CA1065685A - Rotating fluidized bed combustor - Google Patents

Rotating fluidized bed combustor

Info

Publication number
CA1065685A
CA1065685A CA272,118A CA272118A CA1065685A CA 1065685 A CA1065685 A CA 1065685A CA 272118 A CA272118 A CA 272118A CA 1065685 A CA1065685 A CA 1065685A
Authority
CA
Canada
Prior art keywords
sand
bed
drum
waste material
combination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CA272,118A
Other languages
French (fr)
Inventor
Chadwell O'connor
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CA272,118A priority Critical patent/CA1065685A/en
Application granted granted Critical
Publication of CA1065685A publication Critical patent/CA1065685A/en
Expired legal-status Critical Current

Links

Landscapes

  • Gasification And Melting Of Waste (AREA)

Abstract

Abstract A heated fluidized bed is formed by rotating a body of sand in a horizontal cylindrical drum, lifting and dropping sand from the bed through the open portion of the drum, and heating the region through which the sand drops. The drum is formed by a cylindrical water wall of pipes connected to a water source and a steam outlet, and annular end plates hold the sand bed and define inlet and outlet openings in the drum. Waste material is simply dumped through the inlet opening and ash is automatically discharged through the outlet opening. The sand is preferably lifted by small cross section, scoop-like baffles so that the coolest sand from the bottom of the bed is heated, and waste particles are not removed from the bed. If desired, auxiliary air can be introduced into the sand bed through a manifold-pipe arrangement.

Description

~065685 This invention relates generally to incinerators and more particularly concerns a fluidized bed type of combustor.
The theoretical advantages of pyrolysis "burning" for waste disposal have long been recognized. A fluidized bed incinerator, charged with sand kept in a fluidized state by the flow of air or oxygen and a combustible gas, will completely consume most burnable materials at a temperature of about 1700 F., thereby generating little noxious gas or other pollutants in the discharged stack gas. Such incinerators are, however, expensive since typically they use special heat resistant chambers that must be sealed against inside pressure, require a constant flow of gas, and embody mechanical, positive feed devices for the waste.
Moreover, such incinerators normally do not efficiently recover the heat energy generated and require expensive maintenance to restore the heating chamber and clean it of scrap metal and other non-reduceable waste.
It is the primary aim of the invention to provide a combustor that will consume materials by pyrolysis in a kind of fluidized bed, but which is substantially less expensive to build and operate than a conventional fluidized bed incinerator. In more detail, the combustor of the invention requires no fluidizing ;gas flow, no special waste feed arrangement, no gas-tight sealing and, moreover, efficiently recovers the energy of combustion in the form of steam.
; Another object of the invention is to provide a combustor of the above character that does not utilize refractory materials, thereby reducing both the initial cost of the unit and the expenses - of maintenance.
- A further object is to provide a combustor of the kind characterized above whose design is quite flexible in the sense .. . . . ..

.. . . . . : .

5f~85 that the size of the unit can be readily proportioned to the intended use; it being equally feasible to design such a combustor to accept entire tree stumps as to design a small unit for shipboard or small hospital useO
A resulting object is to provide a fluidized bed combustor that can economically accomplish pollution-free disposal of such things as lumbering waste products, shipboard oil sludges, contaminated hospital paper waste, and similar hard-to-dispose-of waste products.
Broadly speaking, therefore, the present invention provides the method of creating a heated fluidized bed for consuming burnable waste material by pyrolysis comprising the steps of rotating a bed of sand in a partially filled horizontal cylindrical drum, lifting and dropping sand from the bed through the non-sand filled portion of the drum, and heating the region through which the sand is dropped.
The above method may be carried out in a rotary fluidized bed combustor comprising, in combination, a cylindrical drum mounted for rotation about its axis with the axis being substantially horizontal, the drum having annular end plates defining inlet and outlet openings, a charge of sand in the drum defining a bed extending between the openings, means for slowly rotating the drum so as to tumble and thus fluidize the sand, means for feeding waste material through the inlet opening and into the fluidized sand bed, means for igniting the - waste material and the gas generated by pyrolysis of the waste material, and means for re~eiving ash and stack gas fro~ the outlet opening.
Other objects, features, and advantages of the invention will become apparent upon reading the following detailed description and upon reference to the drawings, in which:
Figure 1 is a longitudinal vertical section, partially ywl/O~ * - 2 -.

