BE859137A - Procede ameliore pour la preparation d'alcane-polyols - Google Patents

Procede ameliore pour la preparation d'alcane-polyols

Info

Publication number
BE859137A
BE859137A BE181260A BE181260A BE859137A BE 859137 A BE859137 A BE 859137A BE 181260 A BE181260 A BE 181260A BE 181260 A BE181260 A BE 181260A BE 859137 A BE859137 A BE 859137A
Authority
BE
Belgium
Prior art keywords
emi
rhodium
reaction
atoms
polyols
Prior art date
Application number
BE181260A
Other languages
English (en)
Original Assignee
Union Carbide Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Union Carbide Corp filed Critical Union Carbide Corp
Publication of BE859137A publication Critical patent/BE859137A/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/151Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
    • C07C29/1512Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by reaction conditions
    • C07C29/1514Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by reaction conditions the solvents being characteristic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/151Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
    • C07C29/153Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used
    • C07C29/156Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used containing iron group metals, platinum group metals or compounds thereof
    • C07C29/157Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used containing iron group metals, platinum group metals or compounds thereof containing platinum group metals or compounds thereof
    • C07C29/158Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used containing iron group metals, platinum group metals or compounds thereof containing platinum group metals or compounds thereof containing rhodium or compounds thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description


  Procédé amélioré pour la préparation d'alcane-polyols La présente invention concerne un procédé amélioré pour la préparation d'alcools et plus particulièrement d'alcane-polyols, de leurs esters et éthers et

  
de leurs oligomères, donnant comme sous-produits des alcools monohydriques et leurs dérivés.

  
La préparation industrielle des polyols se

  
fait actuellement par l'oxydation de produits provenant du pétrole. Etant donné les difficultés croissantes d'approvisionnement en pétrole et l'augmentation continuelle du prix de celui-ci, il existe un besoin certain pour d'autres produits chimiques peu coûteux, convenant pour la synthèse de polyols.

  
Le procédé suivant l'invention permet de préparer de façon économiquement intéressante les alcane-

  
 <EMI ID=1.1> 

  
 <EMI ID=2.1> 

  
propanols et leurs esters et éthers.

  
 <EMI ID=3.1> 

  
 <EMI ID=4.1> 

  
sont connus. C'est ainsi que les brevets 3 833 634 et 3 957 857 (il est à noter que tous les brevets ci-ces

  
 <EMI ID=5.1>  d'effectuer ces réactions entre 100 et 375[deg.]C environ et sous une pression absolue de 35 à 3500 kg/cm<2> environ en présence comme catalyseur d'un complexe au rhodium-carbonyle, c'est-à-dire d'une combinaison du rhodium et d'oxyde de carbone, en phase liquide homogène, ce qui sous-entend la dissolution du catalyseur au rhodium dans un solvant approprié, liquide dans les conditions réactionnelles.

  
Cette synthèse d'alcane-polyols à partis d'oxydes de carbone et d'hydrogène a été développée et perfectionnée par les brevets 3 878 214, 3 878 290,

  
3 878 292, 3 886 364, 3 929 969, 3 940 432, 3 944 588, 3 948 965 et 3 952 039, ainsi que par diverses demandes de brevets non encore accordés.

  
Les études effectuées ont montré que.le solvant approprié, dont question ci-dessus, capable de former une phase liquide homogène, doit être un solvant permettant de séparer les ions présents sans compléter

  
 <EMI ID=6.1> 

  
de complexer les cations présents et de libérer ainsi les anions 

  
 <EMI ID=7.1>  D'autres solvants avantageux, préconisés par des demandes de breveta non encore accordés, sont le sulfolanneet la butyrolactone, dont la constante diélectrique élevée diminue les forces d'attraction entre les ions à charges opposées; une meilleure productivité et une plus grande rétention du catalyseur au rhodium dans la phase liquide seraient obtenues par un mélange de 

  
 <EMI ID=8.1> 

  
La demanderesse a trouvé à présent que la préparation d'alcane -polyols par réaction en phase liquide homogène entre 100 et 450[deg.]C environ sous une pression absolue de 35 à 3500 kg/cm2 environ d'oxydes de carbone et d'hydrogène en présence d'une proportion catalytique d'un complexe au rhodium-carbonyle, telle que décrite dans les brevets déjà énumérés, est réalisable avec une plus grande vitesse de formation des polyols et une meilleure rétention du catalyseur au rhodium dans le milieu réactionnel liquide, lorsqu'on emploie comme

  
 <EMI ID=9.1> 

  
Les recherches ayant conduit aux déjà cités, impliquant entre autres la détermination du spectre

  
 <EMI ID=10.1> 

  
fait apparaître que le complexe au rhodium-carbonyle est présent dans le milieu réactionnel sous forme d'anion et que le milieu contient par conséquent nécessairement des cations, le choix du solvant devant donc se porter sur un composé capable de modifier dans le sens d'une diminution l'affinité réciproque entre les anions et cations présents pour obtenir des résultats plus avantageux, en particulier une plus grande vitesse de forma-

  
 <EMI ID=11.1> 

  
 <EMI ID=12.1> 

  
solvant le mieux à même de former avec ce cation un complexe stable, ne possédant qu'une faible affinité pour l'anion du complexe au rhodium-carbonyle.

