New! View global litigation for patent families

CA1081793A - Spinal curvature treatment system - Google Patents

Spinal curvature treatment system

Info

Publication number
CA1081793A
CA1081793A CA 332356 CA332356A CA1081793A CA 1081793 A CA1081793 A CA 1081793A CA 332356 CA332356 CA 332356 CA 332356 A CA332356 A CA 332356A CA 1081793 A CA1081793 A CA 1081793A
Authority
CA
Grant status
Grant
Patent type
Prior art keywords
electrode
means
circuit
stimulation
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CA 332356
Other languages
French (fr)
Inventor
Harry G. Friedman
Robert W. Wickham, Jr.
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Medtronic Inc
Original Assignee
Medtronic Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Abstract

ABSTRACT OF THE DISCLOSURE

A system for the electrical treatment of spinal curvature through the exercise of selected spinal muscles. A probe having a blunt, muscle-penetrat-ing tip is fitted with a sleeve such that its tip extends from the sleeve.
A helical electrode is mounted on an elongated tool capable of imparting a rotational force to the electrode while allowing a disengagement with the electrode in the direction of its longitudinal axis. The probe is inserted in the paraspinal muscles and is removed while leaving the sleeve within the muscle. The electrode-tool assembly is inserted through the sleeve and the electrode secured in the paraspinal muscles by a rotational force applied to the tool. After electrode securement, the tool is withdrawn from the sleeve and the sleeve withdrawn from the muscle leaving the electrode secured with-in the muscle. Needle electrodes may be employed to stimulate the paraspinal muscles at several sites to establish those sites at which the induced muscle contraction provides maximum correction of the spinal curvature and the blunt probe tip may be provided with an electrode for muscle stimulation at varied penetration depths to establish the optimum depth for securement of the helical electrode. The electrodes are connected by leads to a receiver cir-cult implantable beneath the patient's skin and operable to receive Rf modulated stimulation impulses transmitted through the skin. The impulses are developed by a patient operated RF transmitter with a cyclic on and off stimulation and rest periods so that stimulation of the muscles may take place while the patient relaxes or sleeps.

Description

~)8~7~3 This invention relates to apparatus for cyclically generating electrical stimulation pulses for stimulation of living tissue and in particular muscle tissue.
This application is a division of our Canadian application Serial No. 242,742 filed December 30, 1975.
Spinal curvature has been known to man since he first assumed the erect posture. Scoliosis, a lateral curvature of the vertebral column and rotation arolmd its longitudinal axis, is a progressive condition of~en - associated with other spinal curvatures; kyphosis or humpback and/or lordosis or swayback. Each of these conditions is debilitating and deform-ing to a degree depending on the char~cteristics and extent of the curvature.
Idiopathic scoliosis accounts for the vast majority of all scoliosis and is present in one out of ten children. While there is evidence that idiopatic scoliosis is genetic, its true cause has not been found. Also, there is no known preventative or cure for idiopathic scoliosis and treat-ment remains a matter of correcting the curvature after it has developed.
The curvature in idiopathic scoliosis typically consists of a major curve, ; the curve of greatest degree, and a minor curve or curves which formi as a compensating mechanism to keep the patient's head directly over the pelvis.
In some instances, more than one major curve may develop.
Among the more success~ul treatments for idiopathic scoliosis are the long-term use of braces and spinal fusions. The bracing technique requires the almos* constant wearing of a cumbersome external device over a period of several years. This type of treatment is very expensive and, at best, can only prevent a scoliotic curve from progressing. Thus, even the best bracing techniques fall far short of leaving the patient with a correct-ed mobile spine. In addition, because the brace is typically used during adolescence i~t has often left the patient with significant psychological prob}ems.

-- ~lO~7~3 In contrast to the bracing technique, various spinal fusion techniques have provided satisfactory correction of the spinal curvature in those pa-tients, usually young, whose spines were flexible at the time of fusion.
However, the patient is left with a rigid spine. Because these fusion tech-niques have been developed in relatively recent times, it is not known what effect a spinal fusion will have during the adult life of the patient. Also, the loss of mobility and disc spaces puts an ever increasing stress on those lower discs that remain mobile.
In addition to bracing and spinal fusion techniques, there are sugges-tions in the prior art of the use of electrical stimulation in the treatment of scoliosis. The suggestions are in terms of transcutaneous stimulation.
Transcutaneous stimulation produces a contraction of at least the outerparaspinal muscles. These muscles are longer than the muscles deeper in the back and extend over many vertebral segments. Thus, while a transcutaneous stimulation of the paraspinal muscles may have a beneficial effect on the major spinal curve, the stimulation of the longer, outer paraspinal muscles has the tendency to worsen the compensating curve. The electrical treatment of spinal curvature is not an accepted praGtice and it is believed that the ~ tendency to worsen the compensating curve attending a transcutaneous stimu-~` 20 ~ lation of the paraspinal muscles is a primary factor in the failure of such a treatment to gain recognition.
The present-invention provides~a system for the electrical treatment oP scoliosls, and other spinal curvatures, capable of producing a correction in the curvature without resort to cumbersome external bracing and without loss of splnal mobility and dlsc spaces. The present invention also over-- comes the worsening of the compensating curvets~ attending known prior art electrical treatments.

