AU750111B2 - Photographic image system - Google Patents

Photographic image system Download PDF

Info

Publication number
AU750111B2
AU750111B2 AU26437/00A AU2643700A AU750111B2 AU 750111 B2 AU750111 B2 AU 750111B2 AU 26437/00 A AU26437/00 A AU 26437/00A AU 2643700 A AU2643700 A AU 2643700A AU 750111 B2 AU750111 B2 AU 750111B2
Authority
AU
Australia
Prior art keywords
film
photographic
image
frame
photographic film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
AU26437/00A
Other versions
AU2643700A (en
Inventor
Akira Nakanishi
Shunzi Obayashi
Takahiko Saito
Hideki Toshikage
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to AU26437/00A priority Critical patent/AU750111B2/en
Publication of AU2643700A publication Critical patent/AU2643700A/en
Application granted granted Critical
Publication of AU750111B2 publication Critical patent/AU750111B2/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Description

S&F Ref: 336968D1
AUSTRALIA
PATENTS ACT 1990 COMPLETE SPECIFICATION FOR A STANDARD PATENT
ORIGINAL
9 9 Name and Address of Applicant Actual Inventor(s): Address for Service: Sony Corporation 7-35, Kitashinagawa 6-chome Shinagawa-ku Tokyo Japan Takahiko Saito, Akira Nakanishi, Shunzi Obayashi, Hideki Toshikage Spruson Ferguson St Martins Tower 31 Market Street Sydney NSW 2000 Invention Title: Photographic Image System 9*99 9.9 The following statement is a full description of this invention, including the best method of performing it known to me/us:- 5845c -1- PHOTOGRAPHIC IMAGE SYSTEM s FIELD OF THE INVENTION The present invention relates to a photographic camera system for producing pictures having various frame sizes, and more particularly to a photographic camera using a specialized photographic film and a film printing device for printing the processed photographic film having a succession of frames of different sizes that have been photographed by the camera.
DESCRIPTION OF THE BACKGROUND 15 The photographic film that is in the most widespread use today is 35-mm film (system 135) as provided for by Japanese Industrial Standards (JIS) and International e Organization of Standardization (IOS).
U.S. Patent 5,049,908 describes a photographic camera and a film therefor, with the film being of a 35-mm size devoid of sprocket holes of the size used in present films and having an effective image area of about 30mm across the film, thereby providing an increased effective usable film area.
[R.\LIBQ]00212.doc:GMM More specifically, ignoring dimensional tolerances, present 35-mm films for use in general photography have a width of 35 mm between opposite longitudinal edges and include a series of film-transport perforations or sprocket holes defined along the opposite longitudinal edges of the film. The film-transport perforations are spaced 25 mm across the film and have a pitch of 4.75 mm. Frames on such a present 35-mm film are of a rectangular shape having a width of 25 mm across Ic the film and a length of 36 mm along the film. The frames have a pitch of 38 mm, which is eight times larger than the pitch of the film-transport perforations.
As described in U.S. Patent 5,049,908, some modern photographic film cameras are electronically controlled to provide motor-driven operation with high accuracy, and it has been experimentally confirmed that the film can be transported quite accurately without requiring the large sprocket wheels and film perforations that are found in most present cameras and films. In the e1o system described in U.S. Patent 5,049,908, the film-transport perforations are not present in the photographic film, thereby increasing the available frame width across the film up to the regions where such film-transport perforations were located. The proposed .S film thus has an increased effective image area for improved image quality. This patent describes four sizes that are available for frames that can be exposed on a film free of film-transport perforations.
-2- According to one size, a frame that can be exposed in an effective image area of the 35-mm film has a width of 30 mm across the film and a length of 40 mm along the film. The frames of such a size have a pitch of 42.0 mm, for example. The frame size and pitch are selected to match specifications of the present television broadcasting system, for example, the NTSC system. Therefore, the frames have an aspect ratio of 3:4.
Another frame size described in that patent is i' based on High-Definition Television (HDTV) :o specifications, in which frames have a width of 30 mm and a length of 53.3 mm and a pitch of 57.75 mm, for example.
The aspect ratio of the frames having that size is 9:16.
IT The above-mentioned frame sizes are full-frame sizes, and the other two frame sizes are half-frame sizes. According to one of the half-frame sizes, frames have a width of 30 mm and a length of 22.5 mm and a pitch of 26.2 mm, for example, to match present television O broadcasting system specifications. According to the other half-frame size, frames have a width of 30 mm and a length of 16.9 mm and a pitch of 21.0 mm, for example, to match HDTV specifications.
Film with the above four frame formats is stored in the same film cartridge as presently available film.
Because the frames in either of the above frame formats have a width of 30 mm, there are unexposed areas of about 2.5 mm between the frames and along the opposite longitudinal edges of the film. These unexposed areas may be used to keep the film flat, control the film, and write and read data when taking pictures.
The proposed camera may be relatively small and lightweight, because it does not require film-transport sprocket wheels.
Films that are actually collected in processing laboratories are processed either simultaneously in a (o batch or individually. In a simultaneous batch process, several thousand films are processed per hour at a high rate to realize economics of scale for reducing the printing cost. Specifically, a plurality of exposed films are collected in the processing laboratory and are S spliced end to end to form a long, continuous film strip, which is then stored in a film magazine and subsequently processed.
If the films that are spliced into the continuous strip contain frames exposed in different l frame formats, such as disclosed in U.S. patent No.
5,049,908, then the long single film stored in the film magazine contains different frame sizes, thereby making printing a problem.
U.S. Patents 4,384,774 and 5,066,971 propose 2 cameras capable of switching between half and full frame sizes at the time the film is exposed. When film exposed using these proposed cameras is spliced into a long, single, film strip for simultaneous batch processing, -he -4continuous film strip also contains different frame sizes.
The processing laboratories are therefore required to form notches indicative of frame centers for automatically printing spliced films with different frame sizes after they are developed. For example, as disclosed in U.S. patent No. 4,557,591, a human operator manually notches a side edge of a spliced film and, hence, the notches are required to control the feed of i© the film. With the disclosed process, it is impossible to process several thousand films per hour, however, the cost of processing exposed film is relatively high. As a consequence, films with different frame sizes may not be S. accepted by processing laboratories in Japan.
