CA1173168A - Serial transmission system for use in postage meters - Google Patents

Serial transmission system for use in postage meters

Info

Publication number
CA1173168A
CA1173168A CA000433731A CA433731A CA1173168A CA 1173168 A CA1173168 A CA 1173168A CA 000433731 A CA000433731 A CA 000433731A CA 433731 A CA433731 A CA 433731A CA 1173168 A CA1173168 A CA 1173168A
Authority
CA
Canada
Prior art keywords
line
terminal
bit
message
meter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CA000433731A
Other languages
French (fr)
Inventor
Alton B. Eckert
John H. Soderberg
Robert B. Mcfiggans
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pitney Bowes Inc
Original Assignee
Pitney Bowes Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US06/089,413 external-priority patent/US4301507A/en
Application filed by Pitney Bowes Inc filed Critical Pitney Bowes Inc
Priority to CA000433731A priority Critical patent/CA1173168A/en
Application granted granted Critical
Publication of CA1173168A publication Critical patent/CA1173168A/en
Expired legal-status Critical Current

Links

Abstract

ABSTRACT OF THE DISCLOSURE

A transmission system linking units of an electronic postal meter. The meter includes a control unit, an accounting unit and a printing unit, each incorporating a CPU having a separate crystal controlled clock. Communication between the units is serial character asynchronous, bit synchronous, in message form, with the bits of the messages being timed in accordance with a given schedule for synchronous control. The messages themselves, upon receipt by a receiver, are returned bit by bit to the transmitter, for checking, whereupon the transmitter sends a no-error pulse upon successful comparison of the transmitted message and the message received from the receiver. All control and data signals utilize the same pair of conductors in each direction with precisely defined timing for control.

Description

11 7~ 8 This invention relates to a serial transmission system particularly useful with electronic postage meters ~f the type having a keyboard for the entry of postage to be printed, a display for displaying postage to be printed as well as other data, an electronic accounting device, and a printing mechanism.
Devices of this type are generally known, and are discussed, for example, in U.S. Patent No. 3,978,457.
This patent discloses a system for a postal meter including a Xeyboard for the manual introduction of data corresponding to the postage to be printed.
This application is a divisionai application of Canadian application Serial No. 363,541, filed October 29.
1980.
In prior devices of the general category including electronlc postal meter operation, lt has been found deslrable to employ one or more microprocessors to control varlous meter functions and operatlons. For security reasons, all data relating to accounting may be maintained separately from other data relating to nonsscure information.
By séparate maintenance of secure data it is therefore possible to improve security while employing concepts of distributed processing by the use of multip~e processors.
The use of multipls processlng in a secure environment places stringent requirements on error rate in interprocessor communications, which requirements must bs satisfied in order to have successful operation. It is further desired to provide a system of this type which can easily subrogate its control authority to an external unit, thereby allowing substantial]y one hundred percent control of meter function to be transferred to an external device, without any change in system hardware. In additicn, the use of electronics in postal meters allows the mg/~ - 2 -1:17;3168 capability of greater sophistication in automatic recharging the accounting registers without the need for operating personnel It is a desirable feature of any meter therefora to provide improved methods of detecting tampering and performing self-diagnostic error checking.
It is a feature of the present invention to provide an interprocessor communication system which will minimize error as a result of multiple processor inter-communication.
The foregoing objects are achieved in accordance with the present invention by the provision of a serial transmission system comprising first and second terminals each having a transmitter coupled to a send line and a receiver coupled to a receive line, the transmitter line of each terminal being coupled to the receive line of the other terminal, each terminal comprising means applying a given signal level to its respective send line, each terminal comprising means responsive to the given signal level at its respective receive line for enabling the respective transmitter to change the level of its send line and then transmit messages asynchronously on the respective send line, the terminals being responsive to levels other than the given level at their respective receive lines for inhibiting transmission.
In a preferred embodiment of the invention, the postal meter is provided with three units, which although mechanically connected together, are each provided with a CP~, and are each provided with a crystal controlled clock.
In accordance with the invention, the frequencies of the clocks of the different units need not be identical, and the communication between the units is by way of serial messages that are asynchronously transmitted and received.

The format of the messages, and the timing of the bits in mg/j - 3 -~1731~8 different units is precisely set, however, to insure that messages may be sent and received without the necessity for synchronizing the different units. In addition, upon receipt of the first bits of a message from a transmitting unit, the received bits are retransmitted by the receiver back to the transmitter for comparison, to enable the transmitter to send a no error within a minimum period of time following the complete message transmission, verifying the correctness of the message as sent and received.
All control and data signals utilize the same pair of conductors in each direction with precisely defined timing for control.
For providing external control, the control flow is in one direction and information flow in the other direction.
All control of the meter and all information inside the meter can be controlled by connection through an interface connector. All functions performed by the meter are controllable electrically from a remote location, except purely local manual functions such as power on and date change. This results from the communication capability of the data units. The organization of the three units results from a flow of commands or control of data from the control unit to the accounting unit and then to the printer unit, for example, relating to a new value of postage and where it is to be set. The flow of information is in the opposite direction, such as, for example, a current register value or the like. Within this concept, connection of an external device, such as an electronic scale, to the control - 30 unit can operate to place commands or data control instructions information into the meter.

mg/l '~ 4 ~ "
11731~8 ~ he interface operation allows the external device to take control of the meter, disabling the keyboard.
The external device can communicate messages with the display, thereby eliminating the need for a keyboard and display in the external device. One specific advantage of the foregoing arrangement is that the control unit may be physically replaced by the attached external operating device, without any changes in the accounting unit or the printing unit, either in hardware or software.
In order that the invention will be more clearly understood, it will now be disclosed in greater detail with reference to the accompanying drawings, wherein:

mg/~ - 5 -1~731~8 Fig. 1 is a simplified perspective view of a postal meter which may incorporate the system of the present invention;
Fig. 2 is an enlarged view of the panel of the postal meter of Fig. l;
Fig. 3 is a simplified block diagram of the orientation of the elements in accordance with a preferred embodiment of the invention;
Fig. 4 is a simplified diagram of the circuitry of a control unit for a postal meter in accardance with the invention;
Fig. 5 is a simplified diagram of a circuit for the accounting system of a postal meter in accordance with the invention;
Fig. 6 is a more detailed block diagram of a preferred embodiment of the control unit for a postal meter in accordance with the invention;
Fig. 7 is a circuit diagram of an opto-electric isolator that may be employed in thé present invention;
. Fig. 8 is a more detailed block diagram of a preferred embodiment of an accounting unit in accordance wi~.h the invention; and . Fig. 9 is a block diagram of a preferred embodiment of the electrical system of the printing unit of a postal meter in accordance with the invention.

1~731~8 Fig. 10 is a timing diagram illustratlng the re-co~unication operation of the invention~
Fig. 11 is a logic diagram illustrating trans-mission from the meter~
5Fig. 12 is a logic dlagram illustrating trans-mission to the meter~
Fig. 13 is a diagram illustrating multiple external devices daisy chained to the meter~
Fig. 14 is a sequential set of flowcharts 10illustrating the control unit operation~
Fig. lS is a sequential set of flowcharts illustrating the printing unit operation.
Fig. 16 is a sequential set of flowchar~s illustrating the accounting unit operation.

