BR112020027000B1 - Chapa de aço elétrico com grão orientado e método de produção da mesma - Google Patents

Chapa de aço elétrico com grão orientado e método de produção da mesma Download PDF

Info

Publication number
BR112020027000B1
BR112020027000B1 BR112020027000-8A BR112020027000A BR112020027000B1 BR 112020027000 B1 BR112020027000 B1 BR 112020027000B1 BR 112020027000 A BR112020027000 A BR 112020027000A BR 112020027000 B1 BR112020027000 B1 BR 112020027000B1
Authority
BR
Brazil
Prior art keywords
steel sheet
oxide film
film layer
less
annealing
Prior art date
Application number
BR112020027000-8A
Other languages
English (en)
Other versions
BR112020027000A2 (pt
Inventor
Takashi Kataoka
Yoshiyuki Ushigami
Shuichi Nakamura
Hiroyasu Fujii
Shunsuke Okumura
Original Assignee
Nippon Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corporation filed Critical Nippon Steel Corporation
Publication of BR112020027000A2 publication Critical patent/BR112020027000A2/pt
Publication of BR112020027000B1 publication Critical patent/BR112020027000B1/pt

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • C23C8/12Oxidising using elemental oxygen or ozone
    • C23C8/14Oxidising of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1288Application of a tension-inducing coating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/042Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/80After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets
    • H01F1/14783Fe-Si based alloys in the form of sheets with insulating coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • H01F1/18Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets with insulating coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/05Grain orientation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)
  • Chemical Treatment Of Metals (AREA)

Abstract

“chapade aço eletromagnética com grão orientado e método de produção da mesma”. a presente invenção refere-se a uma chapa de aço eletromagnética com grão orientado que inclui: em % em massa, 0,010% ou menos de c; 2,50 a 4,00% de si; 0,010% ou menos de al solúvel em ácido; 0,012% ou menos de n; 1,00% ou menos de mn; 0,020% ou menos de s; e um saldo consistindo em fe e impurezas, e tem um revestimento isolante de tensão na superfície de chapa de aço e uma camada de filme de óxido de sio2 intermediária com uma espessura média de 1,0 nm a 1,0 µm em uma interface entre o revestimento isolante de tensão e a superfície de chapa de aço. no aço elétrico com grão orientado, quando uma superfície da camada de filme de óxido intermediária é analisada por uma espectroscopia de reflexão por infravermelho, uma intensidade de pico ia em 1250 cm-1 e uma intensidade de pico ib em 1200 cm-1 satisfazem ib / ia = 0,010.