-2-7g3 The system disclosed involves means for positioning one end of a sleeve means within the paraspinal muscLes and means insertable through the other end of the sleeve means for deliLvering and securing an electrode ~ithin the paraspinal muscles adJacent the one sleeve means end. The elec-trodes are connected to a source of stimulation impulses having alternating or cyclic stimulation and rest periods and stimulation of the muscles may take place while the patient relaxes or sleeps.
According to the invention there is provided apparatus for cyclically generating electrical stimulation pulses for stimulation of liv-ing tissue o the type having a source of electrical energy electrode means in contact with the tissue to be stimulated and pulse generator means coupl-ed to said electrode means and said source of electrical energy for generating the stimulation pulses characterized by cyclic timing means coupled to said source of electrical energy and said pulse generator means for cyclically interrupting the generation of the stimulation pulses, to allow a relaxation period for the living tissue, said cyclic timing means further-comprising:
an off-time cycler comprising first astable multivibrator means :
repetitively generating count pulses at a first predetermined frequency and 2Q first counter means responsive to said count pulses to produce an outpu~
signal upon counting a first predetermined number of count pulses;
i an on-time cycler comprising second astable multivibrator means repetitivel~ generating count pulses at a second predetermined frequency and : second counter means responsive ~o said count pulses for producing a reset signal upon counting a second predetermined number of count pulses;
first means responsive to the output signal for inhibiting the f~st astable multivibrator means and for enabling the second multivibrator means;
~ - 3 _ ~ ' .

second means responsive to the output signal for electrîcally con-necting said source of electrical energy to said pulse generator means to thereby generate and apply to the living tissue stimulation pulses during the counting cycle of said on-time cycler;and means responsive to said reset signal for resetting said first counter means to terminate the output si~al to thereby interrupt the generation o~ stimulation pulses during the counting cycle of said off-time cycler.
In a preferred embodiment, a probe having a blunt, muscle-penetrating tip is fitted with a sleeve such that its tip extends from the sleeve. The blunt tip allows a muscle penetration with a minimum of muscle damage through its ability to separate the muscles without severing them.
The probe is inserted into the paraspinal muscle and removed while leaving th sleeve within the muscle.

' . "

"
.

:; ~ .
.~ .. ~ .
'~ .

, . , . , ' . ' , . ' . , ;' . . !, . .. .

~'''' ' ' ''', ~"' ' "'; '' "' " ' ' '''""''''"'. '''"'''"'"''''''''"'" "'''',''''' '", ','','''''' ', ' ,' ,. ' , . . ' ' ' ~ ; , ' . , ' ' ., " ', ' ., ' . . ' . ' ' ~ '. ' ', '', " ",' " ', . ' " " " " ", . ' ' ', , " " '' " ' , ' ' _ .,' " ' , ~0!3~ 3 `-A helical electrode is mounted on an elongated tool capable of impart-ing a rotational force to the electrode while allowing a disengagement with electrode in one direction along the longitudinal axis of the tool. The electrode-tool assembly is inserted through the sleeve and the electrode secured in the paraspinal muscles by a rotational force applied to the tool.
After the electrode is secured, the tool is withdrawn from the sleeve and the sleeve withdrawn from the muscle leaving the electrode secured within the muscle.
: Prior to positioning the probe, needle electrodes may be employed to evaluate the effect of paraspinal muscle contraction produced by stimulation ` of those muscles at several sites. When the needle electrode sites which maximize the correction of the spinal curvature have been determined, the blunt probes are inserted in those sites. The blunt probes may be provided , - ~ with electrode tips and the paraspinal muscles again stimulated at varied ' ~ penetration depths to establish the optimum depth for securement of the heli-'~ cal eiectrode.~ In ehis manner, the optimum slte for the electrode as well as the optimum electrode depth is established and the electrode is secured ` at the~establlshed sites and to the established depths with a minimum of tissue damage.
; 20 ~ Flgure l~ lS a dlagrammatlcal illustration of a typical scoliotic curve oE the spinal~ column and the electro-spinal instrumentation system of the present~lnvent;ion. ~ ~
Figure 2;il1ustrates a preferred embodiment of the needle electrode em-ployed in the system of the present invention.
Flgure~3~11lustrates a~preferred embodiment of the probe-sleeve assembly empl~oyed~ln~the system of the present invention.
Figure~4 illustrates a preferred embodiment of the tool used to secure the electrode wlth m;the paraspinal muscles in the system of the present in-entlOn.~

1C~81793 Figure 5 illustrates a cross-section taken along the line 5-5 in Figure 4.
Figure 6 illustrates a preferred embodiment of the electrode employed in the system of the present invention.
Figure 7 illustrates a cross-section taken along the line 7-7 in Figure 6.
Figure 8 illustrates the assembly of the preferred embodiments illus-trated in Figures 4-7.
Figures 9 and 10 illustrate the schematic circuits of the electronic transmitter and receiver of the electro-spinal instrumentation system; Fig. 10 is located on the first page of the drawings immediately under Figure 1.
Figure 1 is a diagrammatic illustratlon of the spinal colu~n and a typi-cal scoliotic curve under treatment by the electro-spinal instrumentation system oi the present invention. The curve is composed of a thoracic curve -10 bounded by vertebra 11 and vertebra 12 and a lumbar curve 13 bounded by vertebra 12 and vertebra 14. Of course,`the vertebrae 11, 12 and 14 which bound the N~rVeS 10 ànd 13~are dependent on the curves in question and may be any of the vertebrae in the spinal column. That is, vertebra 11 is the hlghest ve~rtebra with its superior border lnclined toward the thoracic con-~cavity while~vertebra 14 is the lowest vertebra with its inferior border in-clined toward the~lumbar concavity~. Vertebra 12 is the lowest vertebra with ts~inferior;border mclined toward the~thoracic concavity and the highest vertebra~with its superior border inclined toward the lumbar concavity. The The vertebrae 11, 12 and 14, as determined by the above definitions, are commonly employed to~measure the amount of curvature, the particular measure-ment;methods being~well known to~those skilled in the art. In the spinal colùmn~ln ustrated~, both the~thoraci~c and~lumbar curvatures are approxi-mately 65~when measured by~the~Cobb method.

