CA1178138A - Impregnated non-woven sheet material and products produced therewith - Google Patents

Impregnated non-woven sheet material and products produced therewith

Info

Publication number
CA1178138A
CA1178138A CA000385081A CA385081A CA1178138A CA 1178138 A CA1178138 A CA 1178138A CA 000385081 A CA000385081 A CA 000385081A CA 385081 A CA385081 A CA 385081A CA 1178138 A CA1178138 A CA 1178138A
Authority
CA
Canada
Prior art keywords
batt
web
resin
needled
fibrous web
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CA000385081A
Other languages
French (fr)
Inventor
John R. Mccartney
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Norwood Industries Inc
Original Assignee
Norwood Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US06/188,329 priority Critical patent/US4376148A/en
Priority to US188,330 priority
Priority to US06/188,330 priority patent/US4342805A/en
Priority to US188,329 priority
Application filed by Norwood Industries Inc filed Critical Norwood Industries Inc
Priority claimed from CA000452138A external-priority patent/CA1178139A/en
Publication of CA1178138A publication Critical patent/CA1178138A/en
Application granted granted Critical
Application status is Expired legal-status Critical

Links

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/58Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives
    • D04H1/64Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives the bonding agent being applied in wet state, e.g. chemical agents in dispersions or solutions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/0804Manufacture of polymers containing ionic or ionogenic groups
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/44Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling
    • D04H1/46Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres
    • D04H1/48Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres in combination with at least one other method of consolidation
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/58Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives
    • D04H1/587Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives characterised by the bonding agents used
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof

Abstract

ABSTRACT
A resin impregnated fibrous web is comprised of a needled fibrous batt and a polymeric resin distributed throughout the batt.
The density of the impregnated web is uniform throughout with the bulk density of the web being less than the actual density of the web where-by the web is porous. The impregnated web has filaments which are both coated and uncoated with the polymeric resin. A method of form-ing the impregnated fibrous web is also disclosed.
A simulated leather sheet material is produced from the impregnated web. The simulated leather sheet material is comprised of a polymer impregnated fibrous mass with a grain layer forming one surface and a split layer forming the opposing surface. The grain layer has an actual density equal to its bulk density and the split layer has a bulk density less than its actual density. The sheet material has a density decreasing from the grain layer to the split layer.

Description

~7~3~L3~3 BACKGROUND OF THE INVENTION
1. Field of the Invention This invention relates -to resin impregnated fibrou-s we~s and more particularly to resin impregnated fibrous webs having a uniform density throughout and products produced therefrom.
A copending application which relates to a simulated leather sheet material and a process for making same has been divided out of this application.

2 Description of the Prior Art Resin impregnated sheet materials such as cloth, batts, waterleaves, and the like are well known in the art. These resin impregnated sheet materials are useful for a plurality of purposes including imitation leather in the form of vinyls and the like, structural sheet materials such as conveyor belts and similar products.
Prior art methods of impregnating a particular web in-volve the impregnation or coating of a porous material with a poly-meric resin such as a polyurethane, vinyl or a similar material.
Polyurethanes have met with wide acceptance as a coating or impreg-nating composition due to their capability of wide variation inchemical and physical properties, particularly their flexibility and chemical resistance. In impregnating the porous sheet material with a polymeric resin several techniques have been employed. One such prior art method involves the use of the polymeric resin in an organic solvent system wherein the sheet material is dipped in the solution and the solvent is removed therefrom. These solvent systems are undesirable since the solvent, in many cases, is toxic and must either be recovered for reuse or discarded. These solvent L3~

systems are expensive and do not necessarily provide a desirable product since upon evaporation of the solvent from the impregnated porous sheet material the resin tends to migrate to provide a non-homogeneous impregnation of the porous sheet material resulting in resin richness toward the surface of the sheet material rather than uniform impregnation.
In order to alleviate the problems with solvent systems, certain aqueous polymeric systems have been proposed. In forming impregnated sheet materials by impregnation with aqueous polymers the aqueous portion must be removed. Again heat is required and migration of the polymer to the surfaces of the impregnated sheet material is encountered.
In one method of combining polyurethane solutions with porous substrates the polymer is applied in an organic solvent to a substrate, such as a needle punched polyester batt. The polymer-substrate composite is subsequently bathed with a mixture of organic solvent for the polymer and a non-solvent for the polymer that is at least partially miscible with the solvent until the layer is coagulated into a cellular structure of interconnected micropores. The solvent is removed from the coating layer along with the non-solvent to produce a solvent free microporous layer.
Although this process yields acceptable properties for a poly-urethane impregnated fabric, it has the disadvantage of an organic solvent system partially when high performance polyurethanes are utilized which require relatively toxic and high boiling solvents.
An ex~mple of this method is disclosed in United States Patent No.

3,208,87~.