Description

CAMPO DA TÉCNICA
[0001] A presente invenção refere-se a uma chapa de aço elétrico com grão orientado que é usada como um material de núcleo de ferro para um transformador, e um método de produção da mesma. Em particular, a presente invenção se refere à chapa de aço elétrico com grão orientado excelente na adesão de um revestimento isolante de tensão, e um método de produção da mesma.
ANTECEDENTES
[0002] Uma chapa de aço elétrico com grão orientado inclui uma chapa de aço de silício que é composta de grãos orientados para {110}<001> (mais adiante neste documento, orientação Goss) e que inclui 7 % em massa ou menos de Si. A chapa de aço elétrico com grão orientado foi principalmente aplicada a materiais de núcleo de ferro de transformador. O alto alinhamento na orientação Goss na chapa de aço elétrico com grão orientado é controlado por um fenômeno de crescimento de grão denominado recristalização secundária.
[0003] É necessário que a chapa de aço elétrico com grão orientado tenha alta densidade de fluxo magnético (representada pelo valor B8) e baixa perda de ferro (representada pelo valor W17/50) como características magnéticas. Recentemente, a partir do ponto de vista de economia de energia, é adicionalmente necessário reduzir a perda de energia, especificamente reduzir a perda de ferro.
[0004] Na chapa de aço elétrico com grão orientado, os domínios magnéticos mudam com o movimento da parede de domínios sob um campo magnético alternante. Quando as paredes magnéticas se movem facilmente, é eficaz na redução da perda de ferro. Entretanto, no caso, há alguns domínios magnéticos que não se movem quando se observa o movimento dos domínios magnéticos.
[0005] Para reduzir ainda mais a perda de ferro da chapa de aço elétrico com grão orientado, é importante evitar um efeito de ancoramento (pinning effect) derivado de irregularidade de uma interface de filme de forsterita (Mg2SiO4) (mais adiante neste documento, pode ser chamado de "filme de vidro") na chapa de aço, que interfere no movimento dos domínios magnéticos. Para evitar o efeito de ancoramento, é eficaz não formar o filme de vidro sobre a chapa de aço, que interfere no movimento dos domínios magnéticos.
[0006] Como técnicas para evitar o efeito de ancoramento acima, por exemplo, os Documentos de Patente 1 a 21 descrevem que óxidos à base de Fe (Fe2SiO4, FeO, ou similares) são feitos para não se formarem em uma camada de óxido quando são descarbonetados pelo controle de um ponto de orvalho para recozimento de descarbonetação, e que uma superfície é feita para ficar lisa após o recozimento final, utilizando um agente como alumina que não reage com a sílica como um separador de recozimento.
[0007] Em um caso em que a chapa de aço elétrico com grão orientado é usada como o material de núcleo de ferro para o transformador, visto que é necessário garantir o isolamento da chapa de aço, o revestimento isolante que aplica tensão é formado sobre a superfície da chapa de aço. Por exemplo, o Documento de Patente 6 descreve uma técnica de modo que o revestimento de isolamento seja formado pela aplicação de solução contendo principalmente sílica coloidal e fosfato sobre a superfície da chapa de aço e por cozimento da mesma, e a técnica é eficaz para reduzir a perda de ferro além de proteger o isolamento, pois a tensão é efetivamente aplicada à chapa de aço.
[0008] Conforme descrito acima, o revestimento isolante contendo principalmente o fosfato é formado sobre o filme de vidro que é formado no recozimento final, que é um método convencional para produzir a chapa de aço de silício com grão orientado.
[0009] Em um caso em que o revestimento isolante é formado sobre o filme de vidro, a adesão de revestimento é suficientemente obtida. Por outro lado, em um caso em que o filme de vidro é removido ou em que o filme de vidro não é conscientemente formado no recozimento final, a adesão do revestimento é insuficiente.
[0010] Em um caso em que o filme de vidro é removido, a adesão de revestimento predeterminada precisa ser garantida apenas pelo revestimento isolante de tensão formado pela aplicação da solução. No caso, é necessário espessar o revestimento isolante de tensão e, dessa forma, a adesão de revestimento adicional será necessária.
[0011] Conforme descrito acima, no método convencional para formar o revestimento, tem sido difícil garantir a tensão do revestimento o suficiente para obter um efeito derivado do alisamento da superfície, e também difícil garantir a adesão do filme. Dessa forma, no método convencional, tem sido difícil reduzir suficientemente a perda de ferro. Contra a situação acima, por exemplo, os Documentos de Patente 22 a 25 descrevem um método para formar um filme de óxido sobre a superfície da chapa de aço de silício com grão orientado após conduzir o recozimento final e antes de formar o revestimento isolante de tensão, como uma técnica para garantir a adesão de revestimento para o revestimento isolante de tensão.
[0012] Por exemplo, o Documento de Patente 23 descreve uma técnica de modo que a chapa de aço de silício com grão orientado em que a superfície é alisada ou é preparada para ficar quase lisa seja usada, a chapa de aço acima após o recozimento final é recozida em atmosfera predeterminada em cada temperatura, o filme de óxido é formado sobre a superfície da chapa de aço como uma camada externamente oxidada pelo recozimento acima, e a adesão de revestimento entre o revestimento isolante de tensão e a chapa de aço é garantida pelo filme de óxido acima.
[0013] O Documento de Patente 24 descreve uma técnica de modo que, em um caso em que o revestimento isolante de tensão é cristalino, a chapa de aço de silício com grão orientado sem um filme de material de mineral inorgânico é usado, um revestimento de base de óxido amorfo é formado sobre a superfície da chapa de aço após o recozimento final e, desse modo, a oxidação da chapa de aço, especificamente a deterioração de superfície espelhada é suprimida quando o revestimento isolante de tensão cristalino é formado.
[0014] O Documento de Patente 25 descreve uma técnica que é aprimorada com base naquela descrita no Documento de Patente 8. No Documento de Patente 25, uma estrutura de filme de um filme de óxido metálico incluindo Al, Mn, Ti, Cr ou Si é controlada entre o revestimento isolante de tensão e a chapa de aço e, desse modo, a adesão de revestimento do revestimento isolante é aprimorada. Entretanto, embora a sensibilidade à tensão afete notavelmente a adesão de uma interface entre o filme de óxido metálico e a chapa de aço, o Documento de Patente 25 não considera a situação acima. Dessa forma, a técnica descrita no Documento de Patente 25 é insuficiente para aprimorar a adesão de revestimento.
DOCUMENTOS DA TÉCNICA RELACIONADA Documentos de Patente
[0015] [Documento de Patente 1] Pedido de Patente Não examinado Japonês, Primeira Publicação n° S64-062417
[0016] [Documento de Patente 2] Pedido de Patente Não examinado Japonês, Primeira Publicação n° H07-118750
[0017] [Documento de Patente 3] Pedido de Patente Não examinado Japonês, Primeira Publicação n° H07-278668
[0018] [Documento de Patente 4] Pedido de Patente Não examinado Japonês, Primeira Publicação n° H07-278669
[0019] [Documento de Patente 5] Pedido de Patente Não examinado Japonês, Primeira Publicação n° H07-278670
[0020] [Documento de Patente 6] Pedido de Patente Não examinado Japonês, Primeira Publicação n° H10-046252
[0021] [Documento de Patente 7] Pedido de Patente Não examinado Japonês, Primeira Publicação No. H11-106827
[0022] [Documento de Patente 8] Pedido de Patente Não examinado Japonês, Primeira Publicação n° H11-152517
[0023] [Documento de Patente 9] Pedido de Patente Não examinado Japonês, Primeira Publicação n° 2002-060843
[0024] [Documento de Patente 10] Pedido de Patente Não examinado Japonês, Primeira Publicação n° 2002-173715
[0025] [Documento de Patente 11] Pedido de Patente Não examinado Japonês, Primeira Publicação n° 2002-348613
[0026] [Documento de Patente 12] Pedido de Patente Não examinado Japonês, Primeira Publicação n° 2002-363646
[0027] [Documento de Patente 13] Pedido de Patente Não Examinado Japonês, Primeira Publicação n° JP 2003-055717
[0028] [Documento de Patente 14] Pedido de Patente Não Examinado Japonês, Primeira Publicação n° JP 2003-268541
[0029] [Documento de Patente 15] Pedido de Patente Não examinado Japonês, Primeira Publicação n° 2003-003213
[0030] [Documento de Patente 16] Pedido de Patente Não Examinado Japonês, Primeira Publicação n° JP 2003-041320
[0031] [Documento de Patente 17] Pedido de Patente Não Examinado Japonês, Primeira Publicação n° JP 2003-247021
[0032] [Documento de Patente 18] Pedido de Patente Não Examinado Japonês, Primeira Publicação n° JP 2003-247024
[0033] [Documento de Patente 19] Pedido de Patente Não Examinado Japonês, Primeira Publicação n° 2008-001980
[0034] [Documento de Patente 20] Tradução japonesa Publicada n° 2011-518253 da Publicação Internacional PCT
[0035] [Documento de Patente 21] Pedido de Patente Não Examinado Japonês, Primeira Publicação n° S48-039338
[0036] [Documento de Patente 22] Pedido de Patente Não examinado Japonês, Primeira Publicação n° S60-131976
[0037] [Documento de Patente 23] Pedido de Patente Não examinado Japonês, Primeira Publicação n° H06-184762
[0038] [Documento de Patente 24] Pedido de Patente Não examinado Japonês, Primeira Publicação n° H07-278833
[0039] [Documento de Patente 25] Pedido de Patente Não examinado Japonês, Primeira Publicação n° 2002-348643
Documento de Não Patente
[0040] [Documento de Não Patente 1] Tetsu-to-Hagane, Vol.99 (2013), 40.
SUMÁRIO DA INVENÇÃO PROBLEMA TÉCNICO A SER RESOLVIDO
[0041] Na chapa de aço de silício com grão orientado em que o revestimento isolante de tensão é formado, em um caso em que o revestimento isolante de tensão é formado sobre o filme de vidro (filme de forsterita), a adesão de revestimento do revestimento isolante de tensão é suficiente. Por outro lado, em um caso em que a formação do revestimento isolante de tensão é formado após o filme de vidro é propositalmente suprimida, após o filme de vidro ser removido por esmerilagem, decapagem, ou similares, ou após a superfície da chapa de aço ser alisada para ser uma superfície semelhante a um espelho, a adesão de revestimento do revestimento isolante de tensão é insuficiente e, dessa forma, é difícil satisfazer simultaneamente tanto a adesão de revestimento como a estabilidade magnética.
[0042] Portanto, um objetivo da presente invenção é formar o revestimento isolante de tensão com excelente adesão de revestimento e sem deteriorar as características magnéticas e sua estabilidade sobre a superfície da chapa de aço elétrico com grão orientado após o recozimento final em que a formação do filme de vidro é propositalmente suprimida para ser formada, o filme de vidro é removido por esmerilagem, decapagem, ou similares, ou a superfície da chapa de aço é alisada para ser uma superfície semelhante a um espelho. Ou seja, o objetivo da presente invenção é fornecer a chapa de aço elétrico com grão orientado que seja capaz de resolver o problema técnico acima, e fornecer um método de produção da mesma.
SOLUÇÃO PARA O PROBLEMA
[0043] Para resolver o problema técnico acima, os presents inventores fizeram uma investigação completa para aprimorar a adesão de revestimento para o revestimento isolante de tensão, concentrando-se nos efeitos de elementos aditivos. Como resultado, é constatado que, ao controlar o histórico térmico e o grau de oxidação em um processo de formação de um filme de óxido (mais adiante neste documento, pode ser chamado de "camada de filme de óxido intermediária" ou "camada de filme de óxido intermediária de SiO2") sobre a superfície da chapa de aço elétrico com grão orientado após o recozimento final antes de formar o revestimento isolante de tensão, é possível aprimorar notavelmente a adesão de revestimento do revestimento isolante de tensão.
[0044] Além disso, os presentes inventores fizeram uma investigação completa em relação às composições da camada de filme de óxido intermediária, que parece influenciar consideravelmente a adesão de revestimento. Como resultado, é constatado que o óxido da camada de filme de óxido intermediária é óxido de Si (SiO2) e que a adesão de revestimento é aprimorada quando elementos como Mn são submetidos à solubilização em solução sólida na camada de filme de óxido de SiO2 intermediária.
[0045] É considerado que os átomos que são submetidos à solubilização em solução sólida na camada de filme de óxido de SiO2 intermediária aprimoram a compatibilidade de rede entre a camada de filme de óxido de SiO2 intermediária e a chapa de aço e, dessa forma, a adesão da camada de filme de óxido de SiO2 intermediária é aprimorada.
[0046] A presente invenção é realizada com base nas constatações descritas acima. Um aspecto da presente invenção emprega os seguintes.
[0047] (1) Uma chapa de aço elétrico com grão orientado de acordo com um aspecto da presente invenção inclui:
[0048] uma chapa de aço de base;
[0049] uma camada de filme de óxido intermediária que está disposta na chapa de aço de base inclui SiO2, e tem uma espessura média de 1,0 nm a 1,0 μm; e
[0050] um revestimento isolante de tensão que está disposto na camada de filme de óxido intermediária,
[0051] em que a chapa de aço de base inclui: como uma composição química, em % em massa, 0,010% ou menos de C; 2,50 a 4,00% de Si; 0,010% ou menos de Al solúvel em ácido; 0,012% ou menos de N; 1,00% ou menos de Mn; 0,020% ou menos de S; e um equilíbrio que consiste em Fe e impurezas, e
[0052] em que, quando uma superfície da camada de filme de óxido de SiO2 intermediária é analisada por uma espectroscopia por reflexão no infravermelho, uma intensidade de pico IA em 1250 cm-1 e uma intensidade de pico IB em 1200 cm-1 satisfazem a seguinte fórmula (1),