~ID81793 A typical scoliotic curve has a major curve and a minor curve or curves which form as a compensatory mechanism to maintain the head directly over the pelvis. The present invention is directed to a straightening of the major curve through an electrically induced contraction of the paraspinal muscles in proximity to the convexity of the major curve and without a con-traction of those paraspinal muscles which extend sufficiently beyond the major curve to have a worsening effect on the compensatory curve. With ref-erence to the curve 10 illustrated in Figure l, this is accomplished by plac-ing the electrodes 15 within the deeper paraspinal muscles proximate the con-vex side of the cu~ve (the right side for curve 10).
The electro-spinal instrumentation system illustrated in Figure 1 is provided to exercise the paraspinal muscles to cause them to hypertrophy or strengthen through the application of electrical stimulating impulses to three eIectrodes 15, at least two of said electrodes being active elec-trodes and one of the electrodes being an indifferent electrode. The elec-trodes 15 are placed in a manner described hereinafter in greater detail at varying depths within the paraspinal muscles adjacent the major curve 10 of ;~ the spinal column. It is believed that these muscles through the application of electrical~stimuli ~ill hypertrophy and as a result induce a slight im-;~ 20 ~ balance;in~comparison with the muscles on the concave side of the curve 10 ~through the remaining growing years of the child and that muscle imbalancewill arrest,~or ~ork to correct the convexity of the spinal column lO.
The electrodes~l5 are electrically connected to leads 16 that are electrically connected to~a biocompatible,subcutaneously implanted, electronic radio frequency signal receiver 17.

:~.
The receiver 17 is placed subcutaneously in a surgical procedure ~; to ~e described following the placement of the electrodes 15. The patient, in using the eiectrospmal instrumentation system, places a trans-itting antenna ,.: : ~: : :
~ 6 -; "'.-" ' ' ;' , ' .; ' " ' "' '; ' ' '' '; . ' ' ~ .'' ~; ' ' ' ': ' ` ' `' "

18 over the subcutaneous implant position of the receiver 17. The antenna 18 is electrically connected by a lead 19 to the output jack of a radio fre-quency pulse generating transmitter 24.
In operation by the patient, the radio frequency transmitter 24 is con-veniently placed next to the patient's body while the patient is at rest, and the antenna 18 is taped in place over the antenna of the implanted re-ceiver 17. Then the patient turns on the transmitter, and the transmitter 24 cyclically produces a train of stimulating impulses at a rate that is preset by the electronic circuitry of the transmitter.
10The train of impulses produced by the transmitter 24 and transmitted by antenna 18 is depicted as wave form A in Figure 1. Likewise, the impulses received by receiver 17 and applied to the electrodes 15 are depicted as wave form B in Figure 1. During the "on" cycle of the transmitter 24, the train of pulses A is produced, each pulse having a preselected width and amplitude recurring at a preselected rate. During the "off" cycle, no pulses are pro- -duced, and the muscles are allowed to rest. The time periods of the "on"
and "off" cycle may be one second and 5 seconds, respectively, which allows the stimulated'muscles to contract and'relax without causing fatigue. The preselected rate, amplltude and pulse width of the stimulating pulses may 20 ~ ~comprise a rate of 30 pulses'per second at an amplitude between the electrode aelectable from 0 to 10 volts and a pulse width of about 220 microseconds.
These parameters are selectable by the surgeon at time of implant when the operation of the system is tested and may be altered by the surgeon post-operatively as the patient's progress is monitored.
Further details of the~circuit of the pulse generator and receiver will ~be~descrlbed in conjunction with~Figures 9 and 10. The surgical procedure for implanting the receiver'and electrodes will not be described.

,, ~ .
; ,~ : ~ : :

~8~7g3 After surgical incision and exposure of the paraspinal muscles, the first step in the performance of the system of the present invention is the identification of the optimal sites for the positioning of electrodes. The optimal electrode sites are defined as those sites which maximize the correc-tion of the curvature as a result of an induced contraction of the paraspinal muscles. It is contemplated that the present invention will be carried out with three electrodes, two active electrodes and one indiferent electrode, although other numbers of electrodes may be successfully employed. Also, - it-is expected that the active electrodes will be negative inasmuch as this provides a lower stimulation threshold.
The optimization of the sites for electrode placement may be accom-plished through the use of needle electrodes such as that illustrated in Figure 2. The needle electrode may have a portion 20 formed similarly to a hypodermic needle and be provided with a knob 21 to facilitate its manipu-lation. The portion 20 is connected to an external source of stimulation energy through a lead 22 and may be provided with a cutting surface 23 to facilitate the placement of the electrode within the paraspinal muscles. It is contemplated that several alternative placements of the needle elec-trodes of Figure 2 will be required to establish the optimal electrode sites, the sites which maximize straightening of the spinal curvature as a result - of lnduced muscle contraction. The optimal sites may be established visibly by repeatedly repositionlng the needle electrodes of Figure 2 within the para-~ spinal muscles and electrically inducing a contraction of those muscles.
; AlternativeIy~ the optimal sites can be established through x-ray techniques in which the degree of~straightening is established, for several sites, by a measurement of the curvature during stimulation.
Once the optimal sites~for electrode securement are established, the needle electrodes are withdrawn. A blunt probe fitted with a sleeve is then , ;, , ~ .: ., . . : . . :

