BR102022009685A2 - METHOD FOR SCREENING DRUGS OR SUBSTANCES WITH NEUROPROTECTIVE POTENTIAL, KIT FOR SCREENING DRUGS OR SUBSTANCES, AND USE OF A GENE PANEL - Google Patents
METHOD FOR SCREENING DRUGS OR SUBSTANCES WITH NEUROPROTECTIVE POTENTIAL, KIT FOR SCREENING DRUGS OR SUBSTANCES, AND USE OF A GENE PANEL Download PDFInfo
- Publication number
- BR102022009685A2 BR102022009685A2 BR102022009685-6A BR102022009685A BR102022009685A2 BR 102022009685 A2 BR102022009685 A2 BR 102022009685A2 BR 102022009685 A BR102022009685 A BR 102022009685A BR 102022009685 A2 BR102022009685 A2 BR 102022009685A2
- Authority
- BR
- Brazil
- Prior art keywords
- infection
- zikv
- fact
- drug
- cohs
- Prior art date
Links
- 229940079593 drug Drugs 0.000 title claims abstract description 68
- 239000003814 drug Substances 0.000 title claims abstract description 68
- 238000000034 method Methods 0.000 title claims abstract description 60
- 239000000126 substance Substances 0.000 title claims abstract description 55
- 230000000324 neuroprotective effect Effects 0.000 title claims abstract description 41
- 238000012216 screening Methods 0.000 title claims abstract description 24
- 108090000623 proteins and genes Proteins 0.000 title claims description 58
- 241000907316 Zika virus Species 0.000 claims description 71
- 230000014509 gene expression Effects 0.000 claims description 60
- 208000020329 Zika virus infectious disease Diseases 0.000 claims description 27
- 239000000090 biomarker Substances 0.000 claims description 27
- 208000001455 Zika Virus Infection Diseases 0.000 claims description 23
- 230000000971 hippocampal effect Effects 0.000 claims description 23
- 238000011529 RT qPCR Methods 0.000 claims description 15
- 102000004169 proteins and genes Human genes 0.000 claims description 15
- 108091032973 (ribonucleotides)n+m Proteins 0.000 claims description 12
- 238000003762 quantitative reverse transcription PCR Methods 0.000 claims description 12
- 101150073604 Adgre1 gene Proteins 0.000 claims description 11
- 101150012417 IL1B gene Proteins 0.000 claims description 10
- 238000011156 evaluation Methods 0.000 claims description 10
- 101001110283 Canis lupus familiaris Ras-related C3 botulinum toxin substrate 1 Proteins 0.000 claims description 9
- 101150088952 IGF1 gene Proteins 0.000 claims description 9
- 239000012678 infectious agent Substances 0.000 claims description 9
- 101100533519 Mus musculus Siglec12 gene Proteins 0.000 claims description 8
- 101100477560 Mus musculus Siglec5 gene Proteins 0.000 claims description 8
- 102100029957 Sialic acid-binding Ig-like lectin 5 Human genes 0.000 claims description 8
- -1 Rasgrp3 Proteins 0.000 claims description 7
- 239000003795 chemical substances by application Substances 0.000 claims description 7
- 208000036110 Neuroinflammatory disease Diseases 0.000 claims description 6
- 230000002314 neuroinflammatory effect Effects 0.000 claims description 6
- 108020004707 nucleic acids Proteins 0.000 claims description 6
- 102000039446 nucleic acids Human genes 0.000 claims description 6
- 150000007523 nucleic acids Chemical class 0.000 claims description 6
- 230000003959 neuroinflammation Effects 0.000 claims description 5
- 238000000636 Northern blotting Methods 0.000 claims description 4
- 238000007847 digital PCR Methods 0.000 claims description 4
- 230000002757 inflammatory effect Effects 0.000 claims description 4
- 108020004999 messenger RNA Proteins 0.000 claims description 4
- 238000000605 extraction Methods 0.000 claims description 3
- 238000010839 reverse transcription Methods 0.000 claims description 3
- 239000003153 chemical reaction reagent Substances 0.000 claims 1
- 208000015181 infectious disease Diseases 0.000 description 74
- 210000002569 neuron Anatomy 0.000 description 70
- 210000004027 cell Anatomy 0.000 description 29
- 101710128560 Initiator protein NS1 Proteins 0.000 description 25
- 101710144127 Non-structural protein 1 Proteins 0.000 description 25
- 230000008569 process Effects 0.000 description 18
- ILBKBRBXCXDCFB-UHFFFAOYSA-N 4-(1h-indol-2-yl)benzene-1,3-diamine Chemical compound NC1=CC(N)=CC=C1C1=CC2=CC=CC=C2N1 ILBKBRBXCXDCFB-UHFFFAOYSA-N 0.000 description 16
- 210000000274 microglia Anatomy 0.000 description 16
- 238000012360 testing method Methods 0.000 description 16
- 210000001519 tissue Anatomy 0.000 description 16
- 230000000694 effects Effects 0.000 description 15
- 241000700605 Viruses Species 0.000 description 13
- 230000001537 neural effect Effects 0.000 description 13
- 230000004770 neurodegeneration Effects 0.000 description 12
- 230000004766 neurogenesis Effects 0.000 description 12
- 101150053137 AIF1 gene Proteins 0.000 description 11
- 238000004458 analytical method Methods 0.000 description 11
- 108010051779 histone H3 trimethyl Lys4 Proteins 0.000 description 11
- 238000002372 labelling Methods 0.000 description 11
- 239000002609 medium Substances 0.000 description 11
- 210000003169 central nervous system Anatomy 0.000 description 10
- 239000001963 growth medium Substances 0.000 description 10
- 230000028709 inflammatory response Effects 0.000 description 10
- KJPRLNWUNMBNBZ-QPJJXVBHSA-N (E)-cinnamaldehyde Chemical compound O=C\C=C\C1=CC=CC=C1 KJPRLNWUNMBNBZ-QPJJXVBHSA-N 0.000 description 9
- 230000004913 activation Effects 0.000 description 9
- 238000004624 confocal microscopy Methods 0.000 description 9
- ZZVUWRFHKOJYTH-UHFFFAOYSA-N diphenhydramine Chemical compound C=1C=CC=CC=1C(OCCN(C)C)C1=CC=CC=C1 ZZVUWRFHKOJYTH-UHFFFAOYSA-N 0.000 description 9
- 230000035755 proliferation Effects 0.000 description 9
- 230000004044 response Effects 0.000 description 9
- 210000004556 brain Anatomy 0.000 description 8
- 229960000520 diphenhydramine Drugs 0.000 description 8
- 210000001320 hippocampus Anatomy 0.000 description 8
- 108091006146 Channels Proteins 0.000 description 7
- 241001465754 Metazoa Species 0.000 description 7
- 241000699666 Mus <mouse, genus> Species 0.000 description 7
- 230000006907 apoptotic process Effects 0.000 description 7
- 229940117916 cinnamic aldehyde Drugs 0.000 description 7
- KJPRLNWUNMBNBZ-UHFFFAOYSA-N cinnamic aldehyde Natural products O=CC=CC1=CC=CC=C1 KJPRLNWUNMBNBZ-UHFFFAOYSA-N 0.000 description 7
- 230000004069 differentiation Effects 0.000 description 7
- 230000007246 mechanism Effects 0.000 description 7
- 238000007492 two-way ANOVA Methods 0.000 description 7
- 230000008045 co-localization Effects 0.000 description 6
- 238000011161 development Methods 0.000 description 6
- 230000018109 developmental process Effects 0.000 description 6
- 239000012528 membrane Substances 0.000 description 6
- 238000011201 multiple comparisons test Methods 0.000 description 6
- 230000016273 neuron death Effects 0.000 description 6
- 210000002220 organoid Anatomy 0.000 description 6
- 230000037361 pathway Effects 0.000 description 6
- 230000001105 regulatory effect Effects 0.000 description 6
- 230000006641 stabilisation Effects 0.000 description 6
- 238000011105 stabilization Methods 0.000 description 6
- 239000012103 Alexa Fluor 488 Substances 0.000 description 5
- 108020004635 Complementary DNA Proteins 0.000 description 5
- 241000700159 Rattus Species 0.000 description 5
- 210000001642 activated microglia Anatomy 0.000 description 5
- 238000010804 cDNA synthesis Methods 0.000 description 5
- 239000002299 complementary DNA Substances 0.000 description 5
- 230000003247 decreasing effect Effects 0.000 description 5
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 5
- 239000002953 phosphate buffered saline Substances 0.000 description 5
- 230000010076 replication Effects 0.000 description 5
- 238000011282 treatment Methods 0.000 description 5
- XKMLYUALXHKNFT-UUOKFMHZSA-N Guanosine-5'-triphosphate Chemical compound C1=2NC(N)=NC(=O)C=2N=CN1[C@@H]1O[C@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)[C@@H](O)[C@H]1O XKMLYUALXHKNFT-UUOKFMHZSA-N 0.000 description 4
- 241000283973 Oryctolagus cuniculus Species 0.000 description 4
- 102000038030 PI3Ks Human genes 0.000 description 4
- 108091007960 PI3Ks Proteins 0.000 description 4
- 108091008611 Protein Kinase B Proteins 0.000 description 4
- 102100033810 RAC-alpha serine/threonine-protein kinase Human genes 0.000 description 4
- 229940024606 amino acid Drugs 0.000 description 4
- 150000001413 amino acids Chemical class 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 230000008995 epigenetic change Effects 0.000 description 4
- 230000001973 epigenetic effect Effects 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 238000010166 immunofluorescence Methods 0.000 description 4
- 238000011534 incubation Methods 0.000 description 4
- 230000010534 mechanism of action Effects 0.000 description 4
- 238000012544 monitoring process Methods 0.000 description 4
- 210000005155 neural progenitor cell Anatomy 0.000 description 4
- 230000000770 proinflammatory effect Effects 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 231100000419 toxicity Toxicity 0.000 description 4
- 230000001988 toxicity Effects 0.000 description 4
- 230000002103 transcriptional effect Effects 0.000 description 4
- 206010010356 Congenital anomaly Diseases 0.000 description 3
- 102000007665 Extracellular Signal-Regulated MAP Kinases Human genes 0.000 description 3
- 108010007457 Extracellular Signal-Regulated MAP Kinases Proteins 0.000 description 3
- 241000282414 Homo sapiens Species 0.000 description 3
- 206010061218 Inflammation Diseases 0.000 description 3
- 102000043136 MAP kinase family Human genes 0.000 description 3
- 108091054455 MAP kinase family Proteins 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 238000003559 RNA-seq method Methods 0.000 description 3
- 108010047827 Sialic Acid Binding Immunoglobulin-like Lectins Proteins 0.000 description 3
- 102000007073 Sialic Acid Binding Immunoglobulin-like Lectins Human genes 0.000 description 3
- 101710172711 Structural protein Proteins 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 230000001640 apoptogenic effect Effects 0.000 description 3
- 238000004113 cell culture Methods 0.000 description 3
- 210000003855 cell nucleus Anatomy 0.000 description 3
- 230000004663 cell proliferation Effects 0.000 description 3
- 230000001413 cellular effect Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 230000006378 damage Effects 0.000 description 3
- 230000034994 death Effects 0.000 description 3
- 210000001947 dentate gyrus Anatomy 0.000 description 3
- 230000003828 downregulation Effects 0.000 description 3
- 230000017188 evasion or tolerance of host immune response Effects 0.000 description 3
- 239000012737 fresh medium Substances 0.000 description 3
- 238000000338 in vitro Methods 0.000 description 3
- 238000010874 in vitro model Methods 0.000 description 3
- 230000004054 inflammatory process Effects 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 238000001000 micrograph Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 239000002773 nucleotide Substances 0.000 description 3
- 125000003729 nucleotide group Chemical group 0.000 description 3
- 210000004248 oligodendroglia Anatomy 0.000 description 3
- 230000000242 pagocytic effect Effects 0.000 description 3
- 239000002243 precursor Substances 0.000 description 3
- 238000011002 quantification Methods 0.000 description 3
- 102000016914 ras Proteins Human genes 0.000 description 3
- 108010014186 ras Proteins Proteins 0.000 description 3
- 210000002966 serum Anatomy 0.000 description 3
- 230000011664 signaling Effects 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- 230000005062 synaptic transmission Effects 0.000 description 3
- 230000010415 tropism Effects 0.000 description 3
- 230000003612 virological effect Effects 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 2
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 2
- 102100034673 C-C motif chemokine 3-like 1 Human genes 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- 208000001490 Dengue Diseases 0.000 description 2
- 206010012310 Dengue fever Diseases 0.000 description 2
- 241000283073 Equus caballus Species 0.000 description 2
- 206010015548 Euthanasia Diseases 0.000 description 2
- 241000710781 Flaviviridae Species 0.000 description 2
- 206010018341 Gliosis Diseases 0.000 description 2
- 241000282412 Homo Species 0.000 description 2
- 101000946370 Homo sapiens C-C motif chemokine 3-like 1 Proteins 0.000 description 2
- 101000599951 Homo sapiens Insulin-like growth factor I Proteins 0.000 description 2
- 102100037852 Insulin-like growth factor I Human genes 0.000 description 2
- 102100038352 Metabotropic glutamate receptor 3 Human genes 0.000 description 2
- 108010002998 NADPH Oxidases Proteins 0.000 description 2
- 102000004722 NADPH Oxidases Human genes 0.000 description 2
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 2
- 229930040373 Paraformaldehyde Natural products 0.000 description 2
- 206010057249 Phagocytosis Diseases 0.000 description 2
- 239000013614 RNA sample Substances 0.000 description 2
- 101150115387 Rac2 gene Proteins 0.000 description 2
- 241000700157 Rattus norvegicus Species 0.000 description 2
- 102100029964 Sialic acid-binding Ig-like lectin 8 Human genes 0.000 description 2
- 208000036142 Viral infection Diseases 0.000 description 2
- 208000035332 Zika virus disease Diseases 0.000 description 2
- 239000000427 antigen Substances 0.000 description 2
- 108091007433 antigens Proteins 0.000 description 2
- 102000036639 antigens Human genes 0.000 description 2
- 210000001130 astrocyte Anatomy 0.000 description 2
- 230000031018 biological processes and functions Effects 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229940098773 bovine serum albumin Drugs 0.000 description 2
- 230000030833 cell death Effects 0.000 description 2
- 208000025729 dengue disease Diseases 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 210000002257 embryonic structure Anatomy 0.000 description 2
- 210000002472 endoplasmic reticulum Anatomy 0.000 description 2
- 238000010201 enrichment analysis Methods 0.000 description 2
- 238000010195 expression analysis Methods 0.000 description 2
- 230000001605 fetal effect Effects 0.000 description 2
- 230000004547 gene signature Effects 0.000 description 2
- 230000002068 genetic effect Effects 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 230000028993 immune response Effects 0.000 description 2
- 238000010820 immunofluorescence microscopy Methods 0.000 description 2
- 230000005764 inhibitory process Effects 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000013642 negative control Substances 0.000 description 2
- 210000003061 neural cell Anatomy 0.000 description 2
- 238000001543 one-way ANOVA Methods 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- 230000036542 oxidative stress Effects 0.000 description 2
- 229920002866 paraformaldehyde Polymers 0.000 description 2
- 230000008782 phagocytosis Effects 0.000 description 2
- 239000000546 pharmaceutical excipient Substances 0.000 description 2
- 238000011458 pharmacological treatment Methods 0.000 description 2
- 210000001778 pluripotent stem cell Anatomy 0.000 description 2
- 231100000683 possible toxicity Toxicity 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000000750 progressive effect Effects 0.000 description 2
- 239000002096 quantum dot Substances 0.000 description 2
- 239000003642 reactive oxygen metabolite Substances 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 238000007634 remodeling Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 230000006886 spatial memory Effects 0.000 description 2
- 230000004936 stimulating effect Effects 0.000 description 2
- 208000024891 symptom Diseases 0.000 description 2
- 208000011580 syndromic disease Diseases 0.000 description 2
- 238000011870 unpaired t-test Methods 0.000 description 2
- 238000010200 validation analysis Methods 0.000 description 2
- 230000029812 viral genome replication Effects 0.000 description 2
- 230000009385 viral infection Effects 0.000 description 2
- LOGFVTREOLYCPF-KXNHARMFSA-N (2s,3r)-2-[[(2r)-1-[(2s)-2,6-diaminohexanoyl]pyrrolidine-2-carbonyl]amino]-3-hydroxybutanoic acid Chemical compound C[C@@H](O)[C@@H](C(O)=O)NC(=O)[C@H]1CCCN1C(=O)[C@@H](N)CCCCN LOGFVTREOLYCPF-KXNHARMFSA-N 0.000 description 1
- UCTWMZQNUQWSLP-VIFPVBQESA-N (R)-adrenaline Chemical compound CNC[C@H](O)C1=CC=C(O)C(O)=C1 UCTWMZQNUQWSLP-VIFPVBQESA-N 0.000 description 1
- 229930182837 (R)-adrenaline Natural products 0.000 description 1
- CIVCELMLGDGMKZ-UHFFFAOYSA-N 2,4-dichloro-6-methylpyridine-3-carboxylic acid Chemical compound CC1=CC(Cl)=C(C(O)=O)C(Cl)=N1 CIVCELMLGDGMKZ-UHFFFAOYSA-N 0.000 description 1
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 1
- FWBHETKCLVMNFS-UHFFFAOYSA-N 4',6-Diamino-2-phenylindol Chemical compound C1=CC(C(=N)N)=CC=C1C1=CC2=CC=C(C(N)=N)C=C2N1 FWBHETKCLVMNFS-UHFFFAOYSA-N 0.000 description 1
- 102100026439 Adhesion G protein-coupled receptor E1 Human genes 0.000 description 1
- 101710096331 Adhesion G protein-coupled receptor E1 Proteins 0.000 description 1
- 241000256118 Aedes aegypti Species 0.000 description 1
- 239000012099 Alexa Fluor family Substances 0.000 description 1
- 102000013455 Amyloid beta-Peptides Human genes 0.000 description 1
- 108010090849 Amyloid beta-Peptides Proteins 0.000 description 1
- 206010002198 Anaphylactic reaction Diseases 0.000 description 1
- 208000006820 Arthralgia Diseases 0.000 description 1
- 102100021943 C-C motif chemokine 2 Human genes 0.000 description 1
- 102100031102 C-C motif chemokine 4 Human genes 0.000 description 1
- 102100032366 C-C motif chemokine 7 Human genes 0.000 description 1
- 102100036153 C-X-C motif chemokine 6 Human genes 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 108090000397 Caspase 3 Proteins 0.000 description 1
- 108090000426 Caspase-1 Proteins 0.000 description 1
- 102100035904 Caspase-1 Human genes 0.000 description 1
- 102100029855 Caspase-3 Human genes 0.000 description 1
- 101150009911 Ccl7 gene Proteins 0.000 description 1
- 206010051290 Central nervous system lesion Diseases 0.000 description 1
- 201000009182 Chikungunya Diseases 0.000 description 1
- 108010077544 Chromatin Proteins 0.000 description 1
- 241000723347 Cinnamomum Species 0.000 description 1
- 108091026890 Coding region Proteins 0.000 description 1
- 206010062343 Congenital infection Diseases 0.000 description 1
- 208000031973 Conjunctivitis infective Diseases 0.000 description 1
- 102100031256 Cyclic GMP-AMP synthase Human genes 0.000 description 1
- 101710118064 Cyclic GMP-AMP synthase Proteins 0.000 description 1
- 102000004127 Cytokines Human genes 0.000 description 1
- 108090000695 Cytokines Proteins 0.000 description 1
- 241000725619 Dengue virus Species 0.000 description 1
- 241000710829 Dengue virus group Species 0.000 description 1
- 241000255925 Diptera Species 0.000 description 1
- 206010014596 Encephalitis Japanese B Diseases 0.000 description 1
- 108010022894 Euchromatin Proteins 0.000 description 1
- 241000710831 Flavivirus Species 0.000 description 1
- 206010054261 Flavivirus infection Diseases 0.000 description 1
- 108091006027 G proteins Proteins 0.000 description 1
- 101150078352 GRM3 gene Proteins 0.000 description 1
- 102000030782 GTP binding Human genes 0.000 description 1
- 108091000058 GTP-Binding Proteins 0.000 description 1
- 102100030669 Glutamate receptor 3 Human genes 0.000 description 1
- 101710087630 Glutamate receptor 3 Proteins 0.000 description 1
- 239000007995 HEPES buffer Substances 0.000 description 1
- 206010019233 Headaches Diseases 0.000 description 1
- 102100033636 Histone H3.2 Human genes 0.000 description 1
- 108010033040 Histones Proteins 0.000 description 1
- 102100028528 Homeobox protein DBX2 Human genes 0.000 description 1
- 101000897480 Homo sapiens C-C motif chemokine 2 Proteins 0.000 description 1
- 101000777471 Homo sapiens C-C motif chemokine 4 Proteins 0.000 description 1
- 101000797758 Homo sapiens C-C motif chemokine 7 Proteins 0.000 description 1
- 101000947177 Homo sapiens C-X-C motif chemokine 6 Proteins 0.000 description 1
- 101000915301 Homo sapiens Homeobox protein DBX2 Proteins 0.000 description 1
- 101001034652 Homo sapiens Insulin-like growth factor 1 receptor Proteins 0.000 description 1
- 101001032848 Homo sapiens Metabotropic glutamate receptor 3 Proteins 0.000 description 1
- 101000930501 Homo sapiens Protein dispatched homolog 3 Proteins 0.000 description 1
- 101001110313 Homo sapiens Ras-related C3 botulinum toxin substrate 2 Proteins 0.000 description 1
- 101000863884 Homo sapiens Sialic acid-binding Ig-like lectin 8 Proteins 0.000 description 1
- 206010020751 Hypersensitivity Diseases 0.000 description 1
- 108060003951 Immunoglobulin Proteins 0.000 description 1
- 108010034143 Inflammasomes Proteins 0.000 description 1
- 102100039688 Insulin-like growth factor 1 receptor Human genes 0.000 description 1
- 102000003777 Interleukin-1 beta Human genes 0.000 description 1
- 108090000193 Interleukin-1 beta Proteins 0.000 description 1
- 201000005807 Japanese encephalitis Diseases 0.000 description 1
- 241000710843 Japanese encephalitis virus group Species 0.000 description 1
- 238000001276 Kolmogorov–Smirnov test Methods 0.000 description 1
- 238000012313 Kruskal-Wallis test Methods 0.000 description 1
- 239000000232 Lipid Bilayer Substances 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- 241000282560 Macaca mulatta Species 0.000 description 1
- 241000282561 Macaca nemestrina Species 0.000 description 1
- 102000018697 Membrane Proteins Human genes 0.000 description 1
- 108010052285 Membrane Proteins Proteins 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- 208000000112 Myalgia Diseases 0.000 description 1
- 102000004868 N-Methyl-D-Aspartate Receptors Human genes 0.000 description 1
- 108090001041 N-Methyl-D-Aspartate Receptors Proteins 0.000 description 1
- 206010029350 Neurotoxicity Diseases 0.000 description 1
- 101800000512 Non-structural protein 1 Proteins 0.000 description 1
- 101800001030 Non-structural protein 2A Proteins 0.000 description 1
- 101710144111 Non-structural protein 3 Proteins 0.000 description 1
- 101800001020 Non-structural protein 4A Proteins 0.000 description 1
- 101800001019 Non-structural protein 4B Proteins 0.000 description 1
- 101710144121 Non-structural protein 5 Proteins 0.000 description 1
- 108091034117 Oligonucleotide Proteins 0.000 description 1
- 108700026244 Open Reading Frames Proteins 0.000 description 1
- 101150056612 PPIA gene Proteins 0.000 description 1