[0053]
[0054] (2) Na chapa de aço elétrico com grão orientado de acordo com (1), a chapa de aço de base pode incluir adicionalmente, como a composição química, em % em massa, 0,001 a 0,010% de B.
[0055] (3) Na chapa de aço elétrico com grão orientado de acordo com (1) ou (2), a chapa de aço de base pode incluir adicionalmente: como a composição química, em % em massa, pelo menos um selecionado dentre 0,01 a 0,20% de Sn; 0,01 a 0,50 % de Cr; e 0,01 a 0,50% de Cu.
[0056] (4) Na chapa de aço elétrico com grão orientado de acordo com qualquer um dentre (1) a (3), uma curva diferencial de tempo fM(t) de um espectro de emissão óptica por descarga luminescente de um elemento M (M: Mn, Al, B) em uma superfície da camada de filme de óxido de SiO2 intermediária pode satisfazer a seguinte fórmula (2). Fórmula 1
[0057] Tp : um tempo t (segundo) correspondente a um valor mínimo local de uma curva diferencial de tempo de segunda ordem de um espectro de emissão óptica por descarga luminescente de Si.
[0058] Ts : um tempo t (segundo) correspondente a um ponto de partida de análise de um espectro de emissão óptica por descarga luminescente de Si.
[0059] (5) Um método de produção de uma chapa de aço elétrico com grão orientado de acordo com um aspecto da presente invenção serve para produzir a chapa de aço elétrico com grão orientado de acordo com qualquer um dentre (1) a (4), e o método pode incluir: um processo de formação de camada de filme de óxido de formar uma camada de filme de óxido intermediária sobre uma chapa de aço,
[0060] em que, no processo de formação de camada de filme de óxido,
[0061] um recozimento é conduzido sob condições de modo que uma temperatura de recozimento T1 seja 600 a 1200°C, um tempo de recozimento seja 5 a 200 segundos, um grau de oxidação PH2O/PH2 seja 0,15 ou menos e uma taxa média de aquecimento HR1 em uma faixa de temperatura de 100°C a 600°C seja 10 a 200 °C/segundo, e
[0062] após o recozimento, uma taxa média de resfriamento CR1 em uma faixa de temperatura de T2°C a T1°C é 50 °C/segundo ou menos, e uma taxa média de resfriamento CR2 em uma faixa de temperatura de 100°C ou mais e menor que T2°C é mais lenta que CR1, quando T2 é uma temperatura expressa em T1°C - 100°C.
EFEITOS DA INVENÇÃO
[0063] De acordo com os aspectos acima da presente invenção, é possível formar o revestimento isolante de tensão com excelente adesão de revestimento e sem deteriorar as características magnéticas e sua estabilidade sobre a superfície da chapa de aço elétrico com grão orientado após o recozimento final em que a formação do filme de vidro é propositalmente suprimida, o filme de vidro é removido por esmerilagem, decapagem, ou similares, ou a superfície da chapa de aço é alisada para ser a superfície semelhante a espelho.
BREVE DESCRIÇÃO DOS DESENHOS
[0064] A Figura 1 é uma ilustração que mostra um espectro de uma análise de reflexão por infravermelho de uma superfície de uma camada de filme de óxido de SiO2 intermediária.
DESCRIÇÃO DETALHADA DAS MODALIDADES PREFERENCIAIS
[0065] Uma chapa de aço elétrico com grão orientado de acordo com uma modalidade (mais adiante neste documento, pode ser chamada de "a presente chapa de aço elétrico") inclui: uma chapa de aço de base; uma camada de filme de óxido intermediária que está disposta na chapa de aço de base, inclui SiO2, e tem uma espessura média de 1,0 nm a 1,0 μm; e um revestimento isolante de tensão que está disposto na camada de filme de óxido intermediária.
[0066] A chapa de aço de base inclui: como uma composição química, em % em massa
[0067] 0,010% ou menos de C;
[0068] 2,50 a 4,00% de Si;
[0069] 0,01% ou menos de Al solúvel em ácido;
[0070] 0,012% ou menos de N;
[0071] 1,00% ou menos de Mn;
[0072] 0,02% ou menos de S; e
[0073] um saldo consistindo em Fe e impurezas, e
[0074] quando uma superfície da camada de filme de óxido de SiO2 intermediária é analisada por uma espectroscopia por reflexão no infravermelho, uma intensidade de pico IA em 1250 cm-1 e uma intensidade de pico IB em 1200 cm-1 satisfazem a seguinte fórmula (1).
[0075] Além disso, na presente chapa de aço elétrico,
[0076] a chapa de aço de base pode incluir adicionalmente, como a composição química, em % em massa, (a) 0,001 a 0,010% de B e/ou (b) pelo menos um selecionado dentre 0,01 a 0,20% de Sn; 0,01 a 0,50% de Cr; e 0,01 a 0,50% de Cu.
[0077] Além disso, na presente chapa de aço elétrico,
[0078] uma curva diferencial de tempo fM(t) de um espectro de emissão óptica por descarga luminescente de um elemento M (M: Mn, Al, B) em uma superfície da camada de filme de óxido de SiO2 intermediária pode satisfazer a seguinte fórmula (2).Fórmula 2
[0079] Tp : um tempo t (segundo) correspondente a um valor mínimo local de uma curva diferencial de tempo de segunda ordem de um espectro de emissão óptica por descarga luminescente de Si.
[0080] Ts : um tempo t (segundo) correspondente a um ponto de partida de análise de um espectro de emissão óptica por descarga luminescente de Si.
[0081] Um método de produção da chapa de aço elétrico com grão orientado de acordo com a modalidade (mais adiante neste documento, pode ser chamado de "o presente método de produção") inclui
[0082] um processo de formação de camada de filme de óxido de formar uma camada de filme de óxido intermediária sobre uma chapa de aço,
[0083] em que, no processo de formação de camada de filme de óxido,
[0084] um recozimento é conduzido sob condições de modo que uma temperatura de recozimento T1 seja 600 a 1200°C, um tempo de recozimento seja 5 a 200 segundos, um grau de oxidação PH2O/PH2 seja 0,15 ou menos e uma taxa média de aquecimento HR1 em uma faixa de temperatura de 100°C a 600°C seja 10 a 200 °C/segundo, e
[0085] após o recozimento, uma taxa média de resfriamento CR1 em uma faixa de temperatura de T2°C a T1°C é 50 °C/segundo ou menos, e uma taxa média de resfriamento CR2 em uma faixa de temperatura de 100°C ou mais e menor que T2°C é mais lenta que CR1, quando T2 é uma temperatura expressa em T1°C - 100°C.
[0086] A presente chapa de aço elétrico e o presente método de produção são descritos.
Chapa de aço de base Composição química
[0087] As razões de limitação da composição química da chapa de aço de base são explicadas. Mais adiante neste documento, "%" da composição química representa “% em massa". 0,010% ou menos de C
[0088] Quando o teor de C é mais de 0,010%, C suprime a formação de uma camada concentrada de Al ou outros elementos na interface entre a camada de filme de óxido de SiO2 intermediária e a chapa de aço.
[0089] Dessa forma, o teor de C é 0,010% ou menos. O teor de C é, de preferência, 0,008% ou menos para aprimorar as características de perda de ferro.
[0090] Embora um limite inferior do mesmo inclua 0%, um limite de detecção do teor de C é aproximadamente 0,0001%. Dessa forma, o limite inferior é substancialmente 0,0001% como a chapa de aço prática. 2,50 a 4,00% de Si
[0091] Quando o teor de Si é menor que 2,50%, a recristalização secundária não prossegue suficientemente, e densidade de fluxo magnético e perda de ferro excelentes não são obtidas. Dessa forma, o teor de Si é 2,50% ou mais. O teor de Si é, de preferência, 2,75% ou mais e, com mais preferência, 3,00% ou mais.
[0092] Por outro lado, quando o teor de Si é mais de 4,0%, a chapa de aço se torna frágil e, dessa forma, a ductilidade durante a produção se deteriora significativamente. Dessa forma, o teor de Si é 4,00% ou menos. O teor de Si é, de preferência, 3,75% ou menos e, com mais preferência, 3,50% ou menos. 0,010% ou menos de Al solúvel em ácido
[0093] Como uma composição de placa, 0,07% ou menos do Al solúvel em ácido está incluído na placa para a ductilidade durante a laminação a frio. No caso, um limite superior do teor de Al solúvel em ácido é 0,07%. Na prática, Al é eliminado da chapa de aço durante o recozimento de recristalização secundária. Como resultado, o Al solúvel em ácido incluído na chapa de aço de base pode ser 0,010% ou menos. Embora a ductilidade não importe quando o teor de Al solúvel em ácido é 0,07% ou menos, o teor de Al solúvel em ácido na chapa de aço de base é, de preferência, o menor possível para as características de perda de ferro, e é, de preferência, 0,006% ou menos.
[0094] Embora um limite inferior do mesmo inclua 0%, um limite de detecção do mesmo é aproximadamente 0,0001% em comum com C. Dessa forma, o limite inferior é substancialmente 0,0001% como a chapa de aço prática.0,012% ou menos de N
[0095] Quando o teor de N é mais de 0,012%, bolhas (vazios) podem ser formadas na chapa de aço durante a laminação a frio, a resistência da chapa de aço pode aumentar, e a ductilidade durante a produção pode se deteriorar. Dessa forma, o teor de N pode ser 0,012% ou menos. O teor de N é, de preferência, de 0,010% ou menos, e, com mais preferência, de 0,009% ou menos.
[0096] Embora um limite inferior do mesmo inclua 0%, um limite de detecção do teor de N é aproximadamente 0,0001%. Dessa forma, o limite inferior é substancialmente 0,0001% como a chapa de aço prática.1,00% ou menos de Mn
[0097] Quando o teor de Mn é mais de 1,00%, a transformação de fase ocorre no aço durante o recozimento de recristalização secundária, a recristalização secundária não prossegue suficientemente, e densidade de fluxo magnético e perda de ferro excelentes não são obtidas. Dessa forma, o teor de Mn é 1,00% ou menos. O teor de Mn é, de preferência, de 0,50% ou menos, e, com mais preferência, de 0,20% ou menos.
[0098] MnS pode ser usado como um inibidor durante a recristalização secundária. Entretanto, em um caso em que AlN é usado como o inibidor, MnS não é necessário. Dessa forma, um limite inferior do teor de Mn inclui 0%. Quando MnS é usado como o inibidor, o teor de Mn pode ser 0,02% ou mais. O teor de Mn é, de preferência, 0,05% ou mais e, com mais preferência, 0,07% ou mais.0,020% ou menos de S
[0099] Quando o teor de S é mais de 0,020%, em comum com C, S suprime a formação da camada concentrada de Al ou outros elementos na interface entre a camada de filme de óxido de SiO2 intermediária e a chapa de aço. Dessa forma, o teor de S é 0,020% ou menos. O teor de S é, de preferência, 0,010% ou menos.
[00100] Embora um limite inferior do mesmo inclua 0%, um limite de detecção do teor de S é aproximadamente 0,0001%. Dessa forma, o limite inferior é substancialmente 0,0001% como a chapa de aço prática.
[00101] Além disso, Se ou Sb pode ser substituído por uma parte de S. No caso, um valor convertido por Seq = S + 0,406Se ou Seq = S + 0,406Sb pode ser usado.
[00102] Na presente chapa de aço elétrico, além dos elementos acima, (a) 0,001 a 0,010% de B e/ou (b) pelo menos um selecionado dentre 0,01 a 0,20% de Sn; 0,01 a 0,50% de Cr; e 0,01 a 0,50% de Cu pode estar incluído para aprimorar as características da presente chapa de aço elétrico. 0,001 a 0,010% de B
[00103] Em comum com Cr e Cu, B é um elemento que está concentrado na interface entre a camada de filme de óxido de SiO2 intermediária e a chapa de aço (os inventores se conformaram usando GDS) e, dessa forma, isto contribui para o aprimoramento da adesão de revestimento. Quando o teor de B é menor que 0,001%, o efeito de aprimoramento da adesão de revestimento não é suficientemente obtido. Dessa forma, o teor de B é 0,001% ou mais. O teor de B é, de preferência, 0,002% ou mais e, com mais preferência, 0,003% ou mais.
[00104] Por outro lado, quando o teor de B é mais de 0,010%, a resistência da chapa de aço aumenta, e a ductilidade durante a laminação a frio se deteriora. Dessa forma, o teor de B é 0,010% ou menos. O teor de B é, de preferência, de 0,008% ou menos, e, com mais preferência, de 0,006% ou menos. 0,01 a 0,20% de Sn
[00105] Si é um elemento que não está concentrado na interface entre a camada de filme de óxido de SiO2 intermediária e a chapa de aço, porém contribui para o aprimoramento da adesão de revestimento. Um mecanismo para aprimorar a adesão de revestimento por Sn não é claro. Entretanto, como resultado de investigação da lisura de superfície da chapa de aço após a recristalização secundária, é constatado que a superfície da chapa de aço é alisada. Dessa forma, parece que Sn torna a superfície da chapa de aço lisa reduzindo a irregularidade e que contribui para formar a interface com poucos defeitos de irregularidade entre a camada de filme de óxido de SiO2 intermediária e a chapa de aço.
[00106] Quando o teor de Sn é menor que 0,01%, o efeito de alisamento da superfície da chapa de aço não é suficientemente obtido. Dessa forma, o teor de Sn é 0,01% ou mais. O teor de Sn é, de preferência, 0,02% ou mais e é, com mais preferência, 0,03% ou mais.
[00107] Por outro lado, quando o teor de Sn é mais de 0,20%, a recristalização secundária se torna instável e, dessa forma, as características magnéticas se deterioram. Dessa forma, o teor de Sn é 0,20% ou menos. O teor de Sn é, de preferência, 0,15% ou menos e é, com mais preferência, 0,10% ou menos. 0,01 a 0,50% de Cr
[00108] Em comum com B e Cu, Cr é um elemento que está concentrado na interface entre a camada de filme de óxido de SiO2 intermediária e a chapa de aço e, dessa forma, isto contribui para o aprimoramento da adesão de revestimento. Quando o teor de Cr é menor que 0,01%, o efeito de aprimoramento da adesão de revestimento não é suficientemente obtido. Dessa forma, o teor de Cr é 0,01% ou mais. O teor de Cr é, de preferência, 0,03% ou mais e é, com mais preferência, 0,05% ou mais.
[00109] Por outro lado, quando o teor de Cr é mais de 0,50%, Cr pode se ligar a Si e O e, dessa forma, a formação da camada de filme de óxido de SiO2 intermediária pode ser suprimida. Dessa forma, o teor de Cr é 0,50% ou menos. O teor de Cr é, de preferência, de 0,30% ou menos, e, com mais preferência, de 0,20% ou menos.0,01 a 0,50% de Cu
