CA1046817A - Process and apparatus for the manufacture of filled, closed containers - Google Patents

Process and apparatus for the manufacture of filled, closed containers

Info

Publication number
CA1046817A
CA1046817A CA 270524 CA270524A CA1046817A CA 1046817 A CA1046817 A CA 1046817A CA 270524 CA270524 CA 270524 CA 270524 A CA270524 A CA 270524A CA 1046817 A CA1046817 A CA 1046817A
Authority
CA
Grant status
Grant
Patent type
Prior art keywords
container
lid
apparatus
bottom
tier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CA 270524
Other languages
French (fr)
Inventor
Billy Ljungcrantz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tetra Pak Developpement SA
Original Assignee
Tetra Pak Developpement SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B43/00Forming, feeding, opening or setting-up containers or receptacles in association with packaging
    • B65B43/08Forming three-dimensional containers from sheet material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B3/00Packaging plastic material, semi-liquids, liquids, or mixed solids and liquids, in individual containers or receptacles, e.g. bags, sacks, boxes, cartons, cans, jars
    • B65B3/02Machines characterised by the incorporation of means for making the containers or receptacles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B3/00Packaging plastic material, semi-liquids, liquids, or mixed solids and liquids, in individual containers or receptacles, e.g. bags, sacks, boxes, cartons, cans, jars
    • B65B3/02Machines characterised by the incorporation of means for making the containers or receptacles
    • B65B3/027Making containers from separate body and end-parts

Abstract

A process and apparatus for the manufacture of filled, closed containers Abstract of the Disclosure The invention concerns the production of closed containers filled with a liquid or particulate material. Production takes place on a machine having two tiers revolving about a common, stationary shaft.
The container wall is shaped from a blank and then welded and the container bottom fitted in the upper tier.
The container is filled shortly before or during its transfer to the lower tier where the lid is fitted and the finished product swung out onto a conveyor belt.

Description

10~6817 The invention relates to a process and apparatus for the manufacture of filled, closed con-tainers made of a foldable material and having a tubular wall section of any cross-section, a bottom and a lid, the material for the wall section, the bottom and the lid being fed in separately and the container being filled and closed with the lid after fixing the bottom in place.
A A particular, but in no~ way exclusive area of application of the invention is the manufacture of milk cartons which are assembled, filled and closed on the apparatus itself under hygienic conditions.
Prior art processes and machines hitherto used for manufacturing tubular cardboard or plastic containers and still in use today have several stations arranged in cadence to form a production line to which the container blanks are fed at intervals by a transport system. Owing to the large number of stations, these known machines are very long and occupy a relatively large space. Since the joins in the material are mostly made by welding (heat-sealing), each welding station must be followed by a cooling leg. This considerably increases the total length of the machine. In addition, these machines working in a production line do not allow continuous manufacture and the moving parts of the machinery cannot be sealed off from the zone in which the containers are formed and filled, although this is .
.
.. .

desirable for reasons of hygiene. Depending on the contents of the container, it can however be of the utmost importance that the sterilized contents do not come into contact with machine oil or dust particles and also that the ving parts of the machinery are protected from the container contents which may at times spray in all directions.
The object of the present invention is therefore to propose a method and apparatus for manufacturing filled, closed containers which does not suffer from the disadvantages mentioned above. The new process and the associated apparatus is intended to allow filled, closed containers to be manufactured continuously, and also when required intermittently, at high production rates and in a very small space.
The invention provides a process for the manufacture of filled, closed containers made of a foldable material and having a tubular wall section of any cross-section, a bottom and a lid, the material for the wall section, the bottom and the lid being fed in separately and the container being filled and closed with the lid after fixing the container bottom in place, wherein the process of shaping and welding of the tubular wall sec-tion and attaching of the bottom and lid, take place in at least two rotating tiers positioned at different levels, the process beginning in a first rotating tier and the container blank then being transferred to a second, coaxial rotating tier where the blank is further processed or finished.
From another aspect, the invention provides apparatus for carrying out the aforesaid process and comprises a number of processing stations, carrier elements for transporting the container blank from one station to another and tools for shaping the tubular wall section, welding the wall section longitudinally, fitting the bottom, introducing the contents and fitting the lid, wherein the processing stations are located about a common stationary shaft in at least two tiers situated at different levels, the carrier elements and the processing tools being driven by means which cause all the carrier elements to execute a rotational motion or a series of intermittent partial rotations about said shaft and cause all the processing 10468~7 tools to execute about the same axis at least a partial rotation through the angle corresponding to their respective work sector.
In a preferred embodiment of the invention, the tubular wall section is shaped and welded and the container bottom fitted in a first tier, while the container lid is fitted in a tier situated below the first.
The product with which the container is to be filled is prefer-ably introduced shortly before or during the transfer of the unfinished container from the first tier where the bottom is attached to the lower tier.
The carrier elements are conveniently mandrels suspended in the upper tier, said mandrels having the same shape as the tubular wall section and cooperating over a given sector with a device for welding the container blank longitudinally along a line substantially parallel to said shaft.