... , . . , . :. .. ~ , , .. ; : -10~3~793 inserted within the muscle at each site established through the use of the needle elec~rodes. A preferred embodiment of a blunt probe which may be employed within the system of the present invention is illustrated at 25 in Figure 3. The probe 25 has an elongated portion fitted with a sleeve 26 with the sleeve being provided with a slot 27 throughout its length. The probe terminates at a blunt tip 28 which extends from the sleeve 26 and is provided with an electrode 29 at its end. The electrode 29 is in electrical comm~mication with a lead 31 through which it may be connected to a source of stimulation energy (not shown) and is spaced from the end of the sleeve 26 to contact the muscle at generally the same location as a permanent electrode inserted into the muscle through the sleeve 26. The probe may be provided with an enlarged portion 32 which acts as a stop for the sleeve 26 and as a handle to facilitate manipulation of the probe and the sleeve 26 may have a tapered portion 30 conforming the blunt tip 28 of the probe.
A blunt probe 25 is inserted within the paraspinal muscle at each site established as optimal through the use of the needle electrodes of Figure 2.
The blunt~tip 28 of the probe allows a penetration of the paraspinal muscles through a separation of those muscles thereby minimizing the injury result-ing from muscle penetration and the stop 32 causes the probe to carry the ~ sleeve 26 into the muscle tlssue. Each probe is inserted to various pene-; ~ tration~depths and the muscle stmlulated at each depth through a stimulatingsignal applled at the tip electrode 29. The penetration depth which maxi-~mizes the correction of the spinal curvature can be established visibly or through~the use~of x-ray techniques. Once the optimal penetration depth is established, the probe is withdrawn from the paraspinal muscle leaving the sleeve 26 in position in the muscle at the depth established for maximum curvature correction.
Referring now to Flgure~4, there is shown a tool 35 which is used to F ;~ 9 _ ~38~'7~3 secure a helical electrode within the paraspinal muscles at the sites and pen-etration depths established with the needle electrode of Figure 2 and the probe of Figure 3. The tool 35 is essentially an elongated ~ubular member having two slots on opposing sides thereof. One slot 36 extends from one end of the tool 35 to a spot adjacent its other end to form a recess within the tool. The other slot 37 extends from the same end of the tool 35 as the slot 36 but need extend only far enough to accommodate the electrode to be discussed below. Flgure 5 is a cross-section taken along the line 5-5 in Figure 4 and illustrates the slots 36 and 37 on opposing sides of the tool 35.
The tool 35 may be provided with a handle 38 to facilitate its manipulation with the handle 38 being secured to the tool 35 in any convenient manner.
Referring now to Figure 6, there is shown a helical electrode 40 which is a preferred electrode embodiment within the system of the present inven-tlon. The electrode 40 has an exposed, electrically-conductive helical or spiral member 41 which will engage and penetrate muscle tissue when rotated in the proper direction. The cooperation between the member 41 and the muscle tissue is analogous to the operation of a cork screw and electrodes such as that illustrated in Figure 6 have been referred to in the prior art as cork screw electrodes. The member 41 extends from an electrode body 42 which has 20 ~ a first generally cylindrical portion 43 and a generally flat or tab portion ~- 44~ The cylindrical portion 43 of the electrode body 42 has a diameter ap-proximating that;of the tool of Figure 4 and the portion 44 of the electrode body 42 is composed of a central portion 47 which accommodates an electri-cally conductive lead 48 and extending members or wings, 45 and 46, which are sufficiently xtensiv~ to be accommodated within the slots 36 and 37 of the tool 35. The cork screw 41 is adapted for connection to an external source of stimulation energy via the lead 48, the lead 48 being encased m an elec-`trical insulation in known manner.
, .
`,~: ' : : : ,-10-,.,: , ~: ", . . .:: . :.