11731~8 .
~ eferring now to the drawings, and more in particular to Fig. 1, therein is illustrated a postage meter 20 removably affixed to a base 21, in accordance with one embodiment of the invention. In this arrangement, a slot 22 is provided between the postage meter 20 and the base 21 at the forward edge thereof, for receiving envelopes or the like and the printing of postage thereon. The postage meter is provided with a display panel 23, preferably an electronic display device, as well as a control panel 24 which may be organized in a manner to be disclosed in the following paragraphs. The apparatus may be energized by way of a supply cable 25.
The postage meter 20 illustrated in Fig. 1 may be of the type that is removable from the base 21, and the base 21 may be of the type disclosed, for example, in U.S. Patent No. 2,934,009, Bach et al., incorporating a mechanical drive for operation of the printing mechanism in the meter 20. The séparability o the meter and base renders the electronic meter compatible wlth conventional driving units, simplifies servicing of the device and, if necessary, simplifies transport of the meter for recharglng i remote charging capabilities are not employed.
The panel for the postage meter is more clearly illus-trated in Fig. 2, wherein it is seen that the meter is provided with a numeric display 30, for example, a conventional multiplexed seven-segment LED or LCD display. In addition, the keyboard is provided with numeric setting keys 31 and a decimal key 32 operative therewith, for setting the meter to print a desired amount of postage, the amount normally being displayed on the display 30. A clear key 33 may also be provided to clear the display amount in the event, for example, of an e~roneous entry. When the displayed amount has been set to 117;~1~8 the desired value, depression of a set postage key 34 effects setting of the print wheels for setting postage.
The panel may further be provided with a series of keys enabling the selective display of other values on the display 30. For example, depression of a key 35 may enable the display of the contents of an ascending register, i,e., the amount of postage issued by the meter, and depression of a key 36 may enable display of the contents of a descending register in the meter, i.e., the amount of postage for which the meter is still charged. Further keys 37-40 may enable display in a conventional manner of other specific specialized values such as the control or postage sum, piece count, batch value, and batch count, respectively. The batch value and batch count registers can be cleared by simultaneous depression of either batch value key or batch count key and the clear key C. The panel additionally preferably is provided with an LED 41 which will be lit upon each application of power to the meter, as is conventionally done at the beginning of a day, to indicate that the dater has not been set or that the dater door is open. A further LED display 42 may be provided and interconnected to be lit if necessary to reset the trip mechanism in the base before operatior. is to continue.
In order to provide recharging of the meter, for example, by way of the keyboard, the meter may be provided with a key slot 45 illustrated in Fig. 1, in which the key 46 of Fig. 2 may be inserted. The shaft of the lock may be visible through a window 47 to display the position of the key.
Thus, in the normal setting of the key this shaft may display the message operate as illustrated. This arrangement may also be employed for remote meter resetting, as discussed, for example, in U.S. Patent No. 4,097,923.
As a further feature, the meter may be provided with a service switch 50 at the rear thereof for the convenience of mg/ ~ g _ 13~731;~8 field service personnel enabling use of the keys of the meter for different functions. Upon operation of the switch 50, the keys 35 through 40 may thereby enable the display of ; additional values such as the unlock value, the low postage warning amount, the meter nùmber, diagnostic status, and the maximum settable amount. Turning the switch to an -enter combination-- position, as indicated in the window 47, while entering a correct coded combination in the keyboard, enables the recha.ging mode of the meter to be effective. In the charging mode, which may be attained by means of an internal switch lock controlled by the key 46, an -enter amount--position as shown by this message at the window 47, may enable entry of postage funds in the recharging value registers of the meter by way of the keyboard. Returning the key to the operate position enables the resumption of the use of the meter for printing postage.
The service switch may be in an unsecured position in the meter, since the display of the additional values rendered possible by the use of this switch doés not affect the security of the meter, and merely enables the display of further values.
The fact that it is these values that are being displayed may be shown by distinctive underlining of the display, if desired, and the operation of the service switch 50 partially disables the set postage key 34. It will then not be possible to set a new value of postage in the postage meter when it is in the -service-- mode and the interposer will act to block operation of the meter in the service mode. However, the set key may still be used to cause the display of the currently set value.
When the meter is in the service mode, i.e., with the switch 50 operated, and the switch 45 and key 46 are activated, the entry into the keyboard of a new value and a code indicating the function of that value, will enable the resetting of the A mg/ ~ 10 -~ 73168 unlock value, low warning postage amount or maximum settable amount, respectively. The "unlock" value is a determined value, for example, one dollar, including and above which the operator should be careful in setting so as to avoid accidental printing of excessive amounts. For this purpose, all values including and above the unlock value require an additional step on the part of the operator, such as an additional depression of the set postage key 34. The display may be provided with a distinctive indication, or example, one hori~ontal bar, to indicate that the printing wheels have been set but the unlock step, i.e;, the additional depression of the set postage key, has not been effected. The completion of the unlock step would be indicated by the display, for example, of three horizontal bars to indicate that the meter is enabled to be tripped, to print postage.
If the descending register does not contain sufficient fund~ to cover the set amount on the print wheels, the entire display may be caused to blink. On the other hand, if ~he value stored in the descending register is lower than the low ~0 postage warning limit, the decimal point may be caused .o blink~
The ~maximum settable" amount, of course, cannot be ~xceeded in the:setting o~ any postage.
The meter may also be provided with a "privi1eged~
swltch 51 that is normally held in the operate position by a seal. The operation of this switch, following the cutting of the seal, enables the recharging of the meter by post office personnel in a nonremote charging mode.
In addition, the meter is provided with one or more arithmetic function keys 52, enabling a variation of the ~O postage setting amount, such as the addition of further values to the already displayed setting value prior to the depression of the set switch 34. This feature enables the introduction ~173~8 ~y the operator of f~rther values, such as insurance or the like, without the necessity for manual calculation or calculation on a separate device.
The internal components of the postage meter in accordance with the invention are preferably oriented as illustrated in Fig. 3, and include a first compartment 55 that is physically secure, i.e., as secure as is reasonably possible to avoid tampering with internal components thereof.
While it may not be possible to provide 100% security in this o regard, physical evidence of tampering will be evident in any event before entry can be gained. The compartment 55 encloses the printing module 56, which may include a mechanical printing assembly, and if desired, a separate microcomputer for controlling this module.
L5 The compartment SS also encloses a further compartment 57, which is preferably electromagnetically shielded, and encloses an accounting module 58. The accounting module is connected to external devices, i.e., external of the compartment 57, only by optical or similar isolation couplers 59 as disclose~
in appllcant~8 Canadian Patent No. 1,077,17Y, issued May 1, 1980, in order to avoid damage theretor either accidental or intentional resulting from introduction of noise, for example, excess voltages into the accounting module. Such coupling is, of course, not provided for the energy source thereof, which extends to a power supply 60 in a separate compartment 61 also within the secure compartment 55. The power supply 60 is energized by way of a filter 62 within the compartment 61, to insure the absence of any voltage variations that would adversely affect the account-ns module, the power input to the compartment 61 being directed into the compartment 5S from a power supply system in a further compartment 63 that is preferably defined by the outer secure housing of the compartment 55. Thus, while it is not absolu~ely 731~
. .. .

necessary for all the elements within the compartment 63 to be physically secure, this feat~re is preferred.
The power from the mains plug 64 is fea into the compartment 63, from where it may be fed by way of a suitable connection 65 to power the meter base. The power for the metes may be fused in the compartment 63, by means of a fuse 66, applied from the fuse to a thermostat 67 and thence to a transient suppressor and filter 68. The thermostat inhibits application of voltage to the unit in the event of excess temperatures. Further protection for the system is provided by means of an isolation transormer 69 and an overvoltage cut-out device 70. The power or the meter is finally applied to an energy storage device 71, such as a large-valued capacitor 71, the capacitor 71 having adequate energy storage to enable the self-protection eatures of the meter to operate, such as to transfer data to a nonvolatile memory, in the event of a power failure. The reduction of voltage may be sensed by a sensor 72 in the secure housing 55, with one output of the sensor being directed to the accounting module for signaling the necessity of a mode change, and another output (which can be mechanical) for inhibiting further printing module functions.
A further output of the isolation transformer 69 may be ed externally of the meter to a control unit 75, and one of the isolated outputs of the accounting module may be directed through the chamber 63 also to the control unit. The control unit 75 may thus constitute a keyboard control unit such as illustrated in Fig. 2, including the key switches, displays, etc., necessary for local operation of the device. It is thus apparent that the system of Fig. 3 orients the elements of the postal meter so that elements which are less critical to the security of the postal meter system are provided with successively lower levels of physical ana electrical security.