The carrier elements are preferably several holding and ~itting heads working together in pairs and mounted substantially in two concentric circles at the upper ends of cam-driven drive rods which execute a vertical reciprocating motion, the holding and fitting heads of the outer circle being additionally pivotable about the longitudinal axis of their associated drive rod.
The apparatus is conveniently driven by two ex-ternallY toothed drive wheels freely rotatably mounted on said shaft, the mandre]s being mounted on one drive wheel and the drive rods on the other drive wheel so that both mandrels and drive rods are entrained by the rotation of the two drive wheels.
Rigidly connected to the lower drive wheel is preferably an internally toothed ring which drives an eccentric via a pinion, said eccentric driving the longi-tudinal seam welding device and means for pre-heating the container bottom and lid to execute an oscillatory motion.
The device for making the longitudinal weld is also conveniently connected via a lever system to a stationary cam such that the device periodically moves in the radial direction against the mandrel during its oscillatory motion about the shaft.
The accompanying drawing shows an illustrative embodiment of the invention.
Fig. 1 is a schematic, very much simplified vertical section of a machine for manufacturing filled and closed parallelepipedal milk cartons.

.. ... ... .. ... .
.

10468~7 Fig. 2 is a simplified perspective view of the same machine.
Fig. 3 is a simplified horizontal section along line III - III
in Fig. 1.
Fig. 4 is a plan-view of the machine's wall section material feed equipment.
Fig. 5 is a front view of a device for shaping the tubular wall section.
Fig. 5a (on the same sheet as Fig. 3) shows the pre-cut plastic blank fed to the device depicted in Fig. 5.
Fig. 6 is a view from below of the device illustrated in Fig. 5.
Figs. 7 to 12 ~Fig. 11 appearing on the same sheet as Fig. 4) show further constructional details of the machine.
Fig. 13 illustrates by means of a flow diagram the various operations in the process.
In Fig. 1 the central component of the machine, a stationary, i.e.
not rotating shaft, is denoted by the reference numeral 1. All the stations are disposed round this shaft 1 in two tiers I and II.
A motor M drives, via a shaft 2 and two pinions 3 and 4 and preferably by means of a reduction gear (not shown), two drive wheels 5 and 6 which are provided with peripheral teeth c.nd ro~ate together. A
carrier plate 8 is connected to the upper drive wheel 6 by spacer sleeves 7 such that the carrier plate 8 is entrained by the drive wheel 6 as the latter rotates. Bight shaping mandrels 9 are mounted on the underside of the carrier A

plate 8, symmetrically distributed round the periphery of the plate. The shape of the mandrelsLcorresponds exactly to that of the parallelepipedal cartons to be manufactured.
The mandrels 9 rotate continuously and the various steps in the process are carried out during the continuous rotation. The individual operations and the devices necessary for them are described later.
On a base plate 10, two concenctric, substantially cylindrical cams 11 and 12 are disposed, the upper edges of which have a given drive profile. Eight drive rods 14 and 15 (see also Fig. 3) which run on rollers 13 rest on the drive surfaces of the cams 11 and 12 respectively.
There are therefore two groups of cam-driven rods 14 and 15 respectively which pass through the drive wheel 5 and a carrier plate 38 connected to the drive wheel 5 by spacer sleeves 16. With the motor M running, all the rods 14/15 - rotate about the shaft 1, executing additional vertical movements corresponding to the profiles of the cams 11 and 12.
The rollers 13 are kept in constant contact with the cams 11 and 12 by tension springs Z.
The upper end of each drive rod 15 in the inner circle carries an upwards facing bottom-fitting head 17 for applying the bottom to a previously formed con-tainer blank. The upper end of each rod 14 in the outer circle carries a downwards facing lid-fitting head 18 for applying the lid to a previously formed container blank ~hich has already been provided with a bottom and filled.

The remaining constructional features of the machine are described below in conjunction with their functions so that they may be more readily understood.
Thus the manufacturing process will now be described, in the course of which the constructional features of the machine not yet explained will be successively introduced.
In the manufacture of a parallelepipedal milk carton the wall section must be produced first. Fig. 4 shows how a pre-scored strip 19 is wound o~ a delivery roll 20, guided by a pair of rollers 21/22. The cross-section of the actual guide roller 21 is a regular octagon, ~ -the sides h of which are so dimensioned that, as the guide roller 21 rotates,an edge 23 coincides with the pre-scored fold lines of the plastic str;p`. It is of course important for these cooperating parts to be accurately manufactured and precisely adjusted before con-tainer production begins. The pressure roller 22 must be mounted elastically so that it can follow the profile of the rotating guide roller 21.
A rotating blade 24 operating in conjunction with a similarly rotating counter-roller 25 cuts the strip 19 into sections. The length of these sections corresponds to the periphery of the finished carton wall including a welding flap E (Fig. 5a). The separated blank, designated by the reference numeral 26, is then fed to the shaping device 27 the construction of which is illustrated in Figs. 5 to 8.