[00110] Em comum com B e Cr, Cu é um elemento que está concentrado na interface entre a camada de filme de óxido de SiO2 intermediária e a chapa de aço e, dessa forma, isto contribui para o aprimoramento da adesão de revestimento. Quando o teor de Cu é menor que 0,01%, o efeito de aprimoramento da adesão de revestimento não é suficientemente obtido. Dessa forma, o teor de Cu é 0,01% ou mais. O teor de Cu é, de preferência, 0,03% ou mais e é, com mais preferência, 0,05% ou mais.
[00111] Por outro lado, quando o teor de Cu é mais de 0,50%, a chapa de aço se torna frágil durante a laminação a quente. Dessa forma, o teor de Cu é 0,50% ou menos. O teor de Cu é, de preferência, de 0,20% ou menos, e, com mais preferência, de 0,10% ou menos.
[00112] Na chapa de aço de base, o saldo da composição química é Fe e impurezas (impurezas inevitáveis). Para aprimorar as características de magnetização, as características necessárias para materiais estruturais como resistência, resistência à corrosão e características de fadiga, a fundibilidade, a ductilidade e a produtividade quando se usa refugos e similares, a chapa de aço de base pode incluir pelo menos um selecionado do grupo que consiste em Mo, W, In, Bi, Sb, Ag, Te, Ce, V, Co, Ni, Se, Ca, Re, Os, Nb, Zr, Hf, Ta, Y, La, e similares. A quantidade total dos mesmos pode ser 5,00% ou menos. A quantidade total dos mesmos é, de preferência, 3,00% ou menos e, com mais preferência, 1,00% ou menos.
Camada de filme de óxido intermediária
[00113] A seguir, a camada de filme de óxido intermediária (mais adiante neste documento, a mesma pode ser chamada de “camada de filme de óxido intermediária de SiO2") que funciona essencialmente para aprimorar a adesão de revestimento é explicada. A presente chapa de aço elétrico é produzida de modo que a formação do filme de vidro seja propositalmente suprimida ou que o filme de vidro seja removido por esmerilagem, decapagem, ou similares. A camada de filme de óxido de SiO2 intermediária com espessura predeterminada está disposta entre o revestimento isolante de tensão e a chapa de aço para garantir suficientemente a adesão de revestimento do revestimento isolante de tensão.Espessura média de camada de filme de óxido de SiO2 intermediária : 1,0 nm ou mais e 1,0 μm ou menos
[00114] Quando a espessura média da camada de filme de óxido de SiO2 intermediária é menor que 1,0 nm, a adesão de revestimento do revestimento isolante de tensão não é suficientemente garantida. Dessa forma, a espessura média da camada de filme de óxido de SiO2 intermediária é 1,0 nm ou mais. A espessura média da camada de filme de óxido de SiO2 intermediária é, de preferência, 5,0 nm ou mais e, com mais preferência, 9,0 nm ou mais.
[00115] Por outro lado, quando a espessura média da camada de filme de óxido de SiO2 intermediária é mais de 1,0 μm, trincas que se tornam a origem da fratura ocorrem dentro da camada de filme de óxido de SiO2 intermediária e, dessa forma, a adesão de revestimento se deteriora. Dessa forma, a espessura média da camada de filme de óxido de SiO2 intermediária é 1,0 μm ou menos. A espessura média da camada de filme de óxido de SiO2 intermediária é, de preferência, 0,7 μm (= 700 nm) ou menos e, com mais preferência, 0,4 μm (= 400 nm) ou menos.
[00116] A espessura da camada de filme de óxido de SiO2 intermediária é medida em um corte transversal de amostra por um microscópio eletrônico de transmissão (MET) ou um microscópio eletrônico de varredura (MEV).
[00117] É possível confirmar se o óxido que constitui a camada de filme de óxido de SiO2 intermediária inclui ou não "SiO2” por análise elementar usando espectroscopia de energia dispersiva de raios X (EDS) acoplada a MET ou MEV.
[00118] Especificamente, é possível confirmar a existência de "SiO2" por detecção de um raio Si Kα em uma posição de energia de 1,8 ± 0,3 kev e simultaneamente detecção de um raio O Kα em uma posição de energia de 0,5 ± 0,3 kev em um eixo horizontal no espectro de EDS na camada de filme de óxido de SiO2 intermediária. Além do raio Kα, a identificação elementar pode ser conduzida usando um raio Lα, um raio KY, ou similares.
[00119] No presente documento, o espectro de EDS de Si pode incluir um espectro originado de Si incluído na chapa de aço. Dessa forma, para expressar exatidão, analisando-se a superfície da chapa de aço usando uma microanálise de sonda eletrônica (EPMA), determina-se se o Si é originado da chapa de aço ou da camada de filme de óxido de SiO2 intermediária.
[00120] Além disso, é possível confirmar se um composto que constitui a camada de filme de óxido de SiO2 intermediária é ou não "SiO2" pela análise de reflexão por infravermelho da superfície da camada de filme de óxido de SiO2 intermediária e confirmando-se a existência do pico originado de SiO2 em um número de onda de 1250 cm-1 ± 20 cm-1.
[00121] No presente documento, a espectroscopia por reflexão no infravermelho é um método para detectar seletivamente compostos em uma superfície mais externa de uma amostra. Dessa forma, a análise é conduzida para uma amostra (a) sem o revestimento isolante de tensão. Para uma amostra (b) com o revestimento isolante de tensão sobre a mesma, a análise é conduzida após remover completamente o revestimento isolante de tensão por limpeza alcalina.
[00122] No presente documento, a espectroscopia por infravermelho (IR) inclui um método de reflexão e um método de absorção. No método de absorção, as informações derivadas da superfície mais externa da amostra e as informações derivadas de dentro da chapa de aço são sobrepostas. Dessa forma, para identificar o composto que constitui a camada de filme de óxido de SiO2 intermediária, o método de reflexão é preferencial. Ademais, no método de absorção, o número de onda relacionado à camada de filme de óxido de SiO2 intermediária não é 1250 cm-1, e o pico do mesmo muda dependendo das condições de formação de SiO2.IB / IA : 0,010 ou mais
[00123] Uma razão IB / IA da intensidade de pico IB em 1200 cm-1 para a intensidade de pico IA em 1250 cm-1 é 0,010 ou mais.
[00124] Ao controlar a espessura da camada de filme de óxido de SiO2 intermediária para ser 1,0 nm a 1,0 μm, a adesão de revestimento do revestimento isolante de tensão é garantida. Entretanto, em um caso em que há defeitos de rede entre a camada de filme de óxido de SiO2 intermediária e a chapa de aço, a adesão de revestimento pode se deteriorar.
[00125] Os defeitos de rede na interface são induzidos devido a uma diferença entre uma constante de rede da camada de filme de óxido de SiO2 intermediária e uma constante de rede da chapa de aço. Mn é submetido à solubilização em solução sólida na camada de filme de óxido de SiO2 intermediária e, desse modo, é possível aprimorar ainda mais a adesão de revestimento do revestimento isolante de tensão. Um mecanismo para aprimorar a adesão de revestimento parece da seguinte forma.
[00126] Visto que uma ligação pendente (função de onda) se originou de Si formado sobre a superfície da camada de filme de óxido de SiO2 intermediária, a superfície da camada de filme de óxido de SiO2 intermediária tem uma atração elétrica, ou seja, uma força de adsorção. Dessa forma, a camada de filme de óxido de SiO2 intermediária e a chapa de aço se aderem. Por outro lado, a compatibilidade de rede é inconsistente na interface entre a camada de filme de óxido de SiO2 intermediária e a chapa de aço, e os defeitos de rede são induzidos na interface entre a camada de filme de óxido de SiO2 intermediária e a chapa de aço.
[00127] Quando Mn é submetido à solubilização em solução sólida na camada de filme de óxido de SiO2 intermediária, a periodicidade de rede de SiO2 muda na interface entre a camada de filme de óxido de SiO2 intermediária e a chapa de aço, e a compatibilidade de rede aumenta na interface entre a camada de filme de óxido de SiO2 intermediária e a chapa de aço. Como resultado, os defeitos de rede derivados de incompatibilidade de rede diminuem e, por fim, a adesão de revestimento do revestimento isolante de tensão é aprimorada.
[00128] O estado em solução sólida ou o estado em concentração de Mn na camada de filme de óxido de SiO2 intermediária contribui para o aprimoramento da adesão de revestimento do revestimento isolante de tensão como explicado no mecanismo acima, e é possível confirmar o estado em solução sólida ou o estado em concentração pela espectroscopia por reflexão no infravermelho.
[00129] Na presente chapa de aço elétrico, o pico originado de SiO2 comum existe no número de onda de 1250 cm-1, e o pico originado de SiO2 em que a constante de rede é alterada (mais adiante neste documento, pode ser chamado de "Si(Mn)OX") existe no número de onda de 1200 cm-1 e 1150 cm-1. Uma abundância de Si(Mn)OX em que a constante de rede é alterada influencia a intensidade de pico no número de onda de 1200 cm-1 ou 1150 cm-1. No presente documento, o número de onda que corresponde a um eixo horizontal da espectroscopia por reflexão no infravermelho pode mudar dentro de uma faixa de ± 20 cm-1, dependendo das condições de medição e método de ajuste.
[00130] A Figura 1 é uma ilustração que mostra um espectro da análise de reflexão por infravermelho da superfície da camada de filme de óxido de SiO2 intermediária. O espectro conforme mostrado na Figura 1 é uma instância de desconvolução do pico de SiO2 assumindo uma distribuição de Gauss. Quando a desconvolução é conduzida, uma função de distribuição pode ser pelo menos uma selecionada dentre Voigt, Gauss e Lorentz.
[00131] No presente documento, a intensidade de pico pode ser definida como uma altura de pico após subtrair o antecedente usando o software de análise, e pode ser definida como uma intensidade integrada do pico.
[00132] Quando o pico originado de Si(Mn)OX não está claro, é possível obter a intensidade de pico pela desconvolução de pico usando ajuste.
[00133] Os presentes inventores constataram que, quando a intensidade de pico IA originada de SiO2 no número de onda de 1250 cm-1 e a intensidade de pico IB originada de Si(Mn)OX no número de onda de 1200 cm-1 satisfazem a seguinte fórmula (1), é possível obter excelente adesão de revestimento.
[00134] Embora um limite superior de IB / IA não seja particularmente limitado, a quantidade de Mn submetido à solubilização em solução sólida ou Mn concentrado tem um limite. Quando se considera o limite, o limite superior de IB / IA pode ser aproximadamente 10. Para se obter confiavelmente excelente adesão de revestimento, IB / IA é, de preferência, 0,010 a 5 e, com mais preferência, 0,010 a 1.
[00135] Em um caso em que o elemento M (M: Mn, Al, B) é submetido à solubilização em solução sólida na camada de filme de óxido de SiO2 intermediária, é possível confirmar o estado em solução sólida do elemento M pelo espectro de emissão óptica por descarga luminescente (GDS). No caso, a relação entre uma posição de profundidade da camada de filme de óxido de SiO2 intermediária e uma posição de profundidade do elemento M é importante.
[00136] A posição de profundidade da camada de filme de óxido de SiO2 intermediária pode ser analisada por espectro de GDS originado de Si (mais adiante neste documento, pode ser chamado de "FSi(t)"). A explicação é a seguinte.
[00137] O espectro de GDS pode ser suavizado usando software para analisar um pico ou similares. Ademais, para aprimorar a precisão de análise de pico, um intervalo de tempo Δt de medição é, de preferência, o menor possível e, de preferência, 0,05 segundo ou menos. Mais adiante neste documento, t expressa um tempo (segundo) correspondente a uma posição de profundidade de amostra.
[00138] O t acima é uma variável quando o espectro de GDS é uma função de tempo. Em um caso em que a camada de filme de óxido de SiO2 intermediária existe sobre uma superfície de uma amostra retirada da chapa de aço, é possível discriminar (A) uma posição de elevação de pico de fundo, (B) uma posição de vértice de pico, e
[00139] (C) uma posição de terminação de pico até o fundo, em uma região correspondente à superfície da amostra no espectro de GDS originado de Si.
[00140] Mais adiante neste documento, Ts expressa o tempo t correspondente à posição de elevação de pico, Tp expressa o tempo t correspondente à posição de vértice de pico, e Tf expressa o tempo t correspondente à posição de terminação de pico. A camada de filme de óxido de SiO2 intermediária pode ser a superfície mais externa da amostra medida. Dessa forma, t correspondente a um ponto de partida de análise do espectro de GDS pode ser a posição de elevação de pico, e o ponto de partida de análise do espectro de GDS pode ser definido como Ts. Ademais, o pico pode ser simétrico seguindo a distribuição normal, e pode ser definido como Tf = 2Tp - Ts.
[00141] Uma vez que o intervalo de tempo Δt para medir o espectro de GDS pode ser de 0,05 segundo ou menos, Ts pode ser aproximado para ~0, e, dessa forma, pode ser aproximado para Tf = 2 x Tp. O método para determinar Tp é explicado abaixo.
[00142] Tp corresponde à posição de vértice de pico no espectro de GDS originado de Si. Para determinar a posição de vértice de pico, FSi(t) pode ser diferenciado em segunda ordem em relação ao tempo, t correspondente a um valor mínimo local de uma curva diferencial de segunda ordem pode ser encontrado (consultar "d2F(t) / dT2" na Figura 1). No presente documento, o valor mínimo local precisa ser encontrado em uma faixa de t = 0 segundo ou mais e Δt x 100 segundos ou menos. O motivo acima é que a camada de filme de óxido de SiO2 intermediária existe apenas na superfície da amostra, e não existe dentro da chapa de aço, de modo que t se torne um valor relativamente pequeno.
[00143] Ademais, quando fSi(t) é constantemente 0 ou mais em uma faixa de modo que seja Ts a Tp em uma curva fSi(t) (= dFSi(t) / dt) (consultar "dF(t) / dt" na Figura 1) em que FSi(t) é diferenciado em primeira ordem em relação ao tempo, é mais decisivo que Tp corresponda à posição de vértice de pico.