Many processing laboratories all over the world also do not accept films with frames exposed in half size because they do not want different frame sizes to be contained in a single spliced film that is stored in a single film magazine for subsequent processing and o printing. This problem arises because the different frame sizes can be recognized only after the film has been developed. One solution would be to apply marking seals to exposed films so that the films of different frame sizes thereof can be distinguished and sorted out for individual processing and printing. Nevertheless, use of marking seals would not essentially solve the problem, because it would be difficult to supply such marking seals consistently over a number of years.
I -6- SUMMARY OF THE INVENTION The invention provides a photographic image apparatus for transforming an image on a frame of a photographic film to a video signal, said photographic image apparatus comprising: a body; film feed means disposed on said body for feeding a photographic film; image transforming means disposed on said body for transforming an image on said photographic film to a video signal; first means disposed on said body for detecting a frame position indicator located on said photographic film and generating a frame control signal; second means disposed on said body for magnetically or optically detecting aspect information non-mechanically recorded in a marginal area along an edge of said photographic film and generating an aspect control signal, said aspect information indicating an aspect of an effective area on said photographic film where an exposure area is to be printed on a photographic paper; and control means for controlling said film feed means in response to said position control signal and for controlling said image transforming means to control an aspect of o.
said video signal depending on said aspect control signal.
S. BRIEF DESCRIPTION OF THE DRAWINGS 25 Fig. 1 is a fragmentary front elevational view of a 35-mm film that has been exposed using a 35-mm photographic camera; Fig. 2 is a fragmentary front elevational view of another 35-mm film that has been exposed using a 35-mm photographic camera; Figs. 3A and 3B are elevational views of 35-mm film cartridges that can be used in a 35-mm photographic camera; Figs. 4A and 4B are elevational views of 35-mm film cartridges that can be used in a 35-mm photographic camera; Fig. 5 is a rear elevational view of a 35-mm photographic camera with a rear lid removed; dFig. 6 is an elevational view of an inner surface of a rear lid of the Sphotographic camera of Fig. [R:\LIBQ] 1324.doc:eaa -7- Fig. 7 is a cross-sectional view taken along line VII-VII of Fig. Fig. 8 is a block diagram of a control system of a 35-mm photographic camera using the film of Figs. 3A and 3B; Fig. 9 is a rear elevational view of a 35-mm photographic camera with the rear lid removed; Fig. 10 is an enlarged fragmentary view of a portion of the camera shown in Fig.
7; Figs. 1 A through 11E are fragmentary front elevational views showing the positional relationships of frames exposed on a 35-mm film using a 35-mm photographic camera; Fig. 12 is a block diagram of a control system of a 35-mm photographic camera using the film of Figs. 4A and 4B; 15 Fig. 13 is an elevational view of an automatic printer for printing on photosensitive paper a processed 35-mm film that was exposed using a Sphotographic camera; Fig. 14 is a block diagram of a control system used in an automatic printer shown in Fig. 13; Fig. 15 is a block diagram of a control system of a printer; Figs. 16A and 16B are fragmentary front elevational views showing the relationship between a 35-mm film and sensors in the automatic printer shown in Fig. 13; Fig. 17 is a flowchart of an operating method that is performed by a microprocessor of the control system shown in Fig. 14; Figs. 18A and 18B are representative of the relative sizes of negative-carrier variable slits in the automatic printer; Figs. 19A and 19B are representations showing the relative sizes of variable paper masks in the automatic printer; Fig. 20 is a rear elevational view of a 35-mm photographic camera with a rear lid removed; Fig. 21 is a rear elevational view of a 35-mm photographic camera with a rear lid removed; Fig. 22 is a perspective view of a photographic image system that can transfer a frame on a photographic film to a video signal; [R:\LIBQ]00212.doc:GMM 8 Fig. 23 is an elevational representation showing the film path looking into the lower body of the photographic and video system shown in Fig. 22; Fig. 24 is a schematic representation of the overall system of the photographic and video system shown in Fig. 22; s Fig. 25 is a plan view of the image transform area of a charge coupled device image used in the photographic and video system of Fig. 22; Fig. 26 is a plan view of the image transfer area on a larger scale; Fig. 27 is a pictorial representation of a video monitor connected to the photographic and video system of Fig. 22; 10 Fig. 28 is a representation of video screens showing the graphical menu used with the system of Fig. 22 to select a photographic print size; Fig. 29A is a schematic in block diagram form of an image process circuit, and Fig. 29B is a schematic in block diagram form showing the image process output circuit of Fig. 29A in more detail; 15 Figs. 30A through 30D represent photographic superimpositions that are possible; Figs. 31A and 31B are pictorial representations using a line scanner and sensor system; and Fig. 32 is a schematic in block diagram form of electronic shutter circuit used in the system of Figs. 31A and 31B.
DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS
A 35-mm photographic film 1 that can be used in a 3 5-mm photographic camera is described with reference to Figs. 1, 2, 3A, and 3B, in which Figs. 1 and 2 show photographic Film 1 after it has been exposed, and Figs. 3A and 3B show photographic film 1 before being exposed.
As shown in Figs. 3A and 3B, the 35-mm photographic film 1 is stored in a film cartridge 16 and has an end extending out of the film cartridge 16. Images that are photographed on the 3 5 -mm photographic film 1 are turned upside down by the lenses, so [R \LIBK]01731 doc nax that the upper end of an image is positioned on a lower portion of the photographic film 1.
Fig. 3B shows by way of example a photographed image of a subject in broken lines, which appears to be turned upside down on the photographic film 1.
Each of the photographic films 1 shown in Figs. 1, 2, 3A, and 3B has a series of film position detecting holes 19 defined along an unexposed marginal edge area thereof, which has a width of about 2.5 mm. This unexposed marginal area is used to control the film, to magnetically or optically read or write data, and when taking a picture. The film position detecting holes 19 *o
S.
«g I R[ \I113BK]I 1731 doc mI have a diameter of about 1 mm and are spaced at a constant, predetermined pitch. The pitch of the film position detecting holes 19 in the photographic film 1 shown in Fig. 1 is 5.25 mm, for example, and the pitch of the film position detecting holes 19 in the photographic film 1 shown in Fig. 2 is 6.28 mm.
The film position detecting holes 19 can be replaced by magnetic marks 19' spaced at a predetermined constant pitch and made by a suitable magnetic head on a \O magnetic edge portion 19'' formed on the unexposed film.
The magnetic marks 19' are shown as broken lines on the S•magnetic strip 19'' in Figs. 4A and 4B, because they are :eeo not actually visable. Alternatively, the marks 19' could be formed as small dots of magnetic material, such as S iron oxide or a transparent magnetic material, deposited on the unexposed film and detected by the magnetic head.