- - . . . . : . .: -- . .
,` ' , ' . - . .
, -" 1046817 The blan~ 26 is shown in Fig. 5a. It has four score lines a, b, c and d dividing it into the four walls A, B, C, D of the finished parallelepipedal carton.
As already mentioned, it also has an overlap section E
used in forming the longitudin~l w~ld.
One advantage of the present process is that A the score lines a, b and c are not essential and ~u_t only be provided when relatively unpliable materials are used.
The task of the shaping device 27 (Fig. 4) is to shape the parallelepipedal carton wall. This device has a stationary plate 28 (Figs. 5 and 6) provided with two curved, longitudinal slots 29. Projecting down into these longitudinal slots are the pilots 30 of two sub-stantially cylindrial pressurerollers 31. As the view from below of Fig. 6 shows, the two pilots 30 are fixed to two guide links 32 whicn are pivotable about two stationary shafts 33 in the direction of the arrow.
~he return spring 34 constantly pulls the two pilots 30 - 20 back into their starting position shown in Fig. 6.
The two pressurerollers 31 are preferably rotatably mounted in the respective bores of the two guide links. The periphery of each pressure roller is provided with two pressurerings 35 a certain distance apart made of a soft cushion-like material, e.g. a suitable plastic, and thus possess a certain resilience.
It would however certainly also be possible to clothe the whole of the cylindrical wall of both rollers 31 with this resilient material.

_ g _ . .. , , ,. .,,; , . . . - , .. . . .. . . . . .

10468~7 The parallelepipedal mandrel 9 (Fig. 1) is, as already mentioned, mounted under the carrier plate 8. This mandrel is shown separately in Figs. 7 and 8. Each of its rearwards facing walls carries two suction cups 36 made of plastic in the usual way which adhere when pressed against a plane wall by virtue of the vacuum so formed.
Before the pre-scored plastic blank 26 reaches the shaping device 27 it is standing on one edge (see Figs. 4 and 5a). When the shaping device is in operation, the mandrel 9 moves, together with the seven other mandrels, about the shaft 1 and meets the central score line b of the blank 26 as shown by the arrow in Fig. 6. The plastic blank 26 is wrapped round ~
the mandrel (see Fig. 8), the preosure rollers 31 and - ~`the spring 34 ensuring that the blank lies round the whole of the mandrel wall and in particular that the blank is pressed tight against the wall in the region of the suction cups 36. The two pressure rings 35 are located exactly at the level of the suction cups 36 which are themselves somewhat counbersunk and can thus have no detrimental effect on the shaping operation. -- When the mandrel 9 has passed between the two pressure rollers 31, it takes with it the exactly positioned and already shaped carton wall, now denoted by 26' (Fig 9).
The next operation involves the sealing of the still open longitudinal seam of the carton wall.

. . , ~ . - , . .

Since in the embodiment chosen to illustrate the in-vention a polystyrene strip coated on both sides with homogenous polystyrene is used as the carton material, the seam is preferably sealed by heat treatment, i.e.
heat-sealing or welding.
The device denoted as a whole by 37 (Fig. 1) is used to form the longitudinal seal. This device must execute the following movements:
a) It must follow the rotational motion through a given angle, b) it must move radially outwards up against the rotating mandrel 9, -c) it must draw back again from the mandrel 9, d) and must finally return to its starting position.
This relatively complicately sequence of move-ments is achieved in the machine described by arranging that the device 37 is driven by the rotating lower drive wheel 5 to execute a reciprocating partial rotation, the radial movements being derived from the upper drive wheel 6 and superimposed on the reciprocating partial rotation.
Fixed on the carrier plate 38 is an internally ^ toothed ring 39 in constant contact with a stationary pinion 40. A stationary arm 41a anchored on the shaft 1 carries a shaft 41. Connected to the pinion 40 by the shaft 41 is an eccentric 42 which drives a follower - 43 mounted on a swing arm 44. The swing arm 44 is mounted for free rotation on the shaft 1 and thus executes a periodic oscillating motion determined by the shape of the eccentric 42. This oscillating motion is trans-mitted to the longitudinal seam welding device 37.
The periodic radial-motion of the device 37 which presses the heating bar 45 against the mandrel 9 is transmitted via a stellate cam 46 which rotates with the carrier plate 8. A cam follower 47 held con tinuously against the driving surface of cam 46 by a spring (not shown) transmits the periodic oscillating motion to the heating bar 45 via a lever system.
The details of the longitudinal seam welding device 37 are shown in Figures 9 and 10. Fig. 9 is a ~m~ d plan view of the device, Fig. 10 a perspective view.
The periodic oscillating motion originating from cam 46 is transmitted to a lever 48 through the follower 47 located at the end of lever 48. Lever 48 is rigidly connected by a shaft 49 with a second lever 50 at the far end of which a frame 51 carrying the heating bar is hinged. Two guide links 52 engage with this frame 51, the other ends of the guide links 52 being pivotably connected to the continuously recipro-cating swing arm 44.
- Depending on the intricacy of the required motion of the heating bar 45, several cooperating cams may be used instead of the single cam 46. In this way it would in particular be possible to ensure that the -pointed edge of the heating bar 45 could be withdrawn from the overlap after heating it without deforming the overlap.