  
Le choix du solvant le mieux approprié pour répondre aux critères ci-dessus peut entre autres être réalisé par l'essai préliminaire ci-après:

  
Un réacteur en acier inoxydable d'une - capacité

  
 <EMI ID=13.1>  porte à 240[deg.]C et maintient pendant 4 heures à cette température, la pression étant maintenue pendant toute la durée de la réaction à 560 &#65533; 30 kg/cm<2> par des additions périodi-

  
 <EMI ID=14.1> 

  
Après refroidissement à la température ordinaire et détente du réacteur, le mélange réactionnel est soumis à une chromatographie en phase gazeuse, par exemple dans un

  
 <EMI ID=15.1> 

  
Le taux de récupération du rhodium est déterminé par absorption atomique sur le contenu du réacteur .après élimination des produits gazeux n'ayant pas réagi. Uns analyse supplémentaire peut être effectuée en ajoutant 100 ml du solvant employé pour l'essai dans le réacteur, en portant

  
 <EMI ID=16.1> 

  
pendant 30 mn, en refroidissant, en éliminant les produits gazeux n'ayant pas réagi et à déterminer par absorption atomique la teneur en rhodium du contenu.

  
Le diagramme annexé illustre l'évolution du taux de production d'éthylène-glycol en fonction de proportions croissantes d'agent d'activation (en abscisse), dans ce cas

  
 <EMI ID=17.1> 

  
glycol supérieur au meilleur résultat réalisable dans l'un des solvants employés jusqu'à présent pour ces réactions La classe des composés utilisés comme solvants dans le procédé de l'invention est décrite de façon relativement exhaustive dans de nombreuses publications, dont on peut citer entre autres:
a) "Structure and Bonding ", vol. 16, éditions Springer,

  
 <EMI ID=18.1> 

  
(pages 1 à 69) et la définition des différentes sortes de complexes, donnée à la page 13; <EMI ID=19.1> 
450; c) Cram et coll., Pure and Applied Chemistry, vol. 43
(1975), pages 327 à 349; d) Gokel et coll., Aldrichimica Acta, vol. 9, (1976), pages 3 à 12; <EMI ID=20.1> 
(1974), n[deg.] 3, pages 351 à 384, qui énumère à la page

  
351 les caractéristiques générales des composés organiques macrocycliques, convenant comme solvants pour le procédé de l'invention, en particulier la définition d'un

  
 <EMI ID=21.1> 

  
 <EMI ID=22.1> 

  
 <EMI ID=23.1> 

  
comportement hydrophobe, capable de fixer un grand nombre de cations, cette fixation s'accompagnant souvent d'une

  
 <EMI ID=24.1>  ceux-ci, formés in situ lors de la mise en oeuvre du procédé de l'invention.

  
Une description détaillée des éthers couronne, de leur structure et de la nomenclature adoptée pour cette classe est donnée par Pedersen dans le J.A.C.S., vol 89, n[deg.] 10 de mai 1967, pages 2495 à 2496 - "Communication to The Editor&#65533;;.vol. 89, n[deg.] 29 de décembre 1967, pages 7017 à 7036. Cette classe de composés est en outre

  
 <EMI ID=25.1> 

  
3 952 015, 3 965 116 et 3 966 766.

  
Les éthers couronne à employer comme solvants dans le procédé de l'invention contiennent au moins

  
4 atomes d'oxygène dans le noyau principal, ces atomes étant séparés par au moins deux atomes de carbone aliphatiques; les composés préférés sont ceux dont le noyau principal contient au moins deux atomes d'oxygène voisins de radicaux éthylène substitués ou non, les autres atomes d'oxygène du noyau principal étant liés à des groupes tri- et(ou) tétraméthylène substitués ou non. Le nombre

  
 <EMI ID=26.1> 

  
 <EMI ID=27.1> 

  
50 environ, lorsque le nombre total d'atomes d'oxygène

  
 <EMI ID=28.1> 

  
 <EMI ID=29.1> 

  
 <EMI ID=30.1>  

  
ceux-ci ne modifient pas de façon notable le pouvoir de solvatation du composé dans le sens de l'invention.

  
Les éthers couronne peuvent être des composés mono-, bi- ou polycycliques, ainsi que le font apparaître les structures schématiques ci-après:

  
monocyclique bicyclique tricyclique

  

 <EMI ID=31.1> 


  
 <EMI ID=32.1> 

  
tivement), 

  
Du fait que les éthers couronne monocycliques

  
 <EMI ID=33.1> 

  
les solvants préférés pour le procédé de l'invention. 

  
Une méthode avantageuse met en oeuvre la synthèse de Williamson (cf. Feiser and Fieser, Organic Chemistry, 3ème édition (1956), page 136), les halogénures pouvant être remplacés par des esters tels qu'un acylate, un sulfonate ou un sulfate, en condensant, soit deux partenaires de la réaction, soit quatre molécules réactives d'après les schémas ci-après (cf. J. Lehn,,loc. cit.):

  

 <EMI ID=34.1> 


  
Les composés de départ pour l'obtention de

  
 <EMI ID=35.1> 

  
ticulier l'oxyde d'éthylène et l'oxyde de 1 . 2-propylène."

  
Il y a lieu de noter que si tous les éthers couronne constituent des solvants avantageux pour le procédé de préparation d'alcane-polyols suivant l'inve--.-- 

  
 <EMI ID=36.1>  découlant de leur utilisation, vont cependant en diminuant, lorsque le rapport entre le nombre d'atomes de carbone et le nombre d'atomes d'oxygène des fonctions éther va croissant. Les résultats optimaux sont par conséquent obtenus avec les éthers couronne avec un tel rapport aussi bas que possible, en particulier les composés, dont le noyau principal contient entre 4 et 15 atomes d'oxygène faisant partie de fonctions éther.