In another method, polyurethane dispersions in organic vehicles have been proposed and used to coat porous substrates such as is disclosed in United States Patent ~o. 3,100,721. In this system, a dispersion is applied to a substrate, and coagulated by further addition of a non-solvent. Although this approach has been used with some success, it involves two major limitations: (1) the vehicle of the dispersion is substantially organic since relatively small amounts of non-solvent, preferably water, are needed to form a dispersion; and (2) there is a narrow useful range of added non-solvent so that reproducible results are difficult to obtain.
One particularly useful method of preparing composite sheet material by impregnating a porous substrate is disclosed in United States Patent No. 4,171,391. In this system a porous sheet material is impregnated with an aqueous ionic dispersion of a polyurethane and the impregnant is coagulated therein. The com-posite is then dried to form a composite sheet material. The present invention and that of the above mentioned divisional application is an improvement over this basic pracess and in some instances is broader in scope.
Impregnated porous substrates and similar materials - 2a -have been proposed as leather substitutes with the goal of preparing a product having the same characteristics as natural leather.
Natural leather, appropriately finished, is valued for its durability and aesthetic characteristics for a p'lurality of uses.
5 Due to the scarcity of leather and the increased cost of processing leather for particu'lar applications, economics have dictated that synthetic materials be substituted in certain applications where leather goods had been used. Such synthetic materials have been pro-posed and used in the areas of shoe uppers, upholstery, clothing, 10 luggage making, book binding and similar applications. Because these various applications require diF~ering physical, chemical, and aesthe-tic qualities, different procesces using different materials must be used to obtain an acceptable product which is comparable to natura1 leather; although in most instances these synthetics are readily dis-15 tinguishable from natural leather.
Natural leather from animal hides is composed of two surfaces: one surface defining the grain layer, which in most instances is the most aesthetically desirable and the opposing surface defining the split layer. The grain layer is the epidermis of the animal and 20 is very smooth whereas the split layer in most instances is rough and t fibrous.
One method of preparing a synthetic as a substitute for leather involves impregnating and/or coating of porous material9 for example, cloth, with a polyurethane, vinyl or a similar material.
25 Polyurethanes have met with wide acceptance as a coating or impregnating composition due to their capability of wide variation in chemical and physical properties, particularly their flexibility and chemical resist-ance.
Objectives in preparing the synthetic substitutes for 30 leather are that they provide: (1) sheets especially suitable for leather-like and upholstery uses; (2) sheets of uniform width as com-monly used in the textile industry' (unlike natural products which sustain substantial weight and area losses in cutting and finishing);
(3) end use versatility, for example, under a variety of exposure 35 conditions where certain chemical treatments will assist maintenance and useful l'ifetime of properties; and most importantly, (4) a product 3~3 with the strength, hand, drape and softness comparable to natural leather.
Further, a simulated leather sheet material when used for shoe uppers should be characteri7ed by a leather appearance, with no undesirable fabric show through, good water vapor permeation into the uncoated side of the upper, and a leather grain break (minimal gross wrinkling~. "Leather-like grain break", as recognized in leather and upholstery industries, is manifested in the behavior of well finished leather when folded or crumpled. The leather fold is char-acterized by a smooth curved contour, frequently with numerous finewrinkles in the compressed region of the fold area. This is contrasted with sharp creases or gross wrinkles formed when papers or films are folded; this kind of undesirable appearance is known as "pin wrinkling."
The "hand" of leather is highly distinctive and synthetics normally have a rubbery feel which is contrasted with leather.
Polyurethane polymers as coatings or impregnants for fab-ric to provide substitutes for leather have long been recognized.
For example, polyurethanes can be made which are highly resistant to solvents and abrasion, conferring dry cleanability and outstanding durability to coated fabrics. The basic chemistry of polyurethanes, involving reactions between the isocyanate groups and molecules with multiply reactive hydrogen, such as polyols and polyamines, afford great versatility and variability in final chemical and physical properties by the selection of intermediates to achieve processibility ~5 and the desired balance of end use performance requirements.
There are various methods for applying polyurethane solutions or other post curable liquid polymers to porous substrates which are well known to those skilled in the art. An article in Journal of Coated Fabrics, Vol. 7 (July 1977~, pages 43 through 57 describe some of the commercial coating systems, e.g. reverse roll coating, pan fed coater, gravure and the like. Brushing and spraying may also be used to coat polyurethanes on porous substrates. These polyurethane solutions, after impregnation or coating on the porous substrate, are dried or cured by a method such as heated air, infra-red radiation and the like. Characteristic of these processes isthe deposition of a polyrner and a film-like layer which tends to ~7~31~

produce a coated fabric which folds in undesirable sharp creases rather than leather-like grain break. Other methods of combining polymeric solutions and particularly polyurethane solutions with porous substrates are exemplified by United States Patent No.
3,208,875 and United States Patent No. 3,100,721.
~ n improved process for impregnating fabrics is disclosed in United States Patent No. ~,171,391 which includes certain steps which are necessary in forming simulated leather sheet material in accordance with the invention.
In accordance with the present invention, a method of impregnating porous sheet materials and particularly needled batts is disclosed wherein uniform impregnation is provided in an aqueous system forming a product with high tear strength and integrity.
Further, an impregnated fibrous web is provided which has a novel and unusual useful structure adapted to be used as formed or subsequently processed to provide further advantage.
In accordance with the invention of the divisional appli-cation, a simulated leather sheet material is formed which has the appearance and properties of natural leather and further has certain physical similarities therewith.
~ ccording to one aspect of the present invention there is provided a resin impregnated fibrous web comprised of: a needled fibrous batt; a polymeric resin distributed throughout said batt forming a resin impregnated fibrous web; the density of said impreg-nated fibrous web being uniform throughout; the bulk density of said web being less than the actual density of said web, whereby the web is porous; and said impregnated web having filaments which are both coated and uncoated with polymeric resin and concentrations of .

.
/

~78~3~

polymeric resin.
According to a further aspect of the present invention there is provided a method of forming an inpregnated fibrous web comprising: fu:Lly saturating a needled fibrous batt with an aqueous dispersion or emulslon of ionically solubilized polymeric resin;
contacting the fully saturated needled batt with an ionic coagulat-ing agent to coagulate the polymeric resin from the aqueous dis-persion and deposit the polymeric resin within said needled batt, and drying the needled batt and polymeric resin to form an impreg-nated fibrous web having a uniform density throughout.
According to one aspect of the invention of the divisionalapplication there is provided a simulated leather sheet material comprising- a polymer impregnated fibrous mass with a grain layer forming one surface, the grain layer having an actual density equal to its bulk density and a split layer forming the opposing surface, the grain layer being a composite of fibers in a continuous resin matrix, the split layer having a bulk density less than its actual density, the split layer having coated and uncoated fibers, masses of polymer and voids, said sheet material having a density decreas-ing from the grain layer to the split layer, wherein the ratio offiber to polymer is uniform throughout said sheet materialO
According to a further aspect of the invention of the divisional application there is provided a method of forming a simulated leather sheet material comprising: uniformly impregnating a fibrous mass with a polymer to form a porous sheet material;
heating the porous sheet material under heat and pressure, said heat and pressure being applied to at least one surface thereof, - 5a -3~

to develop a simulated leather sheet material having a grain layer on the surface to which the heat has been applied, the grain layer having a bulk density equal to the actual density, said grain layer being a composite of fibers in a continuous resin matrix, a split layer having a bulk density less than its actual density, said split layer having coated and uncoated fibers, masses of polymer and voids, the sheet material having a density from the grain to layer to the split layer and wherein the ratio of fiber to polymer is uniform throughout said sheet material.