.

In Fig. 9 the operational position of device 37 is indicated by solid lines, the stand-by posit,ion by dot-and-dash lines.
Immediately after the longitudinal carton wall seam has been heated, the heated overlap E must be pressed against the neighbouring region of the carton for a short time. This is done by means of a pressure bar 53 (Fig. l) which rotates with its associated mandrel 9, is pressed at the correct moment up against the mandrel and withdrawn after a given period of time.
The pressure ~ bar is driven by a cam 54 (Fig. l) rigidly fixed on shaft 1. As the carrier plate 8 rotates, a lever system 55 connected to the pressure bar 53 rotates with the carrier plate,a cam follower 56 driven by cam 54 being mounted at the upper end of lever system 55.
The welding of the longitudinal seam in the carton wall is thus completed and after a given cooling time the bottom of the carton must now be attached.
The bottom is attached by means of the bottom fitti,g heads 17 already mentioned, to which the pre-cut bottom blank must however first be fed. The device developed ~ for this purpose is shown in Fig. ll.
The strip 57 wound o~ a supply roll is advanced in the direction of the arrow at intervals by two rollers 58 and cut into square blanks 57' by a blade 59. The bottom blanks 57' are subsequently pushed on in the direction of the arrow until they reach the underside of a feed head 60 which is connected to a vacuum line by connecting pipe 61 and is provided ~ith bores 62 in its underside. The feed head 60 is also pivotably mounted on an arm which can pivot through an angle a.
When the feed head 60 has gripped a bottom blank 57', the head is lowered in time with the stroke of the machine and thus holds the blank ready to be stripped off and carried away by the slightly raised rear edge K of the passing bottom fitting head 17 (arrow 64). Fitting head 17 is connected to a vacuum line by a pipe 65 and carries away the bottom blank 57' securely held on the fitting head. The position of the device in which the bottom blank 57' is transferred to the fitting head 17 is shown in Fig. 11 by dot-and-dash lines.
When the bottom fitting head 17 (and this also applies of course to the other bottom fitting heads) has been loaded with the bottom blank 57', its continuous rotation brings it within the region of influence of a heater 66 (Fig. 1) mounted on a carrier arm 67 which oscillates periodically about shaft 1 with swing arm 44. Heater 66 thus accompanies the bottom fitting head 17 on its way between two stations, heating the bottom blank until the thermoplastic upper layer of the blank is softened. When carrier arm 67 has returned the heater to the immediately following bottom fitting head, bottom fitting head 17 is raised by rod 15 by virtue of the appropriate shape of cam 12, thus pressing the bottom blank over the lower end of the carton wall. ~s Fig.ll shows; the bottom fitting head 17 has a recess 17a whose cross-section corresponds to that of the carton. The carton bottom is thus pressed tightly against the carton wall and the softened thermo-- 5 plastic upper layer forms a tight join. The recess 17aof the bottom fitting head 17 can be provided with movable shaping edges which improve the right-angle shape of the bottom in the usual way.
The bottom fitting head 17 now moves downwards, its suction effect stripping the lidless carton from mandrel 9. At the same time the contents, in the present embodiment milk, are introduced from above in the direction of arrow P through a bore in mandrel 9. The control of the filling operation in time with the working stroke of the machine is well-known to those skilled in the art and need not therefore be explained. At the same time as the carton is being filled, it is trans-ferred from tier I to tier II where the remaining operations take place.
The filled carton must now be fitted with a lid. The feeding, pre-heating and fitting of the lid is carried out in a similar way to that of the carton bottom. The lid blanks arrive periodically at the lid fitting station and are transferred to the continuously rotating lid fitting heads 18 (Fig. 1) where the blanks are held by a suction effect. Here too, the blanks are pre-heated by a heater 68, fixed to an oscillating carrier arm 69. As with carr er arm 67, the oscillatory motion is derived from eccen~ric ~2.
This oscillatory motion is of such a kind that the heater accompanies the lid fitting head 18 over a sector of the latter's rotation, thus softening S the thermoplastic layer of the lid blank. The heater then returns to its starting position and the lid fitting head moves downwards under~the influence of cam 11 and a number of springs (not shown). The lid is shaped and at the same time pressed against the outside of the carton wall to form a tight weld.
It should be hoted however that when the lid is fitted the carton is no longer supported from in-side by the rigid mandrel as it was when the bottom was fitted. The filled carton must therefore be laterally supported while the lid is being fitted. The device shown schematically in Fig. 12 may for instance be - -used for this purpose.
A stationary cam 70 (Figs. 1 and 12) is fixed to shaft 1. A rod 72 which passes through carrier plate 38 and drive wheel 5 and therefore rotates continuously is provided at its lower end with a roller 71 kept in constant contact with the driving surface of cam 70 by a spring (not shown). The upper end of rod 72 is bent outwards and carries a gripper 73, the exact shape of which can be seen from Fig. 12. Each side of gripper 73 has a recess 74 which matches the right-angled edge of the carton so that the carton 75 can be securely gripped by two adjacent grippers 73. Since each gripper 73 has two recesses 74, appropriate design of cam 70 enables the grippers to be rotated through such an angle that each individual gripper works alternately with each of its two neighbouring grippers. Thus with a total of eight stations in tier II, only eight grippers which can pivot from a central position to an operational position on either side are necessary.
The carton is now finished and only needs to be conveyed out of the circular assembly line.
For this purpose, the eight outer rods 14 are mounted for rotation about their own vertical axis so that they can be rotated at the right moment to swing the carton outwards and deposit it on a waiting conveyor belt 76 by merely interrupting the suction effect or by means of a short blast of compressed air for instance.
The drive for rods 14 originates from a further stationary cam 77 (Fig. 1) fixed to shaft 1.
A rod 78 fixed to and projecting down from the con- -tinuously rotating drive wheel 5 carries at its lower end a freely rotatable sleeve 79 on which two levers 80 and 81 are mounted so that they project radially outwards. One lever 80 is pivotably connected to a link rod 82 which in turn engages with a pivot pin 83 mounted on rod 14. The other lever carries a roller 81' which is held on the driving surface of cam 77 by a spring (not shown) and thus follows this cam. Appropriate design of cam 77 enables sleeve 79 to be rotated and this rotational motion to be transmitted to rod 14.