- 108090000430 Phosphatidylinositol 3-kinases Proteins 0.000 description 1
- 108010076039 Polyproteins Proteins 0.000 description 1
- 102100035625 Protein dispatched homolog 3 Human genes 0.000 description 1
- 102100033450 Ras guanyl-releasing protein 3 Human genes 0.000 description 1
- 108050002609 Ras guanyl-releasing protein 3 Proteins 0.000 description 1
- 102100022129 Ras-related C3 botulinum toxin substrate 2 Human genes 0.000 description 1
- 206010037868 Rash maculo-papular Diseases 0.000 description 1
- 238000011869 Shapiro-Wilk test Methods 0.000 description 1
- 101710110535 Sialic acid-binding Ig-like lectin 5 Proteins 0.000 description 1
- 101710110532 Sialic acid-binding Ig-like lectin 8 Proteins 0.000 description 1
- OUUQCZGPVNCOIJ-UHFFFAOYSA-M Superoxide Chemical compound [O-][O] OUUQCZGPVNCOIJ-UHFFFAOYSA-M 0.000 description 1
- 238000012288 TUNEL assay Methods 0.000 description 1
- GUGOEEXESWIERI-UHFFFAOYSA-N Terfenadine Chemical compound C1=CC(C(C)(C)C)=CC=C1C(O)CCCN1CCC(C(O)(C=2C=CC=CC=2)C=2C=CC=CC=2)CC1 GUGOEEXESWIERI-UHFFFAOYSA-N 0.000 description 1
- 206010044221 Toxic encephalopathy Diseases 0.000 description 1
- 208000030886 Traumatic Brain injury Diseases 0.000 description 1
- 238000010162 Tukey test Methods 0.000 description 1
- 241000710886 West Nile virus Species 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 241000269370 Xenopus <genus> Species 0.000 description 1
- 241000120645 Yellow fever virus group Species 0.000 description 1
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 230000021736 acetylation Effects 0.000 description 1
- 238000006640 acetylation reaction Methods 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 238000000540 analysis of variance Methods 0.000 description 1
- 230000036783 anaphylactic response Effects 0.000 description 1
- 208000003455 anaphylaxis Diseases 0.000 description 1
- 230000003042 antagnostic effect Effects 0.000 description 1
- 230000001093 anti-cancer Effects 0.000 description 1
- 230000001078 anti-cholinergic effect Effects 0.000 description 1
- 230000001387 anti-histamine Effects 0.000 description 1
- 230000003110 anti-inflammatory effect Effects 0.000 description 1
- 239000000739 antihistaminic agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 239000003443 antiviral agent Substances 0.000 description 1
- 230000007416 antiviral immune response Effects 0.000 description 1
- 229940121357 antivirals Drugs 0.000 description 1
- 238000003782 apoptosis assay Methods 0.000 description 1
- 230000005775 apoptotic pathway Effects 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 238000003149 assay kit Methods 0.000 description 1
- 208000037875 astrocytosis Diseases 0.000 description 1
- 230000007341 astrogliosis Effects 0.000 description 1
- 230000004900 autophagic degradation Effects 0.000 description 1
- 201000007032 bacterial conjunctivitis Diseases 0.000 description 1
- SQVRNKJHWKZAKO-UHFFFAOYSA-N beta-N-Acetyl-D-neuraminic acid Natural products CC(=O)NC1C(O)CC(O)(C(O)=O)OC1C(O)C(O)CO SQVRNKJHWKZAKO-UHFFFAOYSA-N 0.000 description 1
- 239000000091 biomarker candidate Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004958 brain cell Anatomy 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 210000000234 capsid Anatomy 0.000 description 1
- 230000022131 cell cycle Effects 0.000 description 1
- 230000011712 cell development Effects 0.000 description 1
- 230000024245 cell differentiation Effects 0.000 description 1
- 230000003833 cell viability Effects 0.000 description 1
- 210000001175 cerebrospinal fluid Anatomy 0.000 description 1
- 210000003483 chromatin Anatomy 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 230000001149 cognitive effect Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000005860 defense response to virus Effects 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 210000004207 dermis Anatomy 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 229960000525 diphenhydramine hydrochloride Drugs 0.000 description 1
- 238000009511 drug repositioning Methods 0.000 description 1
- 238000007877 drug screening Methods 0.000 description 1
- 230000008482 dysregulation Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 210000002889 endothelial cell Anatomy 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229960005139 epinephrine Drugs 0.000 description 1
- 230000001073 episodic memory Effects 0.000 description 1
- 210000000632 euchromatin Anatomy 0.000 description 1
- 230000003492 excitotoxic effect Effects 0.000 description 1
- 231100000063 excitotoxicity Toxicity 0.000 description 1
- 238000013401 experimental design Methods 0.000 description 1
- 238000005558 fluorometry Methods 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000007387 gliosis Effects 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 230000003394 haemopoietic effect Effects 0.000 description 1
- 231100000869 headache Toxicity 0.000 description 1
- 210000003958 hematopoietic stem cell Anatomy 0.000 description 1
- 238000010842 high-capacity cDNA reverse transcription kit Methods 0.000 description 1
- 230000009808 hippocampal neurogenesis Effects 0.000 description 1
- 210000004295 hippocampal neuron Anatomy 0.000 description 1
- 230000027984 hippocampus development Effects 0.000 description 1
- 239000000938 histamine H1 antagonist Substances 0.000 description 1
- 230000007440 host cell apoptosis Effects 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 210000002865 immune cell Anatomy 0.000 description 1
- 238000010185 immunofluorescence analysis Methods 0.000 description 1
- 102000018358 immunoglobulin Human genes 0.000 description 1
- 238000012744 immunostaining Methods 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000002458 infectious effect Effects 0.000 description 1
- 210000004969 inflammatory cell Anatomy 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 210000000265 leukocyte Anatomy 0.000 description 1
- 210000003715 limbic system Anatomy 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 208000030208 low-grade fever Diseases 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 208000012965 maculopapular rash Diseases 0.000 description 1
- 206010025482 malaise Diseases 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 230000035800 maturation Effects 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 230000015654 memory Effects 0.000 description 1
- 108010038445 metabotropic glutamate receptor 3 Proteins 0.000 description 1
- 230000011987 methylation Effects 0.000 description 1
- 238000007069 methylation reaction Methods 0.000 description 1
- 208000004141 microcephaly Diseases 0.000 description 1
- 230000002025 microglial effect Effects 0.000 description 1
- 230000003278 mimic effect Effects 0.000 description 1
- 230000002438 mitochondrial effect Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 210000005087 mononuclear cell Anatomy 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 208000013465 muscle pain Diseases 0.000 description 1
- 230000023105 myelination Effects 0.000 description 1
- 230000006654 negative regulation of apoptotic process Effects 0.000 description 1
- 210000000653 nervous system Anatomy 0.000 description 1
- 210000001178 neural stem cell Anatomy 0.000 description 1
- 230000007472 neurodevelopment Effects 0.000 description 1
- 210000004498 neuroglial cell Anatomy 0.000 description 1
- 239000004090 neuroprotective agent Substances 0.000 description 1
- 231100000228 neurotoxicity Toxicity 0.000 description 1
- 230000007135 neurotoxicity Effects 0.000 description 1
- 239000002547 new drug Substances 0.000 description 1
- 210000004940 nucleus Anatomy 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000002018 overexpression Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000008506 pathogenesis Effects 0.000 description 1
- 230000007310 pathophysiology Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 210000001539 phagocyte Anatomy 0.000 description 1
- 229920000136 polysorbate Polymers 0.000 description 1
- 230000001242 postsynaptic effect Effects 0.000 description 1
- 230000035935 pregnancy Effects 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 230000003518 presynaptic effect Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000005522 programmed cell death Effects 0.000 description 1
- 230000002062 proliferating effect Effects 0.000 description 1
- 230000005180 public health Effects 0.000 description 1
- 238000003753 real-time PCR Methods 0.000 description 1
- 230000007115 recruitment Effects 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- SQVRNKJHWKZAKO-OQPLDHBCSA-N sialic acid Chemical compound CC(=O)N[C@@H]1[C@@H](O)C[C@@](O)(C(O)=O)OC1[C@H](O)[C@H](O)CO SQVRNKJHWKZAKO-OQPLDHBCSA-N 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 210000000130 stem cell Anatomy 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 230000003956 synaptic plasticity Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000005382 thermal cycling Methods 0.000 description 1
- 230000000451 tissue damage Effects 0.000 description 1
- 231100000827 tissue damage Toxicity 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- 210000003954 umbilical cord Anatomy 0.000 description 1
- 238000012762 unpaired Student’s t-test Methods 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
- 210000005166 vasculature Anatomy 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- 230000005727 virus proliferation Effects 0.000 description 1
- 102000038650 voltage-gated calcium channel activity Human genes 0.000 description 1
- 108091023044 voltage-gated calcium channel activity Proteins 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6809—Methods for determination or identification of nucleic acids involving differential detection
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6813—Hybridisation assays
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6844—Nucleic acid amplification reactions
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Genetics & Genomics (AREA)
- Biotechnology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- Physics & Mathematics (AREA)
- Immunology (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Biomedical Technology (AREA)
- Cell Biology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Investigating Or Analysing Biological Materials (AREA)
Abstract
A presente invenção se refere a um método para triagem de fármacos ou substâncias com potencial neuroprotetor. A invenção se refere ainda a um kit para triagem de fármacos ou substâncias com potencial neuroprotetor.The present invention relates to a method for screening drugs or substances with neuroprotective potential. The invention also relates to a kit for screening drugs or substances with neuroprotective potential.
Description
[001] A presente invenção se refere ao campo da triagem de fármacos ou substâncias. Mais especificamente, a presente invenção consiste em um método para triagem de fármacos ou substâncias com potencial neuroprotetor. A presente invenção se refere ainda ao kit para triagem de fármacos ou substâncias com potencial neuroprotetor e ao uso do painel de genes desenvolvido para a dita testagem.[001] The present invention relates to the field of screening drugs or substances. More specifically, the present invention consists of a method for screening drugs or substances with neuroprotective potential. The present invention also refers to the kit for screening drugs or substances with neuroprotective potential and the use of the gene panel developed for said testing.
[002] O Zika vírus (ZIKV) é um arbovírus da família Flaviviridae, transmitido para humanos principalmente pela picada do mosquito vetor Aedes aegypti (1). Normalmente a infecção resulta em uma forma assintomática ou de sintomas pouco específicos, sendo os mais comuns febre baixa (menor que 38,5°C), dores de cabeça, dores musculares e nas articulações, exantema maculopapular, conjuntivite não purulenta e mal-estar, podendo ser confundidos com aqueles apresentados em outras infecções por flavivírus, como Dengue e Chikungunya, o que pode dificultar o diagnóstico (1).[002] The Zika virus (ZIKV) is an arbovirus from the Flaviviridae family, transmitted to humans mainly through the bite of the mosquito vector Aedes aegypti (1). Typically, the infection results in an asymptomatic form or non-specific symptoms, the most common being low-grade fever (less than 38.5°C), headaches, muscle and joint pain, maculopapular rash, non-purulent conjunctivitis and malaise. , which can be confused with those presented in other flavivirus infections, such as Dengue and Chikungunya, which can make diagnosis difficult (1).
[003] Após a ocorrência de alguns surtos pelo mundo (2, 3), o Brasil enfrentou uma epidemia de infecções pelo ZIKV em 2015, tendo sido primeiramente identificada no semiárido da região Nordeste do país (4, 5). Coincidentemente, no mesmo período, foi observado um aumento surpreendente no número de casos de microcefalia congênita, sinal clínico caracterizado por redução do perímetro cefálico da criança e que pode acarretar prejuízos ao seu desenvolvimento cognitivo e físico. Posteriormente, constatou-se a associação da ocorrência da infecção e de anormalidades no desenvolvimento fetal e neonatal, que passaram a ser descritas conjuntamente como Síndrome congênita do ZIKV (SCZ) (6-8).[003] After the occurrence of some outbreaks around the world (2, 3), Brazil faced an epidemic of ZIKV infections in 2015, having first been identified in the semi-arid region of the Northeast region of the country (4, 5). Coincidentally, in the same period, a surprising increase in the number of cases of congenital microcephaly was observed, a clinical sign characterized by a reduction in the child's head circumference and which can cause harm to their cognitive and physical development. Subsequently, an association between the occurrence of infection and abnormalities in fetal and neonatal development was found, which came to be jointly described as Congenital ZIKV Syndrome (CZS) (6-8).
[004] Segundo o Boletim da Situação Epidemiológica da Síndrome Congênita Associada à Infecção pelo ZIKV (6, 9), publicado pelo Ministério da Saúde, entre 2015 e 2020, foram notificados 19.622 casos suspeitos de SCZ, dentre os quais 18,2% foram confirmados. No ano de 2020, foi notificado um total de 1.007 casos. Destes, 3,5% foram confirmados e 59,3% ainda permanecem em investigação. No período de 2015 a 2018, a maioria das notificações ficou concentrada na região Nordeste do Brasil (58,3%) seguida do Sudeste (25,2%) e Centro-Oeste (7,6%). Entretanto, em 2019, a notificação de casos passou a se concentrar na região Sudeste (39,3%), seguida da região Nordeste (36%) e Centro-Oeste (9,2%).[004] According to the Bulletin of the Epidemiological Situation of Congenital Syndrome Associated with ZIKV Infection (6, 9), published by the Ministry of Health, between 2015 and 2020, 19,622 suspected cases of CZS were reported, among which 18.2% were confirmed. In 2020, a total of 1,007 cases were reported. Of these, 3.5% were confirmed and 59.3% still remain under investigation. In the period from 2015 to 2018, the majority of notifications were concentrated in the Northeast region of Brazil (58.3%), followed by the Southeast (25.2%) and Central-West (7.6%). However, in 2019, case notification began to be concentrated in the Southeast region (39.3%), followed by the Northeast region (36%) and Central-West region (9.2%).
[005] O genoma do ZIKV é composto de RNA de fita simples de sentido positivo. O vírus apresenta diâmetro aproximado de 50 nm e nucleocapsídeo envolto em uma bicamada lipídica, na qual se localizam suas proteínas estruturais precursor de membrana (PrM/M) e envelope (E) organizadas em simetria icosaédrica (10). Seu genoma de aproximadamente 10,8 kb é composto de duas regiões não codificantes (UTR) 5’ e 3’ e uma open reading frame longa. Esta última transcreve uma poliproteina que se cliva em 10 proteínas, sendo três estruturais: capsídeo (Cap), E e PrM; e sete não estruturais: NS1, NS2A, NS2B, NS3, NS4A, NS4B e NS5 (11, 12). O ZIKV foi inicialmente isolado a partir do soro de macacos Rhesus, da floresta Zika na Uganda, em 1947 (13).[005] The ZIKV genome is composed of positive-sense single-stranded RNA. The virus has a diameter of approximately 50 nm and a nucleocapsid surrounded by a lipid bilayer, in which its membrane precursor (PrM/M) and envelope (E) structural proteins are located, organized in icosahedral symmetry (10). Its genome of approximately 10.8 kb is composed of two non-coding regions (UTR) 5' and 3' and a long open reading frame. The latter transcribes a polyprotein that cleaves into 10 proteins, three of which are structural: capsid (Cap), E and PrM; and seven nonstructural: NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5 (11, 12). ZIKV was initially isolated from the serum of rhesus monkeys from the Zika forest in Uganda in 1947 (13).
[006] O ZIKV se originou, provavelmente, na África entre o final do século XIX e o início do século XX e apresenta duas linhagens distintas, a africana e a asiática (14, 15). Os isolados circulantes nas Américas têm origem na linhagem asiática e compartilham um ancestral comum com a cepa circulante na Polinésia Francesa durante o surto de Zika ocorrido em 2013 (16). No presente estudo foram comparados dois isolados da linhagem asiática com 99,9% de semelhança ao nível nucleotídico e 99,97% de semelhança ao nível de aminoácidos (17). O primeiro é o PE243 (ZIKV/H. sapiens/Brazil/PE243/2015; GenBank: KX197192), isolado de um paciente com sintomas clássicos associados à Zika, em 2015, no estado do Pernambuco, região Nordeste do Brasil (17). O segundo é o SPH2015 (ZikaSPH2015; GenBank: KU321639), isolado no estado de São Paulo, região sudeste do Brasil (16). A principal diferença no nível de aminoácidos entre ZIKV PE243 e ZIKV SPH2015 é encontrada na proteína não estrutural 1 (NS1) (17). Qualquer alteração na proteína NS1 pode ter um impacto relevante na patogênese do ZIKV, uma vez que esta proteína tem uma importante interação com o hospedeiro. Foi demonstrado que as NS1 dos vírus Zika, dengue, West Nile, encefalite japonesa e febre amarela se ligam seletivamente e alteram a permeabilidade das células endoteliais humanas do pulmão, derme, cordão umbilical, cérebro e fígado in vitro e causam extravasamento vascular tecido específico em camundongos, refletindo a fisiopatologia de cada flavivírus (18). Anticorpos anti-NS1 de ZIKV protegem contra a infecção congênita (19). A NS1 tem papel crucial na remodelação do retículo endoplasmático durante a replicação do ZIKV. Este processo é dependente da inserção da proteína na membrana hidrofóbica e, portanto, depende de sua estrutura (20). Além disso, a NS1 é importante na evasão imune do ZIKV, suprimindo a resposta do hospedeiro ao manipular a interação entre o inflamassoma e a sinalização de IFN tipo 1. Neste caso, por meio de interações específicas entre NS1 e caspase-1, que promovem a clivagem de cGAS (21).[006] ZIKV probably originated in Africa between the end of the 19th century and the beginning of the 20th century and has two distinct lineages, African and Asian (14, 15). The isolates circulating in the Americas originate from the Asian lineage and share a common ancestor with the strain circulating in French Polynesia during the Zika outbreak that occurred in 2013 (16). In the present study, two isolates of the Asian lineage were compared with 99.9% similarity at the nucleotide level and 99.97% similarity at the amino acid level (17). The first is PE243 (ZIKV/H. sapiens/Brazil/PE243/2015; GenBank: KX197192), isolated from a patient with classic symptoms associated with Zika, in 2015, in the state of Pernambuco, Northeast region of Brazil (17). The second is SPH2015 (ZikaSPH2015; GenBank: KU321639), isolated in the state of São Paulo, southeastern Brazil (16). The main difference at the amino acid level between ZIKV PE243 and ZIKV SPH2015 is found in the nonstructural protein 1 (NS1) (17). Any change in the NS1 protein can have a relevant impact on the pathogenesis of ZIKV, since this protein has an important interaction with the host. NS1 from Zika, dengue, West Nile, Japanese encephalitis and yellow fever viruses has been shown to selectively bind to and alter the permeability of human endothelial cells of the lung, dermis, umbilical cord, brain and liver in vitro and cause tissue-specific vascular leakage in mice, reflecting the pathophysiology of each flavivirus (18). ZIKV anti-NS1 antibodies protect against congenital infection (19). NS1 plays a crucial role in the remodeling of the endoplasmic reticulum during ZIKV replication. This process is dependent on the insertion of the protein into the hydrophobic membrane and, therefore, depends on its structure (20). Furthermore, NS1 is important in ZIKV immune evasion, suppressing the host response by manipulating the interaction between the inflammasome and type 1 IFN signaling. In this case, through specific interactions between NS1 and caspase-1, which promote the cleavage of cGAS (21).
[007] O ZIKV é capaz de infectar células precursoras neurais, neurônios imaturos e neurônios maduros. A infecção destas células induz a desregulação do ciclo celular e a apoptose (22-25). As lesões no cérebro fetal causadas pela infecção por ZIKV estão associadas à desorganização de células-tronco neurais, perda significativa de células progenitoras intermediárias e dismorfia de circuitarias neuronais no giro denteado do hipocampo, como demonstrado na infecção experimental de Macaca nemestrina (26). A rica vascularização e proximidade aos ventrículos preenchidos com líquido cefalorraquidiano aumentam a exposição do hipocampo ao ZIKV circulante comparado a outras estruturas cerebrais (27, 28).[007] ZIKV is capable of infecting neural precursor cells, immature neurons and mature neurons. Infection of these cells induces cell cycle dysregulation and apoptosis (22-25). Fetal brain lesions caused by ZIKV infection are associated with disorganization of neural stem cells, significant loss of intermediate progenitor cells, and dysmorphia of neuronal circuitry in the dentate gyrus of the hippocampus, as demonstrated in the experimental infection of Macaca nemestrina (26). The rich vasculature and proximity to cerebrospinal fluid-filled ventricles increase hippocampal exposure to circulating ZIKV compared to other brain structures (27, 28).
