BR102014004074A2 - surface modification method of titanium alloys and product obtained - Google Patents

surface modification method of titanium alloys and product obtained Download PDF

Info

Publication number
BR102014004074A2
BR102014004074A2 BR102014004074A BR102014004074A BR102014004074A2 BR 102014004074 A2 BR102014004074 A2 BR 102014004074A2 BR 102014004074 A BR102014004074 A BR 102014004074A BR 102014004074 A BR102014004074 A BR 102014004074A BR 102014004074 A2 BR102014004074 A2 BR 102014004074A2
Authority
BR
Brazil
Prior art keywords
titanium
modifying
alloys
titanium alloy
alloy surface
Prior art date
Application number
BR102014004074A
Other languages
Portuguese (pt)
Inventor
Ana Lúcia Do Amaral Escada
Ana Paula Rosifini Alves Claro
Ketul Chandrakant Popat
Patrícia Capellato
Original Assignee
Univ Estadual Paulista Julio D
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Estadual Paulista Julio D filed Critical Univ Estadual Paulista Julio D
Priority to BR102014004074A priority Critical patent/BR102014004074A2/en
Publication of BR102014004074A2 publication Critical patent/BR102014004074A2/en

Links

Abstract

resumo mã‰todo de modificaã‡ãƒo da superfã�cie de ligas de titã‚nio e produto obtido ㉠descrita a invenã§ã£o de um mã©todo de modificaã§ã£o da superfã­cie de ligas de titã¢nio empregando a oxidaã§ã£o anã³dica em ligas de ti-30ta e ti-7,5mo para a obtenã§ã£o de nanotubos perpendiculares ao substrato com diã¢metro de 80-120 nm e comprimento de 100 nm-500 nm.Summary Method of Surface Modification of Titanium Alloys and Product Obtained It is described the invention of a method of surface modification of titanium alloys employing anodic oxidation in thi-30ta and thi-7.5mo alloys to obtain nanotubes perpendicular to the substrate with a diameter of 80-120 nm and a length of 100 nm-500 nm.

Description

MÉTODO DE MODIFICAÇÃO DA SUPERFÍCIE DE LIGAS DE TITÂNIO E PRODUTO OBTIDO CAMPO DA INVENÇÃO A presente invenção descreve um método de modificação da superfície de ligas de titânio e produto obtido, Mais especificamente compreende um método de modificação de superfície empregando a oxidação anódica em ligas de Ti-30Ta e Ti-7,5Mo.FIELD OF THE INVENTION The present invention describes a surface modification method of titanium alloys and product obtained. More specifically it comprises a surface modification method employing anodic oxidation in Ti alloys. -30Ta and Ti-7.5Mo.

ANTECEDENTES DA INVENÇÃOBACKGROUND OF THE INVENTION

Ligas metálicas destinadas a implantes têm sido cada vez mais pesquisadas quanto às suas propriedades microestruturais, mecânicas e de biocompatibilidade.Metal alloys intended for implants have been increasingly researched for their microstructural, mechanical and biocompatibility properties.

Apesar do surgimento de inúmeros materiais poliméricos que poderíam realizar essas funções, o titânio e suas ligas representam ainda a grande gama de aplicações na fabricação de implantes, dental e ortopédicos, em função da excelente biocompatibilidade, resistência mecânica e à corrosão, e relativa baixa densidade desses materiais. O biomaterial para uso intra-ósseo deve apresentar biocompatibilidade e propriedades mecânicas similares ao osso humano (ZHOU, Y.-L.; NIINOMI, M. Microstructures and mechanical properties of Ti-50 mass% Ta alloy for biomedical applications. Journal of Alloys and Compounds, v. 466, n. 1-2, p. 535-542, 2008), devendo apresentar propriedades mecânicas comparáveis ao do tecido natural onde ele é inserido para que não ocorra tensão adicional ao tecido circundante (KURELLA, A.; DAHOTRE, N. B. Review paper: Surface Modification for Bioimplants: The Role of Laser Surface Engineering. Journal of Biomaterials Applications, v. 20, n. 1, p. 5-50, July 1, 2005). O tecido ósseo humano apresenta propriedades mecânicas como alta resistência à fadiga, ductilidade, baixo módulo de elasticidade, resistência ao desgaste e à corrosão [(BANNON, B. P. Μ., E E Ed. Titanium Alloys in Surgical Implants. Titanium Alloys for Biomaterial Application: an OverView. Phoenix, Ariz; U.S.A, p.pp. 7-15, Titanium Alloys for Biomaterial Application: an Overviewed. 1983); (GALANTE, J. O. et al. The biologic effects of implant materiais. Journal of Orthopaedic Research, v. 9, n. 5, p. 760-775, 1991. ISSN 1554- 527X); (KOKUBO, T,; KIM, H.-M.; KAWASHITA, M. Novel bioactive materiais with different mechanical properties. Biomaterials, v. 24, n. 13, p. 2161-2175, 2003. ISSN O142-9612);(OH, K.-T.; SHIM, H.-M.; KIM, K.-N. Properties of titanium-silver alloys for dental application. Journal of Biomedical Materials Research Part B: Applied Biomaterials, v. 74B, n. 1, p. 649-658, 2005); (RUCKH, T. et al. Nanostructured tantala as a template for enhanced osseointegration. Nanotechnology, v. 20, n. 4, p. 045102, 2009); (HABIBOVIC, P. et al. Osteoinduction by biomaterials - Physicochemical and structural influences. Journal of Biomedical Materials Research Part A, v. 77A, n. 4, p. 747-762, 2006) e (NIINOMI, M. Recent metallic materiais for biomedical applications. Metallurgical and Materials Transactions A, v. 33, n. 3, p. 477-486, 2002)].Despite the emergence of numerous polymeric materials that could perform these functions, titanium and its alloys still represent the wide range of implant, dental and orthopedic applications due to its excellent biocompatibility, mechanical and corrosion resistance, and relative low density. of these materials. The biomaterial for intraosseous use must have biocompatibility and mechanical properties similar to human bone (ZHOU, Y.-L.; NIINOMI, M. Microstructures and mechanical properties of Ti-50 mass% Ta alloy for biomedical applications. Journal of Alloys and Compounds, v. 466, No. 1-2, pp. 535-542, 2008), and should have mechanical properties comparable to that of the natural tissue in which it is inserted so that no additional stress occurs to the surrounding tissue (KURELLA, A .; DAHOTRE , NB Review paper: Surface Modification for Bioimplants: The Role of Laser Surface Engineering Journal of Biomaterials Applications, v. 20, no. 1, pp. 5-50, July 1, 2005). Human bone tissue has mechanical properties such as high fatigue strength, ductility, low modulus of elasticity, wear and corrosion resistance [(BANNON, BP Μ., EE. Titanium Alloys for Surgical Implants. Titanium Alloys for Biomaterial Application: an Phoenix, Ariz; USA, pp. 7-15, Titanium Alloys for Biomaterial Application: An Overview, 1983); (GALANTE, J. O. et al. The Biologic Effects of Implant Materials. Journal of Orthopedic Research, v. 9, no. 5, pp. 760-775, 1991. ISSN 1554-527X); (KOKUBO, T ;; KIM, H.-M .; KAWASHITA, M. Novel bioactive materials with different mechanical properties. Biomaterials, v. 24, no. 13, p. 2161-2175, 2003. ISSN O142-9612); (OH, K.-T .; SHIM, H.-M .; KIM, K.-N. Properties of titanium-silver alloys for dental application. Journal of Biomedical Materials Research Part B: Applied Biomaterials, v. 74B, no. 1, pp 649-658, 2005); (RUCKH, T. et al. Nanostructured as a template for enhanced osseointegration. Nanotechnology, v. 20, no. 4, p. 045102, 2009); (HABIBOVIC, P. et al. Osteoinduction by biomaterials - Physicochemical and structural influences. Journal of Biomedical Materials Research Part A, v. 77A, no. 4, p. 747-762, 2006) and (NIINOMI, M. Recent metallic materials for biomedical applications Metallurgical and Materials Transactions A, v. 33, no. 3, pp. 477-486, 2002)].