~046817 Each of the eight rods 14 is provided with such a rotation mechanism 80 to 83. So that the rotation of rods 14 about their own axis is not transmitted to rollers 13, at least the lower part of rods 14 is designed as a tube, a rod 14a with roller 13 fixed to its lower end projecting upwards into this tube.
Delivery of the carton 75 onto the conveyor belt 76 brings the manufacturing cycle to an end. Rod 14 is rotated to bring its lid fitting head 18 in again and is ready for the next lid fitting operation.
Where only one machine component, e~g. a lid fitting head 18, has been described in the present text, -it should of course be noted that the machine may have number any/, e.g. 8, of these components which during the con- -stant rotation pass from one processing station to the next,performing their functions. Hence the term "processing station " is not intended here to mean a concrete device but rather the sector in which a parti-cular function is performed.
Summarizing for the sake of clarity, it can be seen that the machine described includes three separate moving systems.
a) The lower rotating system based on the drive from drive wheel 5. This drive wheel causes the fitting heads 17, 18 and the grippers 73 to rotate about the main shaft and to swivel about the axis of their own support rods.

b) The upper rotating system based on the drive from drive wheel 6. This drive wheel causes the mandrels 9, the pressure bars 53 and cam 46 to rotate as well as causing the reciprocating motion of pressure bars 53 (via cam 54 and follower 56).
c) the oscillating system driven by the lower drive wheel via the toothed ring 39, the eccentric42 and the swing arm 44. This drive causes the oscillation (reci-procating partial rotation) of device 37 for welding the longitudinal seam and of the heating members 66/68.
The manufacturing process will now be characterized briefly in terms of the main operations (see Fig. 13), the individual stations being designated ; 1 to 8.
Tier I
Position Operation .
1 Shaping the wall section on the mandrel

2 Welding the longitudinal seam of the wall section

3 Pressing the longitudinal weld and letting it cool

4 Transferring the bottom blank to the bottom fitting head 17 from feed head 17 (Fig. 11), further cooling of the longitudinal weld Heating the bottom blank and further cooling of the longitudinal weld 6 Fitting the bottom .. . ~ .. . .. . . . ... ... .. _. . . . .. ... ..... . . . .. .. .. .. . . ... _ .. . . . .

` - 1046817 7 Stripping the unfinished container from the mandrel and introduction of the contents F
through the mandrel, cooling the bottom weld, transfer to tier II
8 Transfer of the lid blank to the lid fitting head, further cooling of the bottom weld.
Tier II
1 Heating the lid blank 2 Fitting the lid, cooling the lid weld 3 . Removal of the carton from the bottom fitting head, further cooling of the lid weld 4 Pivoting out the lid fitting head with the carton, transfer of the bottom blank onto the bottom fitting head 17 by means of the feed head ;:
60, further cooling of the lid weld Further cooling of the lid weld 6 Transfer of the carton to the conveyor belt 76, further cooling of the lid weld 7 Transfer of the unfinished container from tier -I to tier II, initiation of the filling operation (milk) through the mandrel, further cooling of the lid weld 8 Introduction of the rest of the contents.
The process may be fully automated and allows sufficient time after each welding operation for the weld to cool down without any special space or time having to be provided for this.