  
 <EMI ID=37.1> 

  
entrant dans la constitution de ces éthers couronne, peuvent éventuellement être substitués par des radicaux

  
 <EMI ID=38.1> 

  
atomes de carbone voisins d'atomes d'oxygène ne faisant pas partie d'une fonction éther, des radicaux hydroxy-

  
 <EMI ID=39.1> 

  
oxyalcoylène ou oxyalcoylène en C2 à C4 environ, des groupes carboxylate liés au noyau par un atome de car-

  
 <EMI ID=40.1> 

  
noyau un cycle condensé ou spirannique, etc.

  
A titre d'exemples de substituants pour les

  
 <EMI ID=41.1>  

  
n-hexyle, 2-éthyl-hexyle et n-octyle;

  
comme radicaux cyclo-alcoyle les radicaux cyclobutyle, cyclopentyle, cyclohexyle et cyclooctyle;

  
comme radicaux hydroxy-alcoyle les radicaux hydroxyméthyle, 2-hydroxyéthyle, 2-hydroxypropyle, 3-hydroxypropyle, 2-hydroxybutyle, 4-hydroxybutyle, 5-hydroxypentyle et 6-hydroxyhexyle;

  
les groupes oxy-alcoylène de la formule

  
 <EMI ID=42.1> 

  
 <EMI ID=43.1> 

  
C4 environ et n vaut 1 à 113 environ et de préférence

  
 <EMI ID=44.1> 

  
ou à un atome de carbone du noyau voisin d'un atome d'oxygène ne faisant pas partie d'une fonction éther; les groupes hydroxy-alcoyl-oxyalcoylène , formés d'une fraction hydroxy-alcoyle et d'une fraction alcoylène choisies parmi les groupes cités ci-dessus;

  
les groupes acyle de la formule

  

 <EMI ID=45.1> 


  
 <EMI ID=46.1>  

  
les groupes carboxylate et les groupes oxycarbonyle de la formule 

  

 <EMI ID=47.1> 


  
dans laquelle chacun des indices a, m et [pound] peut valoir 0 ou 1 avec 0 pour m = 1 et.! = 0 pour p = 1,

  
 <EMI ID=48.1> 

  
lié à un atome de carbone voisin d'un atome d'oxygène

  
ne faisant pas partie d'une fonction éther, Ra représente

  
 <EMI ID=49.1> 

  
 <EMI ID=50.1> 

  
les significations définies pour Ra ou représente un radical alcoylène formant avec des atomes de carbone du noyau un cycle condensé ou spirannique tel que

  

 <EMI ID=51.1> 


  
 <EMI ID=52.1>  paration d'alcane-polyols comme le tétraglyme, le sulfolanneet la Y-butyrolactone.

  
La proportion des éthers couronne dans la phase liquide homogène doit cependant être de 10% en poids au moins.

  
L'utilisation d'un mélange de solvants peut par exemple améliorer l'inhibition de toute réaction entre les anions et les cations et avoir un effet synergique, c'est-à-dire que l'amélioration est supérieure à la somme des améliorations réalisables avec chaque composant séparément.

  
 <EMI ID=53.1> 

  
culièrement avantageux, principalement grâce à son pouvoir complexant élevé. Les composés utilisés comme cosolvants doivent par conséquent posséder surtout une constante diélectrique élevée.

  
Pour obtenir l'effet synergique, dont question ci-dessus, le rapport (en volumes) entre le ou les éthers couronne et les autres co-solvants, à savoir le

  
 <EMI ID=54.1> 

  
cependant être déterminé par quelques essais préli-

  
 <EMI ID=55.1>  de 1 entre le solvant et le ou les co-solvants peut conduire à un résultat optimal, tandis qu'un autre mélange réactionnel exige un rapport de'2.

  
 <EMI ID=56.1> 

  
de l'invention la tétraméthylène-sulfone (1,1-dioxyde de tétrahydro-thiophène) et ses dérivés de substitution aux caractéristiques de solvatation semblables, répondant à la formule

  

 <EMI ID=57.1> 


  
 <EMI ID=58.1>   <EMI ID=59.1> 

  
R[deg.][deg.] étant un atome d'hydrogène ou un radical alcoyle en

  
 <EMI ID=60.1> 

  
environ et de préférence 1 à 4 environ, tel qu'un groupe poly-(oxyéthylène), poly-(oxypropylène), poly-(oxy-

  
 <EMI ID=61.1> 

  
glycol ou un éther d'alcoyle inférieur d'un tel groupe; un groupe carboxylate de la formule

  

 <EMI ID=62.1> 


  
 <EMI ID=63.1> 

  
dans les positions 3 et 4 sont préférés comme co=solvants 

  
 <EMI ID=64.1> 

  
Le cata3.yseur au rhodium-carbonyle paire être rais en oeuvre sous forme d'un complexe du rhodium et du

  
 <EMI ID=65.1> 

  
de carbone et l'hydrogène, d'un complexe du rhodium avec l'oxyde de carbone et une ou plusieurs bases de Lewis: 

  
d'un complexe du rhodium avec l'oxyde de carbone, l'hydrogène et une ou plusieurs bases de Lewis, ou d'un mélange de plusieurs des formes ci-dessus.