~,~,, 1~ 731~8 A preferred embodiment of a control unit 75 is illustrated in Fig. 4. This unit, for versatility in design, as well as for minimizing the noncritical elements that must be isolated in the physically secure housing, preferably incorporates a central processing unit 80, for example, of the 6500 series, and connected by way of conventional data lines, control lines and address lines to a multipurpose conventional R~l/ROM I/O timer circuit 81 incorporating read-only memories, random access memories, timing control elements and input/output interface hardware.
By the use of suitable decoders 82, the keyboard 83 ~ay thereby be scanned in the conventional fashion, and by the use of suitable drivers 84 the visual display 85 may be energized, preferably in a multiplexing mode according to conventional practice. The data relating to the depression of any of the keys of the panel may thereby be communicated to the processing unit 80, for the development of a serial input/output on the lines 86 for communication with the accounting module 58 within the secure housing 55. The processor 80 and circuit 81 are responsive to the requirement for operator intervention to recock the trigger mechanism in the base, and the failure to open or close the dater door 28 (Fig. l) following application oE power to the unit, to energize selectively an indicator LED 87 corresponding to the indicators 42 and 41, respectively, of Fig. 2. The service switch 50 may also be connected to the circuit 81. If further input/output devices are coupled to the control unit, such as external display devices or control systems, these may be coupled to the unit by way of further input/output lines 88, preferably serial communication paths which may be suitably isolated by opto~electric isolators. The unit may comprise an internal power supply and regulator 89 connected to receive power from the postage meter low voltage power as shown in Fig. 3.
The above-discussed functions under the control of the control unit are thus functions which are not critical in the mg/ ~ - 14 -, ~.

1~73168 " , ~

sense that loss of control or the contents of any register therein will not result in loss to the post office department, or to the user, of funds. These functions have been relegated to the control unit in order that the secure portions of the postal meter include only that peogramming of the system which must be secure. Additional functions that may be effected by the control unit, such as the addition of sequentially entered amounts, may also be controlled by the program of the aontrol unit, since such calculations are not critical to the security of the apparatus, and need not be effected within the physically secure portions of the postal meter. Similarly, the service resettable functions may be effected by the programming in the control unit, since these functions also are not critical to the accounting system and eegisters themselves. However, to retain these parameters in nonvolatile memory, retention in the accounting unit is desirable.
It will, of course~ be apparent that, in a system such as shown in Fig. 4, further arithmetic keys may be provided, without great difficulty, such that the postage meter may be alternately employed also as a calculator.
Alternatively, the central processing unit and its control circuit may be augmented by a calculator chip or the like, connected to the keyboard and display for performing arithmetic functions.
While the control unlt of Fig. 4, including all of the functions of the panel shown in Fig. 2 is preferably disposed directly on the postage meter to form a part thereof, it will be apparent that this portion of this system may be physically separate therefrom, or separable therefrom, whereby the postage meter itself may incorporate only the elements that are required to be physically secure.

f~ ' ' 1~73168 Since monetary information and control is prevalent in the serial communication employed in the system, a high degree of integrity is mandatory. For this purpose, the system is designed, in the serial transmission communication sections, such that a transmitted bit is returned or "echoed" by~the receiver thereof for c~ecking purposes. If the transmitter th~reby~eeceives all of the echoed signals satisfactorily, it may,issue\a "no error" pulse, thereby informing the receiver of the information that the received information is valid.
The~ircuit arrangement of the accounting co~partment is shown in somewhat ~reater detail in Fig. S, ~herein the walls 90 of the compartment are illustrated as preferably forming an electromagnetic shield. The circuits include an accounting microcomputer 91 having a nonvolatile memory control 92 coupled thereto. The nonvolatile memory control ccntrols the application of stored data between a volatile memory, which may form a part of the accounting microcomputer 91 and a nonvolatile memory 93. The volatile memories, such as random access memories~
may function as working ascending registers, working descendin~
registers, ana the like. The accounting microcomputer also includes read-only memory control for the necessary accounting routines, as well as control routines. This unit may, in addition, incorporate serial interfaces, to enable its interfacin~
with the printing and control modules. The microco~puter may, for example, comprise the 8048 series microc4mputer from Intel Corporation, Santa Clara, California, with a control circuit in a manner similar to that described above with respect to the control unit 75. In order to avoid damage to the accounting module by electric surges applied accidentally or intentionally, and to eliminate e.ectrical noise induced via groundloops, the accounting microcomputer communicates with the devlces ext~rn~l .

of the compartment 57 by suitable isolators that are not capable of applying voltage surges to the microcomputer. These isolators may, for exampie, be in the form of opto-electronic couplers, and are also preferably arranged so as to be inaccessible from the exterior of the postal meter. One isolator unit 94 may be pcovided for the two-way communication path with the control unit.
A further isolator arrangement 95 may be provided for the two-way communication wltb the printer unit, i.e., the printing module 56 of Fig. 3, in particular, the microprocessor circuit thereof. A
still further isolator 96 may be provided for applying the power sen~ing signal5 to the mi¢rocomputer 9l. In addition, an isolator 97 may be provided foc controlling an lnterposer ~not shown~ in the prlnting module, for example, or mechanically blocking functions of the prlnter. Such a system i8 disclosed, for example, ln appllcant'~ patent appllcation Serial No.
346,655, flled February 2~, 1980.

The nonvolatile memory 93, at the present state of the art, is preferably in the form of an MNOS memory, which does not require a back-up power source. This memory may, however, alternatively be formed o elements which do require a power back-up, in which case a power control circuit may be employed to apply back-up power thereto external from the compartment 57.
The purpose o the power control circuit 9B is to provide power to the MNOS memory for the purpose of effecting its data transfer operation, essentially during power up and power down. The program of the microcomputinq unit 9l is organized to enter the contents of the registers of the computer units into the non-volatile memory as soon as any indlcation of failure of the power supply occurs, and to restore this data to the working registers upon restoration of the power.

11731~

The thermostat 67 in Fig. 3 cuts off power to the meter in the event of high or low temperature operation. This automatically places the meter in its power down cycle, as a result of the power cut-off.
The compartment 57 may further comprise a temperature sensor 99, with suitable circuits (not shown) coupled thereto, such as to the microcomputer, for transferring data to the nonvolatile memory in the event of excess temperatures. The system may further be operative to prevent the operation of the interposer solenoid by way of the isolator 97, in the event of excess temperatures. It will be appreciated that the interposer is controlled by the microcomputer 91 also to inhibit operation of the printer in the event that insufficient postage remains for a printin~ operation, or other accounting data indicates that the unit should not be operative.
While the isolators have been indicated as individual units, it is, of course, apparent that these units may incorporate multiple devices, so that two-way communication is established in the respective circuits. It is further noted that systems for the transfer of data between volatile and nonvolatile memories are well known, and are di6closed, for example, in applicant's Canadl~n Patent No. 1,119,730, issued March 9, 1982.
Referring now to Fig. 6, therein is illustrated in greater detail a block diagram of a preferred embodiment of a control unit in accordance with the invention. In this figure the blocks have been identified by part numbers and terminals where applicable. This unit is illustrated as incorporating a type 6503 CPU 100 having its data and address lines coupled to RAM/ROM 1/0 timer circuit 101 as well as to a type 2716 PROM 102, the PROM 102 having stored therein the program for the control unit. Control lines, such as the interrupt line and read/write line may also be connected to the circuit 101. The circuit 101 has a plurality of ports, as will be discussed.
The control unit further incorporates the keyboard 103 including the numeric keys 31, the display keys 35-40, and the three-position switch 45 shown in Fig. l. This unit also includes the add-through key 52 and the set postage key 34. All of these keys ana switches are connected in a matrix to the circuit lOl,in a conventional manner, to permit the scanning of the keys and switches in accordance with the program, to detect a key or switch closure. The eight-line port A, as well as four lines of port B of the circuit lOl, are also connected to the seven-segment display panel 104 for multiplexed display in the conventional manner. The circuit 101 is further connected by a pair of serial ports for communication to and from the accounting unit. In addition, a pair of further serial ports enable communication to and from external devices, by way of opto-electric isolators 107 and 108, respectively. Another output port of the adaptor is connected to LED lO9 for indicating on the display panel that the dater door has not been closed. A further output port is con-nected to an LED 110 on the display panel for indicating that the operator's intervention is required to recock the trigger mechanism on the base. Finally, another port is coupled to the service switch 50, to enable the functions of the postal meter in the service mode.
In the preferred embodiment of the invention, the,program of the control unit is directed to servicing of the keyboard unit, display panel, etc., so that the control functions and storage of data are effected primarily in the accounting unit. The program thereby includes those functions necessary for the scanning of the keyboard, multiple~ing of the display, ormatting of signals for communication with the othe~ units, and with external devices, etc., so that any new information may be passed on to the accounting unit.