[00144] No presente documento, a curva diferencial pode ser obtida calculando-se um derivado ou sendo aproximado usando f(tn) = [F(tn) - F(tn-1)] / [tn - tn-1] como cálculo de diferença. O tn acima expressa o n- ésimo ponto de medição (tempo), e F(tn) expressa a intensidade espectral no mesmo.
[00145] Quando o pico originado de Si não for claro, a análise pode ser realizada usando espectro de GDS originado de Fe (mais adiante neste documento, pode ser chamado de "FFe(t)"). No caso, quando t correspondente a um valor máximo local for considerado como o Tf acima, o Tp acima é indicado como Tp = 0,5 x (Tf + Ts) em uma curva diferencial de primeira ordem de FFe(t) (mais adiante neste documento, pode ser chamado de "fFe(t)"). No caso, Ts pode ser aproximado para ~0 e, dessa forma, pode ser aproximado para Tp = 0,5 x Tf. A razão acima é que o valor máximo local de fFe(t) corresponde à interface entre SiO2 e à chapa de aço de base.
[00146] No presente documento, o valor máximo local precisa ser encontrado em uma faixa de t = 0 segundo ou mais e Δt x 100 segundos ou menos. O motivo acima é que a camada de filme de óxido de SiO2 intermediária existe apenas na superfície da amostra, e não existe dentro da chapa de aço, de modo que t se torne um valor relativamente pequeno.
[00147] Na presente chapa de aço elétrico, para aprimorar a adesão de revestimento, o elemento M como Mn, Al ou B precisa se concentrar em uma posição de t = Tp que corresponde a uma área central da camada de filme de óxido de SiO2 intermediária. Entretanto, visto que é difícil concentrar o elemento M como Mn, Al ou B na posição de t = Tp, o elemento M é praticamente distribuído em uma faixa de modo que t seja Ts a Tp.
[00148] Especificamente, é possível confirmar o estado em solução sólida do elemento M que está em solução sólida na camada de filme de óxido de SiO2 intermediária usando o espectro de GDS originado do elemento M (mais adiante neste documento, pode ser chamado de "FM(t)"). Especificamente, um valor em que fM (t) é integrado em uma faixa integral: t = Ts a Tp pode satisfazer a seguinte fórmula (2).Fórmula 2
[00149] Visto que o elemento M pode ser plural como Mn, Al ou B, pelo menos um selecionado do grupo que consiste nas seguintes fórmulas (3) a (5) pode ser satisfeito.Fórmula 4
[00150] No presente documento, na medição de GDS, não é contínuo, e fM(t) é um conjunto de pontos descontínuos na faixa de modo que t seja Ts a Tp. Dessa forma, cada ponto de fM(t) é conectado por uma linha reta e é aproximado como uma função contínua e, então, é integrado. O mesmo pode ser um valor integrado usando ∑.
[00151] O elemento M como Mn, Al ou B pode ser confirmado por análise química. Por exemplo, uma amostra que é a chapa de aço antes de formar o revestimento isolante de tensão ou após remover o revestimento isolante de tensão é dissolvida por um procedimento de iodo-álcool, e a camada de filme de óxido de SiO2 intermediária é extraída. A camada de filme de óxido de SiO2 intermediária extraída é quimicamente analisada usando ICP ou similares. Com isso, é possível confirmar o elemento M incluído na camada de filme de óxido de SiO2 intermediária.
[00152] Em relação à quantidade de solução sólida (ou quantidade concentrada) do elemento M na camada de filme de óxido de SiO2 intermediária, aquela de Mn e Al pode ser 0,01% ou mais em % em massa, e aquela de B pode ser 0,001% ou mais em % em massa. Embora um limite superior da mesma não seja particularmente limitado, é difícil realizar a solubilização em solução sólida (concentrar) Mn e Al de mais de 0,5%, e é difícil realizar a solubilização em solução sólida (concentrar) B de mais de 0,2%.
[00153] Para confirmar o efeito de aprimorar a adesão de revestimento por espectroscopia por reflexão no infravermelho, GDS, análise química, ou similares, é óptico usar uma amostra que é a chapa de aço após formar a camada de filme de óxido de SiO2 intermediária sobre a superfície da chapa de aço e antes de formar o revestimento isolante de tensão. Em um caso em que uma amostra é a chapa de aço após formar o revestimento isolante de tensão, a análise pode ser conduzida após remover completamente apenas o revestimento isolante de tensão por limpeza alcalina, decapagem, limpeza ultrassônica com álcool ou água, ou similares.
[00154] Ademais, para limpar ainda mais a superfície da amostra de chapa de aço após a decapagem, a limpeza ultrassônica com álcool ou água, ou similares, o recozimento pode ser conduzido sob condições como uma atmosfera de 100% de H2, 800 a 1100°C e 1 a 5 horas e, então, a análise pode ser conduzida. Visto que SiO2 é um composto estável, mesmo quando o recozimento é conduzido, SiO2 não é reduzido, e a camada de filme de óxido de SiO2 intermediária não desaparece.
Método de produção
[00155] Em comum com um método para produzir uma chapa de aço elétrico típica, a presente chapa de aço elétrico é produzida da seguinte forma. Uma peça de aço é continuamente lingotada após a fabricação de aço em um conversor. A laminação a quente, recozimento do laminado a quente, laminação a frio, recozimento por recristalização primária e recozimento por recristalização secundária são conduzidos. O recozimento é conduzido para formar a camada de filme de óxido de SiO2 intermediária. O recozimento é conduzido para formar o revestimento isolante de tensão.
[00156] A laminação a quente pode ser uma laminação a quente direta ou uma laminação a quente contínua e a temperatura de aquecimento da peça de aço não é individualmente limitada. A laminação a frio pode ser conduzida duas vezes ou mais, a laminação a frio pode ser uma laminação a morno e a redução de laminação não é particularmente limitada. O recozimento por recristalização secundária pode ser um recozimento em batelada em um forno em caixa ou um recozimento contínuo em um forno contínuo e um método de recozimento não é particularmente limitado.
[00157] Um separador de recozimento pode incluir óxido como alumina, magnésia ou sílica, e o tipo dos mesmos não é particularmente limitado.
[00158] Para formar a camada de filme de óxido intermediária de SiO2 quando se produz a chapa de aço elétrico com grão orientado com excelente adesão de revestimento, é importante adotar condições de recozimento de modo que a camada de filme de óxido de SiO2 intermediária seja formada e que o elemento metálico M como Mn seja submetido à solubilização em solução sólida ou se concentre na camada de filme de óxido de SiO2 intermediária. Especificamente, é importante adotar a temperatura e o tempo de modo que o elemento metálico M seja submetido à solubilização em solução sólida ou se concentre na camada de filme de óxido de SiO2 intermediária.
[00159] Na presente chapa de aço elétrico, a camada de filme de óxido de SiO2 intermediária é formada por recozimento da chapa de aço após a recristalização secundária sob condições de modo que uma temperatura de recozimento T1 seja 600 a 1200°C.
[00160] Quando a temperatura de recozimento é menor que 600°C, SiO2 não é formado, e a camada de filme de óxido de SiO2 intermediária não é formada. Dessa forma, a temperatura de recozimento é 600°C ou mais. Por outro lado, quando a temperatura de recozimento for mais de 1200°C, a reação para formar a camada de filme de óxido de SiO2 intermediária se torna instável, a interface entre a camada de filme de óxido de SiO2 intermediária e a chapa de aço de base se torna irregular e, dessa forma, a adesão de revestimento pode se deteriorar. Dessa forma, a temperatura de recozimento é 1200°C ou menos. A temperatura de recozimento é, de preferência, 700 a 1100°C que é uma faixa de temperatura em que SiO2 se precipita.
[00161] Para expandir a camada de filme de óxido de SiO2 intermediária e garantir a espessura necessária para obter excelente adesão de revestimento, o tempo de recozimento é de 5 segundos ou mais. O tempo de recozimento é, de preferência, de 20 segundos ou mais. A partir do ponto de vista de obter excelente adesão de revestimento, o tempo de recozimento pode ser longo. Entretanto, a partir do ponto de vista de produtividade, um limite superior do mesmo pode ser de 200 segundos. O tempo de recozimento é, de preferência, de 100 segundos ou menos.
[00162] A atmosfera de recozimento deve formar sílica externamente oxidada (a camada de filme de óxido de SiO2 intermediária) e suprimir a formação de subóxido como faialita, wustita ou magnetita. Dessa forma, um grau de oxidação PH2O/PH2 que é a razão de pressão parcial de vapor d'água para pressão parcial de hidrogênio na atmosfera de recozimento é controlado para estar dentro da seguinte fórmula (6). O grau de oxidação é, de preferência, 0,05 ou menos.
[00163] Com uma redução no grau de oxidação PH2O/PH2, a sílica externamente oxidada (a camada de filme de óxido de SiO2 intermediária) é facilmente formada e, dessa forma, o efeito da presente invenção é facilmente obtido. Entretanto, é difícil controlar o grau de oxidação PH2O/PH2 para ser menor que 5,0 x 10-4 e, dessa forma, um limite inferior prático do mesmo pode ser aproximadamente 5,0 x 10-4, como um valor industrialmente controlável.
[00164] Para que o elemento metálico M como Mn, Al, B seja eficazmente submetido à solubilização em solução sólida ou se concentre na camada de filme de óxido de SiO2 intermediária, é necessário garantir a temperatura em que o elemento metálico M pode ser difundido. Dessa forma, quando se resfria a chapa de aço após o recozimento para formar a camada de filme de óxido de SiO2 intermediária, uma taxa média de resfriamento em uma faixa de temperatura de T2 (°C) a T1 (°C) que é a faixa de temperatura para a difusão é 50 °C/segundo ou menos. T2 é definida como a seguinte fórmula (7). Mais adiante neste documento, a taxa média de resfriamento pode ser chamada de "CR1 (°C/segundo)".
[00165] Mesmo quando resfria-se a chapa de aço pela taxa média de resfriamento CR1 de 50 °C/segundo ou menos, as características da presente chapa de aço elétrico não são comprometidas. A partir do ponto de vista de produtividade, CR1 é, de preferência, 0,1 °C/segundo ou mais. Quando uma taxa de resfriamento aumenta após o resfriamento até T2 (°C), a deformação térmica é induzida e, dessa forma, a adesão de revestimento e as características magnéticas se deterioram. Dessa forma, uma taxa média de resfriamento CR2 em uma faixa de temperatura de 100°C a T2 (°C) deve satisfazer a seguinte fórmula (8).
[00166] Quando se forma a camada de filme de óxido de SiO2 intermediária com excelente adesão de revestimento, uma taxa de aquecimento quando a chapa de aço é aquecida é importante. Óxido em vez de SiO2 não só reduz a adesão do revestimento isolante de tensão, como também deteriora a lisura de superfície da chapa de aço, resultando em uma redução nas características de perda de ferro. Dessa forma, é necessário adotar a taxa de aquecimento de modo que o óxido diferente de SiO2 seja dificilmente formado.
[00167] Visto que SiO2 não é estável em comparação com outros óxidos à base de Fe conforme descrito no Documento de Não Patente 1, é preferencial adotar o histórico térmico no aquecimento para formar os óxidos à base de Fe. Especificamente, quando uma taxa média de aquecimento HR1 em uma faixa de temperatura de 100°C a 600°C é 10 °C/segundo ou mais, é possível suprimir a formação de FeXO. Embora seja preferencial que a taxa de aquecimento na faixa de temperatura seja a mais rápida possível, um limite superior da taxa média de aquecimento HR1 é, de preferência, 200 °C/segundo a partir de um ponto de vista industrial. A taxa média de aquecimento HR1 é, de preferência, 20 a 150 °C/segundo e, com mais preferência, 50 a 100 °C/segundo.
Exemplos
[00168] Mais adiante neste documento, as características técnicas do aspecto da presente invenção serão descritas em detalhe com referência aos seguintes exemplos. A condição nos exemplos a seguir é um exemplo de condição empregado para confirmar a operabilidade e os efeitos da presente invenção, de modo que a presente invenção não seja limitada ao exemplo da condição. A presente invenção pode empregar vários tipos de condições desde que as condições não se afastem do escopo da presente invenção e possam atingir o objetivo da presente invenção.
Exemplo 1
[00169] Um aço de silício que tem uma composição mostrada na Tabela 1-1 foi recozido a 1100°C por 60 minutos. O aço foi laminado a quente para obter uma chapa de aço laminado a quente de 2,6 mm. A chapa de aço laminado a quente foi recozida a 1100°C e foi decapada. A chapa de aço foi laminada a frio uma vez ou laminada a frio várias vezes com um recozimento intermediário para obter uma chapa de aço laminada a frio que tem espessura final de 0,23 mm. Tabela 1-1
[00170] A chapa de aço laminado a frio que tem a espessura final de 0,23 mm foi submetida a recozimento por descarbonetação e recozimento por nitretação. O separador de recozimento que era uma pasta fluida aquosa contendo alumina como um componente principal foi aplicado à chapa de aço e, então, o recozimento final foi conduzido a 1200°C por 20 horas. A chapa recozida final foi recozida sob condições de modo que o grau de oxidação PH2O/PH2 fosse 0,12, a temperatura de recozimento T1 fosse 1000°C, o tempo de recozimento fosse 30 segundos, a taxa média de aquecimento HR1 na faixa de temperatura de 100°C a 600°C fosse 30 °C/segundo e, dessa forma, a camada de filme de óxido de SiO2 intermediária foi formada sobre a superfície da chapa de aço.
[00171] No presente documento, a taxa média de resfriamento CR1 na faixa de temperatura de T2°C (800°C) a T1°C (900°C) era 50 °C/segundo, e a taxa média de resfriamento CR2 na faixa de temperatura de 100°C ou mais e menos de T2°C (800°C) era 30 °C/segundo.