  
Les complexes au rhodium-carbonyle peuvent en outre se présenter sous forme d'agrégats, tels que les

  
a décrit P. Chini dans "The Closed Métal Carbonyl Clusters " in "Inorganica Chimica Acta " (1968), pages
30 à 50, en les définissant comme étant "un nombre fini d'atomes de métaux, tous ou du moins la majeure partie liés les uns aux autres par des liaisons directes métalmétal, l'agrégat pouvant éventuellement comprendre également quelques atomes d'éléments non-métalliques".

  
Les agrégats préférés pour le procédé suivant l'invention sont ceux, dont le seul métal est le rhodium; le cas échéant, ils peuvent comporter une fraction mineure d'un autre métal tel que le cobalt et/ou l'iridium. Outre les atomes de métal, ces agrégats comprennent des atomes de carbone et d'oxygène, de préférence sous forme de radicaux carbonyle (en position terminale ou non), ainsi qu'éventuellement des groupes formés par le

  
 <EMI ID=66.1>  

  

 <EMI ID=67.1> 


  
Cette structure peut être établie par la technique de diffraction des rayons X, le spectre de

  
 <EMI ID=68.1> 

  
Acta", 3: 2 de juin 1969, pages 299 à 302). 

  
Un complexe au rhodium-carbonyle, comme il

  
est indiqué ci-dessus, est donc un composé formé de rhodium complexé par le monoxyde de carbone, soit seul, soit combiné avec de l'hydrogène et(ou) des bases de Lewis minérales ou organiques, agissant comme chélatants additionnels. Dans ce dernier cas, le terme "complexe " désigne un composé de coordination, formé par l'union d'un ou de plusieurs atomes ou molécules riches en électrons et capables d'exister de façon indépendante avec

  
un ou plusieurs atomes ou molécules pauvres en électrons, également capables d'exister séparément. Le rôle joué

  
par les bases de Lewis dans la réaction du procédé de l'invention n'a pu encore être élucidé complètement. Elles

  
 <EMI ID=69.1> 

  
source de contre-ions ou comme agents de neutralisation ou de fixation de certaines espèces moléculaires qui,

  
 <EMI ID=70.1> 

  
un atome d'oxygène et(ou) un atome d'azote avec une paire

  
 <EMI ID=71.1> 

  
 <EMI ID=72.1> 

  
dont le nombre dépend de celui des atomes de base de Lewis. 

  
Les bases de Lewis organiques azotées (composés

  
 <EMI ID=73.1> 

  
nées (composés "aza-oxa ") ne comprennent en général, à côté des hétéro-atomes, que des atomes d'hydrogène et

  
 <EMI ID=74.1> 

  
ques et(ou) cycliques, c'est-à-dire aliphatiques, cycloaliphatiques ou aromatiques, condensés, pontés, etc.

  
Les atomes d'azote peuvent former un groupe

  
 <EMI ID=75.1> 

  
autres un groupe oxhydryle aliphatique ou phénolique,

  
0 0

  
 <EMI ID=76.1> 

  
 <EMI ID=77.1> 

  
0

  
n

  
 <EMI ID=78.1> 

  
0

  
<t

  
du groupe -COH est l'oxygène du radical oxhydryle et

  
 <EMI ID=79.1>  le tétrahydropyranne, le pyrocatéchol, l'acide citrique, le 2-méthoxyéthanol, le 2-éthoxyéthanol; le 2-n-propoxyéthanol, le 2-n-butyléthanol, le 1,2,3-trihydroxybenzène, le 1,2,4-trihydroxybenzène, le 2,3-dihydroxynaphtalène, le cyclohexane-1,2-diol, l'oxétane, le 1,2-diméthoxybenzène, le 1,2-diéthoxybenzène, l'acétate de méthyle, l'éthanol, le 1,2-diméthoxyéthane, le 1,2-diéthoxyéthane,

  
 <EMI ID=80.1> 

  
la 3-méthylpentane-2,4-dione; les éthers mono- et dialcoyliques du propylène-glycol, du diéthylène-glycol, du dipropylène-glycol, etc.

  
Comme aza-bases de Lewis, convenant peur le procédé de l'invention, on peut citer l'ammoniac et les amines primaires, secondaires et tertiaires, à savoir

  
les mono-, di-, tri- et poly-amines, les bases dont l'atome d'azote fait partie d'une structure cyclique

  
 <EMI ID=81.1>  

  
la diisobutylamine, la triméthylamine, la méthyldiéthylamine, la triisobutylamine, la tridécylamine, etc.; les di- et polyamines aliphatiques et aromatiques telles que

  
 <EMI ID=82.1> 

  
diamine, etc., les amines aromatiques comme l'aniline, la 1-naphtylamine, la 2-naphtylamine, la p-toluidine,

  
 <EMI ID=83.1> 

  
naphtalène, etc.; les aminés alicycliques comme la cyclohexylamine, la dicyclohexylamine, etc. ; les amines hétérocycliques comme la pipéridine et ses dérivés substitués tels que la 2-méthylpipéridine, la 3-méthyl-

  
 <EMI ID=84.1>  

  
la 2,N-diméthylpipérazine; le 2,2'-dipyridyle et ses dérivés méthyl-, éthyl-.et 4-triéthylsilyl- substitués;

  
 <EMI ID=85.1> 

  
substitué; la purine, etc.