Pesquisas com o Ti CP (titânio comercialmente puro) e titânio e suas ligas vêm sendo realizadas com o objetivo de ser alcançado o biomaterial ideal para uso em implante dentário, sendo a liga TÍ6AI4V a mais empregada. No entanto, a baixa resistência mecânica do titânio CP e os efeitos citotóxicos atribuídos à utilização da liga TÍ6AI4V como, por exemplo, doença de Alzheimer [(BALAZIC, M.ef al.Review: titanium and titanium alloy applications in medicine. International Journal of Nano and Biomaterials, v. 1, n. 1, p. 3-34, 2007); (BOZIC, K. et al. The Epidemiology of Revision Total Knee Arthroplasty in the United States. Clinicai Orthopaedics and Related Research®, v. 468, n. 1, p. 45-51, 2010);(BOZKUS, I.; GERMEC-CAKAN, D.; ARUN, T. Evaluation of Metal Concentrations in Hair and Nail After Orthognathic Surgery. Journal of CraniofaciaISurgery, v. 22, n. 1, p. 68-72 10.1097/SCS.0b013e3181f6c456, 2011);(ELLINGSEN, J. E.; THOMSEN, P.; LYNGSTADAAS, S. P. Advances in dental implant materiais and tissue regeneration. Periodontology 2000, v. 41, n. 1, p. 136-156, 2006); (LIU, X.; CHU, P. K.; DING, C. Surface modification of titanium, titanium alloys, and related materiais for biomedical applications. Materials Science and Engineering: R: Reports, v. 47, n. 3-4, p. 49-121, 2004); (MJÕBERG, B.ef a/.AIuminum, Alzheimer's disease and bone fragility. Acta Orthopaedica, v. 68, n. 6, p. 511-514, 1997); (WANG, K. The use of titanium for medicai applications in the USA. Materials Science and Engineering: A, v. 213, n. 1-2, p. 134-137, 1996);(ZAFFE, D.; BERTOLDI, C.; CONSOLO, U. Accumulation of aluminium in lamellar bone after implantation of titanium plates, TÍ-6AI-4V screws, hydroxyapatite granules. Biomaterials, v. 25, n. 17, p. 3837-3844, 2004)] têm levado ao desenvolvimento de metais com a adição de elementos de ligas não-tóxicos como, por exemplo, tântalo (Ta), zircônio (Zr), nióbio (Nb), háfnio (Hf), molibdênio (Mo) e estanho (Sn) [(EISENBARTH, E. et a/.Biocompatibility of [beta]-stabilizing elements of titanium alloys. Biomaterials, v. 25, n. 26, p. 5705-5713, 2004); (JIANTING, G.; RANUCCI, D.; GHERARDI, F. Precipitation of β phase in the y’ particles of nickel-base superalloy. Metallurgical and Materials Transactions A, v. 15, n. 7, p. 1331-1334, 1984); (MARECI, D. et a/.Comparative corrosion study of Ti-Ta alloys for dental applications. Acta Biomaterialia, v. 5, n. 9, p. 3625-3639, 2009); (MIYAZAKI, T. et ai Bioactive tantalum metal prepared by NaOH treatment. Journal of Biomedical Materials Research, v. 50, n. 1, p. 35-42, 2000); (MIYAZAKI, T. et ai Effect of thermal treatment on apatite-forming ability of NaOH-treated tantalum metal. Journal of Materials Science: Materials in Medicine, v. 12, n. 8, p. 683-687, 2001); (MIYAZAKI, T. et ai Enhancement of bonding strength by graded structure at interface between apatite layer and bioactive tantalum metal. Journal of Materials Science: Materials in Medicine, v. 13, n. 7, p. 651-655, 2002);(NIINOMI, M. Recent metallic materiais for biomedical applications. Metallurgical and Materials Transactions A, v. 33, n. 3, p. 477-486, 2002); (TAKAO, H. Recent development of new alloys for biomedical use. Trans Tech,Stafa-Zurich, SUISSE Materials Science forum. 512, p. 243-248, 2006); (VARÍOLA, F. et ai Improving Biocompatibility of Implantable Metals by Nanoscaíe Modification of Surfaces: An OverView of Strategies, Fabrication Methods, and Challenges. Small, v. 5, n. 9, p. 996-1006, 2009); (ZHOU, Y.-L.; NIINOMI, M. Microstructures and mechanical properties of Ti-50 mass% Ta alloy for biomedical applications. Journal of Alloys and Compounds, v. 466, n. 1-2, p. 535-542, 2008);(ZHOU, Y.-L.; NIINOMI, M. Ti-25Ta alloy with the best mechanical compatibility in Ti-Ta alloys for biomedical applications. Materials Science and Engineering: C, v. 29, n. 3, p. 1061-1065, 2009);(ZHOU, Y. L.; NIINOMI, M.; AKAHORI, T. Effects of Ta content on Young's modulus and tensile properties of binary Ti-Ta alloys for biomedical applications. Materials Science and Engineering A, v. 371, n. 1-2, p. 283-290, 2004b);(YAO, Q.et ai Influence of Nb and Mo contents on phase stability and elastic property of [beta]-type Ti-X alloys. Transactions of Nonferrous Metals Society of China, v. 17, n. 6, p. 1417-1421, 2007) e (WEI, D. et ai Structure of calcium titanate/titania bioceramic composite coatings on titanium alloy and apatite deposition on their surfaces in a simulated body fluid. Surface and