[008] O hipocampo é uma estrutura cerebral relacionada à formação da memória espacial e de novas memórias episódicas (29). Componente do sistema límbico, abriga em sua camada subgranular do giro denteado células progenitoras neurais, constituindo-se em uma das principais regiões de neurogênese cerebral (30, 31). Estas são capazes de autorrenovação ou diferenciação em novos neurônios, astrócitos ou oligodendrócitos (29, 30). No presente estudo, é utilizado um modelo de culturas organotípicas de hipocampo (COHs) de ratos infantes cultivadas em interface líquido-gasosa. Esse modelo permitiu a investigação de processos iniciais da infecção por ZIKV e a avaliação dos impactos da infecção pelos isolados de ZIKV PE243 e SPH2015 em aspectos fenotípicos e na assinatura transcricional do hipocampo. Utilizando esse modelo foi possível identificar um painel de genes biomarcadores do balanço entre morte neuronal e neurogênese e da resposta inflamatória característicos da etapa inicial da infecção e que são determinantes do desfecho observado posteriormente. A presente invenção utiliza esse painel de genes em um método para triagem de fármacos, substâncias ou moléculas com potencial neuroprotetor, e no desenvolvimento de um kit para triagem de fármacos ou substâncias com potencial neuroprotetor, possibilitando a elucidação de seus respectivos mecanismos de ação.[008] The hippocampus is a brain structure related to the formation of spatial memory and new episodic memories (29). A component of the limbic system, it houses neural progenitor cells in its subgranular layer of the dentate gyrus, constituting one of the main regions of brain neurogenesis (30, 31). These are capable of self-renewal or differentiation into new neurons, astrocytes or oligodendrocytes (29, 30). In the present study, a model of organotypic hippocampal cultures (COHs) of infant rats grown in a liquid-gas interface is used. This model allowed the investigation of initial processes of ZIKV infection and the assessment of the impacts of infection by ZIKV isolates PE243 and SPH2015 on phenotypic aspects and the transcriptional signature of the hippocampus. Using this model, it was possible to identify a panel of biomarker genes for the balance between neuronal death and neurogenesis and the inflammatory response characteristic of the initial stage of infection and which are determinants of the outcome observed later. The present invention uses this panel of genes in a method for screening drugs, substances or molecules with neuroprotective potential, and in the development of a kit for screening drugs or substances with neuroprotective potential, enabling the elucidation of their respective mechanisms of action.
[009] Até o presente momento, não existe tratamento específico para a infecção por ZIKV, tampouco para a SCZ. A descoberta de novos fármacos é um processo geralmente lento e sujeito a grandes riscos de fracasso (“attrition”). Soma-se a esses desafios a necessidade de elucidação, ainda que parcial, do modo de ação das drogas como pré-requisito para que as agências reguladoras autorizem seu uso ou reposicionamento em humanos. A utilização de COHs permite a avaliação do potencial neuroprotetor de fármacos ou substâncias, bem como a elucidação de seu mecanismo de ação, em um contexto tecidual muito próximo à realidade do sistema nervoso central. O modelo de COHs reduz significativamente o número de animais necessários ao estudo e seu sofrimento, em comparação a modelos in vivo. Esse modelo supera ainda importantes limitações de modelos in vitro, como culturas de células, neurosferas e organóides, preservando a arquitetura e a organização tridimensional do tecido, além da diversidade e interconexão celular (32, 33). O modelo de COHs contém micróglia, células imunes de origem hematopoiética (Revisado em: 34), que normalmente não estão presentes nos modelos in vitro. Mesmo os modelos in vitro que incorporam esse e outros tipos celulares, como alguns brains-on-a-chip, a incorporação é feita de forma artificial e a integração dos diferentes tipos celulares é um desafio. (Ben M. Maoz. Brain-on-a-Chip: Characterizing the next generation of advanced in vitro platforms for modeling the central nervous system. APL Bioengineering 5, 030902 (2021)). Ademais, a indução laboratorial da diferenciação de células-tronco pluripotentes para formação de neurosferas e organoides em determinados modelos altera sua programação epigenética natural, podendo mascarar diferenças profundas em relação às células do sistema nervoso central (SNC) em seu estado natural (25).[009] To date, there is no specific treatment for ZIKV infection, nor for SCZ. The discovery of new drugs is a generally slow process and subject to great risks of failure (“attrition”). Added to these challenges is the need to elucidate, even if only partially, the mode of action of drugs as a prerequisite for regulatory agencies to authorize their use or repositioning in humans. The use of COHs allows the evaluation of the neuroprotective potential of drugs or substances, as well as the elucidation of their mechanism of action, in a tissue context very close to the reality of the central nervous system. The COHs model significantly reduces the number of animals needed for the study and their suffering, compared to in vivo models. This model also overcomes important limitations of in vitro models, such as cell cultures, neurospheres and organoids, preserving the architecture and three-dimensional organization of the tissue, in addition to cellular diversity and interconnection (32, 33). The COHs model contains microglia, immune cells of hematopoietic origin (Reviewed in: 34), which are not normally present in in vitro models. Even in vitro models that incorporate this and other cell types, such as some brains-on-a-chip, incorporation is done artificially and the integration of different cell types is a challenge. (Ben M. Maoz. Brain-on-a-Chip: Characterizing the next generation of advanced in vitro platforms for modeling the central nervous system. APL Bioengineering 5, 030902 (2021)). Furthermore, laboratory induction of the differentiation of pluripotent stem cells to form neurospheres and organoids in certain models alters their natural epigenetic programming, potentially masking profound differences in relation to central nervous system (CNS) cells in their natural state (25).
[0010] Existem relatos no estado da técnica da utilização de culturas organotípicas de hipocampo (COHs) como modelo de infecção por ZIKV. Büttner e Caroline et al. (Zika Virus-Mediated Death of Hippocampal Neurons Is Independent From Maturation State. Frontiers in cellular neuroscience vol. 13 389), por exemplo, utilizam uma cultura organotípica obtida a partir de cortes do hipocampo de camundongos para analisar os efeitos da infecção por ZIKV no desenvolvimento do hipocampo.[0010] There are prior art reports on the use of organotypic hippocampal cultures (COHs) as a model of ZIKV infection. Büttner and Caroline et al. (Zika Virus-Mediated Death of Hippocampal Neurons Is Independent From Maturation State. Frontiers in cellular neuroscience vol. 13 389), for example, use an organotypic culture obtained from mouse hippocampal sections to analyze the effects of ZIKV infection on hippocampal development.
[0011] Também existem métodos para triagem de drogas contra ZIKV que utilizam diferentes tipos de culturas organóides cerebrais. Esses modelos baseiam-se em diferentes assinaturas gênicas da revelada na presente invenção e nem sempre possuem como objetivo realizar a triagem de drogas com potencial neuroprotetor.[0011] There are also methods for screening drugs against ZIKV that use different types of brain organoid cultures. These models are based on different gene signatures from those disclosed in the present invention and do not always aim to screen drugs with neuroprotective potential.
[0012] Xiao Xu e colaboradores, por exemplo, revelam um método que utiliza culturas organóides tridimensionais para a triagem de drogas contra ZIKV, monitorando a expressão da proteína NS1, indicadora da replicação do ZIKV e a atividade de caspase-3 (indicadora de apoptose das células hospedeiras), além da viabilidade celular. (Miao Xu et al. Identification of small molecule inhibitors of Zika virus infection and induced neural cell death via a drug repurposing screen. Nat Med. 2016 Oct; 22(10): 1101-1107). O modelo da presente invenção avalia genes associados aos mecanismos de inflamação, neurogênese e morte neuronal nas COHs, possibilitando inferências sobre o mecanismo de ação das substâncias testadas.[0012] Xiao Xu and collaborators, for example, reveal a method that uses three-dimensional organoid cultures to screen drugs against ZIKV, monitoring the expression of the NS1 protein, an indicator of ZIKV replication, and the activity of caspase-3 (an indicator of apoptosis of host cells), in addition to cell viability. (Miao Xu et al. Identification of small molecule inhibitors of Zika virus infection and induced neural cell death via a drug repurposing screen. Nat Med. 2016 Oct; 22(10): 1101-1107). The model of the present invention evaluates genes associated with the mechanisms of inflammation, neurogenesis and neuronal death in COHs, enabling inferences about the mechanism of action of the tested substances.
[0013] O documento WO2019079360 propõe a identificação de assinaturas gênicas associadas a doenças (incluindo infecção por ZIKV) em diversos tipos de culturas celulares. Um dos possíveis usos mencionados é utilizar essas culturas para triar compostos químicos e fármacos a partir do acompanhamento de alterações nos marcadores estabelecidos. No modelo do dito documento não há redução à prática com ZIKV e tampouco são utilizadas culturas organotípicas.[0013] Document WO2019079360 proposes the identification of gene signatures associated with diseases (including ZIKV infection) in various types of cell cultures. One of the possible uses mentioned is to use these cultures to screen chemical compounds and drugs by monitoring changes in established markers. In the model of the said document there is no reduction to the practice with ZIKV nor are organotypic cultures used.
[0014] WO2017083705 revela um biorreator giratório para cultivo 3D de células em larga escala. Mais especificamente, o pedido descreve organóides produzidos nesse biorreator a partir de células tronco pluripotentes humanas que mimetizam regiões cerebrais e são utilizados para modelar a exposição a ZIKV. Os autores sugerem que esses organóides podem ser utilizados na triagem de drogas, incluindo antivirais com atividade contra ZIKV.[0014] WO2017083705 discloses a rotating bioreactor for large-scale 3D cell cultivation. More specifically, the application describes organoids produced in this bioreactor from human pluripotent stem cells that mimic brain regions and are used to model exposure to ZIKV. The authors suggest that these organoids can be used in drug screening, including antivirals with activity against ZIKV.
[0015] A presente invenção descreve método de triagem de fármacos ou substâncias com potencial neuroprotetor baseado em um painel de biomarcadores associados à neurodegeneração e à resposta inflamatória induzida pela infecção por ZIKV em um modelo de COHs. Esse painel foi identificado a partir da avaliação dos impactos da infecção por dois isolados de ZIKV nos aspectos fenotípicos e na assinatura transcricional das COHs, PE243 e SPH2015. Estes são isolados geneticamente semelhantes que circularam no Brasil durante o pico epidêmico de 2015-16. Apesar de geneticamente semelhantes, esses isolados diferem ao nível de aminoácidos principalmente na proteína não estrutural NS1, implicada no escape imune. Esse painel de genes biomarcadores pode ser utilizado para identificar compostos com potencial neuroprotetor a partir da comparação da sua expressão em modelos de infecção de COHs por ZIKV, possibilitando a elucidação do mecanismo de ação dos compostos selecionados. A presente invenção se refere ainda a um kit para triagem de fármacos ou substâncias com potencial neuroprotetor.[0015] The present invention describes a method for screening drugs or substances with neuroprotective potential based on a panel of biomarkers associated with neurodegeneration and the inflammatory response induced by ZIKV infection in a COHs model. This panel was identified by evaluating the impacts of infection by two ZIKV isolates on the phenotypic aspects and transcriptional signature of COHs, PE243 and SPH2015. These are genetically similar isolates that circulated in Brazil during the 2015-16 epidemic peak. Despite being genetically similar, these isolates differ at the amino acid level mainly in the non-structural protein NS1, implicated in immune escape. This panel of biomarker genes can be used to identify compounds with neuroprotective potential by comparing their expression in ZIKV COH infection models, enabling the elucidation of the mechanism of action of the selected compounds. The present invention also relates to a kit for screening drugs or substances with neuroprotective potential.
[0016] Para a seleção do painel de genes biomarcadores da presente invenção foi primeiramente demonstrado, utilizando técnicas de imunofluorescência, microscopia confocal, RNA-Seq e Bioinformática, que os isolados PE243 e SPH2015 de ZIKV podem infectar e se replicar em COHs. A resposta hipocampal à infecção pelos isolados foi avaliada e os mecanismos conservados na infecção por ambos isolados foram identificados, gerando um painel de genes biomarcadores dos processos de morte neuronal/neurogênese e resposta inflamatória no início da infecção. O monitoramento desses biomarcadores, assim como das características fenotípicas associadas, constitui um processo inédito para triagem de fármacos ou substâncias com propriedades neuroprotetoras e possibilita a elucidação de seus mecanismos de ação usando o modelo de infecção de COHs pelo ZIKV.[0016] For the selection of the panel of biomarker genes of the present invention, it was first demonstrated, using immunofluorescence, confocal microscopy, RNA-Seq and Bioinformatics techniques, that ZIKV isolates PE243 and SPH2015 can infect and replicate in COHs. The hippocampal response to infection by the isolates was evaluated and the mechanisms conserved in infection by both isolates were identified, generating a panel of biomarker genes for the processes of neuronal death/neurogenesis and inflammatory response at the beginning of infection. Monitoring these biomarkers, as well as the associated phenotypic characteristics, constitutes an unprecedented process for screening drugs or substances with neuroprotective properties and makes it possible to elucidate their mechanisms of action using the ZIKV COH infection model.
[0017] Em uma primeira concretização, a presente invenção fornece um método para triagem de fármacos ou substâncias com potencial neuroprotetor, compreendendo: a) prover culturas organotípicas do hipocampo, sendo: i) pelo menos uma cultura controle, não infectada e não tratada com o fármaco ou substância a ser triada; ii) pelo menos uma cultura que será infectada com o agente da etapa b) e não será tratada com o fármaco ou substância a ser triada; iii) pelo menos uma cultura controle que será tratada com o fármaco ou substância a ser triada; e iv) pelo menos uma cultura que será infectada com o agente da etapa b) e será tratada com o fármaco ou substância a ser triada; b) infectar as culturas estabelecidas em ii e iv com um agente infeccioso neuroinflamatório; c) incubar as culturas estabelecidas em iii e iv com um fármaco ou substância com potencial neuroprotetor a ser triado; d) extrair pelo menos um RNA mensageiro ou proteína de cada uma das pelo menos quatro subculturas estabelecidas; e e) determinar o padrão de expressão com base em um painel de biomarcadores de cada uma das pelo menos quatro subculturas estabelecidas e, assim, predizer o potencial neuroprotetor do fármaco ou substância triada.[0017] In a first embodiment, the present invention provides a method for screening drugs or substances with neuroprotective potential, comprising: a) providing organotypic cultures from the hippocampus, being: i) at least one control culture, not infected and not treated with the drug or substance to be screened; ii) at least one culture that will be infected with the agent from step b) and will not be treated with the drug or substance to be screened; iii) at least one control culture that will be treated with the drug or substance to be screened; and iv) at least one culture that will be infected with the agent from step b) and will be treated with the drug or substance to be screened; b) infecting the cultures established in ii and iv with a neuroinflammatory infectious agent; c) incubate the cultures established in iii and iv with a drug or substance with neuroprotective potential to be screened; d) extract at least one messenger RNA or protein from each of at least four established subcultures; and e) determine the expression pattern based on a panel of biomarkers from each of at least four established subcultures and, thus, predict the neuroprotective potential of the screened drug or substance.
[0018] Em uma outra forma de realização da presente invenção, as culturas organotípicas do hipocampo são cultivadas durante pelo menos 14 dias para estabilização.[0018] In another embodiment of the present invention, organotypic hippocampal cultures are cultivated for at least 14 days for stabilization.
[0019] Em uma outra forma de realização da presente invenção, o agente infeccioso neuroinflamatório utilizado para infecção das culturas é o ZIKV.[0019] In another embodiment of the present invention, the neuroinflammatory infectious agent used to infect cultures is ZIKV.
[0020] Em uma outra forma de realização da presente invenção, os agentes infecciosos isolados de ZIKV são PE243 e SPH2015.[0020] In another embodiment of the present invention, the infectious agents isolated from ZIKV are PE243 and SPH2015.
[0021] Em uma outra forma de realização da presente invenção, o fármaco ou substância a ser triada para o potencial neuroprotetor está em uma concentração de cerca de 0,5µM.[0021] In another embodiment of the present invention, the drug or substance to be screened for neuroprotective potential is at a concentration of about 0.5µM.
[0022] Em uma outra forma de realização da presente invenção, a extração do ácido nucleico da etapa d) ocorre 16h após a realização das etapas b) e c).[0022] In another embodiment of the present invention, the extraction of the nucleic acid from step d) occurs 16h after carrying out steps b) and c).
[0023] Em uma outra forma de realização da presente invenção, a determinação do padrão de expressão em um painel de biomarcadores da etapa e) é realizada com base na expressão dos genes Adgre1, Ccl3, Dbx2, Disp3, Gmr3, Igf1, Il1b, Rac2, Rasgrp3, Siglec5 em relação ao padrão de expressão dos mesmos genes nas culturas controle.[0023] In another embodiment of the present invention, the determination of the expression pattern in a panel of biomarkers from step e) is carried out based on the expression of the genes Adgre1, Ccl3, Dbx2, Disp3, Gmr3, Igf1, Il1b, Rac2, Rasgrp3, Siglec5 in relation to the expression pattern of the same genes in control cultures.
[0024] Em uma outra forma de realização da presente invenção, o ácido nucleico extraído é RNA.[0024] In another embodiment of the present invention, the extracted nucleic acid is RNA.
[0025] Em uma outra forma de realização da presente invenção, a avaliação da expressão do painel de biomarcadores é realizada por RT-qPCR após transcrição reversa, Northern Blot, PCR digital ou técnicas equivalentes.[0025] In another embodiment of the present invention, the evaluation of the expression of the biomarker panel is carried out by RT-qPCR after reverse transcription, Northern Blot, digital PCR or equivalent techniques.
[0026] Em uma forma preferida da segunda concretização, a doença neuroinflamatória é causada por infecção pelo vírus da ZIKV.[0026] In a preferred form of the second embodiment, the neuroinflammatory disease is caused by infection with the ZIKV virus.
[0027] Em uma terceira concretização, a presente invenção revela um kit para triagem de fármacos ou substâncias com potencial neuroprotetor.[0027] In a third embodiment, the present invention discloses a kit for screening drugs or substances with neuroprotective potential.
[0028] Em uma quarta concretização, a presente invenção fornece um método para triagem de fármacos ou substâncias para controle da neuroinflamação e a prevenção da neurodegeneração associadas à infecção do sistema nervoso central pelo ZIKV.[0028] In a fourth embodiment, the present invention provides a method for screening drugs or substances for controlling neuroinflammation and preventing neurodegeneration associated with infection of the central nervous system by ZIKV.
[0029] Figura 1 - Metodologia para obtenção do painel de biomarcadores da presente invenção: Após a eutanásia, os hipocampos dos animais foram dissecados e fatiados a 400µm e as fatias distribuídas em insertos para cultivo. De acordo com o desenho experimental, as COHs foram infectadas com o isolado SPH2015 ou o PE243 ou submetidas à infecção simulada sem o vírus. Posteriormente, foram realizadas análises moleculares e de imunofluorescência e microscopia confocal para avaliação da dinâmica de infecção, análises fenotípicas e transcricional das culturas. COHs = culturas organotípicas de hipocampo; p.i. = pós-infecção.[0029] Figure 1 - Methodology for obtaining the biomarker panel of the present invention: After euthanasia, the animals' hippocampi were dissected and sliced at 400µm and the slices distributed in inserts for cultivation. According to the experimental design, COHs were infected with isolate SPH2015 or PE243 or subjected to simulated infection without the virus. Subsequently, molecular and immunofluorescence analyzes and confocal microscopy were performed to evaluate the dynamics of infection, phenotypic and transcriptional analyzes of the cultures. COHs = organotypic hippocampal cultures; p.i. = post-infection.
[0030] Figura 2 - Infecção e proliferação do ZIKV nas COHs: A Intensidade de Fluorescência (IF) de NS1 normalizada pela área de tecido (DAPI+) (IF NS1/mm2) foi quantificada nos dois isolados (PE243 e SPH2015) às 8, 24 e 48h pós infecção (p.i.) (n > 12). Amostras fora do intervalo entre os quartis inferior e superior da mediana de seus respectivos grupos (intervalo interquartil) foram excluídas da análise. Foi utilizado teste ANOVA bidirecional seguido pelo teste de múltiplas comparações de Tukey. Os dados foram expressos como média ± desvio padrão. *P< 0,05; ***P< 0,001; ****P< 0,0001..[0030] Figure 2 - ZIKV infection and proliferation in COHs: The Fluorescence Intensity (IF) of NS1 normalized by tissue area (DAPI+) (IF NS1/mm2) was quantified in the two isolates (PE243 and SPH2015) at 8:00 am 24 and 48h post infection (p.i.) (n > 12). Samples outside the range between the lower and upper quartiles of the median of their respective groups (interquartile range) were excluded from the analysis. Two-way ANOVA test was used followed by Tukey's multiple comparisons test. Data were expressed as mean ± standard deviation. *P< 0.05; ***P< 0.001; ****P< 0.0001..
[0031] Figura 3 - Infecção neuronal por ZIKV: A - A razão de neurônios maduros (NeuN+) infectados pelo ZIKV (NeuN+ NS1+) 8, 24 ou 48h p.i. foi estimada (n > 12). Amostras fora do intervalo entre os quartis inferior e superior da mediana de seus respectivos grupos (intervalo interquartil) foram excluídas da análise. Foi utilizado teste ANOVA bidirecional seguido pelo teste de múltiplas comparações de Tukey. Os dados foram expressos como média ± desvio padrão. ****P< 0,0001. B - Micrografias (60x) obtidas de COHs 8h p.i.. Marcações em azul representam núcleos celulares (DAPI), em vermelho neurônios maduros (NeuN) e em verde ZIKV (NS1). Merge representa a sobreposição dos três canais, com setas que representam a colocalização de ZIKV e NeuN. Barra de escala = 10µm.[0031] Figure 3 - Neuronal infection by ZIKV: A - The ratio of mature neurons (NeuN+) infected by ZIKV (NeuN+ NS1+) 8, 24 or 48h p.i. was estimated (n > 12). Samples outside the range between the lower and upper quartiles of the median of their respective groups (interquartile range) were excluded from the analysis. Two-way ANOVA test was used followed by Tukey's multiple comparisons test. Data were expressed as mean ± standard deviation. ****P< 0.0001. B - Micrographs (60x) obtained from COHs 8h p.i.. Markings in blue represent cell nuclei (DAPI), in red mature neurons (NeuN) and in green ZIKV (NS1). Merge represents the overlap of the three channels, with arrows representing the colocalization of ZIKV and NeuN. Scale bar = 10µm.
[0032] Figura 4 - Densidade neuronal das COHs no período inicial da infecção por ZIKV: O número de neurônios maduros (NeuN+) por área de tecido (DAPI+) foi quantificado (NeuN+/mm2) nas COHs dos grupos controle (CTRL) e infectados com ZIKV PE243 ou SPH2015 às 8, 24 e 48h p.i. (n > 9). Amostras fora do intervalo entre os quartis inferior e superior da mediana de seus respectivos grupos (intervalo interquartil) foram excluídas da análise. Foi utilizado teste ANOVA bidirecional seguido pelo teste de múltiplas comparações de Tukey. Os dados foram expressos como média ± desvio padrão. **P< 0,01; ****P< 0,001.[0032] Figure 4 - Neuronal density of COHs in the initial period of ZIKV infection: The number of mature neurons (NeuN+) per tissue area (DAPI+) was quantified (NeuN+/mm2) in COHs of the control (CTRL) and infected groups with ZIKV PE243 or SPH2015 at 8, 24 and 48h p.i. (n > 9). Samples outside the range between the lower and upper quartiles of the median of their respective groups (interquartile range) were excluded from the analysis. Two-way ANOVA test was used followed by Tukey's multiple comparisons test. Data were expressed as mean ± standard deviation. **P< 0.01; ****P< 0.001.