  
Les aza-oxa-bases de Lewis peuvent être choisies parmi les alcanolamines telles que l'éthanolamine, la

  
 <EMI ID=86.1> 

  
etc.; le N,N-diméthylglycocolle, le N,N-diéthylglycocolle; l'acide iminodiacétique, l'acide N-méthyl&#65533;

  
 <EMI ID=87.1> 

  
pyridine, la 2,4-dihydroxypyridine, la. 2-méthoxypyridine, la 2,6-diméthoxypyridine, la 2-éthoxypyridine; les hydroxypyridines substituées par des radicaux alcoyle

  
 <EMI ID=88.1> 

  
la 4-méthyl-2,6-di-hydroxypyridine, etc.; la morpholine et ses dérivés substitués comme la 4-méthylmorpholine et

  
la 4-phénylmorpholine; l'acide picolinique et son dérivé

  
 <EMI ID=89.1> 

  
de ces composés. 

  
Les bases de Lewis peuvent être présentes dans le milieu réactionnel sous forme d'un composé ou d'un ligand capable de complexer le rhodium-carbonyle. Le

  
rôle des complexes au rhodium-carbonyle, dont question ci-dessus, dans la formation des polyols n'a pu encore être élucidé complètement. Il est supposé que dans les conditions réactionnelles du procédé de l'invention,

  
le rhodium actif est présent sous forme d'anions de rhodium-carbonyle qui, d'après S. Martinengo et P. Chini in "Gazz. Chim. Ital. ", 102 (1972), page 344, réagissent comme suit:

  

 <EMI ID=90.1> 


  
 <EMI ID=91.1> 

  
transformation de l'oxyde de carbone et de l'hydrogène en polyols, n'a pu encore être précisé.

  
L'hypothèse. qu'un anion complexe de rhodiumcarbonyle constitue la substance catalytiquement active

  
 <EMI ID=92.1> 

  
formation de la substance active, permet cependant une meilleure description et compréhension du rôle joué par les solvants suivant l'invention dans la formation de polyols. Ce rôle semble être la capacité de maintenir les anions de rhodium-carbonyle dans une forme réactive

  
 <EMI ID=93.1> 

  
de ces anions, ni la formation de complexes trop fortement chélatés, le résultat global étant un anion d'un degré de réactivité nettement accru dans les conditions réactionnelles.

  
Le procédé de l'invention est réalisé sous pression élevée, de l'ordre de 60 à 3500 kg/cm<2> environ. Des pressions plus élevées sont possibles, mais sans conduire à des résultats susceptibles de compenser les dépenses pour des installations capables d'y résister.

  
 <EMI ID=94.1> 

  
de carbone.

  
 <EMI ID=95.1> 

  
situe généralement vers 1100 kg/cm<2>. Lorsqu'on désire réaliser la réaction à une pression, plus faible, par

  
 <EMI ID=96.1>  

  
à moins que le milieu réactionnel ne contienne une aza-base de Lewis, ou qu'on y ajoute un sel agissant comme activateur.

  
Les sels convenant comme activateurs pour

  
la production de polyols aux basses pressions sont entre autres les sels d'ammonium et les sels des métaux des classes I et II du tableau périodique des éléments, en particulier les halogénures, hydroxydes, alcoxydes, phénoxydes et carboxylates tels que le fluorure de sodium, l'acétate de potassium, le fluorure de césium, le pyridinoléate de césium, le formiate de césium, l'acétate de césium, le benzoate de césium, le

  
 <EMI ID=97.1> 

  
l'acétate de rubidium, l'acétate de magnésium, l'acétate de strontium, le formiate d'ammonium, le benzoate d'ammonium., etc., ainsi que les sels d'ammonium quater-

  
 <EMI ID=98.1> 

  
des formules
 <EMI ID=99.1> 
  <EMI ID=100.1> 

  
identiques ou différents, représentent chacun un radi-

  
 <EMI ID=101.1> 

  
ron, tel qu'un radical méthyle, éthyle, n-propyle, isopropyle, n-butyle, octyle, 2-éthyl-hexyle, dodécyle, etc., un groupe cyclo-aliphatique mono- ou bicyclique tel qu'un

  
 <EMI ID=102.1> 

  
etc., un groupe aryle, alcoyl-aryle ou aralcoyle tel qu'un

  
 <EMI ID=103.1> 

  
phényle, benzyle, &#65533;-phényléthyle, 3-phénylpropyle, etc., un radical alcoyle à substituant fonctionnel comme les

  
 <EMI ID=104.1> 

  
phénoxyéthyle, etc., ou un groupe polyalcoylène-éther de

  
 <EMI ID=105.1> 

  
 <EMI ID=106.1> 

  
environ, n possède une valeur moyenne de 1 à 4 et x une valeur moyenne de 2 à 150 environ, tel qu'un groupe poly&#65533;
(oxyéthylène), poly(oxypropylène), poly(oxyéthylène-

  
 <EMI ID=107.1> 

  
 <EMI ID=108.1> 

  
lièrement préférés. 

  
Les sels de di-(triorgano-phosphine)-iminium du genre ci-dessus peuvent entre autres être préparés par la méthode décrite par R. Appel et A. Hanas dans

  
 <EMI ID=109.1> 

  
Conviennent en outre comme sels organiques activateurs les sels d'amines hétérocycliques quaternaires tels que les sels de pyridinium, de pipéridinium,

  
 <EMI ID=110.1> 

  
 <EMI ID=111.1> 

  
 <EMI ID=112.1>  

  
rement intéressants; à titre d'exemples, on peut citer la-pyridine, la 2,4,6-triméthyl-pyridine, la 4-diméthylamino-pyridine, la 4-tridécyl-pyridine, l'isobutyl-amine, la triéthyl-amine, la N-méthyl-pipéridine, la N-méthylmorpholine, le bis-(1,8-diméthylaminonaphtalène, le

  
 <EMI ID=113.1> 

  
Lorsqu'une base azotée de Lewis est simultanément employée comme composé activateur, sa proportion

  
 <EMI ID=114.1> 

  
et de préférence entre 0,1 et 1 équivalent environ par mole de rhodium. A noter que l'équivalent d'un composé activateur est donné par le nombre de moles de ce composé, multiplié par le nombre des atomes d'azote par molécule.