~L08~793 Referring now to Figure 8, there is shown the electrode 40 mounted on the tool 35. The wings 45 and 46 of the electrode body 42 are within the slots 36 and 37 of the tool 35 with the cylindrical portion 43 of the elec-trode body 42 in abutment with one end of the tool 35. With this tool and electrode configuration, tool 35 may be withdrawn from the electrode body 42 in one direction along its longitudinal axis while being capable of imparting a force to electrode body 42 in the other longitudinal direction and will transmit a rotational force to the electrode body 42 via the wings 45 and 46 in cooperation with the slots 36 and 37. The lead 48 lies within the slot 36 and emerges from the slot 36 at its end to be wrapped around the body of the tool 35. The direction of wrapping of the lead 48 around the body of the tool 35 is selected such that the lead 48 will unwrap itself from the tool 35 as the tool 35 is rotated in the direction which will cause a penetration of .; .
the muscle tissue by the cork screw 41. The number of wrappings may corres-pond with the number of coils in the member 41.
~ With the electrode 40 mounted on the tool 35 as illustrated in Figure 8 and with the sleeve 26 in the optimal position relative to the paraspinal muscles, as described above, the tool-electrode combination is inserted with-r : : ' : in the sleeve 26, the tool 35 rotated thereby imparting a rotational force to the electrode 40 and causing a penetration of the muscle tissue by the cork screw 41 and tool 35 withdrawn from the sleeve leaving the electrode secured within the muscle.~ The electrode 29 of the probe 25 is spaced from the~sleeve 26 during insertion such that the helical electrode will penetrate to the depth establi;shed as optimal during stimulation with the electrode 29.
With the tool 35 withdrawn, the sleeve 26 is also withdrawn from the muscle tissue with the slot 27 within the sleeve 26 allowing a disengagement of~the sleeve 26 from the lead 48. Of course, if the end of lead 48 is free ant~the nature of Its elec~rical CQnnection to the external stimulation , device (not shown) permits, the slot 27 in sleeve 26 may be eliminated inas-much as the sleeve may be totally withdrawn over the lead 48. With the sleeve 26 withdrawn, the electrode 40 is in the optimal location to maximize the correction in the spinal curvature through an electrically induced contrac-tion of the paraspinal muscles. While the electrodes are in direct contact with the muscle tissue, it is believed that contraction of the muscle is in-duced chiefly through nerve stimulation as a result of a lower nerve thresh-old.
Turning now to Figures 9 and 10, there is shown in detail a circuit diagram of the transmitter and receiver of the electro-spinal instrumentation system. As mentioned hereinbefore, the transmitter 24 cyclically develops at its antenna 18 a train of radio frequency energy stimulating impulses at a predetermined rate, pulse-width and amplitude that are adjustable in the cir-cuit, the pulse train duration also being adjustable by further elements of ~; the circult. In the circuit of Figures 9 and 10, the transmitter includes a power source consisting, for example, of a nine-volt battery 50 of a conven-tional dry cell type that may be depleted through use of the transmitter and replaced as necessary by the patient. An on-off switch 51 is connected in : serles with the~battery and wlth the~input terminal 52 of a cycler circuit 53, ~ the details of which will be explained with respect to Figure 10. The cycler clrcult 53 comprises a cyclic timer with on and off times individually selec-table at the time of manufacture from one millisecond to one hour. In this particular application,~the cycler may be designed to have àn on-time ad-ustable from one to~five seconds and an off-~ime adjustable from five to ~twenty-flve~seconds. Durlng the on-time of the cycler circuit 53, supply vol-tage is~spplied from~the ootput termlnal 54 to the pulse rate oscillator cir-;cuit SS. At all times that switch 51 is closed, supply voltage is applied by conductor 56 to the pulse wi~dth control~ circuit 58 and the radio frequency oscillator circuit 60, but neither of these circuits can operate as long as source voltage is not applied to the pulse rate oscillator circuit 55. A
filter capacitor 61 is connected across the input terminal 52 and circuit ground.
The rate oscillator circuit 55 procluces a train of pulses recurring at a predetermined rate so long as supply voltage appears at the output terminal 54 of the cycler circuit 53, and the train of pulses is applied to the pulse width control circuit 58. The pulse width control circuit 58 may comprise a mono-stable multi-vibrator triggered by each pulse developed by the circuit 55 to produce a further pulse, the multi-vibrator having an adjustable re-sistor element for adjusting the width of its output pulse. The radio fre-quency oscillator 60 oscillates whenever an output pulse is received from the pulse width control circuit 58 at a preselected frequency such as 460 kilohertz, resulting in a train of pulses each having a predetermined pulse wldth and recurring at a preset rate during the on-time of cycler 53, each pulse thereby compris m g a burst of radio frequency energy as depicted as wave form A in Figure 1. In the radio frequency oscillator circuit 60, an amplitude control circuit lS provided to adjust the voltage amplitude of the radlo frequency energy pulses.
20~ ~ The antenna 18 is electrically connected to the output o the radio fre-quency oscillator circuit 60, and, as described hereinbefore, is used to .:
couple the radio frequency pulses through the skin of the patient to the re-ceiver circuit. As depicted in Figure 1, the energy from the transmitting antenna is coupled with an antenna 62 within the receiver 17 where it is then detected and applied to the muscle through the leads 16 and electrodes 15.~
Turn m g~now to the circuit of Figure 10, the battery power source 50 is electrically connected in~serles through the switch 51 to the input terminal , 8~793 52. The cycler circuit 53 comprises a first astable multi-vibrator 64 that oscillates at a frequency determined by the external R-C time components 65, 66 and 67. A first binary counter 68 receives impulses from the first a-stable multi-vibrator 64 until it reaches a predetermined count, whereupon the counter 68 develops or produces a high output state on conductor 69 that is conducted to the A input of multi-vibrator 64 to halt its operation and is also conducted to the A input of a second astable multi-vibrator 70. Astable multi-vibrator 70 responds to the high state at its A input to generate and apply pulses to second binary counter 72 which counts the number of pulses developed by the second astable multi-vibrator 70 until it reaches a pre-selected count. The frequency of the pulses developed by the second astable multi-vibrator 70 is governed by R-C time components 73, 74 and 75.
When the full count is reached by the second counter 72, it developes a high output state on conductor 76 which is conducted through diode 77 to the Reset input of the first counter 68 which in response thereto terminates the high output state on condùctor 69. At that moment, the low output state applied to the A input of the flrst astable multi-vibrator 64 causes it to start to oscillate, and the low output state applied to the A input of the second astable multi-vibrator 70 causes it to cease osclllating. The output signal developed by the first astable multi-vibrator 64 is conducted by con-`~ ~ duct~ 78 to the Reset input of counter 72 to terminate the high output state : , :
OD conductor 76, so that counter 68 is no longer reset and can count.