[0033] Figura 5 - Densidade neuronal das COHs em tempos avançados da infecção por ZIKV: O número de neurônios maduros (NeuN+) por área de tecido (DAPI+) foi quantificado (NeuN+/mm2) nas COHs dos grupos controle (CTRL) e infectados com ZIKV PE243 ou SPH2015 5, 7 e 10 dias p.i. (n > 18). Amostras fora do intervalo entre os quartis inferior e superior da mediana de seus respectivos grupos (intervalo interquartil) foram excluídas da análise. Foi utilizado teste ANOVA bidirecional seguido pelo teste de múltiplas comparações de Tukey. Os dados foram expressos como média ± desvio padrão. *P< 0,05; **P< 0,01; ****P< 0,0001.[0033] Figure 5 - Neuronal density of COHs at advanced times of ZIKV infection: The number of mature neurons (NeuN+) per tissue area (DAPI+) was quantified (NeuN+/mm2) in COHs of the control (CTRL) and infected groups with ZIKV PE243 or SPH2015 5, 7 and 10 days p.i. (n > 18). Samples outside the range between the lower and upper quartiles of the median of their respective groups (interquartile range) were excluded from the analysis. Two-way ANOVA test was used followed by Tukey's multiple comparisons test. Data were expressed as mean ± standard deviation. *P< 0.05; **P< 0.01; ****P< 0.0001.
[0034] Figura 6 - A morte neuronal induzida por ZIKV nas COHs envolve apoptose: A - Os neurônios apoptóticos presentes nas COHs foram avaliados nos grupos controle (CTRL) e infectados por PE243 e SPH2015 4 dias p.i. através da marcação com NeuN e TUNEL (NeuN+ TUNEL+) e normalizados pelo total de neurônios (NeuN+) (n > 3). As variâncias dos grupos foram comparadas utilizando o teste ANOVA unidirecional seguido pelo teste de múltiplas comparações de Tukey. Outliers foram identificados com o teste de Grubbs (alfa = 0,1) e excluídos. **P< 0,01; ***P< 0,001. B - Micrografias por microscopia confocal (100x) obtidas de COHs 4 dias p.i.. Marcações em azul representam núcleos celulares (DAPI), em vermelho, neurônios maduros (NeuN) e em verde, sinais apoptóticos (TUNEL). Merge representa a sobreposição dos três canais, com as colocalizações das marcações de TUNEL, NeuN e DAPI. As setas brancas indicam pontos de colocalização entre TUNEL e NeuN. Barra de escala = 10µm.[0034] Figure 6 - ZIKV-induced neuronal death in COHs involves apoptosis: A - Apoptotic neurons present in COHs were evaluated in the control (CTRL) and PE243 and SPH2015-infected groups 4 days p.i. through labeling with NeuN and TUNEL (NeuN+ TUNEL+) and normalized by the total number of neurons (NeuN+) (n > 3). Group variances were compared using the one-way ANOVA test followed by Tukey's multiple comparisons test. Outliers were identified with the Grubbs test (alpha = 0.1) and excluded. **P< 0.01; ***P< 0.001. B - Micrographs by confocal microscopy (100x) obtained from COHs 4 days p.i.. Markings in blue represent cell nuclei (DAPI), in red, mature neurons (NeuN) and in green, apoptotic signals (TUNEL). Merge represents the overlap of the three channels, with the colocalization of TUNEL, NeuN and DAPI markings. White arrows indicate colocalization points between TUNEL and NeuN. Scale bar = 10µm.
[0035] Figura 7 - Os isolados PE243 e SPH2015 causam dinâmicas distintas de ativação da micróglia nas COHs: A - A área correspondente à micróglia ativadas (Iba1+) normalizada pela área do tecido (DAPI+) foi avaliada nos isolados SPH2015 e PE243 8h e 24h p.i. (n > 2) e comparada ao grupo controle (CTRL). Foi utilizado teste ANOVA bidirecional seguido pelo teste de múltiplas comparações de Tukey. Os dados foram expressos como média ± desvio padrão. *P< 0,05. B - Micrografias por microscopia confocal (60x) obtidas de COHs 8h p.i.. Marcações em azul representam núcleos celulares (DAPI), em vermelho, neurônios maduros (NeuN) e em verde, micróglia ativada (Iba1). Merge representa a sobreposição dos três canais, com as colocalizações das marcações de Iba1, NeuN e DAPI. Barra de escala = 10µm.[0035] Figure 7 - Isolates PE243 and SPH2015 cause distinct dynamics of microglia activation in COHs: A - The area corresponding to activated microglia (Iba1+) normalized by the tissue area (DAPI+) was evaluated in isolates SPH2015 and PE243 at 8h and 24h p.i. (n > 2) and compared to the control group (CTRL). Two-way ANOVA test was used followed by Tukey's multiple comparisons test. Data were expressed as mean ± standard deviation. *P< 0.05. B - Micrographs by confocal microscopy (60x) obtained from COHs 8h p.i.. Markings in blue represent cell nuclei (DAPI), in red, mature neurons (NeuN) and in green, activated microglia (Iba1). Merge represents the overlap of the three channels, with the colocalization of Iba1, NeuN and DAPI markings. Scale bar = 10µm.
[0036] Figura 8 - Alterações epigenéticas induzidas de forma distinta pelos isolados de ZIKV: A marca epigenética H3K4me3 foi avaliada nas COHs do grupo controle (CTRL) e infectados com os isolados SPH2015 e PE243 5, 7 e 10 dias p.i., estimando-se a intensidade de fluorescência (IF) de H3K4me3 em neurônios maduros. Esses valores foram normalizados pelo número de neurônios positivos para essa marca (NeuN+ H3K4me3+) (n > 8). Amostras fora do intervalo entre os quartis inferior e superior da mediana de seus respectivos grupos (intervalo interquartil) foram excluídas da análise. Foi utilizado teste ANOVA bidirecional seguido do teste de múltiplas comparações de Tukey e os dados foram expressos segundo média ± desvio padrão. *P < 0,05; ***P < 0,001; ****P < 0,0001.[0036] Figure 8 - Epigenetic changes induced differently by ZIKV isolates: The H3K4me3 epigenetic mark was evaluated in COHs from the control group (CTRL) and infected with isolates SPH2015 and PE243 5, 7 and 10 days p.i., estimating the fluorescence intensity (IF) of H3K4me3 in mature neurons. These values were normalized by the number of neurons positive for this mark (NeuN+ H3K4me3+) (n > 8). Samples outside the range between the lower and upper quartiles of the median of their respective groups (interquartile range) were excluded from the analysis. Two-way ANOVA test was used followed by Tukey's multiple comparison test and data were expressed according to mean ± standard deviation. *P < 0.05; ***P < 0.001; ****P < 0.0001.
[0037] Figura 9 - Diagrama de Venn representando os genes diferencialmente expressos pelas COHs infectadas com os isolados PE243 ou SPH2015 às 16h p.i.: Genes com Fold Change maior que 1,2 e valor de P menor que 0,05 foram considerados diferencialmente expressos.[0037] Figure 9 - Venn diagram representing the genes differentially expressed by COHs infected with isolates PE243 or SPH2015 at 16h p.i.: Genes with Fold Change greater than 1.2 and P value less than 0.05 were considered differentially expressed.
[0038] Figura 10 - Alterações nos processos de sobrevivência, proliferação e diferenciação de células neurais induzidas pela infecção com os isolados PE243 ou SPH2015 (SPH). O padrão de neurodegeneração observado pode implicar em prejuízos ao neurodesenvolvimento.[0038] Figure 10 - Changes in the processes of survival, proliferation and differentiation of neural cells induced by infection with isolates PE243 or SPH2015 (SPH). The observed pattern of neurodegeneration may imply impairments to neurodevelopment.
[0039] Figura 11 - A infecção por PE243 ou SPH2015 (SPH) induz padrões distintos de resposta inflamatória no início da infecção.[0039] Figure 11 - Infection with PE243 or SPH2015 (SPH) induces distinct patterns of inflammatory response at the beginning of the infection.
[0040] Figura 12 - Validação por RT-qPCR dos genes biomarcadores dos processos de balanço entre morte neuronal e neurogênese e resposta inflamatória regulados pelos isolados PE243 e SPH2015 de ZIKV no início da infecção hipocampal. Os dados foram expressos como média ± desvio padrão. * = P < 0,05; ** = P < 0,01; *** P < 0,001; **** = P < 0,0001. N amostral > 4.[0040] Figure 12 - Validation by RT-qPCR of biomarker genes for the processes of balance between neuronal death and neurogenesis and inflammatory response regulated by ZIKV isolates PE243 and SPH2015 at the beginning of hippocampal infection. Data were expressed as mean ± standard deviation. * = P < 0.05; ** = P < 0.01; *** P < 0.001; **** = P < 0.0001. N sample > 4.
[0041] Figura 13 - Fluxograma do modelo estabelecido para triagem de fármacos ou moléculas com potencial neuroprotetor em COHs. Culturas organotípicas de hipocampo (COHs) de ratos infantes com cerca de 7 dias de idade são produzidas a partir de fatias do órgão com aproximadamente 400 micrômetros de espessura cultivadas para estabilização por, pelo menos, 14 dias. As COHs são então desafiadas pela infecção com ZIKV por meio de sua exposição a suspensões de meio de cultura contendo 6x105 unidades formadoras de placas (UFP) por mililitro durante duas horas. Ao final dessas duas horas, os vírus não adsorvidos às células das COHs são removidos por lavagem com meio de cultura fresco e as culturas são incubadas por 16h em meio fresco contendo o fármaco ou substância cujo potencial neuroprotetor será testado. São incluídas nos testes COHs falsamente infectadas, expostas ao procedimento de infecção, mas com meio sem vírus, que servem de controles para avaliação da toxicidade das substâncias testadas em ausência da infecção e COHs infectadas tratadas com meio contendo o excipiente, mas não o fármaco ou substância testados, que servem de controles da eficiência da infecção. Após a incubação por 16h, são extraídos os RNAs (ou proteínas) e os níveis de expressão dos genes biomarcadores são quantificados por técnicas tais como RT-qPCR, por exemplo. Os gráficos de radar A e B exemplificam avaliações do efeito neuroprotetor e da possível toxicidade, respectivamente, de uma substância hipotética testada com o modelo aqui proposto.[0041] Figure 13 - Flowchart of the model established for screening drugs or molecules with neuroprotective potential in COHs. Organotypic hippocampal cultures (COHs) from approximately 7-day-old infant rats are produced from approximately 400-micrometer-thick slices of the organ grown for stabilization for at least 14 days. COHs are then challenged by ZIKV infection through exposure to culture medium suspensions containing 6x105 plaque forming units (PFU) per milliliter for two hours. At the end of these two hours, viruses not adsorbed to COH cells are removed by washing with fresh culture medium and the cultures are incubated for 16 hours in fresh medium containing the drug or substance whose neuroprotective potential will be tested. Included in the tests are falsely infected COHs, exposed to the infection procedure, but with a virus-free medium, which serve as controls for evaluating the toxicity of the substances tested in the absence of infection, and infected COHs treated with a medium containing the excipient, but not the drug or tested substance, which serve as controls on the efficiency of the infection. After incubation for 16h, RNAs (or proteins) are extracted and the expression levels of biomarker genes are quantified using techniques such as RT-qPCR, for example. Radar graphs A and B exemplify evaluations of the neuroprotective effect and possible toxicity, respectively, of a hypothetical substance tested with the model proposed here.
[0042] Figura 14 - Avaliação do potencial neuroprotetor do cinamaldeído utilizando a metodologia da presente invenção. Tratamento farmacológico de culturas organotípicas hipocampais infectadas ou não com Zika vírus. Avaliação do efeito da droga (A) e sua toxicidade (B). Concentração da droga: 0,5µM. Os grupos foram comparados usando o teste T não pareado. Os dados são representados como a média dos valores 2A(- DCt) em escala logarítmica. * Simulado não tratado vs infectado não tratado; * Simulado não tratado vs infectado tratado com a droga;* P < 0,05; ** P < 0,01.[0042] Figure 14 - Evaluation of the neuroprotective potential of cinnamaldehyde using the methodology of the present invention. Pharmacological treatment of organotypic hippocampal cultures infected or not with Zika virus. Assessment of the effect of the drug (A) and its toxicity (B). Drug concentration: 0.5µM. Groups were compared using the unpaired T test. Data are represented as the average of 2A(- DCt) values on a logarithmic scale. * Untreated simulated vs untreated infected; * Simulated untreated vs infected treated with the drug;* P < 0.05; ** P < 0.01.
[0043] Figura 15 - Avaliação do potencial neuroprotetor da difenidramina utilizando a metodologia da presente invenção. Tratamento farmacológico de culturas organotípicas hipocampais infectadas ou não com Zika vírus. Avaliação do efeito da droga (A) e sua toxicidade (B). Concentração da droga: 0,5µM. Os grupos foram comparados por meio do teste T não pareado ou teste de Mann-Whitney. Os dados são representados como a média dos valores 2A(-DCt) em escala logarítmica. * Simulado não tratado vs infectado não tratado; * Simulado não tratado vs simulado tratado com a droga.* P < 0,05; ** P < 0,01.[0043] Figure 15 - Assessment of the neuroprotective potential of diphenhydramine using the methodology of the present invention. Pharmacological treatment of organotypic hippocampal cultures infected or not with Zika virus. Assessment of the effect of the drug (A) and its toxicity (B). Drug concentration: 0.5µM. The groups were compared using the unpaired T test or Mann-Whitney test. Data is represented as the average of 2A(-DCt) values on a logarithmic scale. * Untreated simulated vs untreated infected; * Untreated sham vs drug-treated sham.* P < 0.05; ** P < 0.01.
[0044] Embora a presente invenção possa ser suscetível a diferentes concretizações, é mostrada nos desenhos e na seguinte discussão detalhada, uma concretização preferida com o entendimento de que a presente descrição deve ser considerada uma exemplificação dos princípios da invenção e não pretende limitar a presente invenção ao que foi ilustrado e descrito aqui.[0044] Although the present invention may be susceptible to different embodiments, there is shown in the drawings and in the following detailed discussion a preferred embodiment with the understanding that the present description should be considered an exemplification of the principles of the invention and is not intended to limit the present invention to what has been illustrated and described here.
[0045] No presente pedido, a expressão “culturas organotípicas do hipocampo (COHs)” refere-se a hipocampos fatiados a 400µm, dissecados em meio de cultivo e resfriados a 4oC.[0045] In the present application, the expression “organotypic hippocampal cultures (COHs)” refers to hippocampi sliced at 400µm, dissected in culture medium and cooled to 4oC.
[0046] No presente pedido, o termo “RT-qPCR” é usado quando o material de partida é RNA. Neste método, o RNA é primeiro transcrito em DNA complementar (cDNA). O cDNA é então usado como modelo para a reação de qPCR. RT-qPCR é usado em uma variedade de aplicações, incluindo análise de expressão do painel de biomarcadores. A referida análise de expressão pode ser realizada não somente por RT-qPCR, mas também por Northern blot, PCR digital e técnicas equivalentes.[0046] In the present application, the term “RT-qPCR” is used when the starting material is RNA. In this method, RNA is first transcribed into complementary DNA (cDNA). The cDNA is then used as a template for the qPCR reaction. RT-qPCR is used in a variety of applications, including biomarker panel expression analysis. Said expression analysis can be carried out not only by RT-qPCR, but also by Northern blot, digital PCR and equivalent techniques.
[0047] No presente pedido, o termo “primers” refere-se a iniciadores desenhados para serem usados na reação de qPCR, para detectar a expressão dos genes candidatos a biomarcadores Adgre1, Ccl3, Dbx2, Disp3, Gmr3, Igf1, Il1b, Rac2, Rasgrp3, Siglec5[0047] In the present application, the term “primers” refers to primers designed to be used in the qPCR reaction, to detect the expression of candidate biomarker genes Adgre1, Ccl3, Dbx2, Disp3, Gmr3, Igf1, Il1b, Rac2 , Rasgrp3, Siglec5
[0048] Em uma primeira concretização, a presente invenção fornece um método para triagem de fármacos ou substâncias com potencial neuroprotetor, compreendendo: a) prover culturas organotípicas do hipocampo, sendo: i) pelo menos uma cultura controle, não infectada e não tratada com o fármaco ou substância a ser triada; ii) pelo menos uma cultura que será infectada com o agente da etapa b) e não será tratada com o fármaco ou substância a ser triada; iii) pelo menos uma cultura controle que será tratada com o fármaco ou substância a ser triada; e iv) pelo menos uma cultura que será infectada com o agente da etapa b) e será tratada com o fármaco ou substância a ser triada; b) infectar as culturas estabelecidas em ii e iv com um agente infeccioso neuroinflamatório; c) incubar as culturas estabelecidas em iii e iv com um fármaco ou substância com potencial neuroprotetor a ser triado; d) extrair pelo menos um RNA mensageiro ou proteína de cada uma das pelo menos quatro subculturas estabelecidas; e e) determinar o padrão de expressão com base em um painel de biomarcadores de cada uma das pelo menos quatro subculturas estabelecidas e, assim, predizer o potencial neuroprotetor do fármaco ou substância triada. Em outra concretização, as culturas organotípicas do hipocampo são cultivadas por ao menos 14 dias para estabilização. Em outra concretização, o agente infeccioso neuroinflamatório utilizado para infecção das culturas é o ZIKV. Em outra concretização, os agentes infecciosos são os isolados de ZIKV PE243 e SPH2015. Em outra concretização, o fármaco ou substância a ser triada para o potencial neuroprotetor está em uma concentração de cerca de 0,5µM. Em outra concretização, a extração do ácido nucleico da etapa d) ocorre 16h após a realização das etapas b) e c). Em outra concretização, a determinação do padrão de expressão em um painel de biomarcadores da etapa e) é realizada com base na expressão de um ou mais dos genes Adgre1, Ccl3, Dbx2, Disp3, Gmr3, Igf1, Il1b, Rac2, Rasgrp3, Siglec5 em relação ao padrão de expressão dos mesmos genes nas culturas controle. Em outra concretização o ácido nucleico extraído é RNA. Em outra concretização, a avaliação da expressão do painel de biomarcadores é realizada por RT-qPCR após transcrição reversa, Northern Blot, PCR digital, e técnicas equivalentes. Em uma outra concretização a metodologia é utilizada para a triagem de fármacos ou substâncias para controle da neuroinflamação e a prevenção da neurodegeneração associadas à infecção do sistema nervoso central pelo ZIKV.[0048] In a first embodiment, the present invention provides a method for screening drugs or substances with neuroprotective potential, comprising: a) providing organotypic cultures from the hippocampus, being: i) at least one control culture, not infected and not treated with the drug or substance to be screened; ii) at least one culture that will be infected with the agent from step b) and will not be treated with the drug or substance to be screened; iii) at least one control culture that will be treated with the drug or substance to be screened; and iv) at least one culture that will be infected with the agent from step b) and will be treated with the drug or substance to be screened; b) infecting the cultures established in ii and iv with a neuroinflammatory infectious agent; c) incubate the cultures established in iii and iv with a drug or substance with neuroprotective potential to be screened; d) extract at least one messenger RNA or protein from each of at least four established subcultures; and e) determine the expression pattern based on a panel of biomarkers from each of at least four established subcultures and, thus, predict the neuroprotective potential of the screened drug or substance. In another embodiment, organotypic hippocampal cultures are grown for at least 14 days for stabilization. In another embodiment, the neuroinflammatory infectious agent used to infect the cultures is ZIKV. In another embodiment, the infectious agents are ZIKV isolates PE243 and SPH2015. In another embodiment, the drug or substance to be screened for neuroprotective potential is at a concentration of about 0.5 µM. In another embodiment, the extraction of the nucleic acid from step d) occurs 16h after performing steps b) and c). In another embodiment, the determination of the expression pattern in a panel of biomarkers from step e) is carried out based on the expression of one or more of the genes Adgre1, Ccl3, Dbx2, Disp3, Gmr3, Igf1, Il1b, Rac2, Rasgrp3, Siglec5 in relation to the expression pattern of the same genes in control cultures. In another embodiment the extracted nucleic acid is RNA. In another embodiment, evaluation of the expression of the biomarker panel is performed by RT-qPCR after reverse transcription, Northern Blot, digital PCR, and equivalent techniques. In another embodiment, the methodology is used to screen drugs or substances to control neuroinflammation and prevent neurodegeneration associated with infection of the central nervous system by ZIKV.
[0049] Em uma segunda concretização, a presente invenção revela um kit para triagem de fármacos ou substâncias com potencial neuroprotetor.[0049] In a second embodiment, the present invention discloses a kit for screening drugs or substances with neuroprotective potential.
[0050] Preparação das culturas organotípicas do hipocampo e avaliação da dinâmica de infecção, análises fenotípicas e transcricional das culturas, como representado (Figura 1)[0050] Preparation of organotypic hippocampal cultures and evaluation of infection dynamics, phenotypic and transcriptional analyzes of the cultures, as represented (Figure 1)
[0051] Amostras dos isolados PE243 e SPH2015, cultivadas em células C6/36, foram cedidas pelo laboratório de Imunologia de Doenças Virais (IDV) do Instituto René Rachou (IRR)/ FIOCRUZ para a realização dos experimentos e armazenadas a -80°C.[0051] Samples of isolates PE243 and SPH2015, cultivated in C6/36 cells, were provided by the Viral Disease Immunology (IDV) laboratory of the René Rachou Institute (IRR)/FIOCRUZ to carry out the experiments and stored at -80°C .