The other side of the marginal area that is defined by holes 19 or magnetic marks 19', 19", as shown in Figs. 1- 4, can be used for an order information area as described 0 below. This order information area is recorded by the photographic image system and used in the photographic and video printing system.
Distances by which the different photographic films 1 with the film position detecting holes 19 or )E magnetic marks 19' spaced at the pitches of 5.25 mm and 6.28 mm are advanced to feed frames of different frame sizes are given in Table 1 below.
Table 1 Frame sizes (Width x length) NTSC-matched frame size (30 mm x 40 mm), full size Pitch 6.28 mm
I
43.96 pitches 6.28 x 7 HDTV-matched frame size (30 mm x 53.3 mm), full size HDTV-matched frame size (30 mm x 16.9 mm), half size Pitch 5.25 mm 42.0 5.25 x 8 pitches 57.75 5.25 x 11 pitches 21.0 5.25 x 4 pitches 56.52 pitches 6.28 x 9 -tI 18.84 pitches 6.28 x 3 NTSC-matched frame 25.12 6.28 x 4 26.25 5.25 x size (30 mm x 22.5 pitches pitches )S mm), half size The photographic film 1 shown in Fig. 3A has film position detecting holes 19 that will be positioned along an upper marginal edge area after the photographic film is exposed, however, no tongue is a0 provided at the leading end, so that no tongue-removing process will subsequently be required. Because no tongue-removing process will be required, the subsequent processing of the photographic film 1 is less costly.
This applies to the film shown in Fig. 4A as well.
The photographic film 1 shown in Fig. 3B also has film position detecting holes 19 that will be positioned in an upper marginal edge area thereof after the photographic film is exposed, and has a tongue at its leading end on its lower portion. The tongue at the leading end of the photographic film 1 is vertically opposite in position to the tongue of an ordinary 35-mm photographic film that is now generally commercially available. If a photocoupler is used in a photographic camera for detecting the film position detecting holes 19, then when the photographic s film 1 is loaded into the photographic camera, the marginal edge with the film position detecting holes 19 is not required to be manually inserted into the photocoupler, but is automatically inserted into the photocoupler when the photographic film 1 is wound by a film transport mechanism in the photographic camera. This also applies to the film shown in Fig. 4B.
A photographic camera that can use the photographic films 1 shown in Figs. 1, 2, o..
o 3A, and 3B is shown and described with reference to Figs. 5 through 8 and 10. Fig. 5 is a rear elevation of the photographic camera with the rear lid or cover removed. The lid is shown in Fig. 6. The photographic camera has a dark box 4 including a cartridge housing 17 for housing the film cartridge 16, which is of a known structure, an exposure opening 7 near the cartridge housing 17 and through which the photographic film 1 can be exposed to light passing through a camera lens, aperture, and shutter not shown in Fig. and a film housing 18 for housing the photographic film 1 after it has been exposed.
*o [R \IIIIKOI?3z do,: ;\l 13 The photographic film 1 that is unwound from the film cartridge 16 housed in the cartridge housing 17 is fed over the exposure opening 7 while being transversely limited in motion by upper and lower respective pairs of film guides 30, 31, and is then moved into the film housing 18 after being exposed.
The film housing 18 has a guide roller 32 for automatically setting or loading the photographic film 1, and a film take-up spool 9 rotatable by a motor, shown at i0 10 in Fig. 8, for winding the exposed photographic film 1 thereon.
The photographic camera has a light-emitting diode (LED) 5a positioned between the lower film guides *30, 31 for detecting the film position detecting holes 15 19, and a photodetector, shown in Fig. 6 at 5b, disposed on a pressure plate of the rear lid and positioned in registry with the LED 5a across the photographic film 1i.
The photodetector 5b has a diameter of 1.5 mm, for example.
20o The LED 5a emits infrared radiation having a wavelength of 940 nm, which is different from those radiation wavelengths to which the photographic film is sensitive. Referring to Fig. 8, the LED 5a and the photodetector 5b jointly make up a hole sensor 5 that 2S applies an output signal to a counter in a system controller 8 that comprises a microcomputer. In this way, the system controller 8 can recognize the positicn of the photographic film 1 over the exposure opening 7.
The LED 5a and the photodetector 5b may be alternatively replaced with a photocoupler that also comprises an LED and a photodetector but which are positioned in confronting relationship, as described hereinbelow.
Alternatively, as shown in Fig. 9 the LED can be replaced by a magnetic head 5c that operates to sense the magnetic marks 19', shown in Figs. 4A and 4B, that are on the marginal edge area 19'' of the unexposed film.
tO In Fig. 5, the exposure area opening 7 has its size defined by left and right movable masks 15 that are laterally movable over the width of the exposure opening 7 from opposite sides thereof. The size of the exposure.
opening 7 in the longitudinal direction of the
S
5 photographic film 1 can selectively be changed to four different dimensions of 53.33 mm, 40.00 mm, 22.5 mm, and 16.90 mm as indicated by the four pairs of broken lines in Fig. As shown in Figs. 7 and 10, the left and right o 20 movable masks 15 are retractable into left and right side walls, respectively, that are positioned on opposite sides of the exposure opening 7 and extend substantially perpendicularly to the photographic film 1 as it extends over the exposure opening 7. As shown in Fig. 8, two i2 linear toothed bars 33 are attached to the respective lower edges of the movable masks 15 and held in mesh with respective drive feed gears 34 of a gearbox 35, much like a rack and pinion assembly. When the gears 34 of the gearbox 35 are driven to rotate the linear toothed bars 33, and hence the movable masks 15, are linearly moved over the exposure opening 7.
As shown in Figs. 5 and 7, the photographic camera has a frame size setting switch 6 which can manually be turned by the user of the camera to produce a command signal indicative of a selected frame size which to is one of the frame sizes described above in Table 1.
When the user selects a frame size with the frame size setting switch 6, the frame size setting switch 6 applies a command signal to the system controller 8, which then 9 supplies a control signal to achieve the desired frame 1* 5 size through a stepping motor driving circuit 13 to a stepping motor 14. The stepping motor 14 is energized to rotate the feed gears 34 to move the movable masks At the same time that the movable masks 15 move, the hole sensor 5 produces and supplies a detected film position So signal to the system controller 8, which processes the *foe supplied film position signal to generate a control signal. The system controller 8 then supplies the control signal through an amplifier 36 to a motor which rotates the film spool 9 to take-up the photographic film 1 over a predetermined length.