The oscillation frequencies of the astabie multi-vibrators 64 and 70 are ~ .
established by the charge times of the capacitors 67 and 75, respectively, that~are varlable by adjustment of variable resistors 66 and 74, respectively.
~ln order to achieve consistent operation of the cycler 53, a Reset cir-cuit comprising capacitor 79, resistor 80 and diodes 81 and 82 coupled between the power supply~input 52 and the Reset inputs of counters 68 and 72 provides

3 ~

~10~31793 that, when the power supply is applied by the closing switch 51 (Figure 9) by the patient, the counts in both counters are Reset to zero by supply volt-age conducted through capacitor 79 and diodes 81 and 82. As supply voltage rapidly increased across capacitor 79, the Reset signal rapidly dissipates and the counters are rendered operational in the mamler described, and the cycler circuit 53 operates at the start of its on-time cycle.
As mentioned hereinbefore, supply voltage is applied to rate oscillator circuit 55 during the on-time cycle of the cycler 53, that is, the time fol-lowing achievement of the full count in first counter 68 and while second counter 72 is counting. More specifically, the high or relatively positive output state of the first counter 68 is applied by conductor 69 to the base of a switching transistor 83, the emitter-collector path of which is coupled between ground potential and the junction of resistors 84 and 85. Resistor ` 84 is coupled to battery supply voltage, and resistor 85 is connected ~o the base of a power switching transistor 86. The positive going voltage applied r ~ to the base of transistor 83 turns transistor 83 "on" which lowers the volt-age at the base of transistor 86 thus causing transistor 86 to turn "on" and allows battery current to flow between input 52 and output 54. Thus battery voltage is applied through transistor 86 to the rate oscillator circuit 55.
~ The astable multi-vibrators and-counters are C-Mos integrated circuits of types RCA-4047 and RCA-4040, respectively, available from RCA Corporation Referring now particularly to the rate oscillator circuit 55 of Figure it~comprlses a reference voltage source including the transistor 88, the re-sistors 90, 91, 92 and 93, the capacitor 94 and the diode 95 which apply a reference voltage to an oscillator portlon of the circuit 55 comprising a programmable uni-junction transistor ~PUT) 96, a variable rate control re-sistor 97, resistor 98 and capacitor 99. The source voltage ls applied across reference voltage divider resistors 90 and 91, the junction of which Z` ~ ~ ~

:~. . ,. . ;, , ,, ., . . :

~8~7~3 is connected to the base of transistor 88. Transistor 88 is thereby normally biased to conduct source voltage to the junction of resistor 92 and capacitor 94, less the forward voltage drop of transistor 88. The source voltage thus applied through resistors 92, 93 and diode 95 is conducted to the gate to the PUT 96 to establish a reference voltage level at its gate. Resistors 92 and 93 are selected to have relatively low and high impedances, respectively, and therefore, capacitor 9~, resistor 92 and diode 95 present a low impedance voltage source in the forward direction of conduction, to the gate of PUT 96.
Conversely, to prevent the PUT 96 from being latched on by reverse current flow, the resistor 93 presents a high impedance to the gate. The rate of production of the pulses is controlled by the RC timing circuit comprising the variable pulse rate control resistor 97, the resistor 98 and the capacitor 99 and the PUT 96. As source voltage is applied across the RC timing circuit, voltage on capacitor 99 increases until that voltage reflected at the anode of PUT 96 exceeds the reference vo]tage at its gate, whereupon the PUT 96 is rendered conductive to produce an output pulse at its cathode. When the PUT
96 is rendered conductive, the voltage on capacitor 99 is discharged through the resistors 100 and 102 only to the reference potential on its gate. The .
-~ P~T 96 is rendered conductive so long as the positive voltage applied to its .~ .
anode exceeds that applled to its gate. The values of capacitor 99 and re-sistors 100 and 102 are selected to provide a positive spike output signal that is applisd to the pulse width control circuit 58 on conductor 103. The rate of oscillation of the circuit 55, and thus the rate at which stimulation i: ~
pulses are produced is selectable by varying the pulse rate control resis-tor 97.
The pulse width control circuit 58 operates as a monostable multi-vibrator ln rssponse to the positive spike output signal of the circuit 55 -to produce an output pulse having a uniform pulse width that is applied to 1~81~3 the input of the RF oscillator circuit 60.
Since the cathode of PUT 96 is normally at ground potential reflected through the circuit of resistors 100 and 102, the transistor 104 is concur-rently normally non-conductive. The pulse width control elements of circuit 58 comprises variable pulse width contro:L resistor 106, resistor 108, capaci-tor llO and resistor 112. The junction of resistor 112 and capacitor 110 is connected to the collector of normally non-conductive transistor 104, and capacitor 110 normally charges to a predetermined voltage of positive polar-ity at the aforementioned junction. A second transistor 114 is connected at its base to the junction of resistor 108 and capacitor 110, and its collector-emitter path is connected in series with resistor 116 across supply voltage.
The junction of the resistor 116 and the collector of transistor 114 is coupled by conductor 118 to the junction of resistors 100 and 102. Normally, while transistor 104 is non-conductive, transistor 114 is conductive, reflect-ing ground potential back to conductor 118.
When a spike potential is produced at the cathode of PUT 96 and applied by conductor 103 to the base of transistor 104, transistor 104 is rendered . , .
conductlve. Capacitor 110 discharges through transistor 104 and resistors 106 and 108, and simultaneously renders transistor 114 non-conductive, thus - 20 ~ raising the potential on conductor 118. The increased potential on conductor 118 is reflected through resistor 100 and conductor 103 back to the base of transistor 104, latching it in positive feed-back conduction for so long as capacitor~llO continues to dischargeJ that time period constituting the pulse width of the transmitted stimulating impulses. The output pulse of the pulse width control circult 58 is a square wave appearing on the conductor 119.
The~conductor 119 is coupled to the input of the RF oscillator circuit 60, and the outrut pulse produced thereon triggers the oscillator circuit 60 ~: m to producing an RF~transml~ssion signal of a pulse width determinable by the .. - . . . . . , . . . ., :,. : , ';; " '' ; '' " '' '.:: : ' ",'.,'', ,~ . , ' '.

