prevent any influx of ambient atmosphere into the battery as the internal pressure within the battery falls.
Under uncontrolled recharge, batteries can generate so much gas that the internal pressure can rapidly exceed the design pressure of the container ~3~:LZ~4 unless the check valves are capable of quickly dumping or venting relatively large volumes (i.e., liters per minute) of the gases at relatively low internal pressures. For example, under high rate charge conditions such as can occur with a full field charge from an unregulated automobile generator/alternator or with other faulty charging equipment, some lead-acid batteries can generate more than 10 times the amount of gas otherwise generated under normal charging conditions.
Some valves commonly used in batterie~ do not actually reseal again until pressures as low as 25% or less of their openinq pressure are reached. In fact, some such valves tested by Applicant's assignee did not reseal until the pressure in the battery had dropped below zero psig. Moreover, valves designed for rapid resealing at relatively high pressureC do not usually have a capability for low pressure dumping of large volumes of gas and vice versa. No commercially available battery check valve has been found which provides both rapid, effective resealing near the opening pres6ure thereof as well a~ a high gas volume venting capability at relatively low internal pressures. In this latter regard, all of the commercial valves tested produced pressure build Up6 which were significantly more than twice the opening pre6sure of the valve in order to dump high volumes of gas .
Accordingly, it is an object of the present invention to provide a unique, compact, relief/check valve for venting an electric storage battery which 13~ 4 valve is capable of resealing at pressures of at least about 50% or more of its opening pressure and of dumping relatively large volumes of gases under abnormal operating conditions without excessive build up of pressure within the battery container. This and other objects and advantages of the present invention will become more readily apparent from the detailed description thereof which follows.
Brief Description of the Invention The present invention comprehends a check/relief valve for an electric storage battery which is capable of resealing at pressures of at least about 50% or more of its opening pressure and of releasing relatively large volumes of internal gases without excessive pressure build up within the battery.
The valve of the present invention comprises a housing defining a vent chamber having a gas inlet for receiving gases from within the battery and an outlet for discharging them to the atmosphere. The housing includes a valve seat projecting into the chamber and having a sloping (preferably conical) exterior sealing surface. A sealing member circum6cribe6 the inlet and include~ an annular ela6tomeric skirt having a sealing edge circumEerentially sealingly engaging the sealing surface of the seat. The ela6ticity of the skirt is selected based on the desired relief pressure sought for the battery under normal operating conditions and is such that the ~kirt will begin to flare radially outwardly when the de6ired pre6sure is reached so as to form an annular gap between the sealing edge of the skirt and the sealing surface of the seat through which ~3~

the gases flow. Elasticity of the skirt, and hence the opening pressure of the valve, may be varied over a wide range by varying the di~ensions of the skirt and the hardness (i.e., durometer) of the elastomer used.
The gases generated in~ide the batteey act against the relatively large surface area on the in~ide of the skirt so as to cause outward flaring of the skirt at relatively low pressures. Under conditions where excessive gases are formed (e.g., run-away charging), the skirt will simply flare out further so as to increase the gap (i.e., the area of the flow path), between the skirt and the seat. Hence with only a slight increase in the diameter of the flared out skirt, the area of the gap through which the gas flows increases exponentially (i.e., by the square of the radius ~ R2) so that much larger volumes of gas than normal can be vented without a significant increase in internal pressure. Vents made in accordance with the present invention have demonstrated the capa~ility of dumping more than 10 times the normal volume of gases generated with a pre6sure build up of less than twice the opening pressure of the valve.
Accordlng to a preferred embodiment of the present invention, the opening pre~6ure of the relief/check valve is adju~table by providing means for moving the sealing member to and fro with respect to the seat such that the skirt of the sealing member engages the sloping surface of the valve seat at different locations so as to prestress the skirt to various degrees and thereby vary the amount of pressure required to flare the skirt outwardly away from the 13~}~2~4 seat.
Detailed Description of Specific Embodiments The invention may better be understood when considered in conjunction with the following detailed description of certain specific embodiments thereof which i8 given hereafter in conjunction with the æeveral drawings in which:
Figure 1 is a side elevational view of an electric storage battery having vent valves in accordance with the present invention;
Figure 2 is an enlarged section of a check/relief valve taken in the direction 2-2 of Figure l;
Figure 3 is a view similar to Figure 2 of another embodiment of a relief valve in accordance with the present invention;
Figure 4 i8 a view ~imilar to Figure 2 of still another embodiment of a relief valve in accordance with the present invention showing the valve member in the seated or closed condition;
Figure 5 is essentially the same as Figure 4 except that the valve member is shown in the unseated or open condition(s);
Figure 6 is a view in the direction 6-6 of Figure 5;
Figure 7 i8 a view in the direction 7-7 of Figure 5;
Figure 8 is a view similar to Figure 2 of still another embodiment of the present invention and showing the valve member's skirt seated more deeply on the valve seat; and 13C~124~