- 5b -3~

DETAILED DESCRIPTION OF TIIE INVENTION
"~ulk density" as used herein means and refers to the density of the material including air space. "Actual density" as used herein means and refers to the density of the material not including air space i.e. specific gravity.
The fibrous mass include woven and knit fabrics, felt and non-wovens, such as spun bonded sheets, needled batts and waterleaves. Suitable substrate fibers are the natural fibers, particularly cotton and wool; synthetic fibers such as polyester, nylon, acrylics, modacrylics, and rayon. Most preferably, the fibrous mass is needled fibrous batts formed of such natural and synthetic fibers.
Preferably, the fibers have a denier of 1 to 5 and a length which is suitable for carding which is typically one to six inches and more preferably one and one-half to three inches.
The needled fibrous batts can be either of high, intermediate or low density. The high density batts have a maximum density of 0.5 grams/cc. These high density batts are typically composed of wool. When synthetic fibers are used in forming the batts, the high density bàtts are up to 0.25 grams/cc.
Preferably, the fibrous batts have a density of 0.08 grams/cc to 0.5 grams/cc.
The thickness of the batts may be up to 0.5 inch and preferably between 0.12 inch and 0.4 inch with a minimum thickness of 0.030 inch. Additionally, the batts are characterized as "saturating batts" which have high integrity due to the needle punching operation as opposed to lightly bonded batts having few needle punches with little or no integrity.
The polymeric resins useful in the practice of the invention are preferably those polymeric resins which are capable of solubilization, disper-sion, or emulsification in water and subsequent coagulation from the water system with an ionic coagulating agent.

''~;.

, . . . .

3~

A preferred polymer system is one which is synthesized from acrylic monomers such as the alkyl acrylates and methylacrylates~ acrylorli.trile, methyl-acrylonitrile and other well known acrylic monomers. These acrylic monomers may be polymerized by emulsion polymerization to form a latex or by other free radical polymerization mechanisms and subsequently solubilized or emulsified in water. The emulsification or solubilizing system must be such that when the emulsion is contacted with concentrated acid or base the polymer coagulates from the aqueous system and is rendered substantially insoluble.
Most preferably, emulsified or aqueously dispersed polyurethanes are utilized. Exemplary of the emulsified polyurethanes are those disclosed in United States Patent No. 2,968,575 prepared and dispersed in water with the aid of detergents under the action of powerful shearing forces. When these poly-urethane emulsions are formed, the emulsifying agent or detergent must be one which is ionic in nature so that a counter ion may be added to the aqueous system to coagulate the polymer. Most preferably, the polyurethanes are those recognized in the art as ionically water dispersible.
The preferred system for preparing ionic aqueous polyurethane disper-sions is to prepare polymers that have free acid groups, preferably carboxylic acid groups covalently bonded to the polymer backbone. Neutralization of these carboxyl groups with an amine, preferably a water soluble mono-amine, affords water dilutability. Careful selection of the compound bearing the carboxylic group must be made because isocyanates, necessary components in any polyurethane system, are generally reactive with carboxylic groups. However, as disclosed in United States Patent No. 3,412,05~, 2,2-hydroxymethyl-substituted carboxylic acids can be reacted with organic polyisocyanates without significant reaction between the acid and isocyante groups due to the stearic hinderance of the car--7a- ~7~3~

boxyl by the adjacent alkyl groups. This approach provides the desired carboxyl containing polymer with the carboxylic groups being neutralized with the ter-tiary mono-amine to provide an in~ernal quaternary ammonium salt and hence, water dilutability.
Suitable carboxylic acids and preferably the stearically hindered carboxylic acids, are well known and readily available. For exampleJ they may be prepared from an aldehyde that contains at least two hydrogens in the alpha position which are reacted in the presence of a base with two equivalents of formaldehyde to form a 2,2-hydroxymethyl aldehyde. The aldehyde is then oxidized to the acid by 3~

procedures known to those skilled in the art. Such acids are represented by the structural formula, ,CH20H
R- C - COOH

wherein R represents hydrogen, or alkyl of up to 20 carbon atoms, and preferably, up to eight carbon atoms. A preferred acid is 2,2-di-(hydrozymethyl) propionic acid. The polymers with the pendant carboxyl groups are characterized as anionic polyurethane polymers.
Further, an alternate route to confer water dilutability is to use a cationic polyurethane having pendant amino groups.
Such cationic polyurethanes are disclosed in United States Patent NoO 4,066,591, and particularly, in Example XVII. It is preferred that the anionic polyurethane be used.
The polyurethanes more particularly involve the reaction of di-or polyisocyanates and compounds with multiple reactive hydrogens suitable for the preparation of polyurethanes. Such diisocyanates and reactive hydrogen compounds are more fully disclosed in ~nited States Patent Nos. 3~412,034 and 4,046,729.
Further, the processes to prepare such polyurethanes are well recognized as exemplified by the aforementioned patents. Aromatic, aliphatic and cycloaliphatic diisocyanates or mixtures thereof can be used in forming the polymer. Such diisocyanates, for example, are tolylene-2,4-diisocyanate; tolylene-2,6-diisocyanate;
meta phenylene diisocyanate; biphenylene-4,4'-diisocyanate;
methylene-bis(4-phenyl isocyanate); 4-chloro-1,3,-phenylene j , , ; ,:

3~

diisocyanate; naphthylene-1,5-diisocyanate; tetramethylene-1,4-diisocyanate; hexamethylene-1,6-diisocyanate; decamethylene-l, 10-diiscoyanate; cyclohexylene-1,4-diisocyanate; methylene-bis (4-cyclohexyl isocyanate); tetrahydronaphthylene diisocyanate;
isophorone diisocyanate and the like. Preferably, the arylene and cyclo-aliphatic diisocyanates are used most advantageously.
Characteristically, the arylene diisocyanates encompass ~;''~' ~ - 8a -3L3~

those in which the isocyanate group is attached to the aromatic ring. The most preferred isocyanates are the 2,4 and 2J6 isomers of tolylene diisocyanate and mixtures thereof, due to their ready availability and tlleir reactivity. Further, the cyclo-aliphatic diisocyanates used most advantageously are 4,4'-methylene-bis~cyclohexyl isocyanate) and isophorone diisocyanate.
Selection of the aromatic or aliphatic diisocyanàtes is predicated upon the final end use of the particular material. As is well recognized by those skilled in the art, the aromatic isocyanates may be used where the final product is not excessively exposed to ultraviolet radiation which tends to yellow such polymeric compositions; whereas the aliphatic diisocyanates may be more advantageously used in exterior applications and have less tendency to yellow upon exposure to ultraviolet radiation. Although these principles orm a general basis for the selection of the particular isocyanate to be used, the aromatic diisocyanates may be further stabilized by well known ultraviolet stabilizers to enhance the final properties of the polyurethane impregnated sheet material. In addition, antioxidants may be added in art recognized levels to improve the characteristics of the final product. Typical antioxidants are the thioethers and phenolic antioxidants such as 4,4'-butylidine bis-meta-cresol and 2,6-ditert-butyl-para-cresol.
The isocyanate is reacted with the multiple reactive hydrogen com-pounds such as diols, diamines, or triols. In the case of diols or triols, they are typically either polyalkylene ether or polyester polyols. A polyalkylene ether polyol is the preferred active hydrogen containing polymeric material for formulation of the polyurethane. The most useful polyglycols have a molecular weight of 50 to lO,000 and the most preerred is from about 400 to 7,000.
Further, the polyether polyols improve flexibility proportionally with the 1~ ~

-10- ~ ~ 7~3~53 increase in their molecular weight.
Examples of the polyether polyols are, but not limited to, polyethylene ether glycol, polypropylene-e~her glycol, polytetramethylene ether glycol, polyhexamethylene ether glycol, polyoctamethylene ether glycol, polydecamethylene ether glycol~ polydodecamethylene ether glycol and mixtures thereof. Polyglycols containing several different radicals in the molecular chain, such as, for example, the compound HO(CH20C2H~O)nll wherein n is an integer greater than one, can also be used.
The polyol may also be hydroxy terminated or hydroxy pendant polyester which can be used instead or in combination with the polyalkylene ether glycols.
Exemplary of such polyesters are thus formed by reacting acids, esters or acid halides with glycols. Suitable glycols are polymethylene glycols such as ethy-lene, propylene, tetramethylene or decamethylene glycol; substituted methylene glycols such as 2,2-dimethyl-1,3,-propane diolJ cyclic glycols such as cyclo-hexanediol and aromatic glycols. Aliphatic glycols are generally preferred when flexibility is desired. These glycols are reacted with aliphatic, cyclo-ali-phatic or aromatic dicarboxylic acids or lower alkyl esters or ester forming deriva-tives to produce relatively low molecular weight polymers, preferably hav-ing a melting point of less than about 70C, and a molecular weight like those indicated for the polyalkylene ether glycols. Acids for preparing such poly-esters are, for example, phthalic, maleic, succinic, adipic, suberic, sebacic, terephthalic and hexahydrophthalic acids and the alkyl and halogen substituted `
derivatives of these acids. In addition, polycaprolactone terminated with hydroxyl groups may also be used.
One particularly useful polyurethane system is the crosslinked poly-urethane system which is more fully disclosed in Canadian Patent No. 1,154,191 ..

3~

of AndTea Russiello entitled "Crosslinked Polyurethane Dispersions".
When used herein, "ionic dispersing agent" means an ionizable acid or base capable of forming a salt ~ith the solubilizing agent. These "ionic dis-persing agents" are amines and preferably water so]uble amines such as triethyl-amine, tripropylamine, N-ethyl piperidine, and the like; also, acid and prefer-ably water soluble acids such as acetic, propionic, lactic, and the like.
Naturally, an acid or amine will be selected contingent on the solubilizing group pendant on the polymer chain.
The desired elastomeric behavior would generally require about 25-80~
by weight of long chain polyol (i.e. 700 to 2,000 eq~ wt.) in the polymer. The degree of elongation and elasticity may vary widely from product to produ~t depending upon the desired properties of the final product.
In forming the polyurethanes, the polyol and a molar excess of diisocyanate are reacted to form isocyanate terminated polymer. Although suit-able reaction conditions and reaction times and temperatures are variable within the context of the particular isocyanate and polyol utilized, those skilled in the art well recognize these variations. Such skilled artisans recognize that reactivity of the ingredients involved requires the balance o:E reaction ra~e with undesirable secondary reactions leading to color and molecular weight degradation. Typically, the reaction is carried out with stirring at about 50C.
to about 120C. for about one to four hours. To provide pendant carboxyl groups the isocyanate terminated polymer is reacted with a molar deficiency of dihydroxy acid~ for one to four hours at 50C. to 120C. to form isocyanate terminated prepolymer. The acid is desirably added as a solution, for e~ample, in N-methyl-1, 2-pyrrolidone or N-N-dimethylformamide. The solvent for the acid will typically be no more than about 5% of the total charge in order to minimize the '~.