Coatings Technology, v. 201, n. 21, p. 8715-8722, 2007)].Research with Ti CP (commercially pure titanium) and titanium and its alloys has been carried out in order to reach the ideal biomaterial for use in dental implant, with the Ti6AI4V alloy being the most used. However, the low mechanical strength of CP titanium and the cytotoxic effects attributed to the use of the T6AI4V alloy such as Alzheimer's disease [(BALAZIC, M.ef al.Review: titanium and titanium alloy applications in medicine. International Journal of Nano and Biomaterials, v. 1, no. 1, pp. 3-34, 2007); (BOZIC, K. et al. The Epidemiology of Revision Total Knee Arthroplasty in the United States. Clinical Orthopedics and Related Research®, v. 468, no. 1, pp. 45-51, 2010); (BOZKUS, I .; GERMEC-CAKAN, D .; ARUN, T. Evaluation of Metal Concentrations in Hair and Nail After Orthognathic Surgery.Journal of CraniofaciaISurgery, v. 22, No. 1, pp. 68-72 10.1097 / SCS.0b013e3181f6c456, 2011); ELLINGSEN, JE; THOMSEN, P.; LYNGSTADAAS, SP Advances in dental implant materials and tissue regeneration (Periodontology 2000, v. 41, no. 1, pp. 136-156, 2006); (LIU, X .; CHU, PK; DING, C. Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Materials Science and Engineering: A: Reports, v. 47, no. 3-4, p. 49-121, 2004); (MJÖBERG, B.efa / Aluminum, Alzheimer's disease and bone fragility. Acta Orthopaedica, v. 68, no. 6, p. 511-514, 1997); (WANG, K. The use of titanium for medical applications in the USA. Materials Science and Engineering: A, v. 213, no. 1-2, pp. 134-137, 1996); (ZAFFE, D .; BERTOLDI, CONSOLO, U. Accumulation of aluminum in lamellar bone after implantation of titanium plates, Ti-6AI-4V screws, hydroxyapatite granules. Biomaterials, v. 25, no. 17, pp. 3837-3844, 2004)] have taken the development of metals by the addition of non-toxic alloying elements such as tantalum (Ta), zirconium (Zr), niobium (Nb), hafnium (Hf), molybdenum (Mo) and tin (Sn) [( EISENBARTH, E. et al., Biocompatibility of [beta] -stabilizing elements of titanium alloys (Biomaterials, v. 25, no. 26, pp. 5705-5713, 2004); (JIANTING, G .; RANUCCI, D .; GHERARDI, F. Precipitation of β phase in the particles of superalloy nickel-base. Metallurgical and Materials Transactions A, v. 15, no. 7, p. 1331-1334, 1984); (MARECI, D. et al., Comparative corrosion study of Ti-Ta alloys for dental applications. Acta Biomaterialia, v. 5, no. 9, pp. 3625-3639, 2009); (MIYAZAKI, T. et al. Bioactive tantalum metal prepared by NaOH treatment. Journal of Biomedical Materials Research, v. 50, no. 1, pp. 35-42, 2000); (MIYAZAKI, T. et al. Effect of thermal treatment on apatite-forming ability of NaOH-treated tantalum metal. Journal of Materials Science: Materials in Medicine, v. 12, no. 8, pp. 683-687, 2001); (MIYAZAKI, T. et al. Enhancement of bonding strength by graded structure at interface between apatite layer and bioactive tantalum metal. Journal of Materials Science: Materials in Medicine, v. 13, no. 7, p. 651-655, 2002); (NIINOMI, M. Recent metallic materials for biomedical applications. Metallurgical and Materials Transactions A, v. 33, no. 3, p. 477-486, 2002); (TAKAO, H. Recent development of new alloys for biomedical use. Trans Tech, Stafa-Zurich, SUISSE Materials Science forum. 512, p. 243-248, 2006); (VARIOLA, F. et al. Improving Biocompatibility of Implantable Metals by Nanoscae Modification of Surfaces: An OverView of Strategies, Fabrication Methods, and Challenges. Small, v. 5, no. 9, p. 996-1006, 2009); (ZHOU, Y.-L.; NIINOMI, M. Microstructures and mechanical properties of Ti-50 mass% Ta alloy for biomedical applications. Journal of Alloys and Compounds, v. 466, no. 1-2, p. 535-542 (ZHOU, Y.-L.; NIINOMI, M. Ti-25Ta alloy with the best mechanical compatibility in Ti-Ta alloys for biomedical applications. Materials Science and Engineering: C, v. 29, no. 3, 1061-1065, 2009); (ZHOU, YL; NIINOMI, M .; AKAHORI, T. Effects of Ta content on Young's modulus and tensile properties of binary Ti-Ta alloys for biomedical applications. 371, No. 1-2, pp. 283-290, 2004b) (YAO, Q. et al Influence of Nb and Mo contents on phase stability and elastic property of [beta] -type Ti-X alloys. Nonferrous Metals Society of China, v. 17, no. 6, pp. 1417-1421, 2007) and (WEI, D. et al. Structure of calcium titanate / titania bioceramic composite coatings on titanium alloy and apatite deposition on their surfaces in a simulated body fluid Surface and Coatings Technology, v. 201, no. 21, p. 8715-8722, 2007)].