Figure 9 is a view like that of Figure 2 but of still another embodiment of the present invention.
The Figures show a battery 2 having a container 4 divided into a plurality of individual cell compartments 6. ~ach compartment contains a cell element 8 comprising a plurality of alternately interleaved positive and negative polarity plate~ for electrochemically generating electrical current upon discharge of the battery and which generate gases (e.g., H2 and 2) on recharge, which gases are recombined within the cell as is well known in the gas recombination battery art. A vent 10 i8 provided in the cover 12 of the container 4 which vent 10 includes a check/relief valve 14 which is described in more detail hereinafter.
The relief valve 14 includes a housing 16 defining a venting chamber 18 and having a valve seat 20 at its lower end. The housing 16 may be integral with the cover 12 as shown in the drawings or may be discrete for positioning in an aperture in the cover tnot shown). The valve seat 20 has a sloping (preferably conical) external sealing surface 22 for engagement by an annular skirt 24 on the depending ela~tomeric tubular sealing member 26. The elastomeric tube 26 will comprise a rubber-like material such a~
Shell Oil Co.'s_styrene-butadiene materials, sold under the name Rraton~g, or the like. The tubular sealing member 26 i6 secured to a bulbous stud 28 depending from a plug 30 which serves to close off the venl chamber 18 from the ambient atmosphere surrounding the battery. Exhaust ports 32 in the plug 30 allow gases ~3C~ 44 to escape from the vent chamber 18 to the ambient atmosphere~
An inlet opening 34 passing through the center of the ~eat 20 serves to communicate the vent chamber 18 with the battery cell compartment 6. In the particular embodiment shown in Figure 2, the plug 30 is threaded into the housing 16 so as to permit adjustment of the opening and closing pressure of the tubular valve member 26 by advancing the member 26 to and fro with respect to the seat 20 such that the skirt 24 can locate at different sites along the sloping surface 22 of the seat 20 so as to diametrically prestress the skirt 24 to different degrees and thereby change its opening and closing (i.e., flaring) characteristics.
The ability to adjust the opening pressure of the valve is particularly useful during the design phase of a battery as a means to readily adjust the pres~ure in the cell to optimize the recombination reaction. The adjustability feature is likewise advantageous during the commercialization phase of the battery ac a means to provide a standardized vent assembly which may simply be set to different opening pres6ures as may be required for different battery models and/or application6.
The embodiment 6hown in Figure 3 is similar to that of Figure 2 except that the tubular sealing member 40 includes a central elastomeric web portion 42 proximate the skirt 44 which 6erves to insure that the gas vents at the ~kirt 44 rather than leaking out around the mounting stud 46. Moreover, the domed shape and location of the web 42 relative to the skirt 44 ~3~

permits precise tailoring of the valve member~s opening and closing pressures.
Figures 4-7 depict another embodiment of the present invention wherein the sealing member 50 is integrally molded with the plug portion 52 and includes a hemispherical cavity 54 above the sealing edge 56 of the skirt 58. The plug 52 is seated on shoulder 53 on the inside of the housing 55 and is held in place by a porous flame arrestor pellet 57 suitably secured in place as is well known in the art. An annular æpace 59 between the pellet 57 and the plug 52 forms a plenum for the gases exiting the exhaust ports 51 to spread out for more uniform passage through the flame arrestor 57. The hemispherically domed cavity 54 in the sealing member 50 provides a skirt 58 which i6 thicker near its top 61 than at the sealing edge 56 (i.e., its thickness decreases in the direction of the sealing edge) which serves to focuæ the opening action substantially at the sealing edge 56 (see Figure 5) and helps prevent bulging, rather than flaring, of the skirt 58. A
similar result is obtained by providing a 6kirt who6e thickness tapers toward the sealing edge as would result, for example, by replacing the hemispherically domed cavity 54 with a frusto conically shaped cavity.
Figure 5 depict~ opening/flaring of the skirt 58 under normal gassing conditions in solid lines and opening/flaring of the skirt 58 under high gassing conditions in phantom lines. The opening/flaring of the skirt 58 provides an annular gap 63 between the skirt 58 and the seat 65 through which the gases flow.
Figure 8 depicts an embodiment of the present 13~1f~