[0052] Os ratos Wistar neonatos (7-10 dias) utilizados na produção das culturas organotípicas de hipocampo (COHs) foram obtidos do Instituto de Ciência e Tecnologia em Biomodelos (ICTB) (FIOCRUZ) e trazidos para o biotério de experimentação do IRR/ FIOCRUZ com uma fêmea lactante no dia anterior ao do experimento. Estes permaneceram com água e alimentos ad libitum, sob ciclos claro/escuro de 12-12 horas e em temperatura e umidade controladas (20-26oC, 40-60%, respectivamente). O presente método foi aprovado pela Comissão de Ética no Uso de Animais da FIOCRUZ (licença LW-10/18).[0052] The neonatal Wistar rats (7-10 days) used in the production of organotypic hippocampal cultures (COHs) were obtained from the Institute of Science and Technology in Biomodels (ICTB) (FIOCRUZ) and brought to the IRR/ FIOCRUZ with a lactating female the day before the experiment. They remained with water and food ad libitum, under light/dark cycles of 12-12 hours and at controlled temperature and humidity (20-26oC, 40-60%, respectively). The present method was approved by the Ethics Committee on the Use of Animals of FIOCRUZ (license LW-10/18).
[0053] As COHs foram preparadas segundo o método descrito por Stoppini et al. (35) com modificações. Após a eutanásia dos animais por decapitação, os cérebros foram removidos e os hipocampos dissecados em meio de cultivo (constituído de meio MEM Eagle + HEPES (Vitrocell Embriolife, Campinas, Brasil) acrescido de 25% de solução balanceada de Hanks 1x (Sigma, Basel, Suiça)), resfriado a 4oC. Em seguida, os hipocampos foram fatiados a 400µm utilizando-se um tissue chopper McIlwain (Mickle Laboratory Engeneering Co Ltda, Gomshal, Reino Unido).[0053] COHs were prepared according to the method described by Stoppini et al. (35) with modifications. After euthanasia of the animals by decapitation, the brains were removed and the hippocampi dissected in culture medium (consisting of MEM Eagle medium + HEPES (Vitrocell Embriolife, Campinas, Brazil) plus 25% of 1x Hanks' balanced solution (Sigma, Basel , Switzerland)), cooled to 4oC. Then, the hippocampi were sliced at 400µm using a McIlwain tissue chopper (Mickle Laboratory Engineering Co Ltd, Gomshal, United Kingdom).
[0054] Seis fatias provenientes de diferentes animais foram dispostas em cada inserto para cultura organotípica PICM0RG50 (Merck Millicell, Darmstadt, Alemanha), em uma placa de cultura de seis poços. Durante a primeira semana, as COHs foram cultivadas em 1 mL de meio de cultivo acrescido de 25% de soro equino (Bio Nutrientes do Brasil Ltda., Barueri, Brasil) inativado por calor. A partir do início da segunda semana, utilizou-se meio de cultivo sem o soro equino. Durante todo o experimento, as COHs foram mantidas em estufa com 5% de CO2, a 37oC, trocando-se metade do volume de meio a cada 2-3 dias. Após a fase de estabilização, as COHs apresentavam espessura média próxima de 40µm.[0054] Six slices from different animals were arranged in each PICM0RG50 organotypic culture insert (Merck Millicell, Darmstadt, Germany), in a six-well culture plate. During the first week, COHs were cultivated in 1 mL of culture medium plus 25% heat-inactivated equine serum (Bio Nutrientes do Brasil Ltda., Barueri, Brazil). From the beginning of the second week, culture medium without equine serum was used. Throughout the experiment, the COHs were maintained in an oven with 5% CO2, at 37oC, changing half the volume of medium every 2-3 days. After the stabilization phase, the COHs had an average thickness close to 40µm.
[0055] A infecção das COHs com ZIKV foi realizada após ao menos 14 dias de cultivo (fase de estabilização). As culturas foram divididas em três grupos: controle (não infectado), infectado com o isolado PE243 e infectado com o isolado SPH2015.[0055] The infection of COHs with ZIKV was carried out after at least 14 days of cultivation (stabilization phase). The cultures were divided into three groups: control (uninfected), infected with isolate PE243 and infected with isolate SPH2015.
[0056] Para a infecção, o meio de cultivo foi substituído por meio fresco contendo 6x105 ufp/mL de ZIKV, sendo 1 mL abaixo das membranas e 0,2 mL acima de forma a cobrir as COHs. Para obtenção da concentração viral correta no meio, das alíquotas de estoque de SPH2015 e PE243 foram diluídas 48 vezes. As placas foram incubadas por duas horas em estufa a 37°C e 5% de CO2, com agitação a cada 20 minutos. Ao final deste tempo, o meio com vírus foi removido e as membranas foram lavadas três vezes com meio sem ZIKV. A lavagem das COHs garante que apenas os vírus que adsorveram as células permaneçam, evitando um novo ciclo de infecção proveniente de vírus restantes no meio. Finalmente, foi adicionado 1 mL de meio sob a membrana e a placa foi recolocada na estufa. Os controles foram igualmente submetidos ao mesmo protocolo, porém utilizando-se meio de cultura sem vírus.[0056] For infection, the culture medium was replaced with fresh medium containing 6x105 pfu/mL of ZIKV, 1 mL below the membranes and 0.2 mL above in order to cover the COHs. To obtain the correct viral concentration in the medium, stock aliquots of SPH2015 and PE243 were diluted 48 times. The plates were incubated for two hours in an oven at 37°C and 5% CO2, with shaking every 20 minutes. At the end of this time, the medium with virus was removed and the membranes were washed three times with medium without ZIKV. Washing the COHs ensures that only the viruses that adsorbed the cells remain, preventing a new cycle of infection from viruses remaining in the medium. Finally, 1 mL of medium was added under the membrane and the plate was returned to the oven. Controls were also subjected to the same protocol, but using virus-free culture medium.
[0057] As COHs foram imunocoradas seguindo o método descrito por Gogolla e colaboradores (36) com adaptações. No tempo final de cada experimento, as COHs foram fixadas para imunocoloração nas seguintes soluções: paraformaldeído (PFA) 4% gelado (pH 7,2) por 5 minutos, metanol 20% gelado em tampão fosfato-salino (PBS) 1x por 5 minutos, Tween 0,05% em PBS 1x overnight e albumina do soro bovino (BSA) 20% em PBS 1x overnight. Foram realizadas lavagens com PBS 1x entre as incubações. As COHs foram, então, escindidas dos insertos e seguiram para incubação com anticorpos. Para determinação da densidade de neurônios maduros nas COHs 8h, 24h, 48h, 5, 7 e 10 dias pós infecção (p.i.), foi realizada marcação de NeuN, proteína expressa no núcleo de neurônios maduros, com anticorpo anti-NeuN monoclonal de camundongo (1:100, MAB377C3, Merck) ou policlonal de coelho (1:100, ABN78C3, Merck) conjugados com o fluoróforo Cy3. Para estimativa da densidade de partículas virais presentes nas COHs 8, 24 e 48h p.i., foi utilizado o anticorpo policlonal de coelho anti-NS1 de ZIKV não conjugado (1:1.000). A avaliação da micróglia ativada 8h, 24h e 48h p.i., foi realizada através da marcação de Iba1 pelo anticorpo monoclonal de coelho anti-Iba1 não conjugado (1:100, AB178847, ABCAM, Cambridge, Reino Unido) e a detecção da histona H3 trimetilada na lisina 4 (H3K4me3) 5, 7 e 10 dias p.i. foi feita com o anticorpo de camundongo anti-H3K4me3 não-conjugado (1:500, 05-1339, Merck). Para marcação dos anticorpos não conjugados, foi utilizado anti-IgG de coelho (1:400, A11034, ThermoFisher, Waltham, MA) ou de camundongo (1:20.000, A10684, ThermoFisher) conjugados ao fluoróforo Alexa Fluor 488. Além disso, para identificação de células em apoptose 4 dias p.i., foi realizado o ensaio TUNEL com o kit Click-iT TUNEL AlexaFluor Imaging Assay Protocol (C10245, Thermo Fisher) seguindo as instruções do fabricante. Finalmente, todas as COHs foram marcadas com DAPI (4’,6’-diamino-2-fenil-indol) (1µg/mL, D1306, ThermoFisher) e as lâminas montadas com meio de montagem ProLong Diamond Antifade Mountant (P36961, ThermoFisher).[0057] The COHs were immunostained following the method described by Gogolla and collaborators (36) with adaptations. At the end of each experiment, COHs were fixed for immunostaining in the following solutions: ice-cold 4% paraformaldehyde (PFA) (pH 7.2) for 5 minutes, ice-cold 20% methanol in phosphate-buffered saline (PBS) 1x for 5 minutes , 0.05% Tween in PBS 1x overnight and bovine serum albumin (BSA) 20% in PBS 1x overnight. Washes were performed with 1x PBS between incubations. The COHs were then separated from the inserts and continued for incubation with antibodies. To determine the density of mature neurons in COHs 8h, 24h, 48h, 5, 7 and 10 days post infection (p.i.), NeuN, a protein expressed in the nucleus of mature neurons, was labeled with mouse monoclonal anti-NeuN antibody ( 1:100, MAB377C3, Merck) or rabbit polyclonal (1:100, ABN78C3, Merck) conjugated to the Cy3 fluorophore. To estimate the density of viral particles present in COHs 8, 24 and 48h p.i., the unconjugated anti-ZIKV rabbit polyclonal anti-NS1 antibody (1:1,000) was used. The evaluation of activated microglia at 8h, 24h and 48h p.i. was carried out by labeling Iba1 with the unconjugated anti-Iba1 rabbit monoclonal antibody (1:100, AB178847, ABCAM, Cambridge, United Kingdom) and detecting trimethylated histone H3 on lysine 4 (H3K4me3) 5, 7 and 10 days p.i. was performed with unconjugated mouse anti-H3K4me3 antibody (1:500, 05-1339, Merck). For labeling of unconjugated antibodies, rabbit anti-IgG (1:400, A11034, ThermoFisher, Waltham, MA) or mouse anti-IgG (1:20,000, A10684, ThermoFisher) conjugated to the Alexa Fluor 488 fluorophore was used. identification of cells undergoing apoptosis 4 days p.i., the TUNEL assay was performed with the Click-iT TUNEL AlexaFluor Imaging Assay Protocol kit (C10245, Thermo Fisher) following the manufacturer's instructions. Finally, all COHs were labeled with DAPI (4',6'-diamino-2-phenyl-indole) (1µg/mL, D1306, ThermoFisher) and slides mounted with ProLong Diamond Antifade Mountant (P36961, ThermoFisher) .
[0058] Foram produzidas lâminas de controle negativo, coradas apenas com DAPI ou com DAPI e anticorpo secundário, com o objetivo de ajustar os parâmetros para obtenção das imagens, excluindo, desta forma, possíveis pontos de autofluorescência do tecido e ruídos de fundo.[0058] Negative control slides were produced, stained with DAPI alone or with DAPI and secondary antibody, with the aim of adjusting the parameters for obtaining images, thus excluding possible tissue autofluorescence points and background noise.
[0059] A captura das imagens das lâminas foi feita com o microscópio confocal Nikon Eclipse Ti (Nikon, Tóquio, Japão) com filtro de comprimentos de onda 488/561. As imagens foram obtidas no aumento de 10x, buscando-se áreas representativas, com maior cobertura de tecido celular. Para fotos representativas de detalhes das COHs utilizou-se o aumento de 60x ou 100x. Os parâmetros de fotografia foram definidos segundo o controle negativo.[0059] Images of the slides were captured using a Nikon Eclipse Ti confocal microscope (Nikon, Tokyo, Japan) with a 488/561 wavelength filter. The images were obtained at 10x magnification, looking for representative areas with greater coverage of cellular tissue. For representative photos of details of the COHs, 60x or 100x magnification was used. The photography parameters were defined according to the negative control.
[0060] As imagens foram analisadas com o auxílio do software NIS- Elements Analysis (Nikon). Os canais correspondentes às marcações DAPI+, NeuN+ e Iba1+ foram tratados com as ferramentas Noise Reduction, Gauss-Laplace Sharpen e Local Contrast. A área total de tecido foi determinada por meio da criação de uma máscara binária automática a partir do canal com a fluorescência DAPI+, seguida do uso da ferramenta Interest Region Manager (ROI). Para a contagem dos neurônios maduros, foi criada uma camada binária a partir da marcação NeuN+ (canal Cy3), selecionando e quantificando elementos com limiar de fluorescência > 10 AU. Esta quantificação foi posteriormente normalizada pela área tecidual (NeuN+/mm2).[0060] The images were analyzed with the aid of NIS-Elements Analysis software (Nikon). The channels corresponding to the DAPI+, NeuN+ and Iba1+ markings were treated with the Noise Reduction, Gauss-Laplace Sharpen and Local Contrast tools. The total tissue area was determined by creating an automatic binary mask from the channel with DAPI+ fluorescence, followed by using the Interest Region Manager (ROI) tool. To count mature neurons, a binary layer was created based on the NeuN+ labeling (Cy3 channel), selecting and quantifying elements with a fluorescence threshold > 10 AU. This quantification was later normalized by the tissue area (NeuN+/mm2).
[0061] Para detecção da área de marcação (Iba1+) e de regiões de interseção nas marcações dos canais de Cy3 e Alexa Fluor 488 (NeuN+ e NS1+, NeuN+ e TUNEL+ e NeuN+ e H3K4me3+) também foi criada uma máscara binária seguida de uma ROI. Para quantificação da densidade de micróglia ativada através de Iba1, foram obtidos os valores de área identificados com a ROI e obtidos foram posteriormente divididos pela área total da fatia (área Iba1+/mm2). Para identificação da infecção viral, foi estimada a colocalização da marcação de NS1 (Alexa Fluor 488) com a de NeuN+ (Cy3) (número de células NeuN+ e NS1+ / número de células NeuN+) e a intensidade de fluorescência (IF) de NS1 por área de tecido (IF NS1/mm2). A marcação TUNEL+ (Alexa Fluor 488) foi colocalizada com a NeuN+ (Cy3) para estimar a razão de neurônios maduros apoptóticos (número de células NeuN+ e TUNEL+ / número de células NeuN+). Por fim, a IF da marcação para H3K4me3 (Alexa Fluor 488) foi normalizada pelo número de células NeuN+ (Cy3) e H3K4me3+ (IF H3K4me3+ / número de células NeuN+ e H3K4me3+), para estimar a intensidade desta marca epigenética em neurônios maduros.[0061] To detect the labeling area (Iba1+) and intersection regions in the labeling of Cy3 and Alexa Fluor 488 channels (NeuN+ and NS1+, NeuN+ and TUNEL+ and NeuN+ and H3K4me3+) a binary mask was also created followed by an ROI . To quantify the density of activated microglia through Iba1, the area values identified with the ROI were obtained and subsequently divided by the total area of the slice (Iba1+ area/mm2). To identify viral infection, the colocalization of NS1 labeling (Alexa Fluor 488) with NeuN+ (Cy3) was estimated (number of NeuN+ and NS1+ cells / number of NeuN+ cells) and the fluorescence intensity (IF) of NS1 per tissue area (IF NS1/mm2). TUNEL+ labeling (Alexa Fluor 488) was colocalized with NeuN+ (Cy3) to estimate the ratio of mature apoptotic neurons (number of NeuN+ and TUNEL+ cells / number of NeuN+ cells). Finally, the IF of H3K4me3 labeling (Alexa Fluor 488) was normalized by the number of NeuN+ (Cy3) and H3K4me3+ cells (IF H3K4me3+ / number of NeuN+ and H3K4me3+ cells), to estimate the intensity of this epigenetic mark in mature neurons.
[0062] O RNA total das COHs foi extraído utilizando-se uma combinação de Trizol (ThermoFisher) e clorofórmio (Merck), seguindo o protocolo do fabricante. Posteriormente, o RNA total foi purificado em uma coluna do kit miRNeasy Mini (217004, Qiagen, Hilden, Alemanha) de acordo com as instruções do fabricante, quantificado por fluorometria utilizando o kit Qubit RNA HS Assay (Q32852, Invitrogen, Carlsbad, CA) e o Fluorômetro Qubit 2.0 (Invitrogen) e avaliado quanto a sua pureza com o NanoDrop (ThermoFisher).[0062] Total RNA from COHs was extracted using a combination of Trizol (ThermoFisher) and chloroform (Merck), following the manufacturer's protocol. Subsequently, total RNA was purified on a column of the miRNeasy Mini kit (217004, Qiagen, Hilden, Germany) according to the manufacturer's instructions, quantified by fluorometry using the Qubit RNA HS Assay kit (Q32852, Invitrogen, Carlsbad, CA) and the Qubit 2.0 Fluorometer (Invitrogen) and evaluated for purity with the NanoDrop (ThermoFisher).
[0063] As bibliotecas para sequenciamento foram produzidas utilizando-se o Kit mRNA TruSeq Stranded (Illumina, San Diego, CA) e os fragmentos indexados foram sequenciados utilizando-se o Kit high throughput NextSeq 500/550 v2 (Illumina, San Diego, CA).[0063] Libraries for sequencing were produced using the TruSeq Stranded mRNA Kit (Illumina, San Diego, CA) and the indexed fragments were sequenced using the NextSeq 500/550 v2 high throughput Kit (Illumina, San Diego, CA ).
[0064] Para processamento das leituras brutas e remoção de bases de baixa qualidade ou leituras muito curtas (menos de 36 nucleotídeos) foi utilizado o software Trimmomatic (37). As leituras limpas foram então alinhadas ao genoma de referência de Rattus norvegicus (release 94) utilizando o software STAR (Spliced Transcripts Alignment to a Reference) (38), sendo as leituras situadas em um único sítio genômico utilizadas para o cálculo do número de leituras e do número de leituras por quilobase de transcrito por milhão de leituras mapeadas de cada gene (39). A análise de contraste entre os grupos infectados e o controle foi realizada utilizando-se o software DESeq2 (40). Genes com alteração de Fold Change maior que 1,2 e valor de P menor que 0,05 foram considerados diferencialmente expressos. Após o processamento dos dados, a análise de enriquecimento funcional foi realizada com o software Ingenuity Pathways Analysis (IPA), com parametrização default (QIAGEN Inc., https://www.qiagenbioinformatics.com/products/ingenuitypathway-analysis), a partir dos ENSEMBLE GENE IDs dos genes e seus respectivos valores de Fold Change e de P (Tabelas 2 e 3).[0064] To process the raw reads and remove low-quality bases or very short reads (less than 36 nucleotides), the Trimmomatic software (37) was used. The clean reads were then aligned to the reference genome of Rattus norvegicus (release 94) using the STAR (Spliced Transcripts Alignment to a Reference) software (38), with the reads located in a single genomic site being used to calculate the number of reads and the number of reads per kilobase of transcript per million mapped reads of each gene (39). Contrast analysis between infected and control groups was performed using DESeq2 software (40). Genes with Fold Change greater than 1.2 and P value less than 0.05 were considered differentially expressed. After data processing, functional enrichment analysis was performed with the Ingenuity Pathways Analysis (IPA) software, with default parameterization (QIAGEN Inc., https://www.qiagenbioinformatics.com/products/ingenuitypathway-analysis), based on ENSEMBLE GENE Gene IDs and their respective Fold Change and P values (Tables 2 and 3).
[0065] As amostras de RNA foram obtidas conforme descrito acima, a partir de pools de 6 COHs (duas por animal) dos grupos controle, infectado com o isolado PE243 ou infectado com o isolado SPH2015 às 16h p.i. O cDNA foi sintetizado a partir de 0,4 a 1 µg de RNA total utilizando o High- Capacity cDNA Reverse Transcription Kit (ThermoFisher), de acordo com o protocolo do fabricante. As reações de qPCR foram feitas com Fast SYBR™ Green Master Mix (ThermoFisher) acrescido de 2 ng/µL de cDNA em volume final de 10 µL. Primers específicos para rato foram desenhados com o auxílio do software Primer-BLAST (NCBI, Bethesda, MD, https://www.ncbi.nlm.nih.gov/tools/primer-blast/) para detectar os genes candidatos a biomarcadores Adgre1, Ccl3, Dbx2, Disp3, Gmr3, Igf1, Il1b, Rac2, Rasgrp3, Siglec5 (Tabela 1). Os níveis de expressão destes genes foram normalizados para os níveis do gene endógeno Ppia. A ciclagem térmica e detecção de florescência foi realizada utilizando o sistema de PCR em tempo real ViiA 7 (ThermoFisher) de acordo com as recomendações do fabricante. A expressão relativa dos genes-alvos foi calculada através do método 2A(-DCt). Tabela 1 - Oligonucleotídeos usados para a quantificação, por RT-qPCR, da expressão de genes biomarcadores dos processos de neurodegeneração e resposta inflamatória regulados pelos isolados PE243 e SPH2015 de ZIKV no início da infecção hipocampal [0065] RNA samples were obtained as described above, from pools of 6 COHs (two per animal) from the control groups, infected with isolate PE243 or infected with isolate SPH2015 at 16h pi. cDNA was synthesized from 0.4 to 1 µg of total RNA using the High-Capacity cDNA Reverse Transcription Kit (ThermoFisher), according to the manufacturer's protocol. qPCR reactions were performed with Fast SYBR™ Green Master Mix (ThermoFisher) plus 2 ng/µL of cDNA in a final volume of 10 µL. Mouse-specific primers were designed with the aid of Primer-BLAST software (NCBI, Bethesda, MD, https://www.ncbi.nlm.nih.gov/tools/primer-blast/) to detect candidate genes for Adgre1 biomarkers. , Ccl3, Dbx2, Disp3, Gmr3, Igf1, Il1b, Rac2, Rasgrp3, Siglec5 (Table 1). The expression levels of these genes were normalized to the levels of the endogenous Ppia gene. Thermal cycling and bloom detection was performed using the ViiA 7 real-time PCR system (ThermoFisher) according to the manufacturer's recommendations. The relative expression of target genes was calculated using the 2A(-DCt) method. Table 1 - Oligonucleotides used for quantification, by RT-qPCR, of the expression of biomarker genes of neurodegeneration and inflammatory response processes regulated by ZIKV isolates PE243 and SPH2015 at the beginning of hippocampal infection
[0066] As análises estatísticas foram realizadas com o software GraphPad Prism(versão 8.0.2) (GraphPad Software Inc., Irvine, CA). Os dados foram avaliados quanto à sua normalidade utilizando os testes de Anderson-Darling, D’Agostino & Pearson, Shapiro-Wilk e Kolmogorov- Smirnov. Para as comparações entre dois grupos de dados paramétricos foi utilizado teste t de Student não pareado, sendo os dados expressos como média ± desvio padrão. Para as comparações entre dados não paramétricos foi utilizado teste de Mann-Whitney e os dados foram expressos como mediana ± intervalo interquartil. Para a comparação entre três grupos ou mais, com dados paramétricos, foi utilizada a análise de variância (ANOVA) unidirecional com o pós-teste de múltiplas comparações de Tukey. Para dados não paramétricos, foi utilizado o teste de Kruskal-Wallis com pós-teste de múltiplas comparações de Dunn. Ainda, quando as comparações envolviam o efeito de dois fatores (ex: tempo e infecção), foi utilizado ANOVA bidirecional com pós-teste de múltiplas comparações de Tukey. As diferenças foram consideradas estatisticamente significativas quando os valores de P foram menores que 0,05.[0066] Statistical analyzes were performed with GraphPad Prism software (version 8.0.2) (GraphPad Software Inc., Irvine, CA). The data were evaluated for normality using the Anderson-Darling, D’Agostino & Pearson, Shapiro-Wilk and Kolmogorov-Smirnov tests. For comparisons between two groups of parametric data, unpaired Student's t-test was used, with data expressed as mean ± standard deviation. For comparisons between non-parametric data, the Mann-Whitney test was used and data were expressed as median ± interquartile range. For comparison between three or more groups, with parametric data, one-way analysis of variance (ANOVA) with Tukey's multiple comparisons post-test was used. For non-parametric data, the Kruskal-Wallis test with Dunn's multiple comparisons post-test was used. Furthermore, when comparisons involved the effect of two factors (e.g., time and infection), two-way ANOVA with Tukey's multiple comparisons post-test was used. Differences were considered statistically significant when P values were less than 0.05.