  
Le procédé de l'invention peut également être réalisé avec des mélanges de sels et de composés aminés, destinés à activer la réaction aux basses pressions.

  
Ces composés activateurs peuvent évidemment aussi être introduits dans le mélange réactionnel sous une forme quelconque, capable de donner naissance in

  
 <EMI ID=115.1> 

  
 <EMI ID=116.1> 

  
 <EMI ID=117.1> 

  
formamide, d'urée, d'oxime, etc. 

  
Un autre groupe de composés susceptibles

  
 <EMI ID=118.1> 

  
en particulier de ceux de la formule 
 <EMI ID=119.1> 
 <EMI ID=120.1> 

  
être identiques ou différents, représentent des radicaux

  
 <EMI ID=121.1> 

  
 <EMI ID=122.1> 

  
constituent des composés activateurs particulièrement avantageux pour le procédé de l'invention.

  
Le catalyseur, dont les proportions ne sont pas critiques, donne déjà une vitesse de réaction accep-

  
 <EMI ID=123.1> 

  
supérieure étant uniquement dictée par des considérations économiques, vu le prix du rhodium et de ses dérivés.

  
 <EMI ID=124.1>  La température réactionnelle peut également varier dans de larges limites, généralement entre 100

  
et 375[deg.]C environ. A une température inférieure à 100[deg.]C, la vitesse de production des polyols devient trop faible, tandis qu'aux températures supérieures à 375[deg.]C, le catalyseur risque d'être détérioré. Il y a également lieu

  
de tenir compte du fait que la réaction de formation d'un polyol tel que l'éthylène-glycol est une réaction d'équilibre: 

  

 <EMI ID=125.1> 


  
et que les températures trop élevées favorisent la réaction de décomposition.

  
La réaction de formation des polyols est favorisée par des pressions partielles d'hydrogène et d'oxyde de carbone élevées, mais celles-ci exigent des installations coûteuses. Pour ces raisons, la température réactionnelle se situe de préférence entre 150 et 320[deg.]C, surtout entre 210 et 300[deg.]C environ.

  
 <EMI ID=126.1> 

  
la proportion du. catalyseur des pressions totales et partielles des partenaires de la réaction, etc., peut

  
 <EMI ID=127.1> 

  
Le;3 proportions molaires respectives des parte-.

  
 <EMI ID=128.1> 

  
 <EMI ID=129.1> 

  
environ. 

  
Au lieu du monoxyde de carbone, on peut évidemment mettre en oeuvre un autre oxyde de carbone ou un mélange d'oxydes de carbone qui, dans les conditions réactionnelles, forme du monoxyde. Le mélange gazeux peut en outre contenir de la vapeur d'eau.

  
La préparation de polyols par le procédé de l'invention peut être réalisée en continu ou en discontinu dans une installation comportant une ou plusieurs zones réactionnelles telles que des réacteurs tubulaires, dans lesquelles le catalyseur peut être introduit en

  
une fois au début de la réaction ou de façon continue ou par portions pendant le déroulement de la réaction,-le mélange réactionnel étant maintenu en agitation par un moyen connu quelconque. Des échangeurs de chaleur internes et(ou) externes seront prévus pour régler la température de la réaction exothermique, de même que des dispositifs de dosage des partenaires de la réaction et de réglage

  
de leurs proportions respectives et pressions partielles.

  
Le polyol produit peut être séparé par des techniques d'extraction usuelles, les produits gaze,,=

  
 <EMI ID=130.1> 

  
le catalyseur au rhodium pouvant être recyclés dans la zone réactionnelle, le cas échéant après un traitement

  
 <EMI ID=131.1> 

  
de l'oxyde de carbone et(ou) de l'hydrogène frais,,, Comme déjà dit plus haut, le catalyseur et l'agent d'activation peuvent être ajoutés tels quels au milieu réactionnel ou être formés dans ce dernier. Comme dérivés du rhodium capables de donner in situ un catalyseur au rhodium-carbonyle, on peut citer

  
 <EMI ID=132.1> 

  
nyle, le dirhodium-oxacarbonyle, l'hexarhodium-hexa-

  
 <EMI ID=133.1> 

  
l'acétate de rhodium bivalent, le propionate de rhodium bivalent, le butyrate de rhodium bivalent, le valérate de rhodium bivalent, le naphténate de rhodium trivalent, l'acétylacétonate de rhodium-dicarbonyle, le tri-acétylacétonate de rhodium, le trihydroxyde de rhodium,

  
 <EMI ID=134.1> 

  
dione de rhodium-dicarbonyle, le tris-(hexane-2,4dione)-rhodium trivalent, le tris-(heptane-2,4-dione)-

  
 <EMI ID=135.1> 

  
des supports poreux ou analogues.