[00172] A solução de formação de revestimento isolante foi aplicada sobre a superfície da chapa de aço, o cozimento foi conduzido e, dessa forma, o revestimento isolante de tensão foi formado. A composição química da chapa de aço de base na chapa de aço elétrico com grão orientado produzida é mostrada na Tabela 1-2. Ademais, a adesão de revestimento do revestimento isolante foi avaliada, e as características magnéticas (densidade de fluxo magnético) foram avaliadas. [Tabela 1-2]
[00173] A adesão de revestimento do revestimento isolante de tensão foi avaliada laminando-se um corpo de prova em torno do cilindro com 20 mm de diâmetro e medindo-se uma fração de área de revestimento restante após flexão a 180°. Em relação à fração de área de revestimento restante sem delaminação da chapa de aço, a fração de área de 95% ou mais foi considerada como "VG (muito boa)", a fração de área de 90% a menos de 95% foi considerada como "G (boa)", a fração de área de 80% a menos de 90% foi considerada como "F (justa)", e a fração de área menor que 80% foi considerada como "B (ruim)".
[00174] As características magnéticas foram avaliadas com base na norma JIS C 2550. A densidade de fluxo magnético B8 foi medida. B8 é a densidade de fluxo magnético sob o campo magnético de 800A/m, e se torna os critérios de julgamento se a recristalização secundária ocorrer adequadamente. Quando B8 era 1,89T ou mais, a recristalização secundária foi julgada como ocorrendo adequadamente.
[00175] Para algumas chapas de aço, o revestimento isolante de tensão não foi formado após formar a camada de filme de óxido de SiO2 intermediária e, então, a chapa de aço foi submetida à avaliação da espessura da camada de filme de óxido de SiO2 intermediária e o estado de compatibilidade de rede da camada de filme de óxido de SiO2 intermediária. A espessura da camada de filme de óxido de SiO2 intermediária foi medida por observação MET com base em um método descrito no Documento de Patente 25. O estado de compatibilidade de rede da camada de filme de óxido de SiO2 intermediária foi analisado pela espectroscopia por reflexão no infravermelho. Os resultados de avaliação são mostrados na Tabela 2. Tabela 2
[00176] B1 a B13 eram exemplos inventivos. Em B1 a B13, foi confirmado que o efeito da presente invenção foi obtido. Entre esses, B1 a B6 não incluíram elementos opcionais. O teor de S em B1, o teor de Si em B2 e B4, o teor de Al solúvel em ácido em B3 e o teor de N em B5 estavam respectivamente fora da faixa preferencial e, dessa forma, os resultados de avaliação se tornaram "F". Embora B6 não incluísse elementos opcionais, excelente resultado de "G" foi obtido, pois Si, Mn, Al solúvel em ácido e N foram controlados para estarem dentro da faixa preferencial ou da faixa mais preferencial em B6. B7 a B13 incluíram pelo menos um dentre Cr, Cu, Sn ou B como elementos opcionais. B7 a B12 incluíram pelo menos um dentre Cr, Cu, Sn ou B como elementos opcionais e, dessa forma, excelente resultado de "G" foi obtido. B13 incluiu três elementos de Cr, Cu e Sn e, dessa forma, um resultado mais excelente de "VG" foi obtido.
[00177] Por outro lado, b1 a b7 eram exemplos comparativos. O teor de Si em b3, o teor de Al solúvel em ácido em b4 e o teor de N em b5 eram excessivos. Dessa forma, as chapas de aço se tornaram frágeis à temperatura ambiente e a laminação a frio não poderia ser conduzida. A adesão de revestimento não poderia ser avaliada em b3 a b5.
[00178] A quantidade de elementos aditivos em b1, b2 e b6 estava fora da faixa da presente invenção. Dessa forma, a recristalização secundária não ocorreu em b1, b2 e b6. Na chapa de aço em que a recristalização secundária não ocorreu, a adesão de revestimento da mesma foi insuficiente. Parecia que, quando a recristalização secundária não ocorreu, o tamanho de grão da chapa de aço era fino, a superfície era irregular e a camada de filme de óxido de SiO2 intermediária não foi adequadamente formada. O teor de S de b7 excedeu o limite superior da presente invenção, a camada de filme de óxido de SiO2 intermediária não foi adequadamente formada e, dessa forma, a adesão de revestimento foi insuficiente.
Exemplo 2
[00179] O aço de silício que tem a composição mostrada na Tabela 1-1 foi recozido a 1100°C por 60 minutos. O aço foi laminado a quente para obter a chapa de aço laminado a quente de 2,6 mm. A chapa de aço laminado a quente foi recozida a 1100°C e foi decapada. A chapa de aço foi laminada a frio uma vez ou laminada a frio várias vezes com o recozimento intermediário para obter a chapa de aço laminada a frio que tem espessura final de 0,23 mm.
[00180] A chapa de aço laminado a frio que tem a espessura final de 0,23 mm foi submetida a recozimento por descarbonetação e recozimento por nitretação. O separador de recozimento que era uma pasta fluida aquosa contendo alumina como o componente principal foi aplicado à chapa de aço e, então, o recozimento final foi conduzido a 1200°C por 20 horas. A chapa recozida final foi recozida sob condições de modo que o grau de oxidação PH2O/PH2 fosse 0,01, a temperatura de recozimento T1 fosse 800°C, o tempo de recozimento fosse 60 segundos, a taxa média de aquecimento HR1 na faixa de temperatura de 100°C a 600°C fosse 90 °C/segundo e, dessa forma, a camada de filme de óxido de SiO2 intermediária foi formada sobre a superfície da chapa de aço.
[00181] No presente documento, a taxa média de resfriamento CR1 na faixa de temperatura de T2°C (700°C) a T1°C (800°C) era 50 °C/segundo, e a taxa média de resfriamento CR2 na faixa de temperatura de 100°C ou mais e menos de T2°C (700°C) era 30 °C/segundo.
[00182] A solução de formação de revestimento isolante foi aplicada sobre a superfície da chapa de aço, o cozimento foi conduzido e, dessa forma, o revestimento isolante de tensão foi formado. A adesão de revestimento do revestimento isolante foi avaliada, e as características magnéticas (densidade de fluxo magnético) foram avaliadas.
[00183] Para algumas chapas de aço, o revestimento isolante de tensão não foi formado após formar a camada de filme de óxido de SiO2 intermediária e, então, a chapa de aço foi submetida à avaliação da espessura da camada de filme de óxido de SiO2 intermediária o estado de compatibilidade de rede da camada de filme de óxido de SiO2 intermediária e o estado de Mn submetido à solubilização em solução sólida na camada de filme de óxido de SiO2 intermediária. O estado de Mn submetido à solubilização em solução sólida foi analisado por GDS.
[00184] A espessura da camada de filme de óxido de SiO2 intermediária, o estado de compatibilidade de rede da camada de filme de óxido de SiO2 intermediária analisada pela espectroscopia por reflexão no infravermelho, o estado de Mn, Al e B submetidos à solubilização em solução sólida analisados por GDS, e os resultados de avaliação da adesão de revestimento são mostrados na Tabela 3. Na medição de GDS, o tempo de medição era 100 segundos, e o intervalo de tempo era 0,05 segundo. A medição e a avaliação foram conduzidas com base naquelas do Exemplo 1.
[00185] A composição química da chapa de aço de base na chapa de aço elétrico com grão orientado produzida é mostrada na Tabela 12. A chapa de aço que satisfez as fórmulas (3) a (5) foi considerada como "OK", e a chapa de aço que não satisfez as fórmulas (3) a (5) foi considerada como "NG". Tabela 3
[00186] C1 a C7 eram exemplos inventivos. Em C1 a C7, foi confirmado pela espectroscopia por reflexão no infravermelho que a camada de filme de óxido de SiO2 intermediária com excelente compatibilidade de rede foi formada.
[00187] C7 incluiu quatro elementos de Cr, Cu, Sn e B como elementos opcionais. Dessa forma, em C7, uma adesão de revestimento mais excelente de "VG" foi obtida em comparação com C1 a C6. No presente documento, C1 a C6 não incluiu elementos opcionais ou incluiu apenas um elemento em elementos opcionais e a avaliação dos mesmos foi "G".
Exemplo 3
[00188] O aço de silício que tem a composição mostrada na Tabela 1-1 foi recozido a 1100°C por 60 minutos. O aço foi laminado a quente para obter a chapa de aço laminado a quente de 2,6 mm. A chapa de aço laminado a quente foi recozida a 1100°C e foi decapada. A chapa de aço foi laminada a frio uma vez ou laminada a frio várias vezes com o recozimento intermediário para obter a chapa de aço laminada a frio que tem espessura final de 0,23 mm.
[00189] A chapa de aço laminado a frio que tem a espessura final de 0,23 mm foi submetida a recozimento por descarbonetação e recozimento por nitretação. O separador de recozimento que era uma pasta fluida aquosa contendo alumina como o componente principal foi aplicado à chapa de aço e, então, o recozimento final foi conduzido a 1200°C por 20 horas. A chapa recozida final foi recozida sob condições mostradas na Tabela 4-1 e Tabela 4-2 e, dessa forma, a camada de filme de óxido de SiO2 intermediária foi formada sobre a superfície da chapa de aço. A solução de formação de revestimento isolante foi aplicada sobre a superfície da chapa de aço, o cozimento foi conduzido e, dessa forma, o revestimento isolante de tensão foi formado. A adesão de revestimento do revestimento isolante foi avaliada, e as características magnéticas (densidade de fluxo magnético) foram avaliadas.
[00190] A composição química da chapa de aço de base na chapa de aço elétrico com grão orientado produzida é mostrada na Tabela 1-2.
[00191] A espessura da camada de filme de óxido de SiO2 intermediária, o estado de compatibilidade de rede da camada de filme de óxido de SiO2 intermediária analisada pela espectroscopia por reflexão no infravermelho, e os resultados de avaliação da adesão de revestimento são mostrados na Tabela 4-1 e Tabela 4-2. A medição e a avaliação foram conduzidas com base naquelas do Exemplo 1. Tabela 4-1 Tabela 4-2
[00192] D1 a D27 eram exemplos inventivos. Em D1 a D27, foi confirmado que o efeito da presente invenção foi obtido.
[00193] Em D1 a D3 entre D1 a D9, a temperatura de recozimento, o tempo de recozimento, a taxa média de aquecimento HR1 e o grau de oxidação estavam fora da faixa preferencial e, dessa forma, o resultado de avaliação se tornou "F". Por outro lado, em D4 a D6, a temperatura de recozimento, o tempo de recozimento, a taxa média de aquecimento HR1 e o grau de oxidação foram controlados para estarem dentro da faixa preferencial e, dessa forma, o resultado excelente de "G” foi obtido.
[00194] Em G7 a G9, a temperatura de recozimento, o tempo de recozimento e o grau de oxidação foram controlados para estarem dentro da faixa preferencial, e a taxa de média de aquecimento HR1 foi controlada para estar dentro da faixa mais preferencial. Dessa forma, uma excelente adesão de revestimento de "G" foi obtida.
[00195] Em D10 a D13, embora a temperatura de recozimento, o tempo de recozimento, a taxa média de aquecimento HR1 e o grau de oxidação estivessem fora da faixa preferencial, Cr e Sn foram incluídos como elementos opcionais e, dessa forma, uma excelente adesão de revestimento de "G" foi obtida.
[00196] Em D14 e D15, a temperatura de recozimento, o tempo de recozimento, a taxa média de aquecimento HR1 e o grau de oxidação foram controlados para estarem dentro da faixa preferencial, e Cr e Sn foram incluídos como elementos opcionais. Dessa forma, uma excelente adesão de revestimento de "G" foi obtida.
[00197] Em D16 a D18, a temperatura de recozimento, o tempo de recozimento e o grau de oxidação foram controlados para estarem dentro da faixa preferencial, Cr e Sn foram incluídos como elementos opcionais e também, a taxa de média de aquecimento HR1 foi controlada para estar dentro da faixa mais preferencial. Dessa forma, uma adesão de revestimento mais excelente de "VG" foi obtida.
[00198] Em D19 a D21, embora a temperatura de recozimento, o tempo de recozimento, a taxa média de aquecimento HR1 e o grau de oxidação estivessem fora da faixa preferencial, Cr, Cru e Sn foram incluídos como elementos opcionais e, dessa forma, uma excelente adesão de revestimento de "G" foi obtida. Em D22 a D27, a temperatura de recozimento, o tempo de recozimento, e o grau de oxidação foram controlados para estarem dentro da faixa preferencial e, dessa forma, uma adesão de revestimento mais excelente de "VG” foi obtida.
[00199] Por outro lado, d1 a d9 eram exemplos comparativos. Em d1 a d3 e d5, pelo menos um dentre a temperatura de recozimento, o tempo de recozimento e o grau de oxidação para formar a camada de filme de óxido de SiO2 intermediária estava fora da faixa da presente invenção. Dessa forma, a camada de filme de óxido de SiO2 intermediária não foi formada, e a espectroscopia por reflexão no infravermelho não poderia ser conduzida.
[00200] Em d4, d8 e d9, visto que a taxa de resfriamento para a camada de filme de óxido de SiO2 intermediária estava fora da faixa da presente invenção, o estado de compatibilidade de rede da camada de filme de óxido de SiO2 intermediária foi insuficiente e, dessa forma, o resultado de avaliação da adesão de revestimento foi "B".
[00201] Visto que HR1 em d6 era maior que o limite superior e HR1 em d7 era menor que o limite inferior, óxidos à base de Fe foram excessivamente formados e, dessa forma, o resultado de avaliação da adesão de revestimento se tornou "B".
APLICABILIDADE INDUSTRIAL
[00202] Conforme descrito acima, de acordo com os aspectos acima da presente invenção, é possível formar o revestimento isolante de tensão com excelente adesão de revestimento e sem deteriorar as características magnéticas e sua estabilidade sobre a superfície da chapa de aço elétrico com grão orientado após o recozimento final em que a formação do filme de vidro é propositalmente suprimida para ser formada, o filme de vidro é removido por esmerilagem, decapagem, ou similares, ou a superfície da chapa de aço é alisada para ser a superfície semelhante a espelho. Consequentemente, a presente invenção tem aplicabilidade industrial significativa para utilizar e produzir a chapa de aço elétrico com grão orientado.