,~, i.. . . . . . .
. .

schematic, of a system using a combustor of the present invention;
- Fig 2 is an end elevation of the combustor shown in Fig.; and -- Figs. 3, 4 and 5 are slightly enlarged sections taken approximately along the lines 3, 4 and 5 in Fig. 1.
While the invention will be described in connection with a preferred embodiment, it will be understood that I do not intend to limit the invention to that embodiment. On the ~
contrary, I intend to cover all alternatives, modifications ~-and equivalents as may be included within the spirit and scope of the invention as defined by the appended claims.~ ;~
Turning to the drawings, there is shown a combustor 10 embodying the invention and including a drum 11, a waste input chute 12, an ash and stack gas chamber 13, and steam ~ ;
and water connections 14 illustrated schematically. In operation, burnable waste material is simply dropped through the chute 12, becomes embedded in a fluidized bed of heated sand 15 in the drum 11, is '; :"
~'' , ~' '' : ", ~, ' ywl/~ 2a -3656~35 gradually forced from left to right as seen in Fig. 1 while being consumed by pyrolysis, and the resulting ash is received in a pit 16 and stack gas is discharged through a stack 17.
In accordance with one aspect of the invention, the fluidized heated sand bed 15 is created by rotating a charge of sand in the substantially horizontally disposed cylindrical drum 11, and by lifting and dropping sand from the bed through the open portion of the drum which is heated. The sand thus tends to be carried up one side of the drum to an approximate surface angle of 30 (see Figs. 3-5), whereupon the sand tumbles back "downhill"
producing a continuous rolling motion of the bed 15 not unlike the fluidizing effect achieved by forcing air or other gas up through ;
a sand bed. A drum rotational speed on the order of 3 rpm is satisfactory to produce the desired effect.
The sand is lifted and dropped by baffles 21 running longitudinally on the inside of the drum 11 which, in effect, sweep through the sand bed as the drum rotates, lift the sand - from the bed, and then drop the sand through the open region of the drum as the baffles rotate over the bed. The sand is initially heated by the flame from a gas fired burner 22, but once pyrolysis starts, gases from the waste material being consumed will be burned ~;
off just above the surface of the bed 15 so that the bed will be ~- self-heating with the burner 22 serving as a kind of pilot light.
In accordance with another aspect of the invention, the drum is formed by a cylindrical water wall of adjacent pipes 23 : communicating with a source of water 24 and an outlet for steam .i.
shown here as a steam chest 25. The drum 11 has annular end - plates 26 and 27 holding the ends of the sand bed 15 and defining - inlet and outlet openings 28 and 29, respectively. The chute 12 and the burner 22 pass through the inlet opening 28 which is , '' . _ _ _ . . . ... .
"`' 065613~

otherwise closed by a cover 31 to minimize heat loss although there is no need for sealing the openings 28, 29.
The water wall is preferably formed by the pipes 23 being accordion bent with adjacent runs being connected by joining ribs 32, as in a conventional boiler water wall, although the drum 11 wall is curved into a cylinder and held by a plurality of circular I-beam bands 33 fitted on supporting rollers 34 much like the water cooled kiln shown in U. S. patent No. 3,822,651, issued July 9, 1974. However, an important distinction of the water wall of the drum 11 over the kiln shown in the patent referred to is that the drum 11 is imperforate.
In the illustrated drum, three accordion folded sections .;
of pipe are provided, each spanning 120 of the cylinder's periphery, and each section ends in lengths of feeder pipes 35 leading to a manifold fitting 36 and a concentric, inner and outer path, conduit 37 leading to a joint 38 allowing relative rotation between the drum 11, feeder pipe 35 and conduit 37, and pipes 39 connecting the joint 38 to the water source 24 and the steam chest 25. The joint 38 is a conventional subassembly, and one form of double path conduit and rotating joint is disclosed in some detail in patent No. 3,822,651 previously referred to.
For rotating the drum 11, a ring gear 41 fixed to the periphery of the drum is driven by a pinion 42 powered through a chain 43 from any suitable source of power. If desired, a separate sand pit 44 can be opened by a positionable cover 45 to separate, for reuse, from the ash discharge what little sand spills through the outlet opening 29. Although the water wall will recover most of the heat of combustion in the form of steam, while keeping the drum well below destructive temperatures without the need for refractories, it is also possible to use a simple waste heat boiler, not shown, in the stack 17.

.

~ : .
.. . . .. .. . . .
: 4 ~-As a feature of the invention, the baffle 21 has small, arcuate cross sections defining elongated scoops that scoop out the sand from the bottom of the bed, which sand will be the coolest, for lifting and reheating. The small scoop sections, being quickly filled with sand, do not lift appreciable amounts of the waste materials being consumed so that the waste is left embedded for pyrolysis consumption.
Another feature of the invention is the provision of pipes 47 and a manifold 48 for introducing air up through the bed 15 to help reduce especially difficult-to-burn waste. The pipes 47 are perforated and fixed behind the baffles 21 with the pipe ends opening through the inlet end plate 26. The manifold 48 is arcuate and approximates the expected cross section of the bed when the combustor is in operation, so that air from a source 49 is distributed by the manifold 48 to those pipes then within the bed 15. When such air is introduced, the effect is virtually identical to a conventional fluidized bed incinerator although the air flow, not being needed for the fluidizing action, may be substantially less. Another blower 51 for introducing, still additional air is fitted through the inlet opening cover 31.
The advantages of the combustor 10 can be quickly ~`
appreciated by those skilled in the art. Pyrolysis consumption of waste material is achieved in a kind of fluidized bed with no - need for the generation and introduction of a fluidizing gas flow or the maintenance of a sealed burning chamber. The waste material is simply dumped in with no need for a complicated feed arrangement, and the resulting ash, being lighter than the sand bed, inherently floats out of the outlet opening 29. The combustor itself is -essentially a pipe-formed drum which can be economically made and which does not require refractory materials that are particularly ' , , , .
, .