Pesquisas recentes têm investigado o sistema binário Ti-Ta e Ti-Mo para descobrir a proporção ideal de acréscimo de tântalo e molibdênio para obter melhor propriedades mecânicas e de biocompatibilidade.Recent research has investigated the Ti-Ta and Ti-Mo binary system to find out the optimal ratio of tantalum and molybdenum addition for better mechanical and biocompatibility properties.

Além de estabelecer propriedades físicas compatíveis, a interface favorável implante/tecido é também determinante para o sucesso em longo prazo de dispositivos ósseos implantáveis. Modificação na morfologia da superfície de um biomaterial tem demonstrado melhorar as interações celulares e estimular a formação de tecido saudável (SHIMOJO, N. et aí. Cytotoxicity analysis of a novel titanium alloy in vitro: Adhesion, spreading, and proliferation of human gingival fibroblasts. Bio-Medical Materials and Engineering, v. 17, n. 2, p. 127-135, 2007) e (ALLAM, N. K.; FENG, X. J.; GRIMES, C. A. Self-Assembled Fabrication of Verticalíy Oriented Ta205 Nanotube Arrays, and Membranes Thereof, by One-Step Tantalum Anodization. Chemistry of Materials, v. 20, n. 20, p. 6477-6481, 2008).In addition to establishing compatible physical properties, the favorable implant / tissue interface is also critical to the long-term success of implantable bone devices. Modification in the surface morphology of a biomaterial has been shown to improve cellular interactions and stimulate healthy tissue formation (SHIMOJO, N. et al., 2003. Adhesion, spreading, and proliferation of human gingival fibroblasts. Bio-Medical Materials and Engineering, v. 17, no. 2, pp. 127-135, 2007) and (ALLAM, NK; FENG, XJ; GRIMES, CA Self-Assembled Fabrication of Vertical Oriented Ta205 Nanotube Arrays, and Membranes Thereof , by One-Step Tantalum Anodization, Chemistry of Materials, v. 20, no. 20, pp. 6477-6481, 2008).

Diferentes técnicas de modificação de superfície para biomateriais metálicos foram propostas nos últimos anos buscando uma melhor resposta biológica após a sua implantação. Abordagens de modificação de superfície incluem técnicas como anodização [LLAM, N. K.; FENG, X. J.; GRIMES, C. A. Self-Assembled Fabrication of Verticalíy Oriented Ta205 Nanotube Arrays, and Membranes Thereof, by One-Step Tantalum Anodization. Chemistry of Materials, v. 20, n. 20, p. 6477-6481, 2008) e (WANG, K. The use of titanium for medicai applications in the USA. Materials Science and Engineering: A, v. 213, n. 1-2, p. 134-137, 1996).Different surface modification techniques for metallic biomaterials have been proposed in recent years seeking a better biological response after their implantation. Surface modification approaches include techniques such as anodization [LLAM, N. K .; FENG, X. J .; GRIMES, C. A. Self-Assembled Fabrication of Vertical Oriented Ta205 Nanotube Arrays, and Thereof Membranes, by One-Step Tantalum Anodization. Chemistry of Materials, v. 20, no. 20, p. 6477-6481, 2008) and (WANG, K. The use of titanium for medical applications in the USA. Materials Science and Engineering: A, v. 213, no. 1-2, pp. 134-137, 1996).

As técnicas empregadas para modificação de superfície podem ser classificadas em mecânicas, físicas e químicas, de acordo com o mecanismo de formação da camada modificada na superfície do material (BURAKOWSKI, T, WIERZCHON, T. Surface Engineeringof Metals, Principies, Equipment, Technology. CRC Series in Materials Science andtechnology, 1999). Os diversos tratamentos superficiais em implantes de titânio e suas ligas são mostrados na Tabela 1. TABELA1: Métodos de tratamentos superficiais em implantes de titânio e suas ligas (Adaptado de LIU, X.; CHU, P. K.; DING, C. Surface modification of titanium, titanium alloys, and related materiais for biomedical applications. Materials Science and Engineering: R: Reports, v. 47, n. 3-4, p. 49-121,2004).Techniques employed for surface modification can be classified into mechanical, physical and chemical according to the surface-modified layer formation mechanism of the material (BURAKOWSKI, T, WIERZCHON, T. Surface Engineeringof Metals, Principies, Equipment, Technology. CRC Series in Materials Science and Technology, 1999). The various surface treatments in titanium implants and their alloys are shown in Table 1. TABLE1: Surface treatment methods in titanium implants and their alloys (Adapted from LIU, X .; CHU, PK; DING, C. Surface modification of titanium , titanium alloys, and related materials for biomedical applications Materials Science and Engineering: A: Reports, v. 47, no. 3-4, pp. 49-121,2004).