At this time, the length over which the photographic film 1 is driven corresponds to the distance that is determined by the frame size setting switch 6. The 16 feeding of the photographic film 1 is described below with reference to Figs. 11A through 11E, which show examples in which the hole pitch is 6.28 mm and the photographic film 1 is to be exposed in an HDTV-matched S full-frame size of 30 mm x 53.3 mm and an NTSC-matched full-frame size of 30 mm x 40 mm.
Fig. 11A shows a portion of the photographic film 1 as it is exposed in successive NTSC-matched full frames. When the photographic film 1 is fed for seven pitches of the holes 19, a frame area of 30 mm x 40 mm is made available for exposure through the exposure opening 7. To switch from an NTSC-matched full-frame size to an S. HDTV-matched full-frame size, the photographic film 1 is fed for eight pitches of the holes 19, as shown in Fig.
5 11B to make a frame area of 30 mm x 53.3 mm available for exposure through the exposure opening 7. To expose the photographic film 1 in successive HDTV-matched full frames, the photographic film 1 is fed for nine pitches of the holes 19, as shown in Fig. 11C, to make a frame o0 area of 30 mm x 53.3 mm available for exposure through the exposure opening 7. To switch from an HDTV-matched full-frame size to an NTSC-matched full-frame size, the photographic film 1 is fed for eight pitches of the holes 19, as shown in Fig. 11D, to make a frame area of 30 mm x -2 40 mm available for exposure through the exposure opening 7.
To change frame sizes, the system controller 8 controls the motor 10 as follows: When switching from an NTSC-matched full-frame size to an HDTV-matched fullframe size, the photographic film 1 is first driven for seven pitches of the holes 19 and is then driven for one additional hole pitch. When switching from an HDTV-matched full-frame size to an NTSC-matched full-frame size, the photographic film 1 is first driven forward for nine pitches of the holes 19 and is then driven backward for one pitch.
When changing frame sizes, the photographic C 'o film 1 may be driven for a different distance or a different number of pitches, such as ten pitches of the holes 19, as shown in Fig. 11E. In this manner, the photographic film 1 may be easily exposed in many different frame sizes.
1 5 As shown in Figs. 11A through 11E, the system controller of the photographic camera controls the .feeding of the photographic film 1 such that the photographic film 1 will not be exposed in overlapping frames, even when different frame sizes are exposed.
o The procedure described in relation to Figs.
11A-11E applies equally to the magnetic marks 19' present on the film shown in Figs. 4A and 4B.
Figs. 1 and 2 illustrate the photographic film 1 whose effective exposure areas have been exposed in frames 3 of different sizes. In Fig. 1, the photographic film 1 has been exposed in an HDTV-matched full-frame size, having a width of 30 mm, a length of 53.3 mm, and aspect ratio of 3:16, and in an NTSC-matched full- 18 frame size, having a width of 30 mm, a length of mm) whose aspect ratio is 3 4. The holes 19 defined along the upper marginal edge of the photographic film 1 have a pitch of 5.25 mm.
In Fig. 2, the photographic film 1 has also been exposed in an HDTV-matched full-frame size and an NTSC-matched full-frame size, however, unlike Fig. 1, the holes 19 defined in the upper marginal edge of the photographic film 1 have a pitch of 6.28 mm. In Fig. 2, 10 one frame of an HDTV-matched full-frame size corresponds to nine pitches of the holes 19, and one frame of an NTSC-matched full-frame size corresponds to seven pitches of the holes 19. Since these pitches are odd-numbered, a hole 19 may be positioned in alignment with the center of ^S the frame, so that the center of the frame can easily be detected.
As shown in Figs. 5 and 8, the photographic camera has a shutter release button 37. When the shutter release button 37 is depressed, the system controller 8 DO controls the size of the exposure area and supplies a control signal to a mark recording circuit 38 for recording a central mark, a so-called effective exposure area position signal, indicative of the center of the frame 3 and also supplies a control signal to a frame )S number recording circuit 39 for recording a frame number.
The mark recording circuit 38 energizes an LED positioned at the lower film-guide pair 30, 31 for recording a central mark 40a, shown in Figs. 1 and 2, representing the center of the exposed frame 3. The frame number recording circuit 39 energizes an LED 41 positioned at the lower film guide pair 30, 31 for recording a frame number 41a, shown in Figs. 1 and 2, representing the frame number of the exposed frame 3.
The frame number 41a can be recorded such that it agrees with an actual frame number.
Alternatively, as shown in Fig. 12 in place of LED 40 a magnetic head 40' can be employed to record the \o center mark on the marginal area 19'' on the unexposed film. Similarly, the frame number can be recorded using another magnetic head 41'.
The system controller 8 also supplies a control signal to a frame size recording circuit 11 for recording a frame size signal, a so-called effective exposure area width signal, indicative of the frame size of the exposed frame 3. The frame size recording circuit 11 energizes an LED 12 positioned at the lower film guide pair 30, 31 for recording a frame size signal 12a, shown in Figs. 1 o and 2.
Alternatively, as shown in Fig. 12, in place of LED 12 a magnetic head 12' can be employed to record :he frame size signal on the marginal area 19'' on the unexposed film.
3- The magnetic head 5c that senses the magnetic marks 19' on the film shown in Figs. 4A and 4B is connected to the system controller 8 through a buffer amplifier 5d or a similar playback amplifier.
The LED 12 may be composed of four LED elements which are selectively energized to record one of the frame size signals 12a, which represent the frame size set by the frame size setting switch 6. The various frame size signals 12a are shown by way of example in Table 2 below.
Table 2 Frame Size Frame size signal 12a HDTV-matched full-frame size I NTSC-matched full-frame size NTSC-matched half-frame size I I HDTV-matched half-frame size The central mark 40a and the frame size signal 12a supply information regarding the frame position and the frame size to an automatic printer, described hereinbelow, for controlling the automatic printer when the exposed and processed film is printed.
While frame sizes can be recognized by measuring the distances between adjacent central marks .2 40a when the exposed film is printed, the processing speed of the automatic printer can be increased by using the frame size signal 12a.