" - ' ' ' . . ' , ~)46817 The macfiine components necessary for the individual process steps may be divided for the sake of clarity into carrier elements, tools or a combination of the two. It should be noted in this context that:
a) the mandrels 9 are both carrier elements and tools since they both shape and subsequently carry the carton wall section, b) the fitting heads which rotate about the axis of the machine and move up and down are both carrier elements and tools since they not only transport the container but also fit the bottom and lid.
c) pure tools are in particular the device 37 for welding the longitudinal seam, devices 66/68 for heating lid and bottom and device 73 for supporting the filled carton while the lid is being attached, d) there are no pure carrier elements.
The term "tubular wall section" used in the specification and claims means a linear hollow body with any cross-section, e.g. circular, square or rectangular.
For the manufacture of the carton a laminate material is preferred which has a substrate layer of expanded polystyrene coated on both sides with homogenous polystyrene.
The machine described is of course suitable for the introduction not only of liquids into containers but also of solids of all kinds such as powders, granulate materials or coarser solids such as biscuits etc. .
; - 21 -.. - ~ -, . ,:
.: , 1~46817 The welqing operations (the pre-heating of longitudinal seam, bottom and lid) are preferably carried out electrically, although a different heating method could be used, e.g. hot air. The melting point of homogenous polystyrene is about 14~C, so a heating temperature between 320 and 3600C would be suitable for the short heating of relatively thick material.
The embodiment described above should merely be viewed as an example which can be varied in many ways by those skilled in the art.
The drawing shows two heaters 66/68 displaced at 180 from each other. This angle depends of course on the number of pre-heating stations and may be calculated from the formula 360 ,where n is the number of pre-heating stations used.
The expressions "rotate" and "rotational motion" are intended to include motion which is not in a mathematically exact circle. This rotational motion may be continuous or intermittent, intermittent rotation being of use with non-liquid container contents in particular.

.

Claims (20)

THE EMBODIMENTS OF THE INVENTION IN WHICH AN EXCLUSIVE
PROPERTY OR PRIVILEGE IS CLAIMED ARE DEFINED AS FOLLOWS:
1. A process for the manufacture of filled, closed containers made of a foldable material and having a tubular wall section of any cross-section, a bottom and a lid, the material for the wall section, the bottom and the lit being fed in separately and the container being filled and closed with the lid after fixing the container bottom in place, wherein the process of shaping and welding of the tubular wall section and attaching of the bottom and lid, take place in at least two rotating tiers positioned at different levels, the pro-cess beginning in a first rotating tier and the container blank then being transferred to a second, coaxial rotating tier where the blank is further pro-cessed or finished.
2. The process of claim 1, wherein the tubular wall section is shaped and welded and the container bottom fitted in said first tier and the container lid fitted in said second tier situated below the first tier.
3. The process of either of claims 1 and 2, wherein the product with which the container is to be filled is introduced shortly before or during the transfer of the unfinished container from the first tier, where the bottom is attached, to the second tier.
4. The process of claim 1, wherein the starting material for the manu-facture of the container is either a thermoplastic or has a thermoplastic coat-ing, and wherein the container bottom and lid are pre-heated and then molded onto the tubular wall section, means for welding the longitudinal seam in the tubular wall section and means for pre-heating the container bottom and lid being arranged to follow the rotating container blank through a given sector of the rotation and then return rapidly to their respective starting positions.
5. The process of claim 1, 2 or 4, wherein said first rotating tier exe-cutes a circular motion about a vertical axis, the container blank being fur-ther processed or finished in said second tier rotating at the same speed.
6. Apparatus for carrying out the process of claim 1, having a number of processing stations, carrier elements for transporting the container blank from one station to another and tools for shaping the tubular wall section, welding the wall section longitudinally, fitting the bottom, introducing the contents and fitting the lid, wherein the processing stations are located about a common stationary shaft in at least two tiers situated at different levels, the carrier elements and the processing tools being driven by means which cause all the carrier elements to execute a rotational motion or a series of intermittent partial rotations about said shaft and cause all the processing tools to execute about the same axis at least a partial rotation through the angle corresponding to their respective work sector.
7. The apparatus of claim 6, wherein the carrier elements are mandrels suspended in an upper tier, said mandrels having the same shape as the tubular wall section and cooperating over a given sector with a tool for welding the container blank longitudinally along a line substantially parallel to said shaft.
8. The apparatus of claim 7, wherein the carrier elements include several holding and fitting heads working together in pairs and mounted sub-stantially in two concentric circles at the upper ends of cam-driven drive rods which execute a vertical reciprocating motion, each holding and fitting heat of the outer circle being additionally pivotable about the longitudinal axis of its associated drive rod.
9. The apparatus of claim 8, wherein the drive rods of the outer circle are operatively connected to a stationary cam via a lever system.
10. The apparatus of claim 7, wherein below the mandrels and fixed to swing arms mounted on said shaft are at least two heaters for the container bottom and a lid, said heaters being driven to pivot back and forth through a given sector and being displaced from each other at an angle which is an integral multiple of , where n is the number of processing stations.
11. The apparatus of claim 10, wherein the apparatus includes two swing arms displaced at an angle of 180° from each other.
12. The apparatus of claim 8, wherein the cams for the drive rods are two concentric rings, having upper end surfaces which form drive surfaces for followers mounted on the drive rods, the followers being pressed against the drive surfaces.
13. The apparatus of claim 7, wherein supply conduits for a product to be introduced into the container are in said mandrels.
14. The apparatus of claim 8, wherein the apparatus is driven via upper and lower externally toothed drive wheels freely rotatably mounted on said shaft, the mandrels being mounted on one drive wheel and the drive rods on the other drive wheel so that both mandrels and drive rods are entrained by the rotation of the drive wheels.
15. The apparatus of claim 14, wherein rigidly connected to the lower drive wheel is an internally toothed ring which drives an eccentric via a pinion, said eccentric driving a longitudinal seam welding device and con-tainer bottom and lid pre-heating means to execute an oscillatory motion.
16. The apparatus of claim 15, wherein the longitudinal seam welding device is also coupled to a stationary cam via a lever system such that the device periodically moves in the radial direction against the mandrel during its oscillatory motion about said shaft.
17. The apparatus of claim 8, wherein grippers are provided to support the filled container while the lid is being fitted, said grippers being driven by a stationary cam to pivot up against the container and away again.
18. The apparatus of claim 7, wherein the container wall section is shaped by two pressure rollers located in the path of the mandrel and pulled towards each other by an elastic means, and that there are suction cups on the mandrel to hold the shaped wall section against the mandrel.
19. The apparatus of claim 18, wherein the pressure rollers are pro-vided with a flexible covering at least in the region level with the suction cups on the mandrel.
20. The apparatus of claim 6, 8 or 10, wherein said tools for fitting the bottom and fitting the lid comprise a device for feeding a container bottom blank or container lid blank onto a respective fitting head, said device including a feed head connected to a vacuum line and provided with suction ports, the feed head being positioned in the path of the fitting head so that the trailing edge of the fitting head strips the bottom or lid blank from the feed head.
CA 270524 1976-01-27 1977-01-26 Process and apparatus for the manufacture of filled, closed containers Expired CA1046817A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CH99976 1976-01-27