-12- ~L~ 3~

organic solvent concentration in the polyurethane composition. After the di-hydroxy acid is reacted into the polymer chain, the pendant carboxyl groups are neutralized with an amine at about 5~~75C. for about twenty minutes and chain extension and dispersion are accomplished by addition to water with stirring.
A water soluble diamine may be added to the water as an additional chain ex-tender. The chain extension involves the reaction of the remaining isocyanate groups with water to form urea groups and further polymerize the polymeric material with the result that all the isocyanate groups are reacted by virtue of the addition to a large stoichiometric excess of water. It is to be noted that the polyurethanes are thermoplastic in nature, i.e. not capable of exten-sive further curing after formation except by the addition of an external curing agent Preferably, no such curing agent is added to form the composite sheet material.
Sufficient water is used to disperse the polyurethane at a concentra-tion of about 10-~0% by weight solids and a dispersion viscosity in the range of 10-1,000 centipoise. Viscosity may be adjustèd in accordance with the parti-cular impregnation properties desired and by the particular dispersion composi-tion which are all dictated by the final product characteristics. It should be noted that no emulsifiers or thickeners are required for the stability of the dispersions.
Those of ordinary skill in the art recognize ways to modify the pri-mary polyurethane dispersion according to end product uses, for example, by the addition of coloring agents, compatible vinyl polymer dispersions, ultra-violet filtering compounds, stabilizers against oxidation and the like.
The characterization of the dispersions is done by measurements of non-volatile content, particle size, viscosity measurements and by stress strain properties on strips of cast film.

,~

-12a~ 3~

The concentration range useful in practice is governed by the desir-able percent add on of polymer into the needled batt.
The dispersion viscosity is generally in the range from 10-1,000 centipoise. The low viscosity, relative to that of identical polymers at the same solids level in organic solvent polymer solutions, assists rapid and com-plete penetration of the aqueous dispersion and subsequent penetration of the coagulant. Useful solutions of polyurethanes will9 in contrast, generally have viscosities of several thousand centipoise, ranging as high as 50,000 centipoise at concentrations of 20-30%.
The polymers should be impregnated into the fibrous batt at a level of at least 70 percent by weight add on based upon the weight of the fibrous batt and up to about ~00 percent by weight. Preferably, the polymeric resin is impregnated at a level of about 200 to 300 percent by weight add on based upon the weight of the fibrous batt.
Coagulation is accomplished by contacting the impregnated substrate with an aqueous solution of an ionic media designed to ~%;.

ionically replace the solubili~ing ion In theory, although not intended to be bound by such theory, in the case of an anionically solubilized polymer, the amine which neutralizes the carboxyl con-taining polyurethane is replaced with a hydrogen ion which reverts the anionic carboxyl i~n thus reY~rting ~he po7ym~ ts original, "non-dilutable" condition. This causes coagulation of the polymer within the substrate structure.
In the case of the anionic polymer, aqueous acetic acid solutions at concentrations of 0.5% to about 75% are suitable ionic coagulant for the anionic dispersions and are preferred over stronger acids because of the relative ease of handling, low corrosion potential and disposability.
"Salting out" to coagulate the dispersion by the addition of the neutral salt is feasible but is not favored because of the large amounts of salt needed, about 10 times the concentration oF
acid, and attendant problems of product contamination.
In impregnating the needled batt with the polymeric resin as contemplated herein, the batt is immersed in an aqueous ionic emul-sion or dispersion at a concentration level sufficient to provide an add on of at least 70% by weight. Upon immersion of the batt in the aqueous emulsion or dispersion, the batt may be squeezed to remove air to provide full impregnation of the emulsion or dispersion within the batt. The batt, now fully impregnated with the aqueous dispersion or emulsion, is passed through wiping rolls or the like t~ remove ex-cess dispersion or emulsion on the surface of the impregnated batt.The batt is then immersed in a bath containing the counter ion to provide coagulation with the counter ion containing material permeat-ing the batt through diffusion and providing coagulation of the resin within the fibrous structure. After coagulation, the batt is squee~ed to remove excess water and dried to form the impregnated web.
This process is a further improvement over the process described in U.S. Patent No. ~,171,391 in respect of providing par-ticular products. The differences between the referenced patent and the present process is that the batt is fully saturated, i.e. no retained air space with the aqueous dispersion or emulsion providing an ultimate add on of at least 70 percent by weight of polymeric resin based upon the weight of the batt. Because of these differences, a novel structure is obtained wherein the batt has a uniform density throughout and the bulk density of the web is less than the actual density of the web.
After the impregnated web has been formed, a density gradient is im-ported hereto to form a simulated leather sheet material. When forming the simulated leather sheet material the impregnant for the web is preferably poly-mers which in particulate form are capable of fusion with themselves under conditions of heat and pressure. Normally, these polymers are thermoplastic;
however, some crosslinked polymers capable of coalescense may also be used.
More particularly, polyurethanes described in Canadian Patent No. 1,154,191 by Andrea Russiello entitled "Crosslinked Polyurethane Dispersions" have been found to be particularly useful to develop the desired density gradient through the thickness of the material.
The characterizing features of the simulated sheet material are pri-marily physical features wherein a density gradient is provided from one side of the sheet material to the opposing side of the sheet material. Preferably, the density gradient is uniform. One surface of the impregnated fibrous mass defines a grain layer with this grain layer having an actual density equal to its bulk density.
This grain layer closely simulates the grain layer of natural leather.
On the opposing side of the sheet material, there is a surface which defines the split layer which has a bulk density less than its actual density with there being a preferably uniform density gradient throughout the material. The split layer is somewhat fibrous and simulates the split layer of natural leather.
The polymer is present in the simulated leather sheet material at a level of at least 70% by weight add on based upon the weight of the fibrous mass.