1013~L793 - circuit 58 at a recurring rate established by the circuit SS during the on-~ime period of the cycler 53. The amplitude of the transmitted RF stimula tion signal is adjustable by an amplitude control element of the circuit 60.
The RF oscillator circuit 60 includes: (1) a Colpitts oscillator com-prising the transistors 120 and 122, the variable inductor 114, the capacitors 126 and 128, and the resistor 130 that produces an oscillatory signal at a predetermined frequency, e.g., 460 ~Iz, during the duration of the output pulse of circuit 55; (a) an emitter-follower amplifier responsive to the RF
signal comprising transistor 131 and resistors 132, 134, and 136 and capaci-tor 138 for capacitively coupling the RF signal to; (3) a class C operating amplifier comprising transistor 140, inductor 142, variable amplitude control resistor 144 and resistor 146 for further amplifying and isolating the RF
signal from the D.C. source voltage; and (4) an oscillatory antenna circuit comprising capacitors 148 and 150 that, in conjunction with the inductance of antenna 18 oscillates sympathetically at the same radio frequency, e.g., 460 KHz.
In greater detail of operation, the Colpitts oscillator circui~ includes inductive and capacitive values that, when coupled to source potential through conductlon of transistors 120 and 122 in response to the positive output pulse on conductor 119, establishes a rate of radio frequency oscillation at the base of transistor 131. Transistors 131 and 140 amplify and reflect the os-cillations to the resonating antenna circuit, and the inductor 142 provides a low lmpedance to high frequency signals and a high impedance to the D.C.
~source potential, so that trsnsistor 140 can operate in the Class C state.
The current ampllficatlon factor of transistor 140 is adjustable by varying resistor 144, a procedure that normally is done by the surgeon at the time of implant and during post-operative treatment.

,, :

i : : ~ ..

, ~.... : , . . . . -. . . . .~ .. .

1~83~793 The radio frequency signals are detected by a sympathetically tuned re-ceiver circuit 17, comprising the inductance 62 of the receiver antenna, cap-acitors 154, 156 and 158, diode 160 and resistor 162, which are all connected in a well known receiver configuration to detect 460 ~Iz signals, rectify the detected signals and fiiter them to produce the pulse train of wave form B
of Figure 1. The leads 16 that couple the received RF stimulation signals to the remote stimulation sites are-connected as shown to the receiver circuit 17.
It is contemplated that the system of the present invention may be ad-vantageously employed with three electrodes, two negative stimulating elec-trodes and one positive indifferent electrode. It is further contemplated that the stimulation employed will be intermittent bursts of bi-phasic square wave pulses, the stimulation being provided for one to five seconds with intervals between stimulation of five to twenty-five seconds. As is known in the art, such intermittent stimulation prevents muscle fatlgue. A duty cycle (ratio of "on" time to "off" time) of one to five has been found to be ad-vantageous for its further reduction of muscle fatigue. It is further con-templated that the pulses will fall wlthin the range of 30 to 60 pulses per second wlth an amplitude of approximately 3 volts. During the determination of the optimal location and penetration depth for the electrode, however, it may be desirable to employ a stimulation amplitude of 10 volts or more. It is expected that, during treatment, stimulation will be provided for a period of~:8 to 10 hours during sleep and that treatment will continue at least until the patient has achieved maturity~ most likely until the patient is 16 to 18 years of age. ISowever, as the desirable correction lS approached treatment may be conducted~on~an intermittent ~non-daily) basis ~o reduce the possi-bility of over correction.

1 ' .: ~ . : .

,.. ,., : ~ :

. ' ! ' 1~8~L793 Obviously, many modifications and variations of the present invention are possible in light of the above teachings. For example, other electrode configurations may be employed in place of the helical electrode described in the preferred embodiment. Such electrodes may take the form of a needle, with or without a barb, and extend from the electrode body 42 in the same direction as the helical electrode to be positioned within the paraspinal muscles through the use of the sleéve 26 and tool 35. It is therefore to be understood that, within the scope of the appended claims, the invention may be practiced otherwise than as specifically described.