Publications (1)

Publication Number Publication Date
CA1046817A true CA1046817A (en) 1979-01-23

Family

ID=4200084

Family Applications (1)

Application Number Title Priority Date Filing Date
CA 270524 Expired CA1046817A (en) 1976-01-27 1977-01-26 Process and apparatus for the manufacture of filled, closed containers

Country Status (11)

Country Link
US (1) US4094124A (en)
JP (1) JPS6042085B2 (en)
BE (1) BE850775A (en)
CA (1) CA1046817A (en)
DE (1) DE2702928C2 (en)
DK (1) DK146999C (en)
ES (1) ES455354A1 (en)
FI (1) FI59964C (en)
FR (1) FR2339532B1 (en)
GB (1) GB1561181A (en)
NL (1) NL185712C (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4229929A (en) * 1978-06-05 1980-10-28 Leslie Vajtay Thermoplastic container
JPH0243622B2 (en) * 1983-07-08 1990-10-01 Toppan Printing Co Ltd
JPH0243621B2 (en) * 1983-07-08 1990-10-01 Toppan Printing Co Ltd
DE3606280C2 (en) * 1986-02-27 1991-02-14 Altstaedter Verpackungsvertriebs Gmbh, 6102 Pfungstadt, De
DK169912B1 (en) * 1986-04-18 1995-04-03 Tetra Pak Ab A device in a packaging machine
EP0285626A1 (en) * 1986-10-14 1988-10-12 LJUNGCRANTZ, Billy Dosing device in a filling plant, in particular for liquid and pasty products, and process for its operation
DE3712717A1 (en) * 1987-04-14 1988-11-03 Schmermund Maschf Alfred Bottom-folding packer
JPH01283050A (en) * 1988-05-07 1989-11-14 Daifuku Co Ltd Manufacture of primary side body of linear motor
DE8915489U1 (en) * 1989-04-11 1990-08-09 Kvm Kontroll- Und Verpackungsmaschinen Gmbh & Co Kg, 7131 Wurmberg, De
DE4313325C2 (en) * 1993-04-23 2000-01-13 Tetra Pak Gmbh An apparatus for filling and sealing packages
EP0961733B1 (en) 1997-01-29 2003-04-23 Tetra Laval Holdings & Finance SA A method of handling, filling and sealing packaging containers
EP1047600B1 (en) * 1997-07-01 2004-09-15 A&R Carton AB Packaging machine
EP1248728B1 (en) 1999-12-10 2005-08-17 Tetra Laval Holdings & Finance S.A. Continuous apparatus in distribution equipment
DE60007113T2 (en) * 2000-07-03 2004-07-08 Tetra Laval Holdings & Finance S.A. A packaging machine for continuously producing sealed packages of a pourable food products and with programmable photocells
WO2002014755A1 (en) * 2000-08-17 2002-02-21 Multibrás. S.A. Electrodomésticos Equipment for filling and closing a drying filter of a refrigeration system
US7690554B2 (en) * 2005-02-14 2010-04-06 Graphic Packaging International, Inc. Anti-sifting polygonal carton and methods of assembly
US7731080B2 (en) * 2005-02-14 2010-06-08 Graphic Packaging International, Inc. Anti-sifting polygonal carton
US9061786B2 (en) 2006-10-26 2015-06-23 Rock-Tenn Shared Services, Llc Blank of sheet material and methods and apparatus for forming a container from the blank
US9878512B2 (en) 2013-09-06 2018-01-30 Westrock Shared Services, Llc Methods and machine for forming a shipping and display container from a blank assembly using a pre-fold mandrel section
US9701087B2 (en) 2013-09-06 2017-07-11 Westrock Shared Services, Llc Methods and machine for forming a container from a blank using a pre-fold mandrel section