-15- ~ 3~

Typically, the split layer is up to about 75% of the density of the grain layer to provide a porous grain layer simulating the grain layer of leather. Also it must be noted that the polymer is uniformly distributed throughout the fibrous mass in a manner wherein the ratio of fiber to polymer is uniform throughout.
The simulated leather sheet material is produced by processing the impregnated fibrous mass and preferably an impregnated non-woven sheet material as previously described.
Most preferably, the polymer used as the impregnant is one of those or of the type disclosed in Canadian Patent No. 1,15~,191 previously cited.
In one method of processing, the impregnated non-woven sheet material to form the simulated leather sheet, the impregnated non-woven sheet material is placed in a press and heat and pressure are applied to both sides thereof. The heat and pressure is sufficient to fuse the polymer to itself within the impreg-nant at the surfaces of the material, but yet insufficient to completely fuse the polymer at the interior of the sheet material. This process develops a density gradient from the interior of the non-woven sheet material to the two exterior surfaces. The dimensions of the gauge of the heated and pressed sheet material can be regulated by the pressure applied during the heating and pres-sing operations or by the insertion of spacers between the press plates or by use of a dead load press.
Purther, the plates of the press can be embossed to provide a specific surface finish design to the material. After pressing, the sheet material is split down the middle to provide two simulated leather sheets each having a grain layer and a split layer.
In another process for forming the simulated leather sheet material, 3~

the impregnated non-woven starting material previously discussed can be placed in a press with only one of the plates heated to form the grain layer while having the opposing side on the cool plate forming the split layer.
In yet another process for forming the simulated leather sheet material, two pieces of the impreganted non-woven startiilg material previously discussed can be mounted upon each other in a press and heat and pressure applied sufficient to fuse the polymer to itself within the irapregnant at the outer surface of each piece. After pressing, the individual pieces are separ-ated resulting in two sheets of simulated leather.
Subsequent to formation, the simulated leather may be buffed, coated or further processed in accordance with known leather finishing techniques.
In still another process, grain layer development may be accomplished on unwound strips of impregnated non-woven starting material unwound from packages and passed through a pair of rolls in a calendering operation. Pre-ferably one of the rolls is metal, heated to 300 to 400F., smooth or suitably embossed; and the other roll is softer, resilient material, such as rubber. The grain layer will be developed on the metal roll side of the sheet. Effective calendering may be accomplished generally with a load of 5-15 tons/yard width of the sheet passing through the rolls. Wetting the sheet, prior to calender-ing, to 50 to 100 percent by weight added water may assist calendering.
The structures of the impregnated web and simulated leather sheet material are more fully shown in the accompanying drawings which are photo-micrographs of cross sections of an impregnated web and simulated leather sheet material prepared in accordance with the present invention, and that of the divisional application.

3~3 BRIEF DESCRIPTION OF THE DRAWINGS
Fig. 1 is a plan view of the resin impregnated web prepared in accordance with Example 1 prior to splitting;
Fig. 2 is a photomicrograph taken through the thickness o the web of Fig. 1 through the II-II line;
Fig. 3 is a lOOx photomicrograph of the III section of Fig. 2, Fig. 4 is a lOOx photomicrograph of the IV section of Fig. 2;
Fig. 5 is a lOOx photomicrograph of the V section of Fig. 2;
Fig. 6 is a lOOx photomicrograph of a resin impregnated batt prepared in accordance with Example I after splitting; and Fig. 7 is a lOOx photomicrograph of a cross section through the thick-ness of a simulated leather sheet material produced from the batt of Fig. 6.
DETAILED DES~RIPTION OF THE DRAWINGS
Referring now to Figs. 1 through 5, wherein like reference numerals refer to like parts there is shown a resin impregnated web 10 prepared in accordance with Example 1. More particularly, Figs. 2-5 show a cross section through the thickness of the web 10. The web 10 is composed of a top surface 12 and a bottom surface 1~. Throughout the web 10 there are a substantial number of uncoated fibers 16, concentrations of resin 20, voids 18 and resin coated fibers 22. The structure and hence its bulk density is substantially uniform throughout the thickness of the material, although on a microscopic scale, the structure is non-homogeneous.
The structure shown in Figs. 2-5 is believed to be attributable to the full impregnation of the needled batt with the aqueous emulsion or dispersion with subsequent coagulation of the polymer while the batt is fully impregnated with the aqueous resin system.

-18~ 3~

Referring now to Fig. 6 which is a lOOx photomicrograph, there is shown a spli~ impregnated needled batt 2~ having a uniform density throughout such as is shown in Figs. 1-5. The impregnated batt 24 has a substantial amount of uncoa-ted fibers 26, masses of polymer 28, coated fibers 32, and voids 30.
It is to be noted that although the impregnated batt is non-homogeneous on a microscopic scale it has a uniform bulk density throughout.
Referring now to Fig. 7 which is a lOOx photomicrograph, there is shown the simulated leather sheet material 32 in accordance with Example IV.
The material 32 has a grain layer 34 which has minimal void space and the bulk density at the grain layer 34 is equal to the actual density. At the grain layer 34, there is formed a composite 36 of fibers in a continuous resin matrix as a result of the application of heat and pressure. Moving along the A direc-tion, it is shown that the voids 30 increase along the direction approaching the split layer 38. At the split layer 38J there are a substantial number of voids 30, uncoated fibers 26, and masses of polymer 28. The structure a~ the split layer 38 approximates the structure shown in Fig. 6.
The following examples are illustrative of the products prepared in accordance with the present invention and that of the divisional application.
EX~MPLE I
A needled batt which was heat set and had a density of 1,200 grams/sq.
meter composed of polyester, polypropylene and rayon fibers and a thickness of 0.3 inch with a bulk density of 0.16 grams/cm3 was immersed in a polyurethane prepared in accordance with Example III of Canadian Patent No. 1,154,1~1 of Andrea Russiello previously cited herein. The polymeric dispersion had a 22%
total solids content to provide an add on of 120 percent based upon the weight of the batt. The batt was ;mmersed in the polyurethane dispersion for 10 ~

-l~a- ~ 3~

minutes at room temperature until all of the air was expelled from within the batt and the batt was fully impregnated. The surface of the batt was wiped with a straight edge on both sides to remove excess aqueous dispersion and immersed in a 10 percent acetic acid bath for 10 minutes at room temperature.
Immersion in the acid completely coagulated the polyurethane within the fiber structure. The excess acetic acid was washed from the batt and the resin impreg-nated batt was squeezed to remove excess water. The resin impregnated batt was split into four slices through its thickness and each split was dried at 300 to 350F. in a circulating air oven to form four resin impregnated webs having a bulk density of 0.41 g/cc. The final product had a photomicrograph as shown in the drawings.
EXAMPLE II
Example I was repeated except that a 100 percent polyester batt having a density of 0.13 grams/cc and 0.2 inch thick was impregnated with 22 percent solids dispersion of Example I. The resulting impregnated web had a uniform density throughout, high integrity ana a bulk density of 0.38 grams/cm3.
EX~MP E LII
Example I was repeated except that a 100% polyester needled batt of 0.22 inch thickness and a density of 0.23 grams/cc was impregnated with 32 per-cent solids dispersion to form a needled impregnated resin fibrous web having a bulk density of 0.56 grams/cm3. The product in accordance with Example III was used as a polishing pad and had toughness, high tear strength, resilience and complete recovery upon compression.
Thus the process and product ~:~7~