  
Des composés peu solubles comme le tétrarhodium-dodécacarbonyle peuvent être ajoutas sous forma de très fines particules"  La formation du complexe au rhodium-çarbonyle peut être réalisée entre environ 30'et 100[deg.]C sous une

  
 <EMI ID=136.1> 

  
en présence ou non d'hydrogène, et le cas échéant en présence d'environ 0,01 à 25 moles d'un sel ou d'une base azotée de Lewis par mole de rhodium élémentaire, cette réaction étant terminée après environ 30 mn à

  
 <EMI ID=137.1> 

  
vation peuvent être accrues, lorsque celui-ci sert simultanément de diluant.

  
Les appareils et dispositifs permettant de déterminer le spectre infra-rouge des complexes ou agrégats au rhodium-carbonyle anioniques sont décrits dans les brevets 3 957 875 et 3 886 364.

  
Il reste à noter que le terme "oxyde de carbone ", tel qu'utilisé dans la présente description, désigne le monoxyde de carbone, soit pur, soit en mélange avec l'anhydride carbonique, introduit tel quel ou formé

  
 <EMI ID=138.1> 

  
 <EMI ID=139.1> 

  
déroule essentiellement en phase liquide homogène, même

  
 <EMI ID=140.1> 

  
mineure du catalyseur sous forme de particules solides 

  
L'invention est illustrée ci-après par quelque?. exemples non limitatifs, résumés dans les tableaux I à VII.

  
 <EMI ID=141.1> 

  
a lieu de noter les détails ci-après.

  
Le sulfolanne employé comme solvant pour les essais est un produit purifié conformément à la technique décrite par N. Arnett et C.F. Douty dans le "Journal

  
 <EMI ID=142.1> 

  
Les autres réactifs.utilisés dans les essais peuvent être caractérisés comme suit: le benzoate de

  
 <EMI ID=143.1> 

  
calculé: C 33,10; H 1,98%

  
trouvé : C 32,62; H 1,90%);

  
 <EMI ID=144.1> 

  
 <EMI ID=145.1> 

  
calculé: C 28,90; H 2,13%

  
trouvé : C 28,26; H 2,05%).

  
Les éthers couronne employés comme solvants sont des produits fournis par la firme Parish Chemical Company, Provo, USA.

  
L'éther[18]couronne-6 est soumis avant son utilisation à un chauffage sous vide pour éliminer

  
 <EMI ID=146.1> 

  
vérifiée par chromatographie en phase gazeuse et détermination de son spectre de résonance magnétique nucléaire et de son point de fusion.

  
 <EMI ID=147.1> 

  
 <EMI ID=148.1> 

  
de sodium, suivie d'une nouvelle distillation purifica-

  
 <EMI ID=149.1>  chromatographie en phase gazeuse avec..une teneur résiduelle en chlore de 16 à 28 ppm.

  
Le mode opératoire suivi pour les essais est le suivant: Un réacteur en acier inoxydable d'une capacité de 150 ml, capable de résister à des pressions pouvant atteindre 7000 atm. et équipé d'un thermocouple, est chargé d'un mélange de 75 ml du solvant choisi et indiqué dans chaque tableau, de la proportion indiquée

  
 <EMI ID=150.1> 

  
des proportions précisées d'agent d'activation ou de mélange d'agents d'activation.

  
Dans le réacteur fermé, on introduit un mélange gazeux composé de proportions équimolaires de monoxyde

  
de carbone et d'hydrogène jusqu'à l'obtention de la pression spécifiée. Le contenu du réacteur est ensuite chauffé et lorsque la température'atteint 190[deg.]C, la pression initiale est rétablie par une quantité supplémentaire

  
 <EMI ID=151.1>  Les tableaux indiquent pour chaque essai le rendement en éthylène-glycol (colonne "glycol") et en méthanol (colonne MeOH) en moles/ h pour approximativement 6 millimoles de rhodium-dicarbonyl-acétylacétonate, ainsi que le taux de récupération du rhodium
(en pour cent de la quantité de rhodium chargée dans le réacteur), ce.dernier étant déterminé par absorption atomique. 

  

 <EMI ID=152.1> 


  

 <EMI ID=153.1> 
 

  

 <EMI ID=154.1> 


  

 <EMI ID=155.1> 
 

  

 <EMI ID=156.1> 


  

 <EMI ID=157.1> 
 

  

 <EMI ID=158.1> 


  

 <EMI ID=159.1> 
 

  

 <EMI ID=160.1> 


  

 <EMI ID=161.1> 
 

TABLEAU VI

  
Efficacité comparée de deux solvants Conditions réactionnelles:

  
 <EMI ID=162.1> 

  
température : 260[deg.]C

  
 <EMI ID=163.1> 

  
mélange activant: 0,375 millimole de benzoate de césium

  
+ 4 millimoles de N,N'-éthylènedimorpholine

  

 <EMI ID=164.1> 


  
Dans le cas de l'essai avec l'ester dicyclo-

  
 <EMI ID=165.1> 

  
indiqué de façon approximative, parce que le mélange réactionnel a été extrait du réacteur à 90[deg.]C, ce qui

  
 <EMI ID=166.1> 

  
formé 

  
Les résultats ci-dessus confirment ce qui a

  
 <EMI ID=167.1> 

  
l'amélioration de la productivité par l'utilisation d'un éther-couronne suivant l'invention est inversement

  
 <EMI ID=168.1> 

  
 <EMI ID=169.1> 

  
éther du solvant employé

Claims (1)