No mercado estão disponíveis implantes dentários confeccionados a partir de titânio comercialmente puro e TÍ6AI4V com tratamentos superficiais em micro-escala. No entanto, em longo prazo, esses revestimentos apresentam alguns inconvenientes que podem levar a perda do implante. A topografia da superfície do implante influencia efetivamente a resposta celular do tecido ao redor do implante. Dessa forma, novas tecnologias que proporcionem a partir da modificação da superfície uma melhor interação na interface metal/osso são alvo de diversas pesquisas. BARTON (BARTON, J. E. et aí.Structural control of anodized tantalum oxide nanotubes. Journal of Materials Chemistry, v. 19, n. 28, p. 4896-4898, 2009) investigou o processo de anodização do tântalo CP com eletrólitos H2S04+HF3% (30V, 20min), H2S04+HF 1% (55V, 20min) e H2S04+HF 2% (25V, 20 min), com calcinação de 750°C por 12horas. EL-SAYED (EL-SAYED, Η. A.; BIRSS, V. I. Controlled growth and monitoring of tantalum oxide nanostructures. Nanoscale, v. 2, n. 5, p. 793-798, 2010) investigou o processo de anodização do tântalo CP com eletrólitoH2S04+HF, 14,5V, entre 5s a 60min. ALLAM et al. (ALLAM, N. K.; FENG, X, J.; GRIMES, C. A. Self-Assembled Fabrication of Vertically Oriented Ta205 Nanotube Arrays, and Membranes Thereof, by One-Step Tantalum Anodization. Chemistry of Materials, v. 20, n. 20, p. 6477-6481, 2008) investigou o processo de anodização do tântalo CP com eletrólitoH2S04+HF+etilenoglicol, 15V, 20min, com calcinação de 300°C por 1 hora. SIEBER (SIEBER, I.; KANNAN, B.; SCHMUKI, P. Self-Assembled Porous Tantalum Oxide Prepared in H2S04/HF Electrolytes. Electrochemical and Solid-State Letters, v. 8, n. 3, p. J10-J12, 2005) investigou o processo de anodização do tântalo CP com eletrólitoH2S04+HF, 20 V por 1 a 4 horas. EL-SAYED (EL-SAYED, Η. A.; BIRSS, V. I. Controlled Interconversion of Nanoarray of Ta Dimples and High Aspect Ratio Ta Oxide Nanotubes. Nano Letters, v. 9, n. 4, p. 1350-1355, 2009) investigou o processo de anodização do tântalo CP com eletrólitoH2S04+HF, 15V, entre 5, 10, 20, 60, 90 e 120 s. TSUCHIYA (TSUCHIYA, H. et al. Anodic oxide nanotube layers on Ti-Ta alloys: Substrate composition, microstructure and self-organization on two-size scales. Corrosion Science,v. 51, n. 7, p. 1528-1533, 2009) investigou o processo de anodização do sistema binário Titânio-Tântalo, sendo o binário Ti-xTa, onde X=13,25, 50 e 80%, utilizando como eletrólito H2S04+HF+H20, a uma tensão de 20V entre 12000 segundos a 200 minutos. JHA et al. (JHA, Η.; HAHN, R.; SCHMUKI, P. Ultrafast oxide nanotube formation on TiNb, TiZr and TiTa alloys by rapid breakdown anodization. Electrochimica Acta, v. 55, n. 28, p. 8883-8887, 2010) investigou o processo de anodização do sistema binário Titânio-Tântalo, sendo o binário Ti-35Ta, utilizando como eletrólito NaCI04+NaCI+H20a uma tensão de 40V, por 2 minutos, com calcinação de 700°C por 3horas. O documento CN101773413 descreve um método de preparação de implante dentário de titânio que envolve o processo de oxidação anódica, sem citar a utilização da liga de Ti-30Ta.Dental implants made from commercially pure titanium and Ti6AI4V with micro-scale surface treatments are available on the market. However, in the long run, these coatings have some drawbacks that may lead to implant loss. Implant surface topography effectively influences the cellular response of the tissue around the implant. Thus, new technologies that provide, from surface modification, a better interaction in the metal / bone interface are the target of several researches. BARTON (BARTON, JE et al. Structural control of anodized tantalum oxide nanotubes. Journal of Materials Chemistry, v. 19, no 28, p. 4896-4898, 2009) investigated the process of tantalum CP anodization with H2S04 + HF3 electrolytes % (30V, 20min), H2SO4 + 1% HF (55V, 20min) and H2SO4 + 2% HF (25V, 20min), with calcination of 750 ° C for 12 hours. EL-SAYED (EL-SAYED, A.A.; BIRSS, VI Controlled growth and monitoring of tantalum oxide nanostructures. Nanoscale, v. 2, no. 5, pp. 793-798, 2010) investigated the process of tantalum anodization CP with electrolyte H2SO4 + HF, 14.5V, between 5s to 60min. ALLAM et al. (ALLAM, NK; FENG, X, J.; GRIMES, CA Self-Assembled Fabrication of Vertically Oriented Ta205 Nanotube Arrays, and Thereof Membranes, by One-Step Tantalum Anodization. Chemistry of Materials, v. 20, n. 20, p 6477-6481, 2008) investigated the anodizing process of tantalum CP with electrolyte H2S04 + HF + ethylene glycol, 15V, 20min, with calcination of 300 ° C for 1 hour. SIEBER (SIEBER, I.; KANNAN, B.; SCHMUKI, P. Self-Assembled Porous Tantalum Oxide Prepared in H2 SO4 / HF Electrolytes. Electrochemical and Solid-State Letters, v. 8, no. 3, pp. J10-J12, 2005) investigated the anodizing process of tantalum CP with electrolyte H2S04 + HF, 20 V for 1 to 4 hours. EL-SAYED (EL-SAYED, AA .; BIRSS, VI Controlled Interconversion of Nanoarray of Ta Dimples and High Aspect Ratio Ta Oxide Nanotubes. Nano Letters, v. 9, 4, p. 1350-1355, 2009) investigated the anodization process of tantalum CP with electrolyte H2S04 + HF, 15V, between 5, 10, 20, 60, 90 and 120 s. TSUCHIYA (TSUCHIYA, H. et al. Anodic oxide nanotube layers on Ti-Ta alloys: Substrate composition, microstructure and self-organization on two-size scales. Corrosion Science, v. 51, no. 7, p. 1528-1533, 2009) investigated the anodizing process of the Titanium-Tantalum binary system, being the Ti-xTa binary, where X = 13.25, 50 and 80%, using as electrolyte H2S04 + HF + H20, at a voltage of 20V within 12000 seconds. at 200 minutes. JHA et al. (JHA,;.; HAHN, R .; SCHMUKI, P. Ultrafast oxide nanotube formation on TiNb, TiZr and TiTa alloys by rapid breakdown anodization. Electrochimica Acta, v. 55, no. 28, pp. 8883-8887, 2010) investigated the anodizing process of the Titanium-Tantalum binary system, being the Ti-35Ta binary, using as electrolyte NaCI04 + NaCI + H20a a voltage of 40V for 2 minutes, with calcination of 700 ° C for 3 hours. CN101773413 describes a method of preparing a titanium dental implant that involves the anodic oxidation process, without mentioning the use of Ti-30Ta alloy.

Dessa forma, é objeto da presente invenção um método de modificação da superfície de ligas de titânio Ti-30Ta e Ti-7,5Mo que emprega a oxidação anódica, substituindo o titânio comercialmente puro (TI CP) por uma liga com propriedades superiores em volume e com superfície que proporcione melhor interação com as células ósseas.Accordingly, a surface modification method of Ti-30Ta and Ti-7,5Mo titanium alloys employing anodic oxidation, replacing commercially pure titanium (TI CP) with an alloy with superior properties by volume, is an object of the present invention. and with surface that provides better interaction with bone cells.

SUMÁRIO A invenção provê um método de modificação de superfície de ligas de titânio que associa o emprego da oxidação anódica a liga de titânio, ainda não empregada comercialmente na área odontológica. A invenção provê um método de modificação de superfície de ligas de titânio que reduz os riscos de falha na ósseo-integração osso/metal. A invenção provê um método de modificação de superfície de ligas de titânio com potencial aplicação em revestimentos para implantes dentários, próteses ortopédicas e cardíacas.SUMMARY The invention provides a surface modification method of titanium alloys that combines the use of anodic oxidation with titanium alloy, not yet commercially employed in the dental field. The invention provides a surface modification method of titanium alloys that reduces the risks of bone / metal bone integration failure. The invention provides a surface modification method of titanium alloys with potential application in dental implant, orthopedic and cardiac prosthesis coatings.