~ 10 :

' :` ~ : - :

:. : :

1:^ : : ` :: : :
i: :

. . - ' ' . ,

Claims (8)

THE EMBODIMENTS OF THE INVENTION IN WHICH AN EXCLUSIVE
PROPERTY OR PRIVILEGE IS CLAIMED ARE DEFINED AS FOLLOWS:
1. Apparatus for cyclically generating electrical stimulation pulses for stimulation of living tissue of the type having a source of electrical energy, electrode means in contact with the tissue to be stimulated and pulse generator means coupled to said electrode means and said source of electrical energy for generating the stimulation pulses characterized by cyclic timing means coupled to said source of electrical energy and said pulse generator means for cyclically interrupting the generation of the stimulation pulses, to allow a relaxation period for the living tissue, said cyclic timing means further comprising:
an off-time cycler comprising first astable multivibrator means repetitively generating count pulses at a first predetermined frequency and first counter means responsive to said count pulses to produce an output signal upon counting a first predetermined number of count pulses;
an on-time cycler comprising second astable multivibrator means repetitively generating count pulses at a second predetermined frequency and second counter means responsive to said count pulses for producing a reset signal upon counting a second predetermined number of count pulses;
first means responsive to the output signal for inhibiting the first astable multivibrator means and for enabling the second multivibrator means;
second means responsive to the output signal for electrically con-necting said source of electrical energy to said pulse generator means to thereby generate and apply to the living tissue stimulation pulses during the counting cycle of said on-time cycler; and means responsive to said reset signal for resetting said first counter means to terminate the output signal to thereby interrupt the generation of stimulation pulses during the counting cycle of said off-time cycler.
2. Apparatus according to claim 1, characterized by means connected to said off-time cycler for adjusting the off-time.
3. Apparatus according to claim 2, characterized by said off-time adjusting means comprising means connected to said first astable multivibrator means for controlling the frequency of oscillation of said first astable multivibrator means.
4. Apparatus according to claim 3, characterized by said first astable multivibrator frequency means comprising variable R-C timing means.
5. Apparatus according to claim 1, characterized by means connected to said on-time cycler for adjusting the on-time.
6. Apparatus according to claim 5, characterized by said on-time adjusting means comprising means connected to said second astable multi-vibrator means for controlling the frequency of oscillation of said second astable multivibrator means.
7. Apparatus according to claim 69 characterized by said second astable multivibrator frequency control means comprising variable R-C timing means.
8. Apparatus according to claim 1, characterized by switch means connected between said source of electrical energy and said cyclic timing means for supplying electrical energy from said source to said cyclic timing means upon actuation of said switch means, and reset means coupled to said first and second counter means and responsive to actuation of said switch means for resetting said first and second counter means.
CA 332356 1975-04-21 1979-07-23 Spinal curvature treatment system Expired CA1081793A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US05569842 US4026301A (en) 1975-04-21 1975-04-21 Apparatus and method for optimum electrode placement in the treatment of disease syndromes such as spinal curvature
US569,842 1975-04-21
CA 332356 CA1081793A (en) 1975-04-21 1979-07-23 Spinal curvature treatment system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CA 332356 CA1081793A (en) 1975-04-21 1979-07-23 Spinal curvature treatment system

Publications (1)

Publication Number Publication Date
CA1081793A true CA1081793A (en) 1980-07-15

Family

ID=25668939

Family Applications (1)

Application Number Title Priority Date Filing Date
CA 332356 Expired CA1081793A (en) 1975-04-21 1979-07-23 Spinal curvature treatment system

Country Status (1)

Country Link
CA (1) CA1081793A (en)

Also Published As

Publication number Publication date Type
CA1081793A2 (en) grant

Similar Documents

Publication Publication Date Title
US3650276A (en) Method and apparatus, including a flexible electrode, for the electric neurostimulation of the neurogenic bladder
US3822708A (en) Electrical spinal cord stimulating device and method for management of pain
Loeb et al. BION™ system for distributed neural prosthetic interfaces
US4719922A (en) Stimulator apparatus
US6895278B1 (en) Gastric stimulator apparatus and method for use
US6522928B2 (en) Physiologically based adjustment of stimulation parameters to an implantable electronic stimulator to reduce data transmission rate
US5269304A (en) Electro-therapy apparatus
US7062330B1 (en) Electrical stimulation adjunct (Add-ON) therapy for urinary incontinence and urological disorders using implanted lead stimulus-receiver and an external pulse generator
US4175551A (en) Electrical massage device
US4033355A (en) Electrode lead assembly for implantable devices and method of preparing same
US5964789A (en) Transcutaneous electric muscle/nerve controller/feedback unit
US6421566B1 (en) Selective dorsal column stimulation in SCS, using conditioning pulses
US5217009A (en) Compact biomedical pulsed signal generator for bone tissue stimulation
US6662053B2 (en) Multichannel stimulator electronics and methods
US5215086A (en) Therapeutic treatment of migraine symptoms by stimulation
US6163725A (en) Functional neuromuscular stimulation system
US20100057178A1 (en) Methods and apparatus for spinal cord stimulation using expandable electrode
US5038780A (en) Method and apparatus for capacitively regenerating tissue and bone
US20040210271A1 (en) Method and apparatus for providing complex tissue stimulation patterns
US6497648B1 (en) Device for applying electromagnetic therapy
US4342317A (en) Method of electrical muscle stimulation for treatment of scoliosis and other spinal deformities
USRE40279E1 (en) Method and system for neural tissue modification
US5167229A (en) Functional neuromuscular stimulation system
US4408609A (en) Electrical muscle stimulation for treatment of scoliosis and other spinal deformities
US6449512B1 (en) Apparatus and method for treatment of urological disorders using programmerless implantable pulse generator system

Legal Events

Date Code Title Description
MKEX Expiry