invention wherein the plug 70 is integral with the sealing member 72 and is adapted to be screwed into the housing 74 to provide the adjustable feature discu6sed above. As ~hown, the sealing edge 76 of the skirt 78 is further down on the ~eat 80 so as to prestress the skirt and thereby increase the pressure at which the skirt will flare outwardly.
Figure 9 depicts still another embodiment of the present invention wherein the housing 90 defines a vent chamber 92 having a valve seat 94 at the exhaust end thereof and a sealing member 96 secured to a hollow cylindrical stud 98 on an end piece lO0 at the inlet side of the chamber 92. An opening 102 through the stud 98 serves as the inlet for the gases to the venting chamber 92 from the cell compartment. The sealing edge 95 on the skirt 104 engages the seat 94 in close proximity to the exhaust ports 106 as shown. The tubular elastomeric sealing member 96 may conveniently be glued or otherwise permanently secured to the cylindrical stud 98 so as to insure that all the valving action occurs at the seat 94.
In accordance with one specific example of the present invention, a valve substantially as shown in Figure 3 and adapted to open at about 2.75 p~ig and clo6e at about 2.25 psig was made from a valve member comprising a 50-50 mixture of 45 durometer and 28 durometer Kraton~ and having an outside diameter of 0.3a inches, an inside diameter of 0.28 inches and a skirt length of 0.1 inches (i.e., as measured from the center of curvature of the hemispherical portion). The sealing member engaged a conical seat whose walls 13~L2~4 sloped downwardly at an angle of 30 degrees from the vertical axis. Valves so made are capable of dumping up to 14 liters/minute of gas at internal pressures of 5 psig or less.
While the invention has bee~ disclosed primarily in terms of specific embodiments thereof it is not intended to be limited thereto but rather only to the extent set forth hereafter in the claims which follow.

Claims (6)

1. In an electric storage battery comprising (1) a container defining a compartment containing gas-generating electrochemical means for producing an electric current, and (2) check/relief valve means operatively associated with said container upon closing to isolate said electrochemical means from the ambient atmosphere and upon opening to vent said compartment when the internal pressure of the gas generated in said compartment exceeds a predetermined superatmospheric pressure the improvement wherein said valve comprises:

a housing defining a vent chamber and including a valve seat projecting into said chamber, said seat having a sloping exterior sealing surface;

an inlet in one end of said housing for admitting gas into said chamber from said compartment;

means for exhausting said gas from said chamber to the environment; and a sealing member in said chamber circumscribing said inlet for controlling the internal pressures at which said opening and closing occurs and, as necessary, for dumping relatively large volumes of said gas without excessive build-up of said internal pressure in said container, said sealing member comprising an annular elastomeric skirt secured at one end and having a tubular portion extending from said one end above said inlet so as to provide an internal annular surface exposed to said internal gas pressure and a sealing edge on the interior of the other end of said tubular portion circumferentially sealingly engaging said sloping exterior sealing surface when said valve is closed, said skirt being adapted to be responsive to said internal gas pressure acting on said internal surface so as to (a) flare substantially uniformly radially outwardly open at said predetermined internal pressure to provide an annular gap between said edge and said sealing surface for passing relatively low volumes of said gas into said chamber and thence to the environment under normal operating conditions, (b) flare further outwardly open so as to enlarge the cross sectional area of said gap exponentially to pass significantly more said gas under abnormal operating conditions without a significant build-up of said internal pressure above said predetermined pressure, and (c) rapidly return to said closed sealing engagement by the time said internal pressure has fallen to about 50% or more of said predetermined pressure.
2. In an electric storage battery comprising (1) a container defining a compartment containing gas-generating electrochemical means for producing an electric current, and (2) check/relief valve means operatively associated with said container upon closing to isolate said electrochemical means from the ambient and upon opening to vent said compartment when the internal pressure of the gas generated in said compartment exceeds a predetermined superatmospheric pressure the improvement wherein said valve comprises:
a housing defining a vent chamber;

an inlet in one end of said housing for admitting gas into said chamber from said compartment, said inlet being surrounded by a valve seat having a sloping exterior sealing surface;