BREVE DESCRIÇÃO DAS FIGURASBRIEF DESCRIPTION OF THE FIGURES

A figura 1 apresenta imagens de micrografia obtida em MEV-FEG para a liga Ti-30Ta após anodização em eletrólito HF+H2S04 (1:9) + 5%DMSO-35V-40 min e calcinação a 530 °C por 3 horas. A figura 2 apresenta imagens de micrografia obtida em MEV-FEG para a liga Ti-30Ta após anodização em eletrólito Glicerol +NH4F -30V-4 horas e calcinação a 530 °C por 3 horas. A figura 3 apresenta imagens de micrografia obtida em MEV-FEG para a liga Ti-30Ta após anodização em eletrólito Glicerol +NH4F -30V - 6 horas e calcinação a 530 °C por 3 horas. A figura 4 apresenta imagens de micrografia obtida em MEV-FEG para a liga Ti-75Mo após anodização em eletrólito glicerol+NH4F, sendo (a) 20V - 34 horas e (b) 20V, 48 horas e calcinação a 450 °C por 1 hora. A figura 5 apresenta imagens de micrografia obtida em MEV-FEG para a liga Ti-75Mo após anodização em eletrólito glicerol +NH4F, onde (a) 30 V, 24 horas e (b) 30 V, 48 horas e calcinação a 450 °C por 1 hora.Figure 1 shows SEM-FEG micrographs for Ti-30Ta alloy after HF + H2S04 (1: 9) + 5% DMSO-35V-40 min anodization and calcination at 530 ° C for 3 hours. Figure 2 shows SEM-FEG micrographs for Ti-30Ta alloy after glycerol + NH4F-30V-4 hour anodization and calcination at 530 ° C for 3 hours. Figure 3 shows MEV-FEG micrographs for Ti-30Ta alloy after glycerol + NH4F-30V - 6 hours electrode anodization and calcination at 530 ° C for 3 hours. Figure 4 shows SEM-FEG micrographs for Ti-75Mo alloy after glycerol + NH4F electrolyte anodization, being (a) 20V - 34 hours and (b) 20V, 48 hours and calcination at 450 ° C for 1 hour. Figure 5 shows SEM-FEG micrograph images for Ti-75Mo alloy after glycerol + NH4F electrolyte anodization, where (a) 30 V, 24 hours and (b) 30 V, 48 hours and calcination at 450 ° C for 1 hour.

DESCRIÇÃO DETALHADA DA INVENÇÃO O método de modificação da superfície de ligas de titânio Ti-30Ta e Ti-7,5Mo compreende em uma primeira etapa a oxidação anódica da superfície da liga, com a criação de um filme óxido em um metal por meio de imersão em um meio eletrolítico. A Tabela 2 apresenta as ligas, eletrólitos, tempo, voltagem e temperatura de calcinação empregadas no processo de anodização para obtenção do nanotubo. TABELA 2: ligas, eletrólito, tempo, voltagem e temperatura de calcinação empregadas no processo de anodização para obtenção do nanotubo.DETAILED DESCRIPTION OF THE INVENTION The surface modification method of Ti-30Ta and Ti-7,5Mo titanium alloys comprises in an initial step the anodic oxidation of the alloy surface with the creation of an oxide film on a metal by dipping. in an electrolyte medium. Table 2 shows the alloys, electrolytes, time, voltage and calcination temperature employed in the anodizing process to obtain the nanotube. TABLE 2: Alloys, electrolyte, time, voltage and calcination temperature employed in the anodizing process to obtain the nanotube.

No processo de anodização foram utilizados como amostras discos 3 mm x13 mm. Antes do início da oxidação anódica, os discos foram imersos em acetona por 3 minutos, lavadas três vezes em álcool isopropílico e água, esfregados manualmente em sabão e água corrente, lavadas 3 vezes em água destilada e álcool isopropílico, submetidas a ultrassom por 7 minutos imersas em álcool isopropílico, lavadas 3 vezes em álcool isopropílico e secas com gás nitrogênio. Foi utilizado como contra-eletrodo platina e como eletrodo de trabalho a liga Ti-30Ta e a liga Ti-7,5Mo, mantendo-se uma distância constante entre os dois de 15 mm. Os eletrodos foram conectados a uma fonte de energia com limite máximo de 400 ma. O processo de anodização foi realizado dentro de uma capela de exaustão de gases devido à toxidade do experimento. Na Figura 1 pode ser observado um modelo de célula eletroquímica utilizada no processo de anodização.In the anodizing process 3 mm x 13 mm discs were used as samples. Prior to the onset of anodic oxidation, the discs were immersed in acetone for 3 minutes, washed three times in isopropyl alcohol and water, manually scrubbed in soap and running water, washed 3 times in distilled water and isopropyl alcohol and sonicated for 7 minutes. immersed in isopropyl alcohol, washed 3 times in isopropyl alcohol and dried with nitrogen gas. It was used as platinum counter electrode and as working electrode Ti-30Ta alloy and Ti-7.5Mo alloy, maintaining a constant distance between the two of 15 mm. The electrodes were connected to a power source with a maximum limit of 400 mA. The anodizing process was performed inside a gas exhaust chapel due to the toxicity of the experiment. Figure 1 shows an electrochemical cell model used in the anodizing process.

Liga Ti-30Ta -Eletrólito HF e H2S04 Foi utilizado o eletrólito HF concentrado (48%) e H2S04 (98%), na proporção volumétrica 1:9, com a adição de 5% de dimetilsulfóxido (DMSO). Submetido a uma tensão de 35 V durante 40 minutos. O experimento foi realizado a temperatura ambiente e durante a sua realização foi mantida uma barra magnética imersa no eletrólito com agitação de 250 rpm. Ao término do processo as amostras foram lavadas três vezes em álcool isopropílico e secas com ar comprimido livre de óleo. Após a oxidação anódica as amostras foram calcinadas em forno resistivo a 530 °C (1 °C/min) por um período de 3 horas.Ti-30Ta-HF and H 2 SO 4 Alloy Concentrated HF (48%) and H 2 SO 4 (98%) electrolyte were used, in a 1: 9 volumetric ratio, with the addition of 5% dimethyl sulfoxide (DMSO). Under a voltage of 35 V for 40 minutes. The experiment was carried out at room temperature and during its performance a magnetic bar immersed in the electrolyte with 250 rpm agitation was maintained. At the end of the process the samples were washed three times in isopropyl alcohol and dried with oil free compressed air. After anodic oxidation the samples were calcined in a resistive oven at 530 ° C (1 ° C / min) for a period of 3 hours.