~wre~bt3~ provides an impregnated fibrous web of high integrity and useful as a product in and of itself and useful in forming other products. Further, the impregnated fibrous web may be buffed to pro-vide a desirable finish.
EXAMPLE IV
Two 0.07 inch thick splits of the non-woven impregnated web prepared in accordance with Example I were superposed upon each other and placed between plates of a press heated to 300~F. at a pressure of 500 psi for 30 seconds. The two splits were then peeled apart, thus obtaining two sheets of simulated leather sheet material.
The grain layer of the sheets correspond to the surfaces which were in contact with the hot press plates. The interior sides of the sheets retained their fibrous texture similar to the unpressed sheet.
Microscopic examination showed that the simulated leather sheet mate-rial had a density gradient from the grain layer to the split layer as is sho~n in Fig~ 7.
The simulated leather sheet material, subsequent to formation can be post treated with other polymers for surface finish-ing in accordance with known techniques.
Although the invention has been described with reference to particular materials and particular processes, the invention is only to be limited so far as is set forth in the accompanying claims.

Claims (29)

THE EMBODIMENTS OF TEE INVENTION IN WHICH AN EXCLUSIVE
PROPERTY OR PRIVILEGE IS CLAIMED ARE DEFINED AS FOLLOWS:
1. A resin impregnated fibrous web comprised of:
a needled fibrous batt;
a polymeric resin distributed throughout said batt forming a resin imp-regnated fibrous web;
the density of said impregnated fibrous web being uniform throughout;
the bulk density of said web being less than the actual density of said web, whereby the web is porous; and said impregnated web having filaments which are both coated and uncoa-ted with polymeric resin and concentrations of polymeric resin.
2. The resin impregnated fibrous web of claim 1 wherein said needled fib-rous batt has a bulk density of less than 0.5 grams/cm .
3. The resin impregnated fibrous web of claim 2 wherein said needled fib-rous batt has a bulk density of less than 0.25 qrams/cm3.
4. The resin impregnated fibrous web of claim 2 wherein said needled fib-rous batt has a bulk density of between 0.12 to about 0.4 grams/cm3.
5. The resin impregnated fibrous web of claim 1 wherein said needled fib-rous batt has a thickness of at least 30 mils.
6. The resin impregnated fibrous web of claim 1 wherein said needled fib-rous batt is composed of substantially non-fusible fibers.
7. The resin impregnated fibrous web of claim 1 wherein said polymeric resin is a polyurethane.
8. The resin impregnated fibrous web of Claim 7 wherein said polyurethane is water dispersible polyurethane.
9. The resin impregnated fibrous web of Claim 7 wherein said polyurethane is a crosslinked polyurethane.
10. The resin impregnated fibrous web of Claim 1 wherein said polymeric resin is a polyacrylate.
11. The resin impregnated fibrous web of Claim 1 wherein said polymeric resin is present at a level of at least 70 percent by weight add on based upon the weight of the fibrous batt.
12. The resin impregnated fibrous web of Claim 11 wherein said polymeric resin is present at a level of less than about 400 percent by weight add on based upon the weight of the fibrous batt.
13. The resin impregnated fibrous web of Claim 12 wherein said polymeric resin is present at a level of about 200 to 300 percent by weight add on based upon the weight of the fibrous batt.
14. The resin impregnated fibrous web of Claim 1 having a density of up to about 0.75 grams/cc.
15. The resin impregnated fibrous web of Claim 14 having a density of between about 0.4 to about 0.75 grams/cc.
16. A method of forming an impregnated fibrous web comprising:
fully saturating a needled fibrous batt with an aqueous dispersion or emulsion of ionically solubilized polymeric resin;

contacting the fully saturated needled batt with an ionic coagulating agent to coagulate the polymeric resin from the aqueous dispersion and deposit the polymeric resin within said needled batt; and, drying the needled batt and polymeric resin to form an impregnated fibrous web having a uniform density throughout.
17. The method of Claim 16 wherein said needled batt has a bulk density of less than 0.5 grams/cc.
18. The method of Claim 17 wherein said needled fibrous batt has a bulk density of less than 0.25 grams/cm3.
19. The method of Claim 17 wherein said needled fibrous batt has a bulk density of between 0.12 and 0.4 grams/cm3.
20. The method of Claim 16 wherein said needled fibrous batt has a thickness of at least 30 mils.
21. The method of Claim 16 wherein said needled fibrous batt is composed of substantially non-fusible fibers.
22. The method of Claim 16 wherein said polymeric resin is a polyurethane.
23. The method of Claim 16 wherein said aqueous dis-persion or emulsion has a solids content of about 5 to 60 percent by weight.
24. The method of Claim 22 wherein said polyurethane is crosslinked.
25. The method of Claim 16 wherein said polymeric resin is present in said web at a level of at least 70 percent by weight add on based upon the weight of the fibrous batt.
26. The method of claim 25 wherein said polymeric resin is present at a level of less than about 400 percent by weight add on based upon the weight of said fibers.
27. The method of claim 26 wherein said polymeric resin is present at a level of about 200 to 300 percent by weight add on based upon the weight of said fibrous batt.
28. The method of claim 16 wherein said impregnated fibrous web has a density of up to about 0.75 grams/cc.
29. The method of claim 28 wherein said impregnated fibrous web has a density of between about 0.4 to about 0.75 grams/cc.
CA000385081A 1980-09-18 1981-09-02 Impregnated non-woven sheet material and products produced therewith Expired CA1178138A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US06/188,329 US4376148A (en) 1980-09-18 1980-09-18 Impregnated non-woven sheet material with ionically solubilized resin
US188,330 1980-09-18
US06/188,330 US4342805A (en) 1980-09-18 1980-09-18 Simulated leather sheet material
US188,329 1980-09-18