.~

1~"73168 A typical opto-electric isolator is shown in Fig 7, this constituting primarily a conventional 6N136 device 115 including a solid state emitter for producing optical signals for reception by a photodiode~ t~e photodiode being connected in the base circuit of a transistor amplifier.
A block diagram of a preferred example of the accounting unit is illustrated in Fig. 8, wherein a type 8039 CPU 120 is shown to communicate with the control unit by way of opto-electric isolators 121 and 122, and to communicate serially with the printer unit by way of opto-electric isolators 123 and 124. The opto-electric isolators 121 and 122 within the accounting unit thus may pe( connected directly to the corresponding leads of the control unit. The isolators 123 and 12i may be connected directly to the printer unit signal channels, since no further isolation devices are necessary for this purpose. In addition, a control opto-electric isolator 125, for controlling an interposer or the like in the printing unit~may be connected to a further port of the CPU 120. Signals corresponding to a pending power faîlure are further fed to the interrupt port of the CPU 120, by way of opto-electric isolator 126. It is thus apparent that~ata and control signals to and from the accounting unit must be dlrected by way of opto-electric isolators, in order to insure the electrical and physical integrity of this unit. The accounting unit further includes a plurality of PROMs 127 coupled to the address and data lines o~ the CPU 120, each PROM 127,for example, being a E-PROM
type 8755. This unit is connected to an electrically alterable read-only memory ~EAROM3 128~ for example, a type ER 3400, serving as a nonvolatile memory to store data at times during which the power supply to the postage meter has failed, or has been inten-tionally disconnected. ~he working memory for the accounting system, including the registers for storing all operational data, 1~73~
are provided in the CPU 120, this data being transferred to the electrically alterable ROM 128 at such time that a reduction Of power is sensed. In order to insure the complete transfer of data, storage capacitors may be connected m a conventional manner to store adequate power to insure the proper functioning of the circuit until the transfer of data has been effected.
A preferred example of the circuit of the printing unit is illustrated in Fig. 9, this circuit consisting primarily of the CPU 130, for example, a type 8748-8, the CPU being connected by way of suitable buffers where necessary, to the I/O devices within the printing unit itself. The me-chanical and opto-electric sensing systems in the printing unit are conventionaland may be generally of the type disclosed, for exa~ple, in U.S.
Patent No. 4,050,374 and aforementioned copending application Serial No. 346,655. Thus, the CPU i8 connected to a plurality of opto-electric senBor~ (not shown) for sensing of the positioning of the prlnt wheels, these lines also being connected to enable the sen~ing of the privileged access switch 51 of Pig. 2, The privileged access switch 51 is located within the printing unit and i8 accessible only by way of a door sealed by the post office. These lines of the CPU are further connected to sense the position of the dater door, the dater door switch and privileged access switch being strobed by way of a further output of the CPU 130. The LEDs for the optical sensors are 2s strobed at the proper times by way of another output of the CPU
130, and still further outputs of the CPU enable the stepping of the bank and digit stepping motors for ~he print wheels. In addition, the CPU 130 has a pair of ports for serially communi-cating to and from the accounting unit. Further, the interposer output from the accounting unit and another output of the CPU
130 control a pair of transistors 131 for energizing the interposer . . . 1173168 solenold, whereby the interposer solenoid 153 is not energized until all the precondltionY are met both in the accounting unit and the printing unit. As a result, a printing cycle cannot commence unless the physical and electrical conditions in the meter are correct for normal printin~. In the printing unit, it is theref~re ev~dent that the program is provide~
within the CPU itself.
Postal meters o~ the above-described form may be provided with several modificatlon~. For example, ln one modific2tion a remote charging featureis ava-~labl~
whereby the key is provided for operation of the three-position charging switch on the keyboard. The operator of the unit may thus be provided with asuitable combination for entry into the kçyboard, to enable remote charginq li.e., away from the post ofice)~ In such unlts the privileged access switch is omitted.
In a further modiication, the three-position recharging switch on the keypoard may be controlled by ~ 3imple knob, without the necessity o~ a key. In thls type of a system, the meter may be manually ~echarged at the post offlce, but the service functicn~ may be efected locally in a manner similar to ~hat of remote ~echarging system type units.
In other words, recharging of a postal meter of the above type can be effected locally, 1~ devices are provided with a key for the three-position switah, in wh~ch event further security 25 i6 re~uired a~ will be discussed later. On the other hand, in postal meter6 having a simple knob switch lnstead of the key switch, the "privlleged access~, sealed at the post office, ls provlded for manual recha~glng.
In the normal mode of operation of the 6ystem, as above discussed, the s~x display keys, when depressed, efect the display on the display panel of the ~lx parameters above noted, ll'Y31~B
i.e.,~the total in the ascending register of all postage that has been printed, the total remaining in the descending register of postage available, the control sum, the total number of printing operations of the meter, the value of postage printed and the number of pieces that have been printed since the last batch clear operation of the associated registers. The depression of these keys results only in the number of concern being displayed for a timed period after the key is released, for example, two seconds following which the display will return to the postage setting In either type of meter, if the service switch is placed in the service position, with the three-position switch still in the operate position, the display function of the display keys will be different. Thus, depression of the "postage used" key 1~ 35 will now result in a display of the current value set in the dollar unlock register in the machine, at or above which an operator cannot print postage. Postage values above this value require an additional depression of the set postage key for operation, in order to avoid accidental printing of excessive postage values. Depre~sion of the "postage unused" key 36 will now result in a display of the value in the low postage warning register at which a warning should ~e given that the contents of the descending register are below a determined amount. Depression of the control or'postage sum" key 37 will now result in the display of the serial number of the postal meter. Depression of the "piece count" key 38 will now result in a display of the diagnostic status of the meter. This display provides an indication to the serviceman of possible malfunctions . A
depression of the "batch value" key 39 will now result in a display of the maximum settable amount, i.e., the maximum amount set internally within the meter, above which the meter cannot set the print registers. Depression of the "batch count" key 40 w111 h~ve no effect in the service mode.

11731`68 The three-position switch is used to effect recharging of the meter or to effect the change of values in the registers concerned with dollar unlock value, the low postage warning amount and the maximum settable amount.
With the remote recharging feature, positioning the three-position switch in either the enter combination or enter amount-- positions enables the customer to enter a combination or amount respectively into the meter via the keyboard with indication on the display. When the three-position switch is controlled to leave this position, the display value is entered into the accounting unit and the display is blanked for the next entry. Return of the three-position switch to the operate position will cause the accounting unit to complete the recharging routine and return the meter to normal usage with the recharging amount added to the postage unused register. The combination for the remote recharging feature is obtained from a remote data center and is a random or pseudorandom number which changes with each recharging for security reasons.
For meters with the manual recharging feature, the recharging mode is effected by breaking the seal of the privileged access door, and flipping of the privileged access switch. The same sequence of operations of the three-position switch described above for recharging the meter are followed as in those meters having the remote charging feature. In the manual recharging system machine only post office personnel are permitted to effect the change. The combination is a fixed number known only to the post office and is stored within the meter. Normal operation of the meter may proceed once the privileged access switch has been returned to its operate position.