[0067] Culturas organotípicas de hipocampo (COHs) de ratos infantes com cerca de 7 dias de idade foram produzidas a partir de fatias do órgão com aproximadamente 400 micrômetros de espessura cultivadas para estabilização por, pelo menos, 14 dias. AS COHs foram então desafiadas pela infecção com ZIKV por meio de sua exposição a suspensões de meio de cultura contendo 6x105 unidades formadoras de placas (UFP) por mililitro durante duas horas. Ao final dessas duas horas, os vírus não adsorvidos às células das COHs foram removidos por lavagem com meio de cultura fresco e as culturas foram incubadas por 16h em meio fresco contendo o fármaco ou substância cujo potencial neuroprotetor será testado. Foram incluídas nos testes COHs falsamente infectadas, expostas ao procedimento de infecção, mas com meio sem vírus, que servem de controles para avaliação da toxicidade das moléculas testadas em ausência da infecção e COHs infectadas tratadas com meio contendo o excipiente, mas não o fármaco ou substância testadas, que servem de controles da eficiência da infecção. Após a incubação por 16h, foram extraídos os RNAs (ou proteínas) e os níveis de expressão dos genes biomarcadores foram quantificados por RT-qPCR. Os resultados foram analisados na forma de gráficos de radar, evidenciando o efeito neuroprotetor e a possível toxicidade, respectivamente, do fármaco, substância ou molécula testada.[0067] Organotypic hippocampal cultures (COHs) from infant rats around 7 days old were produced from slices of the organ approximately 400 micrometers thick cultured for stabilization for at least 14 days. COHs were then challenged by ZIKV infection by exposing them to culture medium suspensions containing 6x105 plaque forming units (PFU) per milliliter for two hours. At the end of these two hours, viruses not adsorbed to COH cells were removed by washing with fresh culture medium and the cultures were incubated for 16 hours in fresh medium containing the drug or substance whose neuroprotective potential will be tested. The tests included falsely infected COHs, exposed to the infection procedure, but with virus-free medium, which serve as controls to evaluate the toxicity of the molecules tested in the absence of infection, and infected COHs treated with medium containing the excipient, but not the drug or tested substances, which serve as controls on the efficiency of the infection. After incubation for 16h, RNAs (or proteins) were extracted and the expression levels of biomarker genes were quantified by RT-qPCR. The results were analyzed in the form of radar graphs, highlighting the neuroprotective effect and possible toxicity, respectively, of the drug, substance or molecule tested.
[0068] Para verificar a adequação do modelo ao estudo proposto, a infecção e proliferação viral nas COHs foi avaliada por imunofluorescência e microscopia confocal, nos tempos iniciais da infecção, através da marcação de NS1. A NS1 é uma importante proteína não estrutural do ZIKV que atua na replicação viral e na regulação da resposte imune antiviral. Ela pode, ainda, induzir o remodelamento da membrana do retículo endoplasmático de forma a estabelecer um compartimento de replicação para o vírus (Revisado em: 41). A detecção do vírus através de uma proteína não estrutural permite comprovar sua replicação, excluindo-se ruídos que poderiam ser causados por vírus remanescentes da suspensão usada no processo de infecção experimental.[0068] To verify the suitability of the model for the proposed study, viral infection and proliferation in COHs was evaluated by immunofluorescence and confocal microscopy, at the initial times of infection, through NS1 labeling. NS1 is an important non-structural protein of ZIKV that acts in viral replication and regulation of the antiviral immune response. It can also induce remodeling of the endoplasmic reticulum membrane in order to establish a replication compartment for the virus (Reviewed in: 41). Detection of the virus through a non-structural protein makes it possible to confirm its replication, excluding noise that could be caused by viruses remaining from the suspension used in the experimental infection process.
[0069] A quantificação, por imunofluorescência e microscopia confocal, da proteína viral NS1 tempos iniciais da infecção demonstrou que ambos isolados de ZIKV infectaram e se replicaram satisfatoriamente nesse modelo. A avaliação da IF por área tecidual indicou que a expressão de NS1 pelo isolado SPH2015 aumentou significativamente entre 8h e 48h p.i.. Já a expressão de NS1 pelo isolado PE243 aumentou entre 8 e 24h p.i. e, em seguida, diminuiu às 48h (Figura 2). Portanto, os dois isolados de ZIKV apresentam dinâmicas de replicação distintas nesse modelo, o isolado PE243 proliferando mais rapidamente nas COHs que o PE243.[0069] Quantification, by immunofluorescence and confocal microscopy, of the viral protein NS1 at early times of infection demonstrated that both ZIKV isolates infected and replicated satisfactorily in this model. The evaluation of IF by tissue area indicated that the expression of NS1 by the isolate SPH2015 increased significantly between 8h and 48h p.i.. The expression of NS1 by the isolate PE243 increased between 8 and 24h p.i. and then decreased at 48h (Figure 2). Therefore, the two ZIKV isolates present distinct replication dynamics in this model, with isolate PE243 proliferating more quickly in COHs than PE243.
[0070] O ZIKV é capaz de infectar diversas células do SNC, como células progenitoras neurais (42), oligodendrócitos (43), micróglia (44), astrócitos, que parecem propagar a infecção no cérebro de embriões de camundongo (45) e em neurônios maduros (23). A infecção por ZIKV em células precursoras neurais já foi objeto de diversos estudos, entretanto, conhece-se menos sobre a infecção em outros tipos celulares e sobre a susceptibilidade à infecção no SNC maduro (22, 42, 46).[0070] ZIKV is capable of infecting several CNS cells, such as neural progenitor cells (42), oligodendrocytes (43), microglia (44), astrocytes, which appear to propagate the infection in the brain of mouse embryos (45) and in mature neurons (23). ZIKV infection in neural precursor cells has already been the subject of several studies, however, less is known about infection in other cell types and susceptibility to infection in the mature CNS (22, 42, 46).
[0071] A análise da colocalização das proteínas NS1 e NeuN comprovou que os dois isolados do ZIKV infectam neurônios maduros no modelo de COHs (Figura 3). Às 8h p.i., o isolado SPH2015 foi capaz de infectar cerca de 10% dos neurônios maduros, enquanto o isolado PE243 infectava menos de 3% dessas células. Portanto, o SPH2015 tem maior tropismo por neurônios maduros nos períodos iniciais da infecção, quando comparado ao PE243. Os percentuais de neurônios infectados decresceram significativamente nos tempos posteriores de 24 e 48h. Como a análise de IF para NS1/mm2 das COHs demonstrou níveis elevados de infecção por SPH2015 e PE243 também após as 8h p.i., conclui-se que, com o passar do tempo, o vírus infecta com maior tropismo outros tipos celulares que não os neurônios maduros.[0071] Analysis of the colocalization of NS1 and NeuN proteins proved that the two ZIKV isolates infect mature neurons in the COHs model (Figure 3). At 8 h p.i., isolate SPH2015 was able to infect approximately 10% of mature neurons, while isolate PE243 infected less than 3% of these cells. Therefore, SPH2015 has greater tropism for mature neurons in the initial periods of infection, when compared to PE243. The percentages of infected neurons decreased significantly at 24 and 48h. As the IF analysis for NS1/mm2 of COHs demonstrated high levels of infection by SPH2015 and PE243 also after 8h p.i., it is concluded that, over time, the virus infects other cell types other than neurons with greater tropism. mature.
[0072] Buscou-se, então, determinar os impactos da infecção com esses diferentes isolados do ZIKV em dois aspectos críticos do fenótipo das COHs, quais sejam, a densidade neuronal e a ativação da micróglia.[0072] We then sought to determine the impacts of infection with these different ZIKV isolates on two critical aspects of the COHs phenotype, namely, neuronal density and microglia activation.
[0073] Inicialmente, avaliou-se o efeito da infecção na densidade neuronal (NeuN+ / mm2) das COHs ao longo do tempo, desde 8h até 10 dias p.i. (Figuras 4 e 5). A área das COHs (DAPI+) não apresentou variação significativa ao longo deste período. Às 8h p.i., observou-se o aumento significativo da densidade de neurônios nas COHs infectadas em relação ao controle, indicando que a infecção por SPH2015 ou PE243 induz a neurogênese hipocampal. Entretanto, nos tempos seguintes, enquanto PE243 induziu a perda progressiva de neurônios até as 48h p.i., SPH2015 causou a perda pronunciada dessas células entre 8 e 24h p.i., seguida de um aumento entre 24 e 48h p.i. (Figura 4). Assim, evidenciam-se duas dinâmicas claramente distintas de neurodegeneração / neurogênese causadas pelos isolados PE243 e SPH2015 de ZIKV nos períodos iniciais da infecção.[0073] Initially, the effect of infection on the neuronal density (NeuN+ / mm2) of COHs was evaluated over time, from 8h to 10 days p.i. (Figures 4 and 5). The area of COHs (DAPI+) did not show significant variation throughout this period. At 8h p.i., a significant increase in neuron density was observed in infected COHs compared to control, indicating that SPH2015 or PE243 infection induces hippocampal neurogenesis. However, at subsequent times, while PE243 induced the progressive loss of neurons until 48h p.i., SPH2015 caused a pronounced loss of these cells between 8 and 24h p.i., followed by an increase between 24 and 48h p.i. (Figure 4). Thus, two clearly distinct dynamics of neurodegeneration/neurogenesis caused by ZIKV isolates PE243 and SPH2015 in the initial periods of infection are evident.
[0074] O efeito da infecção na densidade neuronal também foi avaliado em tempos mais avançados (Figura 5). Entre cinco e dez dias p.i., as COHs infectadas com os dois isolados apresentavam a mesma densidade de neurônios, aproximadamente 75% do observado no grupo controle (Figura 5). Estes achados corroboram o relato prévio de que o ZIKV também causa perda neuronal em tempos tardios da infecção em modelo de COHs de camundongos neonatos (47). Comprovou-se, assim, a adequação do modelo aqui proposto de COHs de ratos infantes para o estudo da neurodegeneração associada à infecção pelo ZIKV.[0074] The effect of infection on neuronal density was also evaluated at more advanced times (Figure 5). Between five and ten days p.i., COHs infected with both isolates had the same density of neurons, approximately 75% of that observed in the control group (Figure 5). These findings corroborate the previous report that ZIKV also causes neuronal loss late in infection in a neonatal mouse COHs model (47). Thus, the suitability of the model proposed here of COHs from infant rats for the study of neurodegeneration associated with ZIKV infection was proven.
[0075] A seguir, investigou-se a contribuição do processo de morte celular programada (apoptose) na perda neuronal causada pelo ZIKV nas COHs. Para isto, utilizou-se a marcação com TUNEL e NeuN seguida de microscopia confocal em COHs no quarto dia p.i. Observou-se que, pelo menos em parte, é possível atribuir o declínio da população neuronal à morte por apoptose, significativamente maior nas COHs infectadas (Figura 6).[0075] Next, the contribution of the process of programmed cell death (apoptosis) to the neuronal loss caused by ZIKV in COHs was investigated. For this, TUNEL and NeuN labeling were used followed by confocal microscopy in COHs on the fourth day p.i. It was observed that, at least in part, it is possible to attribute the decline in the neuronal population to death by apoptosis, which is significantly greater in infected COHs (Figure 6).
[0076] Os resultados da análise por imunofluorescência e microscopia confocal da expressão da proteína Iba1, marcador de micróglia ativada, demonstraram que a micróglia também se comportou de forma diferente a depender do isolado avaliado (Figura 7). A micróglia é uma população de células fagocíticas e mononucleares residentes no SNC, que respondem a estímulos potencialmente nocivos como infecções, dano tecidual e neurodegeneração alterando seus padrões de proliferação, transcrição e sua morfologia (Revisado em: 48). Se, por um lado, a infecção das COHs com SPH2015 ou PE243 não induziu a ativação da micróglia em comparação com as COHs do grupo controle, como evidenciado pela avaliação da expressão de Iba1 nos tempos 8h e 24h p.i.., o segundo isolado inibiu esta resposta no tempo 8h. Conjuntamente, esses dados indicam que estes dois isolados de ZIKV, coletados durante o mesmo surto e com 99,9% de semelhança ao nível nucleotídico e 99,97% ao nível de aminoácidos (17), têm dinâmicas de infecção diferentes e induzem alterações fenotípicas distintas nas COHs.[0076] The results of immunofluorescence analysis and confocal microscopy of the expression of the Iba1 protein, a marker of activated microglia, demonstrated that microglia also behaved differently depending on the isolate evaluated (Figure 7). Microglia is a population of phagocytic and mononuclear cells residing in the CNS, which respond to potentially harmful stimuli such as infections, tissue damage and neurodegeneration by altering their proliferation patterns, transcription and morphology (Reviewed in: 48). If, on the one hand, infection of COHs with SPH2015 or PE243 did not induce microglia activation in comparison with COHs from the control group, as evidenced by the evaluation of Iba1 expression at 8h and 24h p.i., the second isolate inhibited this response in time 8h. Taken together, these data indicate that these two ZIKV isolates, collected during the same outbreak and with 99.9% similarity at the nucleotide level and 99.97% at the amino acid level (17), have different infection dynamics and induce phenotypic changes. distinct in COHs.
[0077] Alterações epigenéticas são modificações na estrutura da cromatina ou de suas proteínas constituintes que levam ao aumento ou diminuição da expressão gênica. Estas modificações podem ser acetilações, metilações, entre outras (49). Outros membros da família Flaviviridae, como o vírus da dengue, podem induzir alterações epigenéticas nas células do hospedeiro como estratégia de evasão imune (50). Para investigar o possível efeito da infecção pelo ZIKV na funcionalidade dos neurônios das COHs, foi avaliada a marca epigenética H3K4me3, associada à eucromatina e estado ativo de expressão gênica, em tempos tardios da infecção. Interessantemente, o isolado SPH2015 causou um aumento pronunciado e progressivo da marca H3K4me3 nos dias 7 e 10 p.i.., enquanto o isolado PE243, por sua vez, causou um aumento menos expressivo desta marca nos dias 5 e 10 p.i. (Figura 8) Portanto, os isolados PE243 e SPH2015 podem afetar diferentemente a funcionalidade de neurônios maduros sobreviventes em tempos tardios da infecção.[0077] Epigenetic changes are modifications in the structure of chromatin or its constituent proteins that lead to an increase or decrease in gene expression. These modifications can be acetylations, methylations, among others (49). Other members of the Flaviviridae family, such as dengue virus, can induce epigenetic changes in host cells as an immune evasion strategy (50). To investigate the possible effect of ZIKV infection on the functionality of COH neurons, the epigenetic mark H3K4me3, associated with euchromatin and active state of gene expression, was evaluated late in the infection. Interestingly, isolate SPH2015 caused a pronounced and progressive increase in the H3K4me3 mark on days 7 and 10 p.i., while isolate PE243, in turn, caused a less expressive increase of this mark on days 5 and 10 p.i. (Figure 8) Therefore, isolates PE243 and SPH2015 may differentially affect the functionality of surviving mature neurons late in infection.
[0078] A fim de investigar o efeito dos isolados PE243 e SPH2015 e nos padrões de expressão gênica global do hipocampo, o transcriptoma das COHs foi analisado às 16h p.i., tempo intermediário entre os períodos de neurogênese e neurodegeneração observados nas COHs infectadas. Foram observados 32 genes diferencialmente expressos nas COHs infectadas por PE243 e 113 genes diferencialmente expressos nas COHs infectadas por SPH2015 (Figura 9 e Tabelas 2 e 3). Tabela 2 - Genes diferencialmente expressos nas COHs em resposta à infecção com o isolado PE243 16h p.i. Nota: Em negrito estão destacados os genes com expressão diferencial em resposta à infecção tanto pelo PE243 quanto pelo SPH2015 Tabela 3 - Genes diferencialmente expressos nas COHs em resposta à infecção com o isolado SPH2015 16h p.i. Nota: Em negrito estão destacados os genes com expressão diferencial em resposta à infecção tanto pelo PE243 quanto pelo SPH2015.[0078] In order to investigate the effect of isolates PE243 and SPH2015 and on global gene expression patterns in the hippocampus, the transcriptome of COHs was analyzed at 16h pi, an intermediate time between the periods of neurogenesis and neurodegeneration observed in infected COHs. We observed 32 differentially expressed genes in PE243-infected COHs and 113 differentially expressed genes in SPH2015-infected COHs (Figure 9 and Tables 2 and 3). Table 2 - Genes differentially expressed in COHs in response to infection with isolate PE243 16h pi Note: Genes with differential expression in response to infection with both PE243 and SPH2015 are highlighted in bold. Table 3 - Genes differentially expressed in COHs in response to infection with the SPH2015 isolate 16h pi Note: Genes with differential expression in response to infection by both PE243 and SPH2015 are highlighted in bold.
[0079] A análise de enriquecimento funcional do conjunto de genes diferencialmente expressos, realizada com o software IPA, indicou importantes diferenças nos processos biológicos afetados em reposta à infecção pelos isolados PE243 e SPH2015 do ZIKV às 16h p.i.. Estes achados explicam, em grande parte, as diferenças fenotípicas observadas.[0079] The functional enrichment analysis of the set of differentially expressed genes, carried out with the IPA software, indicated important differences in the biological processes affected in response to infection by ZIKV isolates PE243 and SPH2015 at 16h p.i.. These findings largely explain , the phenotypic differences observed.
[0080] Corroborando a queda da população neuronal induzida pela infecção no período entre 8h e 24h p.i., os dois isolados causaram alterações na expressão de genes reguladores de processos de desenvolvimento de células do SNC. A infecção por SPH2015 induziu a regulação negativa de processos como o desenvolvimento de neurônios, diferenciação do tecido nervoso e diferenciação de oligodendrócitos, enquanto PE243 induziu a regulação negativa do processo mais genérico de proliferação de células cerebrais. Além disso, o isolado PE243 regulou positivamente os processos de apoptose e morte de neurônios. Os resultados indicam também que estes isolados do ZIKV podem induzir prejuízos ao desenvolvimento cognitivo- comportamental dos infectados, uma vez que os processos biológicos de memória espacial, neurotransmissão e mielinização do sistema nervoso tiveram regulação negativa predita (Figura 10). Conjuntamente, estes resultados corroboram fortemente as diferenças observadas nas variações de densidade neuronal nas COHs em resposta à infecção pelos isolados PE243 e SPH2015.[0080] Corroborating the drop in the neuronal population induced by the infection in the period between 8h and 24h p.i., the two isolates caused changes in the expression of genes regulating CNS cell development processes. SPH2015 infection induced downregulation of processes such as neuron development, nervous tissue differentiation and oligodendrocyte differentiation, while PE243 induced downregulation of the more generic process of brain cell proliferation. Furthermore, isolate PE243 positively regulated the processes of apoptosis and death of neurons. The results also indicate that these ZIKV isolates can induce damage to the cognitive-behavioral development of those infected, since the biological processes of spatial memory, neurotransmission and myelination of the nervous system had predicted negative regulation (Figure 10). Taken together, these results strongly corroborate the differences observed in neuronal density variations in COHs in response to infection by isolates PE243 and SPH2015.
[0081] Além disso, os isolados PE243 e SPH2015 induziram padrões distintos de expressão diferencial de genes inflamatórios nas COHs às 16h p.i., corroborando o resultado de ativação de micróglia demonstrado por imunofluorescência para Iba1 logo no início da infecção experimental (Figura 11). A resposta inflamatória foi predita como fortemente ativada por SPH2015 com aumento da expressão de mediadores pró-inflamatórios como Ccl2 (C-C motif chemokine ligand 2), Ccl3l3 (C-C motif chemokine ligand 3 like 3), Ccl4 (C-C motif chemokine ligand 4), Cxcl6 (C-X-C motif chemokine ligand 6), Ccl7 (C-C motif chemokine ligand 7) e Il1b. As COHs infectadas com este isolado tiveram, ainda, predição positiva para os processos de ativação de neuroglia, astrocitose e gliose. Já para o isolado PE243 foi predita uma ativação tímida da resposta inflamatória às 16h p.i. Nota-se que os dois isolados regularam igualmente a expressão dos genes inflamatórios Ccl3, Rac2, Il1b e Igf1. Ainda, em COHs infectadas pelo PE243, a produção de espécies reativas de oxigênio e a geração de superóxido estão preditas como inibidas e a síntese de óxido nítrico está predita como aumentada. A quantidade de cálcio foi predita como aumentada nas COHs infectadas pelo SPH2015 e reduzida pelo PE243 (Figura 11).[0081] Furthermore, isolates PE243 and SPH2015 induced distinct patterns of differential expression of inflammatory genes in COHs at 16h p.i., corroborating the result of microglia activation demonstrated by immunofluorescence for Iba1 at the beginning of experimental infection (Figure 11). The inflammatory response was predicted to be strongly activated by SPH2015 with increased expression of pro-inflammatory mediators such as Ccl2 (C-C motif chemokine ligand 2), Ccl3l3 (C-C motif chemokine ligand 3 like 3), Ccl4 (C-C motif chemokine ligand 4), Cxcl6 (C-X-C motif chemokine ligand 6), Ccl7 (C-C motif chemokine ligand 7) and Il1b. COHs infected with this isolate also had a positive prediction for the processes of neuroglial activation, astrocytosis and gliosis. For isolate PE243, a timid activation of the inflammatory response was predicted at 16h p.i. It is noted that the two isolates equally regulated the expression of the inflammatory genes Ccl3, Rac2, Il1b and Igf1. Furthermore, in COHs infected by PE243, the production of reactive oxygen species and the generation of superoxide are predicted to be inhibited and the synthesis of nitric oxide is predicted to be increased. The amount of calcium was predicted to be increased in COHs infected by SPH2015 and reduced by PE243 (Figure 11).