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CA000452138A CA1178139A (en) 1980-09-18 1984-04-16 Impregnated non-woven sheet material and products produced therewith

Publications (1)

Publication Number Publication Date
CA1178138A true CA1178138A (en) 1984-11-20

Family

ID=26883967

Family Applications (1)

Application Number Title Priority Date Filing Date
CA000385081A Expired CA1178138A (en) 1980-09-18 1981-09-02 Impregnated non-woven sheet material and products produced therewith

Country Status (18)

Country Link
KR (1) KR880000927B1 (en)
AU (1) AU548660B2 (en)
CA (1) CA1178138A (en)
CH (1) CH664664A (en)
CS (1) CS241488B2 (en)
DE (1) DE3136790A1 (en)
DK (1) DK407781A (en)
ES (2) ES8300905A1 (en)
FI (1) FI71776C (en)
FR (1) FR2490256B1 (en)
GB (2) GB2099030B (en)
IT (1) IT1171537B (en)
LU (1) LU83641A1 (en)
NL (1) NL8104173A (en)
NO (1) NO854228L (en)
NZ (1) NZ198283A (en)
PL (1) PL233061A1 (en)
SE (1) SE452994B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3325163A1 (en) * 1982-07-14 1984-01-19 Norwood Ind Inc Impregnating with polyurethane polymers
US5273818A (en) * 1989-01-19 1993-12-28 General Electric Company Expanded fiber composite structure having a cylindrical shape and useful as a filter
EP0378854A1 (en) * 1989-01-19 1990-07-25 General Electric Company Expanded fiber composite structure and process for making said structure
GB2272707A (en) * 1992-11-21 1994-05-25 Tenmat Ltd Improved composite bearing materials
DE19737864A1 (en) * 1997-08-29 1999-03-04 Emfisint Automotive S A Polymer-impregnated textile fabric and process for its preparation
US6716776B2 (en) 1999-05-13 2004-04-06 Teijin Limited Nonwoven fabric made from filaments and artificial leather containing it
EP1054096B1 (en) * 1999-05-19 2004-09-15 Teijin Limited Nonwoven fabric made from filaments and artificial leather containing it

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL287476A (en) * 1962-01-05
US4171391A (en) * 1978-09-07 1979-10-16 Wilmington Chemical Corporation Method of preparing composite sheet material

Also Published As

Publication number Publication date
PL233061A1 (en) 1982-09-13
FR2490256B1 (en) 1985-02-08
GB2099030A (en) 1982-12-01
ES511448A0 (en) 1983-04-16
IT8149314D0 (en) 1981-09-17
FI71776B (en) 1986-10-31
CS241488B2 (en) 1986-03-13
CH664664A (en) 1988-03-31
FI812909L (en) 1982-03-19
NO854228L (en) 1982-03-19
ES511448D0 (en)
CA1178138A1 (en)
SE452994B (en) 1988-01-04
GB2099030B (en) 1985-06-19
NL8104173A (en) 1982-04-16
LU83641A1 (en) 1982-01-21
NZ198283A (en) 1984-07-31
FI71776C (en) 1987-02-09
KR880000927B1 (en) 1988-05-31
SE8105448L (en) 1982-03-19
KR830007951A (en) 1983-11-09
IT1171537B (en) 1987-06-10
ES505570A0 (en) 1982-11-01
ES8300905A1 (en) 1982-11-01
AU7518081A (en) 1982-03-25
GB2085043B (en) 1985-06-12
DE3136790A1 (en) 1982-05-19
FR2490256A1 (en) 1982-03-19
GB2085043A (en) 1982-04-21
ES505570D0 (en)
FI812909A (en)
ES8305628A1 (en) 1983-04-16
AU548660B2 (en) 1986-01-02
DK407781A (en) 1982-03-19

Similar Documents

Publication Publication Date Title
US3284274A (en) Cellular polymeric sheet material and method of making same
US3178310A (en) Aqueous polyurethane coating emulsions
EP0090397B1 (en) Ultrafine fiber entangled sheet and method of producing the same
US3634184A (en) Elastomeric film and products therefrom
CN1095899C (en) Manufacturing process for leather-like sheet
DE60031733T2 (en) Artificial leather sheet substrate and process for its preparation
EP0158721B1 (en) Method for making a flocked textile fabric, and flexible textile fabric
DE60103999T2 (en) A method for producing a wet-laid nonwoven
US2464301A (en) Textile fibrous product
US4587142A (en) Artificial grain leather
EP0125494B1 (en) Entangled fibrous mat having good elasticity and production thereof
US4342801A (en) Suede-like sheet material
US4154885A (en) Nonwoven fabric of good draping qualities and method of manufacturing same
US3661674A (en) Method for the manufacture of flexible sheet materials
EP1041191B1 (en) Process for producing a leather-like sheet
EP1268919B1 (en) Finish of textile fibres, tissues and fabrics
US4612228A (en) Ultrafine fiber entangled sheet
JP4570964B2 (en) The method for producing a synthetic leather and synthetic leather produced therefrom
US3496001A (en) Method of producing suede-like synthetic leathers
CN102016077B (en) Split leather product and manufacturing method therefor
EP0367739B1 (en) Foam coating of press fabrics to achieve a controlled void volume
JP2530589B2 (en) Nonwoven sheet - DOO treatment methods and the resulting product
US3348963A (en) Method of producing gas-permeable elastic polyurethane films
US4833012A (en) Fiber entanglements and method of producing same
EP1387995B1 (en) Method for producing temperature-regulating surfaces with phase change material

Legal Events

Date Code Title Description
MKEX Expiry