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2180954A (en) * 1937-10-11 1939-11-21 John K M Harrison Machine for making, filling, and sealing containers
DE818470C (en) * 1950-07-20 1951-10-25 Fr Hesser Maschinenfabrik A G Machine for manufacturing, filling and closing packages made of cardboard with inner bag
DE830475C (en) * 1950-11-19 1952-02-04 Hesser Ag Maschf Machine for manufacturing, filling and sealing of packages made of cardboard with inner bag
FR1141957A (en) * 1955-11-26 1957-09-12 A method for conditioning liquid, pasty or pulverulent and apparatus for carrying out this method
US2971636A (en) * 1955-11-28 1961-02-14 Redington Co F B Rotary conveyor structure
US3146565A (en) * 1960-09-29 1964-09-01 Margaret G Otto Apparatus for forming and filling containers
DE1586078A1 (en) * 1967-02-20 1970-03-26 Hesser Ag Maschf Machine for manufacturing, filling and closing of Verpackungsbehaeltnissen
DE1786093B2 (en) * 1968-08-16 1972-08-24 An apparatus for manufacture, filling and sealing of packaging

Also Published As

Publication number Publication date Type
DE2702928C2 (en) 1986-04-30 grant
ES455354A1 (en) 1979-01-01 application
NL7700862A (en) 1977-07-29 application
FR2339532A1 (en) 1977-08-26 application
DK146999B (en) 1984-03-12 grant
FR2339532B1 (en) 1984-04-27 grant
CA1046817A1 (en) grant
DE2702928A1 (en) 1977-07-28 application
FI59964C (en) 1981-11-10 grant
NL185712C (en) 1990-06-02 grant
BE850775A1 (en) grant
JPS6042085B2 (en) 1985-09-20 grant
NL185712B (en) 1990-02-01 application
DK146999C (en) 1984-08-20 grant
BE850775A (en) 1977-07-26 grant
US4094124A (en) 1978-06-13 grant
JP1317127C (en) grant
GB1561181A (en) 1980-02-13 application
DK22477A (en) 1977-07-28 application
FI59964B (en) 1981-07-31 application
FI770253A (en) 1977-07-28 application
JPS5294294A (en) 1977-08-08 application

Similar Documents

Publication Publication Date Title
US3513629A (en) Overwrap packing machines
US3335540A (en) Method and apparatus for making containers
US3507194A (en) Process and apparatus for making a carrying bag of plastic material
US3499068A (en) Methods and apparatus for making containers
US4433527A (en) Heat sealing film cut-off device
US4365460A (en) Method and apparatus for manufacturing foam plastic containers by use of a tubular forming mandrel
US4013496A (en) Method for producing shrunken pilfer-proof neck labels on containers
US5533322A (en) Continuous vertical form-fill-seal packaging machine with constant motion carriage
US4375146A (en) Continuous rotary machine and method for forming, filling, and sealing package of laminated sheet material
US2237119A (en) Automatic packaging machine
US5548947A (en) Apparatus and method for producing packets
US4862673A (en) Rotary jaw assembly for packaging machines, particularly packaging machines for tubular wrappers of the flow-pack or similar type
US4302275A (en) Apparatus for forming tubular plastic sleeves for application to bottles
US4584819A (en) Arrangement for the application of objects to packing containers
US4199919A (en) Apparatus for producing nearly parallelepipedal packaging containers
US4788811A (en) Process and apparatus for assembling and liquor-charging of packages of paper and the like
US2931276A (en) Methods of and means for producing, processing, and for treating articles
US6663926B1 (en) Heat-insulating container and apparatus for producing the same
US2627213A (en) Apparatus for making thermoplastic resin bags
US2166643A (en) Fluid package forming system
US4510732A (en) Machine for the processing of packing containers
US4141196A (en) Seal wrapping machine
EP0061663A2 (en) A machine for the processing of packing containers
US4072549A (en) Method and apparatus for fabricating thermoplastic containers
US4002005A (en) Package of nested containers and method and apparatus for producing same