[0082] Os dois isolados de ZIKV induziram a expressão diferencial de 10 genes em comum: Adgre1 (adhesion G protein-coupled receptor E1), Ccl3l3 (C-C motif chemokine ligand 3 like 3), Dbx2 (developing brain homeobox 2), Disp3 (dispatched RND transporter family member 3), Gmr3 (glutamate metabotropic receptor 3), Igf1(insulin like growth factor 1), Il1b (interleukin 1 beta), Rac2 (Rac family small GTPase 2), Rasgrp3 (RAS guanyl releasing protein 3) e Siglec8 (sialic acid binding Ig like lectin 8) (Figura 9 e Tabelas 2 e 3). A expressão diferencial induzida pela infecção PE243 ou SPH2015 foi testada por RT-qPCR para oito desses genes representativos dos processos de morte neuronal e neurogênese e resposta inflamatória em um conjunto independente de amostras e os resultados confirmaram os achados do RNA-Seq (Figura 12).[0082] The two ZIKV isolates induced the differential expression of 10 genes in common: Adgre1 (adhesion G protein-coupled receptor E1), Ccl3l3 (C-C motif chemokine ligand 3 like 3), Dbx2 (developing brain homeobox 2), Disp3 ( dispatched RND transporter family member 3), Gmr3 (glutamate metabotropic receptor 3), Igf1 (insulin like growth factor 1), Il1b (interleukin 1 beta), Rac2 (Rac family small GTPase 2), Rasgrp3 (RAS guanyl releasing protein 3) and Siglec8 (sialic acid binding Ig like lectin 8) (Figure 9 and Tables 2 and 3). Differential expression induced by PE243 or SPH2015 infection was tested by RT-qPCR for eight of these genes representative of the processes of neuronal death and neurogenesis and inflammatory response in an independent set of samples and the results confirmed the RNA-Seq findings (Figure 12). .
[0083] Foi observada a diminuição da expressão dos genes Disp3 e Dbx2 nas COHs infectadas. O aumento da expressão de Disp3 estimula a proliferação e inibe a diferenciação de células progenitoras neurais (51). No mesmo sentido, o aumento da expressão de Dbx2 inibe a neurogênese primária em embriões de Xenopus in vitro (52). Portanto, uma inibição da expressão desses genes pode estimular a neurogênese. Este padrão de expressão pode ser um resquício da programação genética do hospedeiro ativada logo no início da infecção, que leva ao fenótipo observado às 8h p.i., quando as COHs infectadas apresentam maior densidade neuronal em relação aos controles.[0083] A decrease in the expression of the Disp3 and Dbx2 genes was observed in infected COHs. Increased expression of Disp3 stimulates proliferation and inhibits differentiation of neural progenitor cells (51). In the same vein, increased Dbx2 expression inhibits primary neurogenesis in Xenopus embryos in vitro (52). Therefore, an inhibition of the expression of these genes can stimulate neurogenesis. This expression pattern may be a remnant of the host's genetic programming activated early in the infection, which leads to the phenotype observed at 8 h p.i., when infected COHs show greater neuronal density compared to controls.
[0084] Concomitantemente, observou-se a superexpressão de Il1b e Ccl3, importantes mediadores inflamatórios. A citocina IL-1ß, como destacado anteriormente, pode estar relacionada a mecanismos de excitotoxicidade e morte celular (53). CCL3, por sua vez, é importante para o recrutamento de células inflamatórias para o sítio do insulto e foi demonstrado que, no hipocampo, possui efeitos negativos na transmissão sináptica, plasticidade e memória (54). Outro importante gene associado à inflamação é o Adgre1, que mostrou aumento da expressão às 16h p.i. Este gene codifica o antígeno F4/80, expresso pela micróglia hipocampal (55). Sua expressão aumentada indica a proliferação da micróglia nas COHs às 16h p.i.. Também com expressão aumentada, o gene Rac2 codifica um membro da superfamília Ras de pequenas proteínas metabolizadoras de guanosina trifosfato (GTP). Essa proteína regula a atividade de NADPH oxidase, que, por sua vez, media a geração de ROS em células como leucócitos fagocíticos e micróglia (56, 57). Ademais, Siglec5 teve sua expressão aumentada pela infecção. Siglecs são proteínas de superfície membros da superfamília das imunoglobulinas que se ligam ao ácido siálico e são expressas principalmente em células hematopoiéticas (58). A sinalização via Siglec inibe a resposta imune pró-inflamatória e a fagocitose na micróglia (Reviewed in: (59)). Em seu conjunto, a expressão aumentada de Adgre1 e Rac2 e diminuída de Siglec5 apontam para mecanismos aparentemente antagônicos de estímulo à proliferação da micróglia e concomitante inibição de sua atividade pró- inflamatória.[0084] Concomitantly, overexpression of Il1b and Ccl3, important inflammatory mediators, was observed. The cytokine IL-1ß, as previously highlighted, may be related to mechanisms of excitotoxicity and cell death (53). CCL3, in turn, is important for the recruitment of inflammatory cells to the site of insult and has been shown in the hippocampus to have negative effects on synaptic transmission, plasticity, and memory (54). Another important gene associated with inflammation is Adgre1, which showed increased expression at 16h p.i. This gene encodes the F4/80 antigen, expressed by hippocampal microglia (55). Its increased expression indicates the proliferation of microglia in COHs at 16h p.i.. Also with increased expression, the Rac2 gene encodes a member of the Ras superfamily of small guanosine triphosphate (GTP) metabolizing proteins. This protein regulates NADPH oxidase activity, which in turn mediates the generation of ROS in cells such as phagocytic leukocytes and microglia (56, 57). Furthermore, Siglec5 had its expression increased by infection. Siglecs are surface proteins that are members of the immunoglobulin superfamily that bind sialic acid and are expressed primarily on hematopoietic cells ( 58 ). Signaling via Siglec inhibits the pro-inflammatory immune response and phagocytosis in microglia (Reviewed in: (59)). Taken together, the increased expression of Adgre1 and Rac2 and decreased Siglec5 point to apparently antagonistic mechanisms of stimulating microglia proliferation and concomitant inhibition of their pro-inflammatory activity.
[0085] O gene Igf1 teve sua expressão diminuída pela infecção com ZIKV. A ligação da proteína IGF1 ao seu principal receptor IGF1R ativa as vias de PI3K/AKT (Phosphatidylinositol 3-kinase/Protein kinase B) e MAPK (Mitogen activated protein kinase), principalmente a via ERK (Extracellular signal-regulated kinase). A via PI3K/AKT está relacionada à regulação de processos como proliferação celular, autofagia e apoptose e também é importante na resposta antiviral. A ativação induzida por vírus de PI3K/AKT está relacionada à inibição de apoptose, o que possibilita um maior potencial de replicação viral. Entretanto, esse bloqueio causado pelo vírus geralmente desencadeia a expressão de ISGs. A via ERK/MAPK está relacionada ao aumento da diferenciação e proliferação celular (Revisado em:60). Rasgrp3, cuja expressão foi inibida pela infecção com ZIKV, está envolvido na ativação da via ERK/MAPK através da proteína Ras (61).[0085] The Igf1 gene had its expression decreased by infection with ZIKV. The binding of the IGF1 protein to its main receptor IGF1R activates the PI3K/AKT (Phosphatidylinositol 3-kinase/Protein kinase B) and MAPK (Mitogen activated protein kinase) pathways, mainly the ERK (Extracellular signal-regulated kinase) pathway. The PI3K/AKT pathway is related to the regulation of processes such as cell proliferation, autophagy and apoptosis and is also important in the antiviral response. Virus-induced activation of PI3K/AKT is related to the inhibition of apoptosis, which allows for a greater potential for viral replication. However, this blockade caused by the virus generally triggers the expression of ISGs. The ERK/MAPK pathway is related to increased cell differentiation and proliferation (Reviewed in:60). Rasgrp3, whose expression was inhibited by ZIKV infection, is involved in the activation of the ERK/MAPK pathway through the Ras protein (61).
[0086] Com expressão diminuída, o gene Grm3 codifica o receptor de glutamato acoplado à proteína G 3 (mGluR3), expresso em neurônios e células da glia em regiões como o giro denteado do hipocampo (62). mGLUR3 está presente nos terminais pré- e pós-sinápticos e atua em canais de cálcio dependentes de voltagem, participando, assim, da modulação da neurotransmissão (63). A diminuição da expressão desse gene às 16h p.i. pode ser consequência da perda de neurônios observada entre 8h e 24h p.i..[0086] With decreased expression, the Grm3 gene encodes the G protein-coupled glutamate receptor 3 (mGluR3), expressed in neurons and glial cells in regions such as the dentate gyrus of the hippocampus (62). mGLUR3 is present in pre- and postsynaptic terminals and acts on voltage-gated calcium channels, thus participating in the modulation of neurotransmission (63). The decrease in expression of this gene at 16h p.i. may be a consequence of the loss of neurons observed between 8h and 24h p.i..
[0087] Este painel de biomarcadores representa um resquício da programação genética responsável pela neurogênese observada até as 8h p.i., ao mesmo tempo em que corrobora o fenótipo de perda neuronal no período entre 8h e 24 h e o importante papel da resposta inflamatória no início da infecção pelos dois isolados de ZIKV testados.[0087] This panel of biomarkers represents a remnant of the genetic programming responsible for the neurogenesis observed up to 8h p.i., at the same time that it corroborates the phenotype of neuronal loss in the period between 8h and 24h and the important role of the inflammatory response in the initiation of infection by two ZIKV isolates tested.
[0088] Dois fármacos neuroprotetores foram selecionados a partir de uma análise da literatura científica para avaliação do seu efeito na modulação do painel de biomarcadores da presente invenção e validação da presente metodologia: o cinamaldeído (Drugbank ID: DB14184) e a difenidramina (Drugbank ID: DB01075). O cinamaldeído (Drugbank ID: DB14184), presente na casca das espécies de Cinnamomum possui múltiplas propriedades funcionais, incluindo propriedades anticâncer, anti-inflamatórias e antioxidantes. A supressão dos receptores de NMDA foi apontada como parte do mecanismo de ação neuroprotetora do cinamaldeído contra a neurotoxicidade do amiloide beta (64). O cloridrato de difenidramina é um anti-histamínico, bloqueador de receptores H1, de primeira geração, com atividade anticolinérgica, indicado para prevenção e tratamento de reações alérgicas relacionadas à transfusão de sangue ou plasma e como adjuvante da epinefrina na anafilaxia. Recentemente, foi demonstrado o efeito neuroprotetor da difenidramina em modelo experimental de lesão cerebral por trauma em ratos. O mecanismo de ação envolve a atenuação do estresse oxidativo, da inflamação e das vias mitocondriais de apoptose (65).[0088] Two neuroprotective drugs were selected from an analysis of the scientific literature to evaluate their effect on modulating the panel of biomarkers of the present invention and validating the present methodology: cinnamaldehyde (Drugbank ID: DB14184) and diphenhydramine (Drugbank ID : DB01075). Cinnamaldehyde (Drugbank ID: DB14184), present in the bark of Cinnamomum species, has multiple functional properties, including anti-cancer, anti-inflammatory and antioxidant properties. Suppression of NMDA receptors has been implicated as part of the mechanism of neuroprotective action of cinnamaldehyde against amyloid beta neurotoxicity (64). Diphenhydramine hydrochloride is a first-generation antihistamine, H1 receptor blocker, with anticholinergic activity, indicated for the prevention and treatment of allergic reactions related to blood or plasma transfusion and as an adjuvant to epinephrine in anaphylaxis. Recently, the neuroprotective effect of diphenhydramine was demonstrated in an experimental model of brain trauma injury in rats. The mechanism of action involves the attenuation of oxidative stress, inflammation and mitochondrial apoptosis pathways (65).
[0089] Seguindo o fluxograma da Figura 13, o potencial neuroprotetor desses dois fármacos foi avaliado. Como demonstrado nas Figuras 14 e 15, respectivamente, tanto o Cinamaldeído quanto a Difenidramina modularam a expressão dos genes biomarcadores desta invenção, revertendo parcialmente o efeito da infecção com o ZIKV sobre esses biomarcadores.[0089] Following the flowchart in Figure 13, the neuroprotective potential of these two drugs was evaluated. As demonstrated in Figures 14 and 15, respectively, both Cinnamaldehyde and Diphenhydramine modulated the expression of the biomarker genes of this invention, partially reversing the effect of ZIKV infection on these biomarkers.
[0090] O tratamento com esses fármacos aumentou a expressão do gene Dbx2, que inibe a neurogênese primária. Desta forma, os dois fármacos atenuam o efeito estimulador da diferenciação exacerbada e precoce das células progenitoras neurais pela infecção com o ZIKV contribuindo para a preservação do plantel destas células.[0090] Treatment with these drugs increased the expression of the Dbx2 gene, which inhibits primary neurogenesis. In this way, the two drugs attenuate the stimulating effect of the exacerbated and early differentiation of neural progenitor cells due to infection with ZIKV, contributing to the preservation of the squad of these cells.
[0091] Além disso, o tratamento com cinamaldeído ou difenidramina reduziu a expressão do gene Siglec 5 e aumentou a expressão de Adgre1. A sinalização via Siglec inibe a resposta imune pró-inflamatória e a fagocitose na micróglia e o aumento da expressão de Adgre1, que codifica o antígeno F4/80, indicando a proliferação da micróglia. Portanto, os dois fármacos contribuem para a proliferação da micróglia e a ativação de sua atividade fagocítica, favorecendo assim a eliminação das células infectadas e resíduos de células mortas ou inviáveis no tecido hipocampal.[0091] Furthermore, treatment with cinnamaldehyde or diphenhydramine reduced the expression of the Siglec 5 gene and increased the expression of Adgre1. Signaling via Siglec inhibits the pro-inflammatory immune response and phagocytosis in microglia and increases the expression of Adgre1, which encodes the F4/80 antigen, indicating microglia proliferation. Therefore, both drugs contribute to the proliferation of microglia and the activation of their phagocytic activity, thus favoring the elimination of infected cells and residues of dead or non-viable cells in the hippocampal tissue.
[0092] O tratamento com difenidramina inibiu a expressão do gene Rac2, que codifica um membro da superfamília Ras de pequenas proteínas metabolizadoras de guanosina trifosfato (GTP). Essa proteína regula a atividade de NADPH oxidase, que, por sua vez, media a geração de espécies reativas de oxigênio em células de micróglia. Portanto, a difenidramina contribui para a redução do estresse oxidativo na neuroinflamação causada pela infecção pelo ZIKV.[0092] Treatment with diphenhydramine inhibited the expression of the Rac2 gene, which encodes a member of the Ras superfamily of small guanosine triphosphate (GTP) metabolizing proteins. This protein regulates NADPH oxidase activity, which in turn mediates the generation of reactive oxygen species in microglial cells. Therefore, diphenhydramine contributes to the reduction of oxidative stress in neuroinflammation caused by ZIKV infection.
[0093] 1. V. Sharma, M. Sharma, D. Dhull, Y. Sharma, S. Kaushik, Zika virus: an emerging challenge to public health worldwide. Can J Microbiol 66, 87-98 (2020).[0093] 1. V. Sharma, M. Sharma, D. Dhull, Y. Sharma, S. Kaushik, Zika virus: an emerging challenge to public health worldwide. Can J Microbiol 66, 87-98 (2020).
[0094] 2. M. R. Duffy et al., Zika virus outbreak on Yap Island, Federated States of Micronesia. N Engl J Med 360, 2536-2543 (2009).[0094] 2. M. R. Duffy et al., Zika virus outbreak on Yap Island, Federated States of Micronesia. N Engl J Med 360, 2536-2543 (2009).
[0095] 3. M. K. Kindhauser, T. Allen, V. Frank, R. S. Santhana, C. Dye, Zika: the origin and spread of a mosquito-borne virus. Bull World Health Organ 94, 675-686C (2016).[0095] 3. M. K. Kindhauser, T. Allen, V. Frank, R. S. Santhana, C. Dye, Zika: the origin and spread of a mosquito-borne virus. Bull World Health Organ 94, 675-686C (2016).
[0096] 4. J. Heukelbach, C. H. Alencar, A. A. Kelvin, W. K. de Oliveira, L. Pamplona de Góes Cavalcanti, Zika virus outbreak in Brazil. J Infect Dev Ctries 10, 116-120 (2016).[0096] 4. J. Heukelbach, C. H. Alencar, A. A. Kelvin, W. K. de Oliveira, L. Pamplona de Góes Cavalcanti, Zika virus outbreak in Brazil. J Infect Dev Ctries 10, 116-120 (2016).
[0097] 5. L. Schuler-Faccini et al., Possible Association Between Zika Virus Infection and Microcephaly - Brazil, 2015. MMWR Morb Mortal Wkly Rep 65, 59-62 (2016).[0097] 5. L. Schuler-Faccini et al., Possible Association Between Zika Virus Infection and Microcephaly - Brazil, 2015. MMWR Morb Mortal Wkly Rep 65, 59-62 (2016).
[0098] 6. Situação epidemiológica da Síndrome Congênita associada à infecção pelo vírus Zika: monitoramento do ano de 2019 (2020).[0098] 6. Epidemiological situation of Congenital Syndrome associated with Zika virus infection: monitoring in 2019 (2020).
[0099] 7. S. A. Rasmussen, D. J. Jamieson, M. A. Honein, L. R. Petersen, Zika Virus and Birth Defects--Reviewing the Evidence for Causality. N Engl J Med 374, 1981-1987 (2016).[0099] 7. S. A. Rasmussen, D. J. Jamieson, M. A. Honein, L. R. Petersen, Zika Virus and Birth Defects--Reviewing the Evidence for Causality. N Engl J Med 374, 1981-1987 (2016).
[00100] 8. Orientações integradas de vigilância e atenção à saúde no âmbito da Emergência de Saúde Pública de Importância Nacional: procedimentos para o monitoramento das alterações no crescimento e desenvolvimento a partir da gestação até a primeira infância, relacionadas à infecção pelo vírus Zika e outras etiologias infeciosas dentro da capacidade operacional do SUS (2017).[00100] 8. Integrated guidelines for surveillance and health care within the scope of the Public Health Emergency of National Importance: procedures for monitoring changes in growth and development from pregnancy to early childhood, related to Zika virus infection and other infectious etiologies within the operational capacity of the SUS (2017).
[00101] 9. Boletim Epidemiológico(2021).[00101] 9. Epidemiological Bulletin (2021).
[00102] 10. J. J. Miner, M. S. Diamond, Zika Virus Pathogenesis and Tissue Tropism. Cell Host Microbe 21, 134-142 (2017).[00102] 10. J. J. Miner, M. S. Diamond, Zika Virus Pathogenesis and Tissue Tropism. Cell Host Microbe 21, 134-142 (2017).
[00103] 11. H. Li, L. Saucedo-Cuevas, S. Shresta, J. G. Gleeson, The Neurobiology of Zika Virus. Neuron 92, 949-958 (2016).[00103] 11. H. Li, L. Saucedo-Cuevas, S. Shresta, J. G. Gleeson, The Neurobiology of Zika Virus. Neuron 92, 949-958 (2016).
[00104] 12. S. S. Kazmi, W. Ali, N. Bibi, F. Nouroz, A review on Zika virus outbreak, epidemiology, transmission and infection dynamics. J Biol Res (Thessalon) 27, 5 (2020).[00104] 12. S. S. Kazmi, W. Ali, N. Bibi, F. Nouroz, A review on Zika virus outbreak, epidemiology, transmission and infection dynamics. J Biol Res (Thessalon) 27, 5 (2020).
[00105] 13. G. W. DICK, S. F. KITCHEN, A. J. HADDOW, Zika virus. I. Isolations and serological specificity. Trans R Soc Trop Med Hyg 46, 509-520 (1952).[00105] 13. G. W. DICK, S. F. KITCHEN, A. J. HADDOW, Zika virus. I. Isolations and serological specificity. Trans R Soc Trop Med Hyg 46, 509-520 (1952).
[00106] 14. S. C. Weaver et al., Zika virus: History, emergence, biology, and prospects for control. Antiviral Res 130, 69-80 (2016).[00106] 14. S. C. Weaver et al., Zika virus: History, emergence, biology, and prospects for control. Antiviral Res 130, 69-80 (2016).
[00107] 15. J. T. Beaver, N. Lelutiu, R. Habib, I. Skountzou, Evolution of Two Major Zika Virus Lineages: Implications for Pathology, Immune Response, and Vaccine Development. Front Immunol 9, 1640 (2018).[00107] 15. J. T. Beaver, N. Lelutiu, R. Habib, I. Skountzou, Evolution of Two Major Zika Virus Lineages: Implications for Pathology, Immune Response, and Vaccine Development. Front Immunol 9, 1640 (2018).
[00108] 16. N. R. Faria et al., Zika virus in the Americas: Early epidemiological and genetic findings. Science 352, 345-349 (2016).[00108] 16. N. R. Faria et al., Zika virus in the Americas: Early epidemiological and genetic findings. Science 352, 345-349 (2016).
[00109] 17. C. L. Donald et al., Full Genome Sequence and sfRNA Interferon Antagonist Activity of Zika Virus from Recife, Brazil. PLoS Negl Trop Dis 10, e0005048 (2016).[00109] 17. C. L. Donald et al., Full Genome Sequence and sfRNA Interferon Antagonist Activity of Zika Virus from Recife, Brazil. PLoS Negl Trop Dis 10, e0005048 (2016).
[00110] 18. H. Puerta-Guardo et al., Flavivirus NS1 Triggers Tissue Specific Vascular Endothelial Dysfunction Reflecting Disease Tropism. Cell Rep 26, 1598-1613.e1598 (2019).[00110] 18. H. Puerta-Guardo et al., Flavivirus NS1 Triggers Tissue Specific Vascular Endothelial Dysfunction Reflecting Disease Tropism. Cell Rep 26, 1598-1613.e1598 (2019).