  1. <EMI ID=170.1>
    Ether[15]-couronne-5
    Conditions réac- <EMI ID=171.1>
    pression: 1050 kg/cm<2>
    <EMI ID=172.1>
    <EMI ID=173.1>
    <EMI ID=174.1>
    <EMI ID=175.1> 3.- Procédé selon la revendication 2, carac-
    <EMI ID=176.1>
    sulfolanne ou la Y-butyrolactone.
    4.- Procédé suivant la revendication 1, caractérisé en ce que l'éther-couronne employé comme solvant contient dans son noyau principal un nombre d'.atomes
    <EMI ID=177.1>
    pas 100.
    5.- Procédé suivant la revendication 4, caractérisé en ce que l'éther-couronne employé comme solvant contient dans son noyau principal entre 4 et 15 atomes d'oxygène faisant partie de fonctions éther.
    6.- Procédé suivant l'une des revendications 1 à 5, caractérisé en ce que l'éther-couronne employé
    <EMI ID=178.1>
    7.- Procédé suivant l'une des revendications 1 à 5, caractérisé en ce que l'éther-couronne -employé
    <EMI ID=179.1>
    quelconque des exemples.
BE181260A 1976-09-29 1977-09-28 Procede ameliore pour la preparation d'alcane-polyols BE859137A (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US72764676A 1976-09-29 1976-09-29

Publications (1)

Publication Number Publication Date
BE859137A true BE859137A (fr) 1978-03-28

Family

ID=24923443

Family Applications (1)

Application Number Title Priority Date Filing Date
BE181260A BE859137A (fr) 1976-09-29 1977-09-28 Procede ameliore pour la preparation d'alcane-polyols

Country Status (3)

Country Link
JP (1) JPS53124204A (fr)
AU (1) AU519702B2 (fr)
BE (1) BE859137A (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2385667A1 (fr) * 1977-03-30 1978-10-27 Union Carbide Corp Procede de production d'alcane-polyols

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1099296A (fr) * 1977-05-26 1981-04-14 Leonard Kaplan Meilleur amorcage d'un procede catalyse de synthese d'alcools polyhydriques
JPS5448703A (en) * 1977-09-13 1979-04-17 Union Carbide Corp Novel solvent for contact manufacture method of polyhydric alcohol
JPH0521174Y2 (fr) * 1985-09-03 1993-05-31
US5058875A (en) * 1990-06-28 1991-10-22 Brandt, Inc. Currency counter
JP6831125B2 (ja) * 2019-03-29 2021-02-17 国立大学法人京都大学 水素化物イオン含有組成物、水素化物イオン含有組成物の製造方法、及び、化合物のヒドリド還元方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2385667A1 (fr) * 1977-03-30 1978-10-27 Union Carbide Corp Procede de production d'alcane-polyols

Also Published As

Publication number Publication date
JPS5640132B2 (fr) 1981-09-18
AU519702B2 (en) 1981-12-17
JPS53124204A (en) 1978-10-30
AU2918477A (en) 1979-04-05

Similar Documents

Publication Publication Date Title
CA1140592A (fr) Procede de preparation de l&#39;acetaldehyde
CA2120407C (fr) Procede de preparation d&#39;acides carboxyliques ou des esters correspondants en presence d&#39;un catalyseur a base de rhodium et d&#39;iridium
EP0011042B2 (fr) Procédé de préparation de l&#39;acétaldéhyde
EP0046128A1 (fr) Procédé d&#39;hydrocarbonylation et/ou de carbonylation de carboxylates d&#39;alkyles
EP1890990A1 (fr) Procede de fabrication d&#39;acides carboxyliques
EP1364936A1 (fr) Procédé de carbonylation des alcools utilisant un catalyseur à base de rhodium ou d&#39;iridium dans un liquide ionique non-aqueux, avec un recyclage efficacé du catalyseur
JPH05208926A (ja) 有機ヒドロペルオキシド類の分解
BE859137A (fr) Procede ameliore pour la preparation d&#39;alcane-polyols
EP0022038B1 (fr) Procédé d&#39;homologation du méthanol
CA1184191A (fr) Procede de preparation de carboxylates d&#39;alkyles a partir de leurs homologues inferieurs
FR2488884A1 (fr) Procede pour la preparation d&#39;acetaldehyde et d&#39;ethanol
BE837232A (fr) Procede d&#39;obtention catalytique de polyalcools
EP0280583B1 (fr) Procédé de préparation d&#39;hydroxybiphenyles
FR2635518A1 (fr) Procede de production d&#39;alcools superieurs par formation d&#39;homologues
IE58072B1 (en) Process for the synthesis of 2,2,2-trifluoroethanol and 1,1,1,3,3,3-hexafluoroisopropyl alcohol
FR2950881A1 (fr) (poly)glycerols, leurs procedes de fabrication et leurs utilisations
JP2003192643A (ja) 炭酸エステルの製造方法
EP0278845A2 (fr) Procédé de préparation d&#39;hydroxybiphenyles
JPS58109446A (ja) 蓚酸エステルの製法
CA2550076C (fr) Procede de synthese en continu de monoalkyl-hydrazines a groupe alkyle fonctionnalise
JP7053642B2 (ja) 金属カルボニルを生成する方法
EP0378463A1 (fr) Procédé de désallylation des N-allylanilines et des N,N-diallylanilines par des métaux
FR2571719A1 (fr) Procede d&#39;homologation d&#39;alcools satures comportant au moins deux atomes de carbone en alcools superieurs comportant au moins un atome de carbone supplementaire
JP2022158861A (ja) アルケンのヒドロキシカルボニル化用触媒、金属錯体、及び、カルボン酸化合物の製造方法
JPS62158238A (ja) ポリフルオロ脂肪族モノおよびポリカルボン酸の分離精製方法