Claims (5)

1. Chapa de aço elétrico com grão orientado, que compreende: uma chapa de aço de base; uma camada de filme de óxido intermediária que está disposta na chapa de aço de base, inclui SiO2, e tem uma espessura média de 1,0 nm a 1,0 μm; e um revestimento isolante de tensão que está disposto na camada de filme de óxido intermediária, sendo que a chapa de aço de base inclui: como uma composição química, em % em massa, 0,010% ou menos de C; 2,50 a 4,00% de Si; 0,010% ou menos de Al solúvel em ácido; 0,012% ou menos de N; 1,00% ou menos de Mn; 0,020% ou menos de S; e um saldo consistindo em Fe e impurezas, caracterizada pelo fato de que, quando uma superfície da camada de filme de óxido intermediária é analisada por uma espectroscopia por reflexão no infravermelho, uma intensidade de pico IA em 1250 cm-1 e uma intensidade de pico IB em 1200 cm-1 satisfazem a seguinte fórmula (1), sendo que Se ou Sb pode ser substituído por uma parte de S, sendo esta parte um valor obtido por meio da expressão Seq = S + 0,406Se ou Seq = S + 0,406Sb.
2. Chapa de aço elétrico com grão orientado, de acordo com a reivindicação 1, caracterizada pelo fato de que a chapa de aço de base inclui adicionalmente, como a composição química, em % em massa, 0,001 a 0,010% de B.
3. Chapa de aço elétrico com grão orientado, de acordo com a reivindicação 1 ou 2, caracterizada pelo fato de que a chapa de aço de base inclui adicionalmente, como a composição química, em % em massa, pelo menos um selecionado dentre 0,01 a 0,20% de Sn; 0,01 a 0,50% de Cr; e 0,01 a 0,50% de Cu.
4. Chapa de aço elétrico com grão orientado, de acordo com qualquer uma das reivindicações 1 a 3, caracterizada pelo fato de que uma curva diferencial de tempo fM(t) de um espectro de emissão óptica por descarga luminescente de um elemento M (M: Mn, Al, B) em uma superfície da camada de filme de óxido intermediária satisfaz a seguinte fórmula (2) Fórmula 2 Tp : um tempo t (segundo) correspondente a um valor mínimo local de uma curva diferencial de tempo de segunda ordem de um espectro de emissão óptica por descarga luminescente de Si, Ts : um tempo t (segundo) correspondente a um ponto de partida de análise de um espectro de emissão óptica por descarga luminescente de Si.
5. Método de produção da chapa de aço elétrico com grão orientado, como definida em qualquer uma das reivindicações 1 a 4, caracterizado pelo fato de que compreende:um processo de formação de camada de filme de óxido, de formar uma camada de filme de óxido intermediária sobre uma chapa de aço, sendo que, no processo de formação da camada de filme de óxido, um recozimento é conduzido sob condições de modo que uma temperatura de recozimento T1 seja 600 a 1200°C, um tempo de recozimento seja 5 a 200 segundos, um grau de oxidação PH2O/PH2 seja 0,15 ou menos e uma taxa média de aquecimento HR1 em uma faixa de temperatura de 100°C a 600°C seja 10 a 200 °C/segundo, e após o recozimento, uma taxa média de resfriamento CR1 em uma faixa de temperatura de T2°C a T1°C é 50 °C/segundo ou menos, e uma taxa média de resfriamento CR2 em uma faixa de temperatura de 100°C ou mais e menor que T2°C é mais lenta que CR1, quando T2 é uma temperatura expressa em T1°C - 100°C, sendo que o processo de formação de camada de filme de óxido é precedido pelas etapas de lingotamento contínuo de uma chapa de aço após a fabricação de aço em um conversor, laminação a quente, recozimento da banda quente, laminação a frio, recozimento por recristalização primária e recozimento por recristalização secundária, sendo que o recozimento é conduzido para formar a camada de filme de óxido de SiO2 intermediária e para formar o revestimento isolante de tensão.
BR112020027000-8A 2018-07-13 2018-07-13 Chapa de aço elétrico com grão orientado e método de produção da mesma BR112020027000B1 (pt)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/026619 WO2020012666A1 (ja) 2018-07-13 2018-07-13 方向性電磁鋼板及びその製造方法