At the same time that the photographic film 1 is exposed, the system controller 8 supplies an information signal to an information recording circuit 42 for recording desired information. The information recording circuit 42 energizes an LED 43 positioned at the upper film guide pair 31 for recording such information 43a on the lower marginal edge, shown in see Figs. 1 and 2, of the photographic film 1. The information 43a may be information that is supplied from the camera lens apd the Scamera itself upon exposure or could consist of the exposure date, the person who took the picture, an exposure condition, or other information that the user has entered through an input device 44, such as a keypad, on the outer surface of the rear lid of the camera body 10. The amount io of information 43a, that is, the number of characters that can be recorded, is dependent upon the frame size, and is displayed on a display panel 44a of the input device 44.
The LED 43 has a number of LED elements that are selectively energized depending on the frame size.
An analysis has been made to determine the optimum position where the information 43a should be recorded and the optimum position where the holes 19 or magnetic marks 19' are defined from the standpoints of the user's convenience and a psychological effect that those )o positions have on the user. The results of the analysis are as follows: If marginal edges outside of the effective exposure area of the film are available as a band for recording user's information, then the information should S more preferably be positioned on the lower marginal edge of the print paper, rather than on the upper marginal edge.
Study of the developing and printing processes in processing laboratories indicates that in man 22 cases information about the film itself is printed in many cases on film negatives, such that the film information will be positioned on the upper marginal edge of the print paper.
It is preferable not to mix the film information and the band for recording user's information.
s From the above results, it is preferable to position the film position detecting holes 19 upwardly of the effective exposure area of the film when it is exposed.
As described above with reference to Figs. 5 through 8, the photographic camera has a detecting means 5a, 5b for detecting the feeding of the photographic film 1, a film control system 8, 9, 10 for controlling the distance by which the photographic film 1 10 moves and for driving the photographic film 1 for a length corresponding to the width of the selected exposure opening 7, based on a detected signal from the detecting means 5b, and for controlling a signal recording device 8, 11, 12, 38, 40 disposed near the exposure opening 7 for recording a signal indicative of the position of the exposure opening 7 on the photographic film 1 when the photographic film 1 is exposed through the exposure opening 7.
After the photographic film 1 is exposed using the photographic camera, the processed photographic film 1 bears control signals that are recorded in a signal recording area 21, shown in Fig. 1, thereof and that will be used when the photographic film 1 is printed. Therefore, even if the developed photographic film 1 contains frames of different fiame sizes, it can be automatically printed by an automatic printer without requiring individual adjustment.
The photographic camera also has a film control system 8, 9, 10 for controlling the feeding or driving of the photographic film 1, and an opening control system 8. 13.
14, 15 for varying the width of the exposure opening 7 along the photographic film I. At 2 least when the width of the exposure opening 7 changes from a smaller dimension to a larger dimension, the film control system 8, 9, 10 drives the photographic Iilm 1 for a length corresponding to the selected width of the exposure opening 7.
Therefore, the width of the exposure opening 7 is variable, and the takc-up or driving of the photographic film 1 is controlled depending on the width of the exposure LIBKJI173t d.c m\l opening 7. The photographic camera can expose the photographic film 1 successively in desired frame sizes which may differ one from another without adjacent frames overlapping each other.
As shown in Fig. 1, the photographic film 1 used in the photographic camera has a signal recording area 21 located between an effective exposure area 20 and a marginal edge thereof for magnetically or optically recording control signals, which will be used when the photographic film 1 is processed and printed. The film 1 has holes 19 or magnetic a
S
5 4 9
SO..
S.:'S
S.*
i 00 4 1 .0*0 ,ooe S
S
S* 0 f oooQ fre o (R 'LIBK]017.1 doc I 24 marks 19' defined in an upper marginal edge area thereof between the effective exposure area 20 and the marginal edge for detecting the distance by which the photographic film 1 has been moved.
As shown in Fig. 13, an automatic printer for automatically printing processed photographic film 1 that has been exposed using a camera as described above has a printer body that supports a paper supply reel 45 for supplying the sensitized print paper 46, a paper deck or 0 platen 47 for supporting the print paper 46 supplied from the paper supply reel 45, a variable paper mask 48 for determining the size of a print paper segment on which an image is to be printed, a paper holder plate 49 for holding the print paper 46 down against the paper deck eeee IS 47, a paper feed or drive roller 50 for driving the print paper 46, and a paper takeup reel 51 for winding the exposed print paper 46.
The printer body of the automatic printer also supports a film supply reel 52 for supplying the processed photographic film i, a film deck or platen 53 for supporting the photographic film 1 supplied from the film supply reel 52, a negative-carrier variable slit 54, a negative holder plate 55 for positioning the negative down against the film deck 53, a film feed or drive roller 56 2S for driving the photographic film i, a film takeup reel 57 for winding the exposed and processed photographic film 1, a lens 58 positioned above the negative holder plate a bellows 59 supporting the lens 58 and positioned below the paper deck 47, a lamp 60 disposed below the film deck 53, a black shutter 61 positioned above the lamp 60, a filter assembly 62 composed of yellow, magenta, and cyan M, C) filters, and a diffusion box 63 disposed s between the filter assembly 62 and the film deck 53.
The negative holder plate 55 supports a frame size sensor S1 for detecting the frame size signal 12a recorded on the photographic film 1, a frame center sensor S2 for detecting the central mark 40a recorded on 0 the photographic film 1 that indicates the center of a frame, and an order sensor S3 for magnetically detecting order information about a print size and number of prints being ordered. This order information is recorded in the other marginal area opposite the one defined by the holes 19 or magnetic marks 19', 19", as shown in Figs. 1-4.
Upon detection of the central mark 40a of the frame 3 with the frame center sensor S2, the film drive roller 56 is controlled to drive the film to align the frame center with the center of the negative-carrier 0O variable slit 54. The variable paper mask 48 and the negative-carrier variable slit 54 are controlled based on the frame size signal 12a that is detected by the frame size sensor S1.
If the frame size is an HDTV-matched frame size, for example, the negative-carrier variable slit 54 is set to dimensions as shown in Fig. 18A, and the variable paper mask 48 is set to dimensions as shcwn in Fig. 19A. If the frame size is an NTSC-matched frame size, for example, the negative-carrier variable slit 54 is set to dimensions as shown in Fig. 18B, and the variable paper mask 48 is set to dimensions as shown in Fig. 19B.
3 A control system for the automatic printer is shown in Fig. 14, in which the frame size sensor S1 and the frame center sensor S2 comprise photocouplers, respectively, for detecting the frame size signal 12a and the central mark 40a, respectively, that are recorded in o the marginal edge area of the photographic film 1.