Eletrólito NH4FNH4F electrolyte

Foi utilizado como eletrólito glicerol e NH4F 0,25%, submetido a uma tensão de 30 V durante 4 e 6 horas. O experimento foi realizado a temperatura ambiente. Ao término do processo as amostras foram lavadas três vezes em álcool isopropílico e secas com ar comprimido livre de óleo. Após a oxidação anódica, as amostras foram calcinadas em forno resistivo a 530 °C (1 °C/min) por um período de 3 horas.It was used as glycerol electrolyte and 0.25% NH4F, submitted to a voltage of 30 V for 4 and 6 hours. The experiment was performed at room temperature. At the end of the process the samples were washed three times in isopropyl alcohol and dried with oil free compressed air. After anodic oxidation, the samples were calcined in a resistive oven at 530 ° C (1 ° C / min) for a period of 3 hours.

Liga Ti-7.5 Mo Foi utilizado como eletrólito glicerol e NH4F 0,25%, submetido a uma tensão de 20 V e 30 V durante 24 e 48 horas. O experimento foi realizado a temperatura ambiente. Ao término do processo as amostras foram lavadas três vezes em álcool isopropílico e secas com ar comprimido livre de óleo. Após a oxidação anódica, as amostras foram calcinadas em forno resistivo a 450 °C (1 °C/min) por um período de 1 hora.Ti-7.5 Mo alloy Glycerol and 0.25% NH4F were used as electrolyte, subjected to a voltage of 20 V and 30 V for 24 and 48 hours. The experiment was performed at room temperature. At the end of the process the samples were washed three times in isopropyl alcohol and dried with oil free compressed air. After anodic oxidation, samples were calcined in a resistive oven at 450 ° C (1 ° C / min) for a period of 1 hour.

Em ambas as ligas, o processo de anodização resultou em nanotubos perpendiculares ao substrato com diâmetro de 80-120 nm e comprimento de 100 nm-500 nm, conforme imagens obtidas em microscópio eletrônico de varredura e apresentadas nas figuras de 1 a 5.In both alloys, the anodizing process resulted in nanotubes perpendicular to the substrate with a diameter of 80-120 nm and a length of 100 nm-500 nm, according to scanning electron microscope images shown in figures 1 to 5.

REIVINDICAÇÕES

Claims (12)

1. MÉTODO DE MODIFICAÇÃO DA SUPERFÍCIE DE LIGAS DE TITÂNIO caracterizado por compreender a oxidação anódica da superfície de ligas de titânio Ti-30Ta e Ti-7,5Mo.1. METHOD FOR MODIFYING TITANIUM ALLOY SURFACE characterized by the anodic surface oxidation of Ti-30Ta and Ti-7,5Mo titanium alloys. 2. MÉTODO DE MODIFICAÇÃO DA SUPERFÍCIE DE LIGA DE TITÂNIO Ti-30Ta, de acordo com a reivindicação 1, caracterizado pelo fato de utilizar-se platina como contra-eletrodo e a liga Ti-10Ta como eletrodo de trabalho.METHOD OF MODIFYING THE TITANIUM ALLOY SURFACE Ti-30Ta according to claim 1, characterized in that platinum is used as a counter electrode and Ti-10Ta alloy as a working electrode. 3. MÉTODO DE MODIFICAÇÃO DA SUPERFÍCIE DE LIGA DE TITÂNIO Ti-30Ta, de acordo com a reivindicação 1 e 2, caracterizado pelo fato do eletrólito poder ser uma mistura de HF (48%) e H2S04 (98%) na proporção volumétrica de 1:9, podendo haver adição de até 5% de dimetilsulfóxido.METHOD OF MODIFYING THE TITANIUM ALLOY SURFACE Ti-30Ta according to claims 1 and 2, characterized in that the electrolyte may be a mixture of HF (48%) and H2S04 (98%) in a volumetric ratio of 1 : 9 and up to 5% dimethylsulfoxide may be added. 4. MÉTODO DE MODIFICAÇÃO DA SUPERFÍCIE DE LIGA DE TITÂNIO Ti-30Ta, de acordo com a reivindicação 1 e 2, caracterizado pelo fato do eletrólito poder ser, alternativamente à reivindicação 3, uma mistura de glicerol e NH4F 0,25%.METHOD OF MODIFYING THE TITANIUM ALLOY SURFACE Ti-30Ta according to claim 1 and 2, characterized in that the electrolyte may alternatively be a mixture of glycerol and 0.25% NH4F. 5. MÉTODO DE MODIFICAÇÃO DA SUPERFÍCIE DE LIGA DE TITÂNIO Ti-30Ta, de acordo com as reivindicações 1, 2 e 3, caracterizado pelo fato do processo de anodização ser realizado com a aplicação de uma tensão de 35V durante 40 minutos.METHOD OF MODIFYING THE TITANIUM ALLOY SURFACE Ti-30Ta according to claims 1, 2 and 3, characterized in that the anodizing process is carried out by applying a voltage of 35V for 40 minutes. 6. MÉTODO DE MODIFICAÇÃO DA SUPERFÍCIE DE LIGA DE TITÂNIO Ti-30Ta, de acordo com as reivindicações 1, 2 e 4, caracterizado pelo fato do processo de anodização ser realizado com a aplicação de uma tensão de 30V por um período de 4 a 6 horas.METHOD OF MODIFYING THE TITANIUM ALLOY SURFACE Ti-30Ta according to claims 1, 2 and 4, characterized in that the anodizing process is carried out by applying a voltage of 30V for a period of 4 to 6. hours 7. MÉTODO DE MODIFICAÇÃO DA SUPERFÍCIE DE LIGA DE TITÂNIO Ti-30Ta, de acordo com as reivindicações 1 a 6, caracterizado pelo fato da calcinação da liga ser realizada a 530 °C durante 3 h.METHOD OF MODIFYING THE TITANIUM ALLOY SURFACE Ti-30Ta according to claims 1 to 6, characterized in that the calcination of the alloy is performed at 530 ° C for 3 h. 8. MÉTODO DE MODIFICAÇÃO DA SUPERFÍCIE DE LIGA DE TITÂNIO Ti-7,5Mo, de acordo com a reivindicação 1, caracterizado pelo fato de utilizar-se platina como contra-eletrodo e a liga Ti-7,5Mo como eletrodo de trabalho.METHOD OF MODIFYING THE TITANIUM ALLOY SURFACE Ti-7,5Mo according to claim 1, characterized in that platinum is used as a counter electrode and Ti-7.5Mo alloy as a working electrode. 9. MÉTODO DE MODIFICAÇÃO DA SUPERFÍCIE DE LIGA DE TITÂNIO Ti-7,5Mo, de acordo com as reivindicações 1 e 8, caracterizado pelo fato do eletrólito ser uma mistura de glicerol e NH4F 0,25%.METHOD OF MODIFYING THE TITANIUM ALLOY SURFACE Ti-7,5Mo according to claims 1 and 8, characterized in that the electrolyte is a mixture of glycerol and 0.25% NH4F. 10. MÉTODO DE MODIFICAÇÃO DA SUPERFÍCIE DE LIGA DE TITÂNIO Ti-7,5Mo, de acordo com as reivindicações 1, 8 e 9, caracterizado pelo fato do processo de anodização ser realizado com a aplicação de uma tensão entre 20 e 30V durante 24 a 48 horas.METHOD OF MODIFYING THE TITANIUM ALLOY SURFACE Ti-7,5Mo according to claims 1, 8 and 9, characterized in that the anodizing process is carried out by applying a voltage between 20 and 30V for 24 to 48 hours 11. MÉTODO DE MODIFICAÇÃO DA SUPERFÍCIE DE LIGA DE TITÂNIO Ti-7,5Mo, de acordo com as reivindicações 1, 8, 9 e 10, caracterizado pelo fato da calcinação da liga ser realizada a 450 °C durante 1 h.METHOD OF MODIFYING THE TITANIUM ALLOY SURFACE Ti-7,5Mo according to claims 1, 8, 9 and 10, characterized in that the calcination of the alloy is performed at 450 ° C for 1 h. 12. PRODUTOS OBTIDOS mediante o processo reivindicado em 1, caracterizado pelo fato de compreender nanotubos perpendiculares ao substrato com diâmetro de 80-120 nm e comprimento de 100 nm-500 nm.Products obtained by the process claimed in 1, characterized in that it comprises nanotubes perpendicular to the substrate with a diameter of 80-120 nm and a length of 100 nm-500 nm.
BR102014004074A 2014-02-21 2014-02-21 surface modification method of titanium alloys and product obtained BR102014004074A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
BR102014004074A BR102014004074A2 (en) 2014-02-21 2014-02-21 surface modification method of titanium alloys and product obtained