a closure member for closing off said chamber at the other end of said housing;

means for exhausting said gas from said chamber to the environment; and a sealing member depending from said closure member into said chamber for controlling the internal pressures at which said opening and closing occurs and as necessary for dumping relatively large volumes of said gas without excessive build-up of said internal pressure in said container, said sealing member comprising an annular elastomeric skirt secured at one end, and having a tubular portion extending from said one end above said inlet so as to provide an internal annular surface exposed to said internal gas pressure and a sealing edge on the interior of the other end of said tubular portion circumferentially sealingly engaging said sloping exterior sealing surface when said valve is closed, said skirt being adapted to be responsive to said internal gas pressure acting on said internal surface so as to (a) flare substantially uniformly radially outwardly open at said predetermined internal pressure to provide an annular gap between said edge and said sealing surface for passing said gas into said chamber and thence to the environment under normal operating conditions, (b) flare further outwardly open so as to enlarge the cross sectional area of said gap exponentially and pass significantly more said gas under abnormal operating conditions without a significant build-up of said internal pressure above said predetermined pressure, and (c) rapidly return to said closed sealing engagement by the time said internal pressure has fallen to about 50% of said predetermined pressure.
3. A storage battery according to claim 2 wherein said sloping exterior surface has a substantially conical shape.
4. A storage battery according to claim 2 wherein said closure member is separate from said housing and is adapted for axial, to-and-fro movement within said housing with respect to said seat to vary the situs of the engagement of said edge on said surface and thereby vary said predetermined pressure.
5. A storage battery according to claim 1 wherein the thickness of said skirt decreases in the direction of said sealing edge.
6. A storage battery according to claim 2 wherein the thickness of said skirt decreases in the direction of said sealing edge.
CA000570943A 1987-09-02 1988-06-30 Battery vent valve Expired - Fee Related CA1301244C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US07/092,131 US4780378A (en) 1987-09-02 1987-09-02 Battery vent valve
US092,131 1987-09-02

Publications (1)

Publication Number Publication Date
CA1301244C true CA1301244C (en) 1992-05-19

Family

ID=22231775

Family Applications (1)

Application Number Title Priority Date Filing Date
CA000570943A Expired - Fee Related CA1301244C (en) 1987-09-02 1988-06-30 Battery vent valve

Country Status (7)

Country Link
US (1) US4780378A (en)
EP (1) EP0306146B1 (en)
JP (1) JPH0758612B2 (en)
KR (1) KR920003756B1 (en)
BR (1) BR8804337A (en)
CA (1) CA1301244C (en)
DE (1) DE3877468T2 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4919167A (en) * 1989-03-17 1990-04-24 Manska Wayne E Check valve
DE4041124C2 (en) * 1990-12-21 1994-01-27 Deutsche Automobilgesellsch Safety valve for galvanic cells or for a battery case
US5258243A (en) * 1992-12-29 1993-11-02 At&T Bell Laboratories Pressure relief valve for recombinant battery
DE4325464A1 (en) * 1993-07-29 1995-02-02 Emmerich Christoph Gmbh Co Kg Accumulator with plastic housing
US5486429A (en) * 1995-04-24 1996-01-23 Aer Energy Resources, Inc. Diffusion vent for a rechargeable metal-air cell
JP2691881B2 (en) * 1995-05-31 1997-12-17 株式会社サンエー化研 Packaging bag with check valve having filtration surface and manufacturing apparatus thereof
DE19544050A1 (en) * 1995-11-25 1997-05-28 Emmerich Christoph Gmbh Co Kg Process for the production of prismatic alkaline accumulator cells
DE69622525T2 (en) * 1996-02-28 2003-02-27 Matsushita Electric Industrial Co., Ltd. sealing battery
US5981099A (en) * 1998-01-20 1999-11-09 Accuma Corporation Pressure relief valve for electric storage batteries
US6953637B2 (en) * 2001-06-01 2005-10-11 Energy Related Devices, Inc. Catalytic hydrogen vent filter for batteries
US7007715B2 (en) * 2001-11-22 2006-03-07 Nok Corporation Pressure release valve
US7579105B2 (en) * 2005-02-18 2009-08-25 The Gillette Company End cap assembly and vent for high power cells
WO2006098508A1 (en) * 2005-03-18 2006-09-21 Toyota Jidosha Kabushiki Kaisha Enclosed battery
DE102005017442B4 (en) * 2005-04-15 2007-11-29 Vb Autobatterie Gmbh & Co. Kgaa Accumulator and lid on this
CN102412382B (en) * 2010-09-21 2014-05-21 江苏春兰清洁能源研究院有限公司 Liquid receiving device of power battery safety valve
US8256467B1 (en) * 2011-06-07 2012-09-04 Ips Corporation Plug with pressure release valve
WO2018119242A1 (en) 2016-12-22 2018-06-28 Johnson Control Technology Company Valve assembly for a battery cover
CN117393868A (en) 2017-06-09 2024-01-12 Cps 科技控股有限公司 Lead-acid battery
US11936032B2 (en) 2017-06-09 2024-03-19 Cps Technology Holdings Llc Absorbent glass mat battery