On the other hand, the optical sensors S1 and S2 may be comprised of respective magnetic heads SI' and S2', as shown in Fig. 15, that read the frame size signal and the frame center signal that are magnetically recorded on the marginal area 19'' of the unexposed film.
The frame center is determined based on the central mark 40a detected by the frame center sensor S2, and the frame size of the frame 3 whose frame center is determined by a microprocessor 64 of the control system o based on the frame size signal 12a that is read by the frame size sensor S1 before the central mark 40a is detected by the frame center sensor S2. Then, the microprocessor 64 controls a mask size drive motor M3 to actuate the variable paper mask 48 to conform with 5 the determined frame size. At the same time, the microprocessor 64 controls a negative-carrier variable slit drive motor M2 to actuate the negative-carrier variable slit 54.
Based on the frame size signal 12A read by the frame size sensor Si, the microprocessor 64 controls a film feed motor Mi to rotate the film feel roller 56 for feeding the photographic film 1 for a predetermined length.
s At the same time, the microprocessor 64 controls a paper feed motor M4 to rotate the paper feed roller 50 for thereby feeding the print paper 46 for a predetermined length. Based on the print size and print quantity information being read by the order sensor S3, the I O microprocessor 64 controls the number of prints and chances :i the size of the image on the sensitized print paper. This paper change system may be comprised of a paper feed mechanism and an optical selecting instrument, which are not shown. In such a system the optical selecting instrument selects a corresponding paper feed mechanism operation in response to the print size signal.
Figs. 16A and 16B show the relationship between the photographic film 1, the frame center sensor S2, and the frame size sensor S1 in the automatic printer. When aO the photographic film 1 is driven in the direction indicated by the arrow A in Fig. 16A, a frame size indicator 12a is detected by the frame size sensor S1 before its frame 3 is positioned and the sensor S1 output signal is used for controlling the driving of the photographic film 1, the negative-carrier variable slit 54, and the variable paper mask 48. The frame size signal from sensor S1 is processed by the microprocessor 64, which determines the frame size when the frame center of the frame 3 is determined by the frame center sensor S2.
As shown in Figs. 16A and 16B, the central mark indicative of a frame center is recorded at each frame on the photographic film i. At each frame, the frame size indicator 12a is recorded ahead of the central mark 40a, and the frame number 41a is recorded behind the central mark 40a with respect to the direction in which the photographic film 1 is driven.
While the frame center sensor S2 and the frame size sensor S1 are shown as being located in substantially .the same position, only the frame center sensor S2 should be positioned in alignment with the center of the negative-carrier variable slit 54 and the variable paper mask 48, and the frame size sensor S1 may be positioned IS on the film deck 53 at the entrance end thereof. This applies to the magnetic head sensors SI' and S2' as well.
Fig. 17 shows a control sequence of the microprocessor 64 for controlling the driving of the developed photographic film or negative 1 and the driving of the Do print paper 46. The negative-carrier variable slit 54 and the variable paper mask 48 are also controlled in this control sequence. The photographic film 1 is continuously driven and taken up until the central mark is detected by the frame center sensor S2, and then the photographic film 1 is stopped when the central mark is detected by the frame center sensor S2. Until the photographic film 1 is stopped, the frame size indicator 12a is detected by the frame size sensor S1 and its number is counted.
If the frame size indicator 12a represents the width of the negative-carrier variable slit 54 is set to 38 mm, and the width of the variable paper mask 48 is set to 119 mm. Thereafter, the print paper 46 is moved, and the photographic film 1 is printed, after which the control sequence is ended. The print paper 46 is moved t O for a distance corresponding to printed frame sizes, a blank surrounding the printed frames, and a cutting blank between the printed. frames. Usually, a hole is defined in the cutting blank when the photographic film 1 is printed, and serves as a positional signal for automatically cutting the print paper.
If the frame size indicator 12a represents the width of the negative-carrier variable slit 54 is set to 51 mm, and the width of the variable paper mask 48 is set to 158 mm. Thereafter, the print paper 46 is moved, o and the photographic film 1 is printed, after which the control sequence is ended.
If the frame size indicator 12a represents or the widths of the negative-carrier variable slit 54 and the variable paper mask 48 are set similarly.
ZS Thereafter, the print paper 46 is moved, and the photographic film 1 is printed, after which the control sequence is ended.
Since the frame size indicator 12a is recorded in the upper marginal edge portion of the photographic film 1, it may possibly be recognized in error as the central mark 40a. To avoid such an error, a negative feed sensor S3, shown in Fig. 14, for detecting the distance by which the photographic film 1 is fed is associated with the film feed motor M1, and the distance by which the photographic film 1 is fed is measured by a counter 65 whose count is fed back to the microprocessor 64. Since the width of the frame size indicator 12a on the photographic film 1 can be detected by the distance by which the photographic film 1 is driven, the frame size indicator 12a can be distinguished from the central mark 40a or the frame number 41a.
As described above with reference to Figs. 13, 14, and 16A-16B, the automatic 9 10 printer has a film drive control device 65, 64, Ml for detecting an effective exposure area position indicator 40a recorded in a marginal edge area between the effective exposure area 20 on the photographic film 1 and the marginal edge thereof to control the driving of the photographic film 1, and a printing opening width control device 54, 64, M2 for 9detecting an effective exposure area width indicator 12a recorded in the marginal edge area to control the width of the printing opening along the photographic film 1.
The photographic film 1 has an effective exposure area position indicator and an effective exposure area width indicator 12a which are i I.MKI01731 doc ,,I recorded in a marginal edge area between the effective exposure area 20 on the photographic film 1 and the marginal edge thereof. After the effective exposure area width indicator 12a has been detected, the effective exposure area position indicator 40a is detected.
The width of the film exposure opening along the photographic film 1, the width of the print paper exposure opening, and the distance by which the print paper 46 is driven are controlled based on the detected effective exposure area width indicator 12a, and the distance by which the photographic film 1 is fed is controlled based on the detected effective exposure area position indicator "Therefore, since the distance by which the photographic film 1 is driven is controlled based on the effective exposure area position indicator 40a recorded in the marginal edge area of the photographic film 1 and the width of the printing opening, the width of the print S. paper exposure opening and the distance over which the D print paper 46 is driven are controlled based on the effective exposure area width indicator 12a recorded in the marginal edge area of the photographic film 1, the photographic film 1 can automatically be printed even if Lhas a succession of frames of different sizes.
Q- In the illustrated photographic camera, the LED and the photodetector 5b are disposed in confrontina relationship to each other for detecting the film position detecting holes 19, however, as shown in Figs.