1~65~35 expensive to both assemble and maintain. The heat of combustion is efficiently recovered in the form of steam and it has been noted that in many possible applications for the combustor lO, such as in the lumber industry, on shipboard, or in hospitals, there is a direct need for steam by adjacent equipment. It can also be appreciated that the combustor 10 can vary widely in size and hence capacity, and thus it is quite feasible to design a small compact unit for efficiently disposing of contaminated waste in a small hospital, or to build a much larger unit intended to dispose of forest waste in a large-scale lumbering operation.
The burner 22, auxiliary air blower 51, and pipes 47 and manifold 48, give considerable flexibility to operation of the combustor.

, _ . .. . .

Claims (6)

The embodiments of the invention in which an exclusive property or privilege is claimed are defined as follows:
1. A rotary fluidized bed combustor comprising, in combination, a cylindrical drum mounted for rotation about its axis with said axis being substantially horizontal, said drum having annular end plates defining inlet and outlet openings, a charge of sand in said drum defining a bed extending between said openings, means for slowly rotating said drum so as to tumble and thus fluidize said sand, means for feeding waste material through said inlet opening and into said fluidized sand bed, means for igniting said waste material and the gas generated by pyrolysis of said waste material, and means for receiving ash and stack gas from said outlet opening.
2. The combination of claim 1 in which the cylindrical portion of said drum is defined by a water wall of adjacent pipes communicating with a source of water and an outlet for steam.
3. The combination of claim 1 including a plurality of baffles fixed to the inside of said drums for lifting sand as the drum rotates and then spilling the lifted sand through the combustion region above the sand bed.
4. The combination of claim 3 in which said baffles have small arcuate cross sections so that the coolest sand at the bottom of the bed is lifted for reheating and waste particles in said bed are not lifted therefrom.
5. The combination of claim 3 including a plurality of perforated air pipes disposed behind said baffles, and a manifold outside of said drum for selectively feeding additional air to said pipes when they pass through the sand bed.
6. The method of creating a heated fluidized bed for consuming burnable waste material by pyrolysis comprising the steps of rotating a bed of sand in a partially filled horizontal cylindrical drum, lifting and dropping sand from said bed through the non-sand filled portion of said drum, and heating the region through which said sand is dropped.
CA272,118A 1977-02-18 1977-02-18 Rotating fluidized bed combustor Expired CA1065685A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA272,118A CA1065685A (en) 1977-02-18 1977-02-18 Rotating fluidized bed combustor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CA272,118A CA1065685A (en) 1977-02-18 1977-02-18 Rotating fluidized bed combustor

Publications (1)

Publication Number Publication Date
CA1065685A true CA1065685A (en) 1979-11-06

Family

ID=4107960

Family Applications (1)

Application Number Title Priority Date Filing Date
CA272,118A Expired CA1065685A (en) 1977-02-18 1977-02-18 Rotating fluidized bed combustor

Country Status (1)

Country Link
CA (1) CA1065685A (en)

Similar Documents

Publication Publication Date Title
US4066024A (en) Rotating fluidized bed combustor
CN104791803B (en) A kind of garbage combustion device and its burning process
US3822651A (en) Water cooled kiln for waste disposal
US5010830A (en) Process and apparatus for incinerating wet refuse
US3267890A (en) Municipal incinerator
US4859177A (en) Apparatus for incinerating combustible material
CN102173554A (en) System for drying and handling sludge with waste gas from cement production
CN100432532C (en) Combined incineration treatment method for refuse and special vertical oxygen-enriched continuous incinerator
US3838015A (en) Method and apparatus for pyrolytic decomposition of trash
WO2010150412A1 (en) Organic sludge treatment equipment
US3827379A (en) Rotary kiln type solid waste incinerating system and method
US4531463A (en) Baffle for controlled air incinerators
JPS6119307Y2 (en)
JPH11286684A (en) Continuous carbonization furnace
CA1065685A (en) Rotating fluidized bed combustor
US5727482A (en) Suspended vortex-cyclone combustion zone for waste material incineration and energy production
KR100789703B1 (en) Waste's carbonization device
CN115010339B (en) Sludge treatment system and sludge treatment method
JPH08332469A (en) Small-sized municipal refuse treatment equipment by thermal recycling and environmental safeguard type combined system
JPH07233925A (en) Incinerator
CN104728846A (en) Rotating dual-roller incinerator
CN210885931U (en) Continuous rotary type special furnace for anaerobic carbonization of garbage
CN209341267U (en) Low-power consumption sludge incineration rotary kiln
CN106642145A (en) Garbage drying and incineration system
JP5603862B2 (en) Sewage sludge treatment equipment