m~ 24 -~731~8 To change values in the registers concerned with the dollar unlock value, the low postage warning amount and the maximum settable amount, the serviceman would place the meter in the service mode by placing the service switch in the service position. The three-position switch is used as described above for the entry of combination and amount values. The meter will interpret the combination value to indicate which register is to be changed.
For the remote recharging system meter and the manual recharging system meter, if an error has been made in entry, the occurrence of this error will be deemed to constitute evidence of tampering with the machine. When a determined number of such errors have been made, for example, nine, since the last setting of the meter, then the function of the machine in recharging postage will be inhibited.
The return of the meter to operating status in such circumstances may be effected at the post office. A discussion of the means to return the meter to full operating status is not of consequence to the present invention and relates to the security of the meter.
As above discussed, each of the three units of the postal meter has a microprocessor with a read-only memory defining a given program, and the communication between the unlts is effected serially and asynchronously. This is achieved in the first place by providing each of the computer systems with a crystal-controlled clock. Further, the signals are defined such that the transitions thereof are closely controlled, whereby it is insured that, if a signal is present, it must be present within a given time period.
As a still further insurance of the correctness of communication, the bits of a signal are returned to a transmitter as soon as they are received, for error chec~ing at the transmitter, whereby mg/ ~ - 25 -li~31~i8 a "no error" bit may be transmitted ilNmediately following a data message i~ the data has followed correctly.
The program of the control unit responds to the status ~f the postal meter with respect to determined parameters.
S A register in the microprocessor of the accounting unit holds meter status information, for example, of two bytes, the bits of which digitally indicate if the meter trip mechanism requires recocking, if the dater door has not been opened following the last application of power or i9 presently open, if there are insufficient funds to allow printing of the amount set in the print wheels, if the low postage value has been reachea, if the meter is in a service mode, if the meter is enabled, if the batch registers are clear, if a trip has been completed, or if variou$ types of errors have occurred. The lS status message associated with these bit8 is not the same as the diagnostic message noted above that is employed in the service m~de. The accounting unit ~eeps the control unit informed of the current status by transmitting a fitatus message to the control unit after power has ~een turned on and, thereafter, whenever a change in status occurs. The control unit responds to all such me~sages by insuring that the display on the meter is consistent with the status message a~ above discussed. These later steps may include, for example, the display of a row of decimals in the event of certain errors, the flashing of the decimal point in the event of low postage funds, the flashing of the entire diRplay in the event of in~ufficient postage, and the displaying of underscores in the place of blanks if the meter is in the service mode.
An interrupt program in the control unit interrupts the main program of the control unit at regular intervals in order ~, . .

~17316~3 to scan the key~oard and keyswitch, and to drive the display.
In ord~r to prevent the display of spurious characters which can be produced by snea~ currents when more than one key i8 pressed, the interrupt program will cause the display to go s blank instead. Such values as relate to time, keyboard, and keyswitch are maintained by the interrupt program for use by the main controller program.
The main program for the control unit includes the initializing steps, program steps for the transfer of messages back and forth between the accounting unit and external devices, control of the timed display, the checking of the status message to insure that dater door and reset base lights are lit in accordance with the status, responding to the reported positions of keys, and the three-position switch to ascertain lS change~ of state therein so that the control unit subroutine which corresponds to the function defined for such a state or change o ~tate will be executed.
The program of the accounting unit includes initiali~ation procedures to insure that the working registers are brought up to date, and that no postage has been printed that has not been accounted for, a~ well as a power down proces~ing program to efect the transfer of data to the nonvolatile (electrically alterable) memory in the event that the power is shut down or is failing.
The main program of the accounting unit effects the transmission o the meter status message to the control unit upon request or change in status, determines the effect of any currently entered postage value on the funding data currently registered and makes any necessary varlations in the status message. The main program also controls the timing in the accounting unit for Feceiving messages from the control unit and the printer. The accounting unit program further 117316~3 includes subroutines for processing o~ signals in the bringing of the registers up to date when postage is to be printed, and for controlling the operation of the system when the meter is tripped. A further subroutine controls the bringing of the meter status message up to ~ate. In addition an error checking routine which involves cyclical redundancy checklng is programmed in the accounting unit software. ~rhis will be described in further detail below.
The program of the printer unit includes a main program having initializing steps, steps for scanning the sensors and controlling the strobes for the LEDs of the sensors, and the processing of messages for communication with the accounting system. Subroutines are provided for the setting of the postage wheels, to determine if sensor readings are proper, and ~o determine if any changes have been made in the outputs of the various hardware sensors and switches such as the privileged access and the dater door switch.

~173~8 Wlth respect to the p~ogx~m for setting the display unlock value, maximum ~ettable amount and low postage amount, as discussed above, the keys effectlve for such setting in the above-described manner are matrixed ln 5 the keyboard and ~canned periodically to determlne lf a change in the status has been effected. The scanning positio~ also occur~ with respect to the servlce switch, in the control unit, whereby the control of any of the keys and switche~ is communlcated to the accounting unit for storage therein and proces~ing. For example, if the service ~witch is set t~ lts ON po~ltion, then the scanning, which is also effective with respe~t to the three-position switch, enables as a display routine,to enter comblnation routine or enter amount routine, in dependence lS upon the position of the three-position switch.
In the display sub-routine, the data in a register corresponding to a depressed display ~ey is sent to the control unit for display. In the enter combination sub-routine, the next entry into the ~eyboard i8 stored, so that the value entered into the keyboard when the three-position switch has been turned to the enter amount position will be entered into the corresponding register in the CPU
of the ~ccounting un~t, whereby the thus entered value will be effective in future operatlon of the machine in normal operating procedures. It is~ of course, apparent that the testing of the set values during normal operation i5 effectively made with respect to a value range, for example, a range of postage values less than or greater than the ~tored amount, so that the necessary indlcation .
A

- 1:173168 can be given. The term "indication" as employed in this sense refers to the display. When the entexed postaye value exceeds the maximum setta~le amount, the entered value is ignored, and the display returns to its original postal value. The service settable features as above disclosed may also be considered to effect the control of the postal meter to different states, such as a non-operatiVe state~ when the maximum settable value has been exceeded, a low value warning state when the low value ind~cation is flashing, and a dollar unlock value state reguiring an additlonal depression of the set key when the amount set in the display exceeds this stored value.

3~
With further respect to system diagnostics, b~iefly referred to above, two ~sic error checks are provided in the software routine of the meter. These two checks are termed fatal and proc~dural, respectively. Under the 'i category of fatal error checks, two sub-categories are defined. These two sub-categories are termed hard and soft, respectively. Hard errors are determined by monitoring hard-wa~e sensors, such as the bank and digit select sensors, interposer position sensors, shutter bar sensor, and the like.
A failure of these sensors to provide proper readings will be termed a fat~l ha~d error; will lock up the meter and will be non-recoverable upon power-up. Central authority inter-vention will be required to permit further operation of the meter.
~5 Another exa~ple of a fatal harderror is a resulting non-compare from a c~clic redundancy check. Each data register is continually monitored. Using standard poly-nomial techniques, a cyclical redundancy remainder is calculated for each updated data register value. When a power-down cycle is initiated;the contents of each data register and its associated cyclical redundancy remainder is transfexred to non-volatile memory. Upon power-up, the cyclical redundancy remainder of each data regi6ter is again calculated and compared to the cyclical remainder previously calculated upon power-down. A non-compare will produce a fatal hard error.
Fatal soft errors relate to the intercommunication capability of the meter units. Thus, communication errors between internal units such as the accounting, printer and ` 11731`~8 control units will be sensed, based upon the bit retransmission previously described. In additon, communication time-out functions are provided, so that the failure of a unit to communicate within a specified period will also produce a soft fatal error. Soft fatal errors will block meter operation.
Unblocking can be effected by recycling the meter; that is to say, the meter is turned off, then on again, thereby causing recycling and clearing the error. The power recycling will be counted in a data register and, as noted above, upon reaching a predetermined number, could cause total lock up if desired.
In other words, a predetermined number of soft fatal errors equals a single hard fatal error.
Procedural errors,such as improper (high) value entries, or an attempted improper procedure, manifest themselves as visual flags on the display.
Other diagnostic checks, as well as variations as set forth above, may be easily accommodated within the software routines implemented herein.
By allowing data to be communicated between units on a message basis, serially, and by employing the "echo"
technique previously described, the implementation of the fore-going error checking capability is achieved expeditiously.