32 and 21, a photocoupler 66, which is an integral combination of an LED and a photodetector for detecting a film position, may be disposed on a film guide 30. The photocoupler 66 may be positioned anywhere on the film guide 30. The photocoupler 66 may have LEDs 41, 40, as shown in Fig. 5, for recording the frame number 4ia and the s central mark 40a at the same time that the frame is exposed.
While the hole sensor 5 comprises an LED and a photodetector in the illustrated photographic camera, the hole sensor 5 may comprise two pairs of an LED and a photodetector given the difference distances by which frames of different sizes are fed.
In the illustrated automatic printer, the same photographic film contain frames of 10 different sizes, however, the present invention is also applicable to an automatic printer for automatically printing a spliced length of photographic films with different frame sizes.
A photographic image system 70 that can transform an image in a frame on the photographic film 1 to a video signal is shown and described in regard to Figs. 22 through 30. A printing order system is used, which permits communication between the camera user and the processing laboratories.
Fig. 22 is a perspective view of the photographic image system 70 having an upper body 71 and a lower body 72. The upper body 71 has a print select panel 85 on a front surface that is described below, as well as a power RK 1I,1K)01731 doc t\i display panel 84, and includes an optical instrument, a charge coupled device, and the necessary drive circuits.
The lower body 72 has a display adjusting panel 73, a film cartridge housing 79 and a window 81, and includes a lamp 89 and a film feed mechanism 88, as shown in Fig. 23. The display adjusting panel 73 has a color adjusting switch 74, a zoom control switch 75, a focus control switch 76, an iris control switch 77, and a main power indicator lamp 78. These switches 74 through 77 are 0 manually used for adjusting the quality of the display image. The main power switch 80 is on the back right side of the lower body 72.
As shown in Fig. 23, a processed film cartridge 86 is accommodated in the film cartridge housing 79, and a oo e processed film 1 is drawn out from the cartridge 86 and is :i guided by a film guide 92. The processed photographic film 1 is fed from the film cartridge housing 79 to a film housing 87 by the film feed mechanism 88. This film feed "mechanism 88 includes driven roller pairs and idler roller a• pairs as well as a take-up reel mechanism and automatically feeds a film by detecting a frame position signal recorded on the film or by detecting holes placed in the film, as shown in Figs. 16A and 16B. The processed photographic film is illuminated by the lamp 89 through the diffuse )J filter 90. The film feed mechanism 88 is driven by a motzr 93 that is controlled by a film driving circuit 94 and a system controller 95, shown in Fig. 24. This system controller 95 controls the film feeding and film iaae 34 transformation for transforming an image of the processed photographic film to a video signal. The system controller detects the frame size signals 12a and frame center marks 40a using detectors 155, 156 and a hole/center mark detecting circuit 115. The frame center marks 40a may replace a hole 19 formed in a marginal edge of the photographic film.
As shown in Fig. 24, an image of the processed photographic film is projected on a charge coupled device )o 96 through an objective lens 97, a zoom lens 98, a focus lens 99, and a diaphragm 100. These lenses and the diaphragm are driven by a zoom motor 101, a focus motor 102, and a diaphragm or iris motor 103, respectively.
These motors are respectively controlled by a zoom motor circuit 104, a focus motor circuit 105, an iris motor circuit 106, and the system controller 95. The system controller 95 controls the diaphragm 100 in response to the magnification selected for the zoom lens 98.
As shown in Fig. 25, the image of the processed photographic film is projected on an image transform area 107 of the charge coupled device 96. The actual extent of this area is selected by the system controller 95 in response to a frame size signal 12a detected by the detector 94 and frame size signal detecting circuits 155, 125 156. Area sizes C through F correspond respectively to NTSC-matched frame size (half size), HDTV-matched frame size (half size), NTSC-matched frame size (full size), and HDTV-matched frame size (full size), and area sizes A and 3 may be selected by a full or panorama size signal in response to a user request or the frame size signal 12a recorded by a photographic camera.
An image area selecting system is illustrated in Fig. 26. The zoom lens 98 enlarges a NTSC-matched frame 108 size (full size) on the HDTV size area of 'the CCD image transform area 107. The enlarged NTSC-matched frame loses a part of the image but all pixels of the CCD image transform area 107 are effectively used. A portion 107A of the CCD image transform area is used to transform information, such as the user entered information 43a, in the marginal area of the photographic film to a video signal as shown in Figs. 28 and 1 0 The system controller 95 controls an image signal process circuit 110 in response to an image signal detected by the charge coupled device 96 and in response to a frame size signal 12a. The image signal process circuit 110 generates an HDTV video signal or an NTSC video signal and other signals as well. These signal outputs are fed to a monitor or television 170, as shown in Fig. 27.
The photographic image system 70 is controlled by a remote controller 116.
This remote controller 116 controls feeding of the film, the display size, and the printing order. The system controller 95 controls the image signal process circuit 110 to mix or insert a graphical order menu 171 onto the image obtained from the processed photographic film. This printing order is [K L.lK]017.31 Joc ni recorded on a magnetic area of the processed film by a magnetic head 112 and a signal detect/recording circuit 113, as shown in Fig. 24.
The print select panel 85 has an automatic mode select switch 117, and when this select switch is turned off, the user can manually control the operations by using switches 118 through 121. These switches 118-121 can manually control the zoom motor driving circuit 104, the focus motor driving circuit 105, and the iris motor driving oooo O circuit 106, respectively. A switch 122 selects a transform of the image signal process circuit which transforms a positive or negative image of the processed photographic film to a black-white or color video signal.
A switch 123 selects an order menu or an ordinary display.
A switch 128 selects the size of the photographic print that will be produced. Such sizes can be a service size, a cabinet size, a quarter size or some other size. A display 127 displays the selected size of the print paper, and a display 129 displays the number of the frame. In an order )o menu situation the displays 126, 124 and 127 display the size or aspect of the frame, the number of prints ordered, and the print size of the paper, respectively.
As shown in Fig. 28, the graphical menu 171 permits the order to be changed by the user. A first step 2S A is an ordinary mode, which displays a film size 172 and the frame number 173 of the photographic film. A second step B is an order confirmation menu 174. A third step C is an order menu that displays a print size 175, number of prints 176, and a final confirmation of the order 177.
This menu 171 is also controlled by the remote controller 116.