[00111] 19. A. W. Wessel et al., Antibodies targeting epitopes on the cell-surface form of NS1 protect against Zika virus infection during pregnancy. Nat Commun 11, 5278 (2020).[00111] 19. A. W. Wessel et al., Antibodies targeting epitopes on the cell-surface form of NS1 protect against Zika virus infection during pregnancy. Nat Commun 11, 5278 (2020).
[00112] 20. Y. Ci et al., Zika NS1-induced ER remodeling is essential for viral replication. J Cell Biol 219, (2020).[00112] 20. Y. Ci et al., Zika NS1-induced ER remodeling is essential for viral replication. J Cell Biol 219, (2020).
[00113] 21. Y. Zheng et al., Zika virus elicits inflammation to evade antiviral response by cleaving cGAS via NS1-caspase-1 axis. EMBO J 37, (2018).[00113] 21. Y. Zheng et al., Zika virus elicits inflammation to evade antiviral response by cleaving cGAS via the NS1-caspase-1 axis. EMBO J 37, (2018).
[00114] 22. C. Li et al., Zika Virus Disrupts Neural Progenitor Development and Leads to Microcephaly in Mice. Cell Stem Cell 19, 120-126 (2016).[00114] 22. C. Li et al., Zika Virus Disrupts Neural Progenitor Development and Leads to Microcephaly in Mice. Cell Stem Cell 19, 120-126 (2016).
[00115] 23. F. T. Goodfellow et al., Strain-Dependent Consequences of Zika Virus Infection and Differential Impact on Neural Development. Viruses 10, (2018).[00115] 23. F. T. Goodfellow et al., Strain-Dependent Consequences of Zika Virus Infection and Differential Impact on Neural Development. Viruses 10, (2018).
[00116] 24. M. I. Faizan et al., Zika Virus-Induced Microcephaly and Its Possible Molecular Mechanism. Intervirology 59, 152-158 (2016).[00116] 24. M. I. Faizan et al., Zika Virus-Induced Microcephaly and Its Possible Molecular Mechanism. Intervirology 59, 152-158 (2016).
[00117] 25. P. P. Garcez et al., Zika virus impairs growth in human neurospheres and brain organoids. Science 352, 816-818 (2016).[00117] 25. P. P. Garcez et al., Zika virus impairs growth in human neurospheres and brain organoids. Science 352, 816-818 (2016).
[00118] 26. K. M. Adams Waldorf et al., Congenital Zika virus infection as a silent pathology with loss of neurogenic output in the fetal brain. Nat Med 24, 368-374 (2018).[00118] 26. K. M. Adams Waldorf et al., Congenital Zika virus infection as a silent pathology with loss of neurogenic output in the fetal brain. Nat Med 24, 368-374 (2018).
[00119] 27. H. B. Stolp, Z. Molnár, Neurogenic niches in the brain: help and hindrance of the barrier systems. Front Neurosci 9, 20 (2015).[00119] 27. H. B. Stolp, Z. Molnár, Neurogenic niches in the brain: help and hindrance of the barrier systems. Front Neurosci 9, 20 (2015).
[00120] 28. C. P. Figueiredo et al., Zika virus replicates in adult human brain tissue and impairs synapses and memory in mice. Nat Commun 10, 3890 (2019).[00120] 28. C. P. Figueiredo et al., Zika virus replicates in adult human brain tissue and impairs synapses and memory in mice. Nat Commun 10, 3890 (2019).
[00121] 29. J. J. Knierim, The hippocampus. Curr Biol 25, R1116- 1121 (2015).[00121] 29. J. J. Knierim, The hippocampus. Curr Biol 25, R1116-1121 (2015).
[00122] 30. E. C. Cope, E. Gould, Adult Neurogenesis, Glia, and the Extracellular Matrix. Cell Stem Cell 24, 690-705 (2019).[00122] 30. E. C. Cope, E. Gould, Adult Neurogenesis, Glia, and the Extracellular Matrix. Cell Stem Cell 24, 690-705 (2019).
[00123] 31. F. H. Gage, Adult neurogenesis in mammals. Science 364, 827-828 (2019).[00123] 31. F. H. Gage, Adult neurogenesis in mammals. Science 364, 827-828 (2019).
[00124] 32. F. Ginhoux, M. Prinz, Origin of microglia: current concepts and past controversies. Cold Spring Harb Perspect Biol 7, a020537 (2015).[00124] 32. F. Ginhoux, M. Prinz, Origin of microglia: current concepts and past controversies. Cold Spring Harb Perspect Biol 7, a020537 (2015).
[00125] 33. E. Di Lullo, A. R. Kriegstein, The use of brain organoids to investigate neural development and disease. Nat Rev Neurosci 18, 573-584 (2017).[00125] 33. E. Di Lullo, A. R. Kriegstein, The use of brain organoids to investigate neural development and disease. Nat Rev Neurosci 18, 573-584 (2017).
[00126] 34. C. Humpel, Organotypic brain slice cultures: A review. Neuroscience 305, 86-98 (2015).[00126] 34. C. Humpel, Organotypic brain slice cultures: A review. Neuroscience 305, 86-98 (2015).
[00127] 35. L. Stoppini, P. A. Buchs, D. Muller, A simple method for organotypic cultures of nervous tissue. J Neurosci Methods 37, 173-182 (1991).[00127] 35. L. Stoppini, P. A. Buchs, D. Muller, A simple method for organotypic cultures of nervous tissue. J Neurosci Methods 37, 173-182 (1991).
[00128] 36. N. Gogolla, I. Galimberti, V. DePaola, P. Caroni, Staining protocol for organotypic hippocampal slice cultures. Nat Protoc 1, 2452-2456 (2006).[00128] 36. N. Gogolla, I. Galimberti, V. DePaola, P. Caroni, Staining protocol for organotypic hippocampal slice cultures. Nat Protoc 1, 2452-2456 (2006).
[00129] 37. A. M. Bolger, M. Lohse, B. Usadel, Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114-2120 (2014).[00129] 37. A. M. Bolger, M. Lohse, B. Usadel, Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114-2120 (2014).
[00130] 38. A. Dobin et al., STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15-21 (2013).[00130] 38. A. Dobin et al., STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15-21 (2013).
[00131] 39. A. Mortazavi, B. A. Williams, K. McCue, L. Schaeffer, B. Wold, Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5, 621-628 (2008).[00131] 39. A. Mortazavi, B. A. Williams, K. McCue, L. Schaeffer, B. Wold, Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5, 621-628 (2008).
[00132] 40. M. I. Love, W. Huber, S. Anders, Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15, 550 (2014).[00132] 40. M. I. Love, W. Huber, S. Anders, Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15, 550 (2014).
[00133] 41. M. Guo, L. Hui, Y. Nie, B. Tefsen, Y. Wu, ZIKV viral proteins and their roles in virus-host interactions. Sci China Life Sci 64, 709-719 (2021).[00133] 41. M. Guo, L. Hui, Y. Nie, B. Tefsen, Y. Wu, ZIKV viral proteins and their roles in virus-host interactions. Sci China Life Sci 64, 709-719 (2021).
[00134] 42. H. Tang et al., Zika Virus Infects Human Cortical Neural Progenitors and Attenuates Their Growth. Cell Stem Cell 18, 587-590 (2016).[00134] 42. H. Tang et al., Zika Virus Infects Human Cortical Neural Progenitors and Attenuates Their Growth. Cell Stem Cell 18, 587-590 (2016).
[00135] 43. V. Schultz et al., Oligodendrocytes are susceptible to Zika virus infection in a mouse model of perinatal exposure: Implications for CNS complications. Glia 69, 2023-2036 (2021).[00135] 43. V. Schultz et al., Oligodendrocytes are susceptible to Zika virus infection in a mouse model of perinatal exposure: Implications for CNS complications. Glia 69, 2023-2036 (2021).
[00136] 44. F. M. Lum et al., Zika Virus Infects Human Fetal Brain Microglia and Induces Inflammation. Clin Infect Dis 64, 914-920 (2017).[00136] 44. F. M. Lum et al., Zika Virus Infects Human Fetal Brain Microglia and Induces Inflammation. Clin Infect Dis 64, 914-920 (2017).
[00137] 45. A. N. van den Pol, G. Mao, Y. Yang, S. Ornaghi, J. N. Davis, Zika Virus Targeting in the Developing Brain. J Neurosci 37, 2161-2175 (2017).[00137] 45. A. N. van den Pol, G. Mao, Y. Yang, S. Ornaghi, J. N. Davis, Zika Virus Targeting in the Developing Brain. J Neurosci 37, 2161-2175 (2017).
[00138] 46. J. Dang et al., Zika Virus Depletes Neural Progenitors in Human Cerebral Organoids through Activation of the Innate Immune Receptor TLR3. Cell Stem Cell 19, 258-265 (2016).[00138] 46. J. Dang et al., Zika Virus Depletes Neural Progenitors in Human Cerebral Organoids through Activation of the Innate Immune Receptor TLR3. Cell Stem Cell 19, 258-265 (2016).
[00139] 47. C. Büttner, M. Heer, J. Traichel, M. Schwemmle, B. Heimrich, Zika Virus-Mediated Death of Hippocampal Neurons Is Independent From Maturation State. Front Cell Neurosci 13, 389 (2019).[00139] 47. C. Büttner, M. Heer, J. Traichel, M. Schwemmle, B. Heimrich, Zika Virus-Mediated Death of Hippocampal Neurons Is Independent From Maturation State. Front Cell Neurosci 13, 389 (2019).
[00140] 48. Z. Chen, D. Zhong, G. Li, The role of microglia in viral encephalitis: a review. J Neuroinflammation 16, 76 (2019).[00140] 48. Z. Chen, D. Zhong, G. Li, The role of microglia in viral encephalitis: a review. J Neuroinflammation 16, 76 (2019).
[00141] 49. A. D. Goldberg, C. D. Allis, E. Bernstein, Epigenetics: a landscape takes shape. Cell 128, 635-638 (2007).[00141] 49. A. D. Goldberg, C. D. Allis, E. Bernstein, Epigenetics: a landscape takes shape. Cell 128, 635-638 (2007).
[00142] 50. D. Adhya, A. Basu, Epigenetic modulation of host: new insights into immune evasion by viruses. J Biosci 35, 647-663 (2010).[00142] 50. D. Adhya, A. Basu, Epigenetic modulation of host: new insights into immune evasion by viruses. J Biosci 35, 647-663 (2010).
[00143] 51. M. Zíková et al., DISP3 promotes proliferation and delays differentiation of neural progenitor cells. FEBS Lett 588, 4071-4077 (2014).[00143] 51. M. Zíková et al., DISP3 promotes proliferation and delays differentiation of neural progenitor cells. FEBS Lett 588, 4071-4077 (2014).
[00144] 52. P. Ma et al., Xenopus Dbx2 is involved in primary neurogenesis and early neural plate patterning. Biochem Biophys Res Commun 412, 170-174 (2011).[00144] 52. P. Ma et al., Xenopus Dbx2 is involved in primary neurogenesis and early neural plate patterning. Biochem Biophys Res Commun 412, 170-174 (2011).
[00145] 53. I. G. Olmo et al., Zika Virus Promotes Neuronal Cell Death in a Non-Cell Autonomous Manner by Triggering the Release of Neurotoxic Factors. Front Immunol 8, 1016 (2017).[00145] 53. I. G. Olmo et al., Zika Virus Promotes Neuronal Cell Death in a Non-Cell Autonomous Manner by Triggering the Release of Neurotoxic Factors. Front Immunol 8, 1016 (2017).
[00146] 54. E. Marciniak et al., The Chemokine MIP-1a/CCL3 impairs mouse hippocampal synaptic transmission, plasticity and memory. Sci Rep 5, 15862 (2015).[00146] 54. E. Marciniak et al., The Chemokine MIP-1a/CCL3 impairs mouse hippocampal synaptic transmission, plasticity and memory. Sci Rep 5, 15862 (2015).
[00147] 55. A. H. de Haas, H. W. Boddeke, K. Biber, Region-specific expression of immunoregulatory proteins on microglia in the healthy CNS. Glia 56, 888-894 (2008).[00147] 55. A. H. de Haas, H. W. Boddeke, K. Biber, Region-specific expression of immunoregulatory proteins on microglia in the healthy CNS. Glia 56, 888-894 (2008).
[00148] 56. J. Haslund-Vinding, G. McBean, V. Jaquet, F. Vilhardt, NADPH oxidases in oxidant production by microglia: activating receptors, pharmacology and association with disease. Br J Pharmacol 174, 1733-1749 (2017).[00148] 56. J. Haslund-Vinding, G. McBean, V. Jaquet, F. Vilhardt, NADPH oxidases in oxidant production by microglia: activating receptors, pharmacology and association with disease. Br J Pharmacol 174, 1733-1749 (2017).
[00149] 57. B. A. Diebold, G. M. Bokoch, Molecular basis for Rac2 regulation of phagocyte NADPH oxidase. Nat Immunol 2, 211-215 (2001).[00149] 57. B. A. Diebold, G. M. Bokoch, Molecular basis for Rac2 regulation of phagocyte NADPH oxidase. Nat Immunol 2, 211-215 (2001).
[00150] 58. S. von Gunten, B. S. Bochner, Basic and clinical immunology of Siglecs. Ann N Y Acad Sci 1143, 61-82 (2008).[00150] 58. S. von Gunten, B. S. Bochner, Basic and clinical immunology of Siglecs. Ann N Y Acad Sci 1143, 61-82 (2008).
[00151] 59. B. Linnartz-Gerlach, J. Kopatz, H. Neumann, Siglec functions of microglia. Glycobiology 24, 794-799 (2014).[00151] 59. B. Linnartz-Gerlach, J. Kopatz, H. Neumann, Siglec functions of microglia. Glycobiology 24, 794-799 (2014).
[00152] 60. A. Józefiak, M. Larska, M. Pomorska-Mól, J. J. Ruszkowski, The IGF-1 Signaling Pathway in Viral Infections. Viruses 13, (2021).[00152] 60. A. Józefiak, M. Larska, M. Pomorska-Mól, J. J. Ruszkowski, The IGF-1 Signaling Pathway in Viral Infections. Viruses 13, (2021).
[00153] 61. N. Ozaki, Y. Miura, T. Yamada, Y. Kato, Y. Oiso, RasGRP3 mediates phorbol ester-induced, protein kinase C-independent exocytosis. Biochem Biophys Res Commun 329, 765-771 (2005).[00153] 61. N. Ozaki, Y. Miura, T. Yamada, Y. Kato, Y. Oiso, RasGRP3 mediates phorbol ester-induced, protein kinase C-independent exocytosis. Biochem Biophys Res Commun 329, 765-771 (2005).
[00154] 62. G. P. Schools, H. K. Kimelberg, mGluR3 and mGluR5 are the predominant metabotropic glutamate receptor mRNAs expressed in hippocampal astrocytes acutely isolated from young rats. J Neurosci Res 58, 533-543 (1999).[00154] 62. G. P. Schools, H. K. Kimelberg, mGluR3 and mGluR5 are the predominant metabotropic glutamate receptor mRNAs expressed in hippocampal astrocytes acutely isolated from young rats. J Neurosci Res 58, 533-543 (1999).
[00155] 63. A. Lau, M. Tymianski, Glutamate receptors, neurotoxicity and neurodegeneration. Pflugers Arch 460, 525-542 (2010).[00155] 63. A. Lau, M. Tymianski, Glutamate receptors, neurotoxicity and neurodegeneration. Pflugers Arch 460, 525-542 (2010).
[00156] 64. M. Emamghoreishi, M. R. Farrokhi, A. Amiri, M. Keshavarz, The neuroprotective mechanism of cinnamaldehyde against amyloid-ß in neuronal SHSY5Y cell line: The role of N-methyl-D-aspartate, ryanodine, and adenosine receptors and glycogen synthase kinase-3ß. Avicenna J Phytomed 9, 271-280 (2019).[00156] 64. M. Emamghoreishi, M. R. Farrokhi, A. Amiri, M. Keshavarz, The neuroprotective mechanism of cinnamaldehyde against amyloid-ß in neuronal SHSY5Y cell line: The role of N-methyl-D-aspartate, ryanodine, and adenosine receptors and glycogen synthase kinase-3ß. Avicenna J Phytomed 9, 271-280 (2019).
[00157] 65. W. Pan, Z. Cao, D. Liu, Y. Jiao, Protective Effect of Diphenhydramine against Traumatic Brain Injury in Rats via Modulation of Oxidative Stress and Inflammation. Pharmacology 105, 47-53 (2020).[00157] 65. W. Pan, Z. Cao, D. Liu, Y. Jiao, Protective Effect of Diphenhydramine against Traumatic Brain Injury in Rats via Modulation of Oxidative Stress and Inflammation. Pharmacology 105, 47-53 (2020).
Claims (13)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BR102022009685-6A BR102022009685A2 (en) | 2022-05-18 | 2022-05-18 | METHOD FOR SCREENING DRUGS OR SUBSTANCES WITH NEUROPROTECTIVE POTENTIAL, KIT FOR SCREENING DRUGS OR SUBSTANCES, AND USE OF A GENE PANEL |
PCT/BR2023/050130 WO2023220793A1 (en) | 2022-05-18 | 2023-04-25 | Method for screening potentially neuroprotective pharmaceuticals or substances, kit for screening pharmaceuticals or substances, and use of a gene panel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BR102022009685-6A BR102022009685A2 (en) | 2022-05-18 | 2022-05-18 | METHOD FOR SCREENING DRUGS OR SUBSTANCES WITH NEUROPROTECTIVE POTENTIAL, KIT FOR SCREENING DRUGS OR SUBSTANCES, AND USE OF A GENE PANEL |
Publications (1)
Publication Number | Publication Date |
---|---|
BR102022009685A2 true BR102022009685A2 (en) | 2023-11-28 |
Family
ID=88834266
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
BR102022009685-6A BR102022009685A2 (en) | 2022-05-18 | 2022-05-18 | METHOD FOR SCREENING DRUGS OR SUBSTANCES WITH NEUROPROTECTIVE POTENTIAL, KIT FOR SCREENING DRUGS OR SUBSTANCES, AND USE OF A GENE PANEL |
Country Status (2)
Country | Link |
---|---|
BR (1) | BR102022009685A2 (en) |
WO (1) | WO2023220793A1 (en) |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BRPI0811625A2 (en) * | 2007-05-15 | 2014-11-11 | Helicon Therapeutics Inc | COGNITIVE DISORDER TREATMENT METHODS THROUGH GPR12 INHIBIT |
CA2949673C (en) * | 2014-05-19 | 2022-12-13 | University Of South Florida | Formation of multicellular tumoroids and uses thereof |
-
2022
- 2022-05-18 BR BR102022009685-6A patent/BR102022009685A2/en unknown
-
2023
- 2023-04-25 WO PCT/BR2023/050130 patent/WO2023220793A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
WO2023220793A1 (en) | 2023-11-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chen et al. | FGF21 protects the blood–brain barrier by upregulating PPARγ via FGFR1/β-klotho after traumatic brain injury | |
Jalan et al. | Ammonia produces pathological changes in human hepatic stellate cells and is a target for therapy of portal hypertension | |
de Melo et al. | Neuroinvasion and anosmia are independent phenomena upon infection with SARS-CoV-2 and its variants | |
Zhu et al. | miR-155 antagomir protect against DSS-induced colitis in mice through regulating Th17/Treg cell balance by Jarid2/Wnt/β-catenin | |
Xiao et al. | Baicalin promotes hippocampal neurogenesis via the Wnt/β-catenin pathway in a chronic unpredictable mild stress-induced mouse model of depression | |
Chen et al. | circHIPK3 regulates apoptosis and mitochondrial dysfunction induced by ischemic stroke in mice by sponging miR-148b-3p via CDK5R1/SIRT1 | |
Zhou et al. | Puerarin protects against sepsis-associated encephalopathy by inhibiting NLRP3/Caspase-1/GSDMD pyroptosis pathway and reducing blood-brain barrier damage | |
Sawano et al. | Thyroid hormone-dependent development of the GABAergic pre-and post-synaptic components in the rat hippocampus | |
Takahashi et al. | Prenatal treatment with methylazoxymethanol acetate as a neurodevelopmental disruption model of schizophrenia in mice | |
Micheli et al. | Fluoxetine or Sox2 reactivate proliferation-defective stem and progenitor cells of the adult and aged dentate gyrus | |
Chen et al. | HET0016 inhibits neuronal pyroptosis in the immature brain post-TBI via the p38 MAPK signaling pathway | |
Wang et al. | Protective effects of L-3-n-butylphthalide against H2O2-induced injury in neural stem cells by activation of PI3K/Akt and Mash1 pathway | |
Zhao et al. | Research on biogenesis of mitochondria in astrocytes in sepsis-associated encephalopathy models. | |
Rabadi et al. | Maternal malnourishment induced upregulation of fetuin-B blunts nephrogenesis in the low birth weight neonate | |
Ma et al. | Inhibiting cardiac autophagy suppresses Zika virus replication | |
Olcum et al. | The WNT/β-catenin pathway regulates expression of the genes involved in cell cycle progression and mitochondrial oxidative phosphorylation in the postmitotic cardiac myocytes | |
Zhang et al. | Impaired autophagy flux by lncRNA NEAT1 is critical for inflammation factors production in human periodontal ligament stem cells with nicotine treatment | |
Van Buren et al. | Single-cell RNA sequencing reveals placental response under environmental stress | |
Shi et al. | TNFSF14+ natural killer cells prevent spontaneous abortion by restricting leucine-mediated decidual stromal cell senescence | |
Huang et al. | Persistent elevation of hepatocyte growth factor activator inhibitors in cholangiopathies affects liver fibrosis and differentiation | |
Nedogreeva et al. | Oxidative damage of proteins precedes loss of cholinergic phenotype in the septal neurons of olfactory bulbectomized mice | |
Ma et al. | Dorsal CA1 Nectin3 reduction mediates early-life stress-induced object recognition memory deficits in adolescent female mice | |
Alpár et al. | Slow age-dependent decline of doublecortin expression and BrdU labeling in the forebrain from lesser hedgehog tenrecs | |
BR102022009685A2 (en) | METHOD FOR SCREENING DRUGS OR SUBSTANCES WITH NEUROPROTECTIVE POTENTIAL, KIT FOR SCREENING DRUGS OR SUBSTANCES, AND USE OF A GENE PANEL | |
Zanini et al. | Phenotypic diversity and sensitivity to injury of the pulmonary endothelium during a period of rapid postnatal growth |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
B03A | Publication of a patent application or of a certificate of addition of invention [chapter 3.1 patent gazette] |