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2621889A (en) * 1947-05-23 1952-12-16 Grove Regulator Company Expansible sleeve type valve
FR967751A (en) * 1948-06-16 1950-11-10 Reversible cap for accumulators
US2713953A (en) * 1952-05-08 1955-07-26 American Sterilizer Co Valved closure
US3601152A (en) * 1969-08-15 1971-08-24 Grant F Kenworthy Unidirectional flow valve
US4296186A (en) * 1975-08-22 1981-10-20 Wolf Franz J Two part pressure relief valve
JPS53136488U (en) * 1977-04-01 1978-10-28
US4328290A (en) * 1980-12-29 1982-05-04 Gould Inc. Battery vent plug
JPS5995571U (en) * 1982-12-17 1984-06-28 新神戸電機株式会社 lead acid battery
JPS59117063U (en) * 1983-01-27 1984-08-07 新神戸電機株式会社 sealed lead acid battery
US4444853A (en) * 1983-07-01 1984-04-24 Globe-Union Inc. Storage battery construction
JPS6017856A (en) * 1983-07-11 1985-01-29 Matsushita Electric Ind Co Ltd Safety valve of storage battery
GB8325949D0 (en) * 1983-09-28 1983-11-02 Tungstone Batteries Ltd Electric batteries
DE3436290A1 (en) * 1983-10-08 1985-04-25 Honda Giken Kogyo K.K., Tokio/Tokyo Sealed lead-acid battery

Also Published As

Publication number Publication date
JPS6482455A (en) 1989-03-28
US4780378A (en) 1988-10-25
EP0306146B1 (en) 1993-01-13
KR920003756B1 (en) 1992-05-09
EP0306146A1 (en) 1989-03-08
KR890005924A (en) 1989-05-17
BR8804337A (en) 1989-03-21
DE3877468D1 (en) 1993-02-25
JPH0758612B2 (en) 1995-06-21
DE3877468T2 (en) 1993-05-13

Similar Documents

Publication Publication Date Title
CA1301244C (en) Battery vent valve
US5407760A (en) Sealing plug for a lead battery
CA1167520A (en) Battery vent plug
US4756982A (en) Dual seal battery vent valve
US7074516B2 (en) Vent for cylindrical electrochemical batteries
US20060240315A1 (en) Vent valve for acid batteries
US4063902A (en) Method of making a galvanic cell having a resealable vent closure
CN1075247C (en) Device to exhaust the fumes produced inside accumulator batteries
US4078121A (en) Safety-valve stopper especially intended for electric storage batteries
US6949310B2 (en) Leak proof pressure relief valve for secondary batteries
GB1393609A (en) Air depolarized cells
JP2002516025A (en) V-type gasket for galivani battery
GB2086646A (en) Vent valves for batteries
US5258243A (en) Pressure relief valve for recombinant battery
JPH1055793A (en) Secondary battery cap assembly
US4584248A (en) Sealed lead-acid secondary cell
CA2178611C (en) Lid for batteries
US4147841A (en) Vented container
US3923548A (en) Elastic gas valve for galvanic cells
CA1071704A (en) Pressure relief flapper vent valve for galvanic cells
WO2001037355A1 (en) Electrochemical cell having venting cover
EP0793283B1 (en) Sealed battery
US5830594A (en) Galvanic cell having a resealable vent closure
CA1152148A (en) High pressure safety vent for galvanic dry cells
GB1181400A (en) Improvements in Recombination Systems for Sealed Secondary Batteries and Batteries Incorporating Them

Legal Events

Date Code Title Description
MKLA Lapsed