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
BR102014004074A BR102014004074A2 (en) 2014-02-21 2014-02-21 surface modification method of titanium alloys and product obtained

Publications (1)

Publication Number Publication Date
BR102014004074A2 true BR102014004074A2 (en) 2015-12-08

Family

ID=54837963

Family Applications (1)

Application Number Title Priority Date Filing Date
BR102014004074A BR102014004074A2 (en) 2014-02-21 2014-02-21 surface modification method of titanium alloys and product obtained

Country Status (1)

Country Link
BR (1) BR102014004074A2 (en)

Similar Documents

Publication Publication Date Title
Buser et al. Enhanced bone apposition to a chemically modified SLA titanium surface
Indira et al. Corrosion behavior of electrochemically assembled nanoporous titania for biomedical applications
Kang et al. Bone-like apatite formation on manganese-hydroxyapatite coating formed on Ti-6Al-4V alloy by plasma electrolytic oxidation
Duarte et al. Growth of aluminum-free porous oxide layers on titanium and its alloys Ti-6Al-4V and Ti-6Al-7Nb by micro-arc oxidation
Stróż et al. Production, structure and biocompatible properties of oxide nanotubes on Ti13Nb13Zr alloy for medical applications
Siu et al. Fabrication of bioactive titania coating on nitinol by plasma electrolytic oxidation
Shivaram et al. Mechanical degradation of TiO2 nanotubes with and without nanoparticulate silver coating
Rahman et al. Electrochemical & osteoblast adhesion study of engineered TiO2 nanotubular surfaces on titanium alloys
Qadir et al. Effect of anodized TiO2–Nb2O5–ZrO2 nanotubes with different nanoscale dimensions on the biocompatibility of a Ti35Zr28Nb alloy
Benea et al. Reactivity of porous titanium oxide film and chitosan layer electrochemically formed on Ti-6Al-4V alloy in biological solution
Kim et al. Bioactive effect of alkali-heat treated TiO2 nanotubes by water or acid treatment
Hassan et al. Effects of varying electrodeposition voltages on surface morphology and corrosion behavior of multi-walled carbon nanotube coated on porous Ti-30 at.%-Ta shape memory alloys
Byeon et al. Electrochemically-coated hydroxyapatite films on nanotubular TiNb alloys prepared in solutions containing Ca, P, and Zn ions
Wang et al. Surface modification of porous titanium with microarc oxidation and its effects on osteogenesis activity in vitro
Wang et al. An in vitro evaluation of the hierarchical micro/nanoporous structure of a Ti3Zr2Sn3Mo25Nb alloy after surface dealloying
Fathyunes Effect of ultrasonic waves on the electrochemical deposition of calcium phosphate/nano-sized silica composite coating
Xu et al. Osteogenic TiO2 composite nano-porous arrays: A favorable platform based on titanium alloys applied in artificial implants
Li et al. Hydrophilicity of bioactive titanium surface with different structure, composition, crystal form and grain size
Park et al. Variations of nanotubes on the Ti–Nb–Hf alloys with applied voltages
KR20130092855A (en) Porous surface having a triple structure of at the macro, micro and nanolevel for improving osteointegration of implants and method for producing the same
Stróż et al. Electrochemical synthesis of oxide nanotubes on biomedical Ti13Nb13Zr alloy with potential use as bone implant
BR102014004074A2 (en) surface modification method of titanium alloys and product obtained
Capellato et al. Cellular functionality on nanotubes of Ti-30Ta alloy
SafaviPour et al. TiO2 nanotube/chitosan-bioglass nanohybrid coating: fabrication and corrosion evaluation
Hsu et al. Formation of nanotubular structure on low-modulus Ti–7.5 Mo alloy surface and its bioactivity evaluation

Legal Events

Date Code Title Description
B03A Publication of a patent application or of a certificate of addition of invention [chapter 3.1 patent gazette]
B06F Objections, documents and/or translations needed after an examination request according [chapter 6.6 patent gazette]
B06V Preliminary requirement: patent application procedure suspended [chapter 6.22 patent gazette]
B07A Technical examination (opinion): publication of technical examination (opinion) [chapter 7.1 patent gazette]
B09B Patent application refused [chapter 9.2 patent gazette]
B09B Patent application refused [chapter 9.2 patent gazette]

Free format text: MANTIDO O INDEFERIMENTO UMA VEZ QUE NAO FOI APRESENTADO RECURSO DENTRO DO PRAZO LEGAL