Publications (2)

Publication Number Publication Date
BR112020027000A2 BR112020027000A2 (pt) 2021-04-06
BR112020027000B1 true BR112020027000B1 (pt) 2023-10-24

Family

ID=69141552

Family Applications (1)

Application Number Title Priority Date Filing Date
BR112020027000-8A BR112020027000B1 (pt) 2018-07-13 2018-07-13 Chapa de aço elétrico com grão orientado e método de produção da mesma

Country Status (8)

Country Link
US (1) US20210123115A1 (pt)
EP (1) EP3822386A4 (pt)
JP (1) JP6954470B2 (pt)
KR (1) KR102480592B1 (pt)
CN (1) CN112449656A (pt)
BR (1) BR112020027000B1 (pt)
RU (1) RU2766228C1 (pt)
WO (1) WO2020012666A1 (pt)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114507768B (zh) * 2022-02-22 2023-11-24 武汉钢铁有限公司 一种改善取向硅钢边部浪形的方法

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE789262A (fr) 1971-09-27 1973-01-15 Nippon Steel Corp Procede de formation d'un film isolant sur un feuillard d'acierau silicium oriente
JPS51128650A (en) * 1974-10-15 1976-11-09 Kawasaki Steel Co Process for fabricating electric steel having coatings superior in punchhworkability and weldability
JPS60131976A (ja) 1983-12-19 1985-07-13 Kawasaki Steel Corp 鉄損特性に優れた一方向性けい素鋼板の製造方法
JPH0663036B2 (ja) 1987-08-31 1994-08-17 新日本製鐵株式会社 金属光沢を有する方向性電磁鋼板の製造方法
JP2698003B2 (ja) 1992-08-25 1998-01-19 新日本製鐵株式会社 一方向性珪素鋼板の絶縁皮膜形成方法
EP0565029B1 (en) * 1992-04-07 1999-10-20 Nippon Steel Corporation Grain oriented silicon steel sheet having low core loss and method of manufacturing same
JP2663229B2 (ja) * 1992-12-16 1997-10-15 新日本製鐵株式会社 均一なグラス皮膜を有し、磁気特性の著しく優れた方向性電磁鋼板の製造方法
JP2679944B2 (ja) 1993-10-26 1997-11-19 新日本製鐵株式会社 鉄損の低い鏡面方向性電磁鋼板の製造方法
JPH07278669A (ja) 1994-04-05 1995-10-24 Nippon Steel Corp 鉄損の低い鏡面方向性電磁鋼板の製造方法
JP2680987B2 (ja) 1994-04-05 1997-11-19 新日本製鐵株式会社 鉄損の低い方向性珪素鋼板の製造方法
JP2653638B2 (ja) 1994-04-05 1997-09-17 新日本製鐵株式会社 鉄損の低い方向性電磁鋼板の製造方法
JP2664337B2 (ja) 1994-04-15 1997-10-15 新日本製鐵株式会社 一方向性珪素鋼板の絶縁皮膜形成方法
JPH1046252A (ja) 1996-08-05 1998-02-17 Nippon Steel Corp 超低鉄損一方向性電磁鋼板の製造方法
JP3337958B2 (ja) 1997-10-06 2002-10-28 新日本製鐵株式会社 磁気特性が優れた鏡面一方向性電磁鋼板の製造方法
JP2962715B2 (ja) * 1997-10-14 1999-10-12 新日本製鐵株式会社 電磁鋼板の絶縁皮膜形成方法
JP3890711B2 (ja) 1997-11-18 2007-03-07 Jfeスチール株式会社 コイル内で均一な表面性状を有する方向性電磁鋼板の製造方法
JP3386751B2 (ja) * 1999-06-15 2003-03-17 川崎製鉄株式会社 被膜特性と磁気特性に優れた方向性けい素鋼板の製造方法
JP3474837B2 (ja) 2000-08-09 2003-12-08 新日本製鐵株式会社 B8が1.91t以上の鏡面一方向性電磁鋼板の製造方法
JP4331886B2 (ja) 2000-12-01 2009-09-16 新日本製鐵株式会社 方向性珪素鋼板の製造方法
JP4427226B2 (ja) 2001-04-18 2010-03-03 新日本製鐵株式会社 方向性電磁鋼板の製造方法
KR100553020B1 (ko) * 2001-04-23 2006-02-16 신닛뽄세이테쯔 카부시키카이샤 장력 부여성 절연 피막의 밀착성이 우수한 일방향성 규소강판과 그 제조 방법
JP4044739B2 (ja) 2001-05-22 2008-02-06 新日本製鐵株式会社 張力付与性絶縁皮膜の皮膜密着性に優れる一方向性珪素鋼板とその製造方法
JP4119634B2 (ja) 2001-05-22 2008-07-16 新日本製鐵株式会社 鉄損の良好な鏡面方向性電磁鋼板の製造方法
JP2002348613A (ja) 2001-05-24 2002-12-04 Nippon Steel Corp 脱炭焼鈍を必要としない打ち抜き性の優れた一方向性電磁鋼板の製造方法
JP4119635B2 (ja) 2001-06-07 2008-07-16 新日本製鐵株式会社 脱炭性の良好な鏡面方向性電磁鋼板の製造方法
JP2002363646A (ja) 2001-06-08 2002-12-18 Nippon Steel Corp 脱炭焼鈍を必要としない鏡面を有する一方向性電磁鋼板の製造方法
JP4422384B2 (ja) 2002-02-25 2010-02-24 新日本製鐵株式会社 方向性電磁鋼板の製造方法
JP4427225B2 (ja) 2002-02-25 2010-03-03 新日本製鐵株式会社 方向性電磁鋼板の製造方法
JP4100938B2 (ja) 2002-03-14 2008-06-11 芝浦メカトロニクス株式会社 アーク遮断回路、スパッタ用電源及びスパッタ装置
TWI305548B (en) * 2005-05-09 2009-01-21 Nippon Steel Corp Low core loss grain-oriented electrical steel sheet and method for producing the same
JP5273944B2 (ja) 2006-05-24 2013-08-28 新日鐵住金株式会社 鏡面方向性電磁鋼板の製造方法
JP5181571B2 (ja) * 2007-08-09 2013-04-10 Jfeスチール株式会社 方向性電磁鋼板用クロムフリー絶縁被膜処理液および絶縁被膜付方向性電磁鋼板の製造方法
CN101643881B (zh) 2008-08-08 2011-05-11 宝山钢铁股份有限公司 一种含铜取向硅钢的生产方法
US9984801B2 (en) * 2008-11-27 2018-05-29 Nippon Steel & Sumitomo Metal Corporation Electrical steel sheet and manufacturing method thereof
US10134514B2 (en) * 2013-02-28 2018-11-20 Jfe Steel Corporation Method for producing grain-oriented electrical steel sheet
KR20170106449A (ko) * 2015-02-13 2017-09-20 제이에프이 스틸 가부시키가이샤 방향성 전자 강판 및 그의 제조 방법
JP6572855B2 (ja) * 2016-09-21 2019-09-11 Jfeスチール株式会社 方向性電磁鋼板およびその製造方法
EP3822391A4 (en) * 2018-07-13 2022-03-16 Nippon Steel Corporation GRAIN-ORIENTED ELECTRICAL STEEL SHEET BASE SHEET, GRAIN-ORIENTED ELECTRICAL STEEL SHEET USING A GRAIN-ORIENTED ELECTRICAL STEEL SHEET BASE SHEET MATERIAL, METHOD FOR PRODUCING A GRAIN-ORIENTED ELECTRICAL STEEL SHEET BASE SHEET GRAIN ORIENTED ELECTRICAL STEEL, AND A METHOD FOR PRODUCING GRAIN ORIENTED ELECTRICAL STEEL SHEETS

Also Published As

Publication number Publication date
CN112449656A (zh) 2021-03-05
WO2020012666A1 (ja) 2020-01-16
JPWO2020012666A1 (ja) 2021-08-05
RU2766228C1 (ru) 2022-02-10
EP3822386A1 (en) 2021-05-19
KR20210018433A (ko) 2021-02-17
JP6954470B2 (ja) 2021-10-27
US20210123115A1 (en) 2021-04-29
BR112020027000A2 (pt) 2021-04-06
EP3822386A4 (en) 2022-01-19
KR102480592B1 (ko) 2022-12-26

Similar Documents

Publication Publication Date Title
BR112020027000B1 (pt) Chapa de aço elétrico com grão orientado e método de produção da mesma
JP6876280B2 (ja) 方向性電磁鋼板
BR112021013581B1 (pt) Chapa de aço elétrico de grão orientado sem uma película de forsterita, e, métodos de formação para um revestimento de isolamento e de produção para uma chapa de aço elétrico de grão orientado sem uma película de forsterita
BR112020026927B1 (pt) Chapa de aço elétrica com grão orientado e método de produção da mesma
KR102359168B1 (ko) 방향성 전자 강판
JP6911597B2 (ja) 皮膜密着性に優れる一方向性珪素鋼板及びその製造方法
BR112020000223A2 (pt) folha de aço eletromagnética orientada
JP6911596B2 (ja) 皮膜密着性に優れる一方向性電磁鋼板及びその製造方法
BR112021013549A2 (pt) Método para produzir chapa de aço elétrico com grão orientado
JP7268724B2 (ja) 方向性電磁鋼板とその製造方法
BR112021013529B1 (pt) Método para produzir uma chapa de aço elétrico de grão orientado
BR112021013546B1 (pt) Método para produzir chapa de aço elétrico com grão orientado
BR112021013547B1 (pt) Método para produzir uma chapa de aço elétrico de grão orientado
BR112021013505B1 (pt) Método para produzir uma chapa de aço elétrico de grão orientado
BR112021013519B1 (pt) Método para produzir chapa de aço elétrico de grão orientado
BR112020026633B1 (pt) Chapa de base para chapa de aço elétrica com grão orientado, chapa de aço de silício com grão orientado, método de fabricação de chapa de base para chapa de aço elétrica com grão orientado, e método de fabricação de chapa de aço elétrica com grão orientado
BR112021013773B1 (pt) Método para produzir uma chapa de aço elétrico de grão orientado
BR112020018594B1 (pt) Método para fabricação de chapa de aço elétrica de grão orientado e chapa de aço elétrica de grão orientado
BR112021013682B1 (pt) Chapa de aço elétrico de grão orientado, e, método para fabricar uma chapa de aço elétrico de grão orientado
BR112021013529A2 (pt) Método para produzir uma chapa de aço elétrico de grão orientado
BR112021013547A2 (pt) Método para produzir uma chapa de aço elétrico de grão orientado
BR112020000221B1 (pt) Chapa de aço elétrico com grão orientado
BR112021013505A2 (pt) Método para produzir uma chapa de aço elétrico de grão orientado
BR112021014910A2 (pt) Chapa de aço elétrico de grão orientado, e, métodos para formar um revestimento de isolamento de uma chapa de aço elétrico de grão orientado e para produzir uma chapa de aço elétrico de grão orientado

Legal Events

Date Code Title Description
B06W Patent application suspended after preliminary examination (for patents with searches from other patent authorities) chapter 6.23 patent gazette]
B06A Patent application procedure suspended [chapter 6.1 patent gazette]
B09A Decision: intention to grant [chapter 9.1 patent gazette]
B16A Patent or certificate of addition of invention granted [chapter 16.1 patent gazette]

Free format text: PRAZO DE VALIDADE: 20 (VINTE) ANOS CONTADOS A PARTIR DE 13/07/2018, OBSERVADAS AS CONDICOES LEGAIS