As shown in Fig. 24, the remote controller 116 has an order button 130 that selects an order situation menu, which is the second step B in Fig. 28. If a yes menu is selected by a yes button or a cursor switch 132 of the remote controller 116 in the second step B, the menu process jumps to the third step C. The cursor is then used 10 to select the print size, the number of prints, and a final confirmation of the order.
The image signal process circuit 110 includes a digital converstion circuit and an image process circuit and output circuit, as shown in Fig. 29A. The conversion l 5 circuit has an analog to digital converter 139 for converting a CCD output signal, as shown in Fig. 24, or the output a line sensor of a flat-bed type scanner, as shown in Figs. 31a and 31b, into a digital signal. Output data of this analog to digital converter 139 are RGB digital Qo data.
This RGB data is corrected and converted by a brightness correction and color converting circuit 140.
This circuit uses correction data and color convertina data from a memory 141. The correction data is used to correc: 2S- any transform deviations between various RGB detectors.
The color converting data are for transforming from RGB data to CMY data, which is data for transforming between positive-film and negative film and data for selecrinc a color image or black/white image. The transformation between positive-film and negative film and a selection of a color image or a black/white image are selected by the switch 122 shown in Fig. 24, and the select data are sent through a data bus 138 from the system controller 95 to the image signal process circuit 110. The data bus sends control data for the brightness correct and color converting circuit 140 and for a film-type correction circuit 142. The transformed data from the brightness j correct and color converting circuit 140 is fed to the next correction circuit 142.
This correction circuit 142 corrects a film sensitivity deviation for each film type by using sensitivity correcting data from a memory 143 and is I controlled by the system controller 95. The system controller 95 detects the film type using the detector 160 disposed at the processed film cartridge housing 79. This film type detector 160 shown in Fig. 23 and a film type .detecting circuit 161 shown in Fig. 24 detect the film type u data that is magnetically or optically recorded on the film cartridge and send a film type data signal to the system controller 95. This detector 160 could also detect magnetic or opticaldata on the film, in which case it would be disposed on the film guide 92.
The CMY data for correcting the film sensitivity deviation are fed to an image process and output circuit 144. On the one hand this circuit 144 corrects a CRT deviation and adjusts a CRT display size and, on the other hand, the circuit 144 converts the CMY data to RGB data or to a composite video signal for a CRT display and superimposes the control data from the system controller on the RGB data or the composite video signal. This circuit 144 also adjusts an image size of the CMY data corresponding to the frame size signal 12a and outputs signals to a computer system or a disc drive control circuit.
As shown Fig. 29B, this image process and output 0O circuit 144 comprises two operational circuits. A first operational circuit outputs bit-map type data to the outer computer and comprises a transfer circuit 160, a data hold/process circuit 161, and a computer output circuit .162. This bit-map type data may be replaced by GIF type data, TIFF type data, or some other type data.
The transfer circuit 160 receives the CMY data for correcting the film sensitivity deviation and transfers the data to the hold/process circuit 161 and to a CRT deviation correct circuit 163. The data/hold process 0O circuit 161 receives the CMY data and transforms the data type, the data size, and a display size. The data type is selected from the bit-map type, the GIF type data, the TIFF type data, JPEG type data, or some other type data by the image controller/superimpose circuit 166.
Z2 The data size and the display size are selected by the image controller/superimpose circuit 166 according to the detected frame size signal 12a. The CMY data, processed and transformed as to data type, data size, and display size are held and transferred to the output circuit 162.
The transfer circuit 160 is also included in the second operational circuit. This second operational circuit is for outputting RGB data or a composite video signal to the CRT, LCD, or other display device and comprises the transfer circuit 160, the CRT deviation correction circuit 163, an image hold/process circuit 164, and a CRT output circuit 165. These block are controlled So by an image controller/superimpose circuit 166 and processes using data from the memory 165.
The CRT deviation correction circuit 163 corrects the CRT deviation using the CRT deviation data from the Smemory 165 and transforms the CMY Data into RGB data. The image hold/process circuit 164 receives the RGB data and processes an image superimposition onto the RGB data. The RGB data is controlled and adjusted to a display size by the image controller/superimpose circuit 166 according to the detected frame size signal 12a. The display data for superimposition are the film size 172, a number of the frame 173, and the order number information 176, as shown in Fig. 28. The image hold/process circuit 164 has two image planes. One image plane holds the RGB data and other image plane holds the superimpose data. These two image )S plane data are transferred to the output circuit 165 where they are mixed or superimposed with each other and transferred as RGB data or as a composite video signal.
41 Figs. 30A through 30D illustrate such an image superimposition. As shown in Figs. 30A through 30C, an image of the photographic film can be selectively enlarged.
The display data for film size 171, the number of the frame 173 and other data is superimposed on the image. Fig. 30D shows order confirmation windows by dse by the s operation in confirming the order information. This menu is displayed after the graphical menu 171 of the order as shown Fig. 28. On the screen of Fig. 30D, twelve windows are displayed corresponding to twelve exposures on the film. Each window continuously displays each frame of the processed photographic film 1. A display area below each window displays order information, such as print size 175 and the number 176 of prints to S 10 be made.
A photographic and video image system is shown in Figs. 31A and 31B. The 'i relationship of the lamp and the CCD are inverted in Fig. 31A relative to Fig. 24. This photographic image system is a line scanner type using a CCD 96' in the form of a line o sensor. This line sensor 96' has an electronic shutter circuit shown in Fig. 32. This electronic shutter circuit comprises a timing generator 181 controlled by control data from 0%.
the system controller 95 and by overflow data from an analog-digital converter 180. The 0 o timing generator 181 generates a variable width timing pulse at the CCD shutter pulse period. This pulse may be used in place of the diaphragm or iris 100 or together with the diaphragm or iris 100.
[R\LI BK]01731 doc -aI 42 Referring back to Figs. 31A and 31B the processed film 1 is driven by the film driving motor and illuminated by the lamp 89 and the diffuse filter 90. A glass window 81, the lamp 89, and the diffuse filter 90 are disposed in the lower body 72 of the photographic and video imaging system 70. The detectors 155, 156 for detecting a frame size 12a and a frame mark 40a and the recording/writing head 112 are disposed on opposite sides of the film 1 from the window 81. The frame center mark 40a may be replaced 'O by a hole 19. The line sensor 96' and a lens 148 are disposed on a slider 149. The slider 149 is driven along a position rod 152 by a motor 150 and a belt 151.
The above two embodiments of the photographic image system relate to an automatic printer in which the photosensitive paper is replaced by a CCD. These two