jrc~ 32 -As above discussed, the inter-unit communication is serial channel, bit synchronous, character asynchronous, start/stop communication, for example at 9600 baud. The communication is solely on the basis of messages, i.e., separate control lines are not provided between the units for control of the communications. This type of communication is also provided for with respect to communications between the control units and external devices. The messages are 10 bits long, each including a start bit followed by an 8-bit word, or byte, and terminating with a stop bit. The last stop bit of a message has a sense opposite to that of all other stop bits of the message, in order to indicate the end of the message. A logical zero is indicative of a start bit, an end of message bit, and a data zero or low. A logical one is provided for a request to send, a clear to send, an end of byte, a data one level, and also serves as a no-error pulse. The first word of any message has a coded two-bit field stating whether the message contains information, data or control functions. Another bit of the first word indicates whether or not the message concerns the display only, or if it only concerns the accounting unit. The remainder of the bits of the first word are specific message identification bits.

mg/y,~ - 33 -" ~ , 1:1731~8 .

If the messages have more then one word, the second word of the message may contain a format byte, ~onsisting of two nibble5/ i.e., four-bit groups. The fir9t nibble tells the number of nibbles of data in the message, and the second nibble gives th~ number of digits to the right of the decimal point of the data, or corresponds to a hexadecimal F if there is no decimal point.
When a message is ready to be sent by a unit, the receive line of the unit i5 first tested. If it is low then the transmitting device raises its send line to a high, and again tests the receive line. If it is still low, the unit is free to transmit, otherwise, it must become a receiver.
This avoids contention between two units. With respect to units of the postage meter itself, the programs of the diffexent units, in the event of possible contention, give priority to the printer unit,accounting unit, control unit or external device in descending order. When external devices are interconnected with the postage meter, i.e., to the control unit, the control unit is given priority.
The timing of the messages constitutes the crux of the communication system whereby the messages may be asynchronous.
Typical timing is thus illustrated in Fig. 10, which illustrates the relative timing of the lines of the transmitter for sending a given message, and of the lines of a receiver for receiving the same message. Since the transmitter output line is the same as the receiver input line, it will be evident that these two signal lines are identical. The same is true, of course, with respect to the transmitter input line and the receiver output line.

In a successful transmission system of this type, the ~173168 transmitter tests its input line at time tl and, if a low is detected, raises its output line to a high within 50 micro-seconds, as shown at t2. The transmitter then again tests its input line at time t3 within 50-100 microseconds. If the input line is still at a low, then the transmitter can start to send its message at time t5 following a minimum wait of 120 microseconds, by the lowering of this output line to form the start bit of the message. In the meantime, at time t4 the receiver has raised its output line to a high level in a minimum of 100 microseconds, indicating it is ready to receive data. This indicates a '-clear to send"
condition. The timing between the succeeding bytes of a multibyte message, as indicated by the time interval between t5 and t5' is 1134.375 microseconds minimum, in order to insure that the receiver has been enabled to effect proper reception and storage o~ the signals.
The time from the beginning of the last message byte t5' to the transmission of a no-error pulse at time t7 is set at 1031.25 to 1157.291 microseconds, and the no-error pulse has a width from 309.375 microsecondsto 368.228 microseconds. The receiver must test for the occurrence of a no-error pulse at time t8 from 1187.291 to 1340.625 microseconds after the initiation of the start pulse of the last byte of the message. The transmitter bit transitions must be in accordance with table I, and the receiver sampling of the data and stop bits must be in accordance with the timing illustrated in table II.

mg/~ 35 -., 1173:1~8 .
r~

TABLE I
n BIT MINIMUM MAXIMUM
_
2 DATA 1 103.125 1~5.208
3 DATA 2 206.250 210.417
4 DATA 3 3~9.375 315.625 DATA 4 412.500 42~.833 6 DATA 5 515.625 526.042 7 DATA 6 618.750 6~1.250 8 DATA 7 721.875 7~6.458 9 DATA 8 8~5.~00 341.667 STOP 928.125 946.875 TABLE II
n BIT MINIMUM

2 Dl 115.2~8 3 D2 22~.416 4 D3 325.624 D4 43~.832 6 D5 536.~40 7 D6 641.248 8 D7 746.456 9 D8 851.664 1~ STOP 956.872 With the above timing, and the use of crystal control for the clock of each of the unit* asynchronous transmission is thereby feasible so that control leads for this purpose between the units are ~nnecessary.
Further, in accordance with the invention, in order to insure that the informat~on is correctly received by the receiver without error, the data is sequentially returned to the transmitter on the receiver output line. The times for the retransmission of the data, from the beginning of the instruction loop detecting start bit, are given in table III, and the times for sampling this data on the input line to the transmitter are given in table IV.
If, and only if,the received data at the transmitter is the same as the sent data, will the no-error pulse be transmitted 11731~8 at the end of the message, As a further control over the message communication, the transmitter will wait for 3.5 milliseconds for a clear to send signal from the receiver after presenting a request to send transmission, and similarly, the receiver will wait for about 3.5 milliseconds maximum for the start of a m,essage ater presenting the clearlto send message.' Conten-tion between units is further minimized by setting determined periods that must be existçnt between adjacent transmitter activity of a u~it, as well a~ between adjacent recçivers.

. ' TABLE III
. n ~ BITMINIUUM MAXIMUM*

1 START32.083 73.125 2 Dl137.292 176.25p i5 3 D2242.500 279.375 4, D3347.708 382.500 D4452.917 485.62S
6 ' D5558.125 588.750 . ' , 7 ' 'D6663.333 691.8?5 ' 8 D7768.542 795.000 ; 9 D8873.750 898.125 STOP978.~58 1001.250 *Allows lp microseconds for program loop , uncertainty in detecting start pulse. If uncertainty is greater than lp microseconds the . excess should be subtracted from each maximum value.
TABLE IV
, n BIT MINIMUM MAXIMUM

1 START 103.125 135.208 2 ' Dl 206.25p 240.416 3 D2 309.375 345.625 4 D3 412.S00 450.833 . D4 515.625 556.041 '6 D5 ,618.750 661.250 7 D6 721.875 766.458 8 , ' D7 825.0~0 871.667 9 D8 928.125 976.875 . STOP 1031.250 1082.083 .

~ .
, t~

1~73168 .. . .

All control and data signals utilize the same pair of conductors in each direction with precisely defined timing for control.
For providing external control, the control flow is in one direction and information flow in the other direction.
All control of the meter and all information inside the meter can be controlled by connection through an interface connector along lines 88, Fig. 4. ~11 functions performed by the meter are controllable electrically from a remote location, except purely local manual functions such as power on and date change. This results from the communication capability of the data units. The software routine will scan for the presence o an external control device, and permit subrogation of control to such external device upon recognition of its validity.
The organization of the three units ~esults in a flow of commands or control of data from the control unit to the accounting unit and then to the printer ~nlt. A new value of postage, and where it is to be set, is one example of such data and command. Thé flow of information is in the opposite direction, such as a current register value of the like.
Within this concept, connection of an external device, such as an electronic scale into the control unit, can operate to place commands or data control instruction information into the meter.
The interface operation allows the external device to take control of the meter, including the disabling o the keyboard of the control unit, if desired. The external device interaces with the meter on a message basis. The external device can send messages to be displayed, or can send messages requesting the contents of the display. The control unit programming will permit the external device to send a message disabling ;, .

11731~

the keyboard, thereby implementing the subrogation function.
One specific advantage of the foregoing arrangement is that the control unit may be physically replaced by an attached external operating device, without any changes in the acccunting unit or the printing unit, either in hardware or software.
The external device can include a plurality of operating devices, such as a scale and a remote display. The control unit microprocessor can be used to function as a message buffer to allow for flexibility in the development and use of external devices. External devices may include weighers, displays, or other type of device normally interfacing with meters of the type disclosed herein. The software provided in the control unit can be implemented for this function. As shown in Fig. 11, an external device 150 may be used to replace or supplement the control unit function. The external device 150 is preferably coupled through a connector 152, which may be a standard nine-p~n connector, to the meter control unit 154, and receives messages from the meter unit 156. The schematic illustration o~ the meter unit 156 includes the accounting unit and the printing unit, a~ previously described. The control unit includes communication buffers 158 which will logically direct communication from the meter unit 156 to the external device 150 or locally to the control unit 154. The opposite effect is ~hown in Fig. 12, wherein external devices may communicate with the unit through the communications buffer. The effect i6 similar in that the buffer will receive messages from either the external device 150 or locally from the control unit 154.

In Fig. 13 a plurality of external devices 164 are shown, interfaced through the control unit 154 into the meter unit. Each external unit may be provided with its own control key for initiation of messages. Each external device could ~ 731613 include a communication buffer as part of its software to permit operation of the external devices in a daisy chain manner. Appropriate messages can include complete subrogation of the control unit logic to the external device.
The control unit programming is designed to permit such operation.
Regarding external device operation, information flows in two directions, either inbound towards the meter or outbound towards the external device. Control signals and requests, defined generally as controls, flow inbound towards the meter.
Informational data flows outbound. Normally, on the inbound leg controls originate in the control unit. However, in accordance wi~h this feature the invention will let an external device 150 issue commands right through the control unit to the meter unit. Conversely, informational data on the outbound leg, from the meter unit ~accounting) comes to the control unit 154 and is repeated on the external device line 152 to the external device 150 if an external device is present. The ~resence of an external device 150 is determined by whether or not it responds with a clear to send signal. If not, the outpu~ on the line 152 goes off after a pre-set time period ~times out) and the meter continues to function normally.
This ability to pass information through the communication buffer in the control unit allows the advantage of placing externa~ devices thereon. The external device may be construct~d in the same manner, with a communication buffer, as shown in the control unit, such a device may, in turn, have an external devic~
coupled thereto. Thus, a daisy chain of external devices 164, as shown in Fig. 13, can be provided. The only limitation on the number of external devices which may be daisy chained in this manner would be system tolerance and time out restriction~

1173161~

It is a further feature of the invention to provide external devices to give certain commands to the conteol unit itself, which commands do not necessarily need to go into the accounting module, such as the ability to write a message to the display of the control unit, or to read a message from the display of the control unit, or to command the control unit to disable its keyboard and the rotary three-position switch.
In so doing, the communication buffer responds to a bit in the beginning of the digital transmission message sequence, or header, and directs whether the message is to go to the meter unit or the control unit. This bit, which has an assigned location in the header, as described above, iæ assigned a "1"
in that position if it is a message to or from the control unit and a lO" if it is a message to or from the meter unit. In this manner, the control unit, when it receives a message from the external device, can exam~ne the hoader and from this bit determines whether the message is for the control unit or for the accounting unit. If it is for the control unit, it stops the message and takes the appropriate action. If it is not for the control unit, the message is relayed to the meter unit.

~ 173168 The control unit can provide a direct reply to the external device without involving the meter unit at all, for example, in response to receipt of a message to read the display.
The control unit does not retain the last meter status S message received. Thus, when a keyboard disable command is received, for example, the control unit will request a meter status message from the accounting unit. When the control unit gets the response, it will insert a bit into the meter status message to indicate whetherthe keyboard is enabled or disabled. Once disabled the control unit will continuously indicate a disabled state in the status message, until reset by receipt of a keyboard enable command, or until power is turned off and on. The keyboard will always be in the enabled state on a~ power up condit~on.
The meter is thus capable of interfacing directly with external devices, something that is difficult to impossible to accomplish with present meter~.
Summarizing the above, the control unit is provided with a connector for bi-directional communication with a variety of 2~ external devices. Thi~ enables the external devices to access meter Lnformation, such as register readings, piece count, and current value selection. In addition, an external device can control the meter to the same extent that the operator could from the keyboard~
The meter can be e~uipped with an attachment to automatically record and charge-back postage to various departments based on identificatio~ information entered by the operator at the start of each mailing run. The meter can be used with a display/
receipt printer, providing the customer with a visual indication 11731~8 of the value on the meter and/or a receipt upon payment of postage. The meter can be used with customer-provided devices, such as a computer terminal or minicomputer sys-tem for real-time aata capture, as in parcel operations S for additions of postage to an addressee's bill.
The relative ease of interfacing to the meter of the present invention suggests further possibilities.
Two examples are: 1) use on the end of a decision-making inserter to vary postage with varying number of inserts, 2) a~ a practical mallomat.
Flowcharts representing the sequence of operation of the various units are shown in Figs. 14, 15, and 16.
In each case, the unlettered figure shows the manner wherein the corresponding figure number and letter are assembled to represent a complete flowchart.
The flowchart representing the operation,of the control unit is shown in the sequence of Fig. 14.
The flowchart representing the operation of the printing unit is shown in the sequence of Fig. 15~
The flowchart representing the operation of the accounting unit is shown in the sequence of Fig. 16.
The appendix A regarding the programmed function is attached hereto. The appendix is a detailed printout of each of the programs contained in the accounting unit, con-tro~ unit and printing unit~

, -43- , 1~7316~

It is Xnown and understood that the terms postage meter and postal meter, as used herein, refer to the general def$nition of a device for the imprinting of a defined unit value for governmental or private carrier parcel, envelope or package delivery, or other like application for unit value printing. Thus, although the term postal meter is utilized, it is both known and employed in the trade as a general term for deVlCes utilized in con~unction with services other than those exclusively employed by governmental postal services.
~0 For example, private parcel or freight services purchase and employ postal meters as a means to provide unit value pricing ~or individual parc-ls, lncluding accounting and printing ~unctlons.
~ he pre~ent lnventlon i9 particularly directed to uae ln a po~tal meter which will empioy varylng features and ~unction~, de8cribed in differing aspects, in any one or more o~ the ~ollowing groups of applicant'9 copending patent applications, including this one, all filed concurrently:
Serial-Nos. 363,503~ 363,504t 363,505; 363,506; 363,507;
2~ 363,5097 363,520 and 363,541. Applicant's U.S. Patent No.
4,266,222, i8sued May 5, 1981 is also related to these applications.
While this invention has been disclo5ed and de~cribed with reference to a ~ingle embodiment thereof, lt will be apparent that variations and modifications may be made therein, and lt is mg/~ L

intended in the following claims to cover each such variation and modification as falls within the true spirit and scope of the invention.

Claims (27)

THE EMBODIMENTS OF THE INVENTION IN WHICH AN EXCLUSIVE
PROPERTY OR PRIVILEGE IS CLAIMED ARE DEFINED AS FOLLOWS:
1. A serial transmission system comprising first and second terminals each having a transmitter coupled to a send line and a receiver coupled to a receive line, the transmitter line of each terminal being coupled to the receive line of the other terminal, each terminal comprising means applying a given signal level to its respective send line, each terminal comprising means responsive to said given signal level at its respective receive line for enabling the respective transmitter to control said applying means to change the level of its send line to another signal level different from said given level and then transmit messages asynchonously on the respective send line, said terminals being responsive to levels other than said given level at their respective receive lines for inhibiting transmission.
2. The transmission system of claim 1 wherein each terminal further comprises means for retransmitting signals on a bit by bit basis that are received on its receiving line independently of the signal level on its receiving line, for substantially immediately returning all messages received thereby to the originating transmitter.
3. The system of claim 1 wherein each terminal comprises means for comparing messages originating therefrom with messages returned thereto by the other terminal, and for applying to its respective send line a no-error signal upon the completion of a comparison.
4. The transmission system of claim 3 wherein said transmitters are connected to transmit messages in multiple bit sequences having a start bit and a stop bit, and for transmitting a no-error pulse following each multiple bit sequence when the retransmitted message corresponds to the transmitted message.
5. The system of claim 4 wherein said no-error pulse is transmitted between each multiple bit sequence, and corresponds to the immediately preceding sequence.
6. A serial transmission terminal comprising a transmitter with a send line and a receiver with a receive line, said terminal comprising means responsive to a given signal level at said receive line of said receiver for enabling the transmission via said send line by way of said transmitter, said terminal further comprising means responsive to said given level at said receive line for changing the signal level at said send line and for subsequently transmitting a message on said send line, said terminal being responsive to levels other than said given level on said receive line for inhibiting transmission via said send line.
7. The transmission terminal of claim 6 wherein said means responsive to said level at said receive line comprises means for testing the level of said receive line twice within a determined time, prior to transmitting said message.
8. The serial transmission terminal of claim 6 wherein said means for transmitting a message comprises means for transmitting messages in a multi-bit format with start and stop bits.
9. The serial transmission terminal of claim 8 wherein said terminal comprises means for applying signals received on its receive line substantially immediately on a bit by bit basis to its respective send line, independently of said level at the receive line, means for comparing signals received on its receive line with messages originating in the respective terminal, and means for applying a no-error pulse to its respective send line when a message originating therefrom is the same as a message returned thereto on its receive line.
10. The serial transmission terminal of claim 9 wherein said transmitter applies said no-error pulse to said send line between the multi-bit sequences, whereby each no-error pulse corresponds to the multi-bit sequence immediately preceding.
11. In a serial transmission system having first and second terminals each having a transmitter coupled to a send line and a receiver coupled to a receive line, the transmitter line of each terminal being coupled to the receive line of the other terminal; the improvement wherein each terminal comprises means applying a given signal level to its respective send line, each terminal comprising means responsive to said given signal level at its respective receive line for enabling the respective transmitter to control its applying means to change the level of its send line and then transmit messages asynchronously in a multiple bit sequence format of a given number of bits having a stop bit and a start bit, said terminals being responsive to levels other than said given level at the respective receive lines for inhibiting transmission, each terminal further comprising means responsive to the receipt of messages for substantially immediately reapplying such messages to its transmit line for retransmission to the originating transmitter, comparing means for comparing each message originating therein with the message retransmitted thereto, means applying a no-error pulse to the respective send line in response to a correct transmission, at least one of said terminals comprising means responsive to the absence of a no-error pulse following a multiple bit sequence for inhibiting further operation of said system.
12. The serial transmission system of claim 11 wherein said terminals are units of a postage meter within a common secure housing, and said system is responsive to the absence of a no-error pulse between multiple bit sequences for inhibiting further operation of said meter.
13. The serial transmission system of claim 1 wherein said levels on said send and receive lines are high and low logic levels, said messages being in the form of pulses between said high and low levels.
14. The serial transmission terminal of claim 6 wherein the given signal level at the receive line and the signal levels at the send line are either high or low logic levels.
15. In a serial transmission terminal including means for transmitting messages in a format of a plurality of serially transmitted multiple bit words with each word having a start bit and a stop bit at determined signal levels, the improvement wherein said transmitting means comprises means connected to transmit the stop bit of the last word of each message with a signal level different than that of the other stop bits of the respective message.
16. The serial transmission terminal of claim 15 wherein said signal levels are high and low logic levels, the stop bit of the last word of each message having one of said high and low levels and the remainder of the stop bits of the respective message having the other of said high and low levels.
17. The serial transmission terminal of claim 15 wherein said terminal comprises an electronic scale.
18. The serial transmission terminal of claim 15 wherein said terminal comprises a display device.
19. The serial transmission terminal of claim 15 wherein said terminal comprises an internal system of a postage meter.
20. The serial transmission terminal of claim 15 wherein said signal levels are high and low signal levels, the start bits of all words and the stop bits of the last word being at one of said signal levels and the stop bits of the remainder of the words being of the other signal level.
21. The transmission system of claim 4 wherein said transmitters are connected to transmit messages of a plurality of said multiple bit sequences each having a start bit and a stop bit, with the stop bit of the last sequence of each message being of a signal level different from the stop bit of the other sequences of the respective messages.
22. A serial transmission system comprising first and second terminals each having a transmitter coupled to a send line and a receiver coupled to a receive line, the transmitter line of each terminal being coupled to the receive line of the other terminal, each transmitter comprising means for applying signals to the transmit line of the respective terminal in a format of a plurality of serially transmitted multiple bit words with each word having a start bit and a stop bit at determined signal levels, and with the stop bit of the last word of each message being at a different signal level than the stop bit of the remainder of the words of the respective message.
23. The transmission system of claim 22 wherein said signal levels are high and low signal levels, the start bit of each word and the stop bit of the last word being at one of said signal levels and the remainder of the stop bits of the respective message being at the other of said signal levels.
24. The transmission system of claim 23 wherein each terminal further comprises means for retransmitting signals on a bit by bit basis that are received on its receiving line, for substantially immediately returning all messages received thereby to the originating transmitter, and the originating transmitter is connected to apply a signal level to the respective transmit line corresponding to the other of said signal levels, following the last stop bit of the respective message.
25. A transmission system of claim 22 wherein one of said terminals comprises a postage meter and the other of said terminals comprises an electronic scale.
26. The transmission system of claim 22 wherein each of said first and second terminals comprises a portion of a postage meter.
27. The transmission system of claim 22 wherein one of said terminals comprises a postage meter and the other of said terminals comprises a display device.
CA000433731A 1979-10-30 1983-08-02 Serial transmission system for use in postage meters Expired CA1173168A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA000433731A CA1173168A (en) 1979-10-30 1983-08-02 Serial transmission system for use in postage meters

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US06/089,413 US4301507A (en) 1979-10-30 1979-10-30 Electronic postage meter having plural computing systems
US089,413 1979-10-30
CA000363541A CA1159563A (en) 1979-10-30 1980-10-29 Electronic postage meter having plural computing systems
CA000433731A CA1173168A (en) 1979-10-30 1983-08-02 Serial transmission system for use in postage meters

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CA000363541A Division CA1159563A (en) 1979-10-30 1980-10-29 Electronic postage meter having plural computing systems

Publications (1)

Publication Number Publication Date
CA1173168A true CA1173168A (en) 1984-08-21

Family

ID=27166868

Family Applications (1)

Application Number Title Priority Date Filing Date
CA000433731A Expired CA1173168A (en) 1979-10-30 1983-08-02 Serial transmission system for use in postage meters

Country Status (1)

Country Link
CA (1) CA1173168A (en)

Similar Documents

Publication Publication Date Title
US4301507A (en) Electronic postage meter having plural computing systems
US4280180A (en) Electronic postage meter having field resettable control values
US4302821A (en) Interposer control for electronic postage meter
US4422148A (en) Electronic postage meter having plural computing systems
GB2127745A (en) Postage meter having interactive arithmetic operation capability
US4525785A (en) Electronic postage meter having plural computing system
JP2898975B2 (en) Price printing system for stamp printing
US6938018B2 (en) Method and apparatus for a modular postage accounting system
US4347506A (en) Electronic postage meter having check date warning with control for overriding the check date warning
US4442501A (en) Electronic postage meter with weak memory indication
CA1150840A (en) Postage meter having interactive arithmetic operation capability
CA1167163A (en) Electronic united parcel service register
US4524426A (en) Electronic postage meter controllable by mailing machine
US4498187A (en) Electronic postage meter having plural computing systems
US5206812A (en) Franking machine
US4549281A (en) Electronic postage meter having keyboard entered combination for recharging
US4283721A (en) Electronic postage meter having check date warning
CA1147468A (en) Electronic postage meter having keyboard entered combination for recharging
CA1173168A (en) Serial transmission system for use in postage meters
US4266222A (en) Electronic postage meter having reset base warning
EP0356052B1 (en) Franking machine
JPH027102B2 (en)
JPH0221022B2 (en)
JPH0467827B2 (en)
JPH027101B2 (en)

Legal Events

Date Code Title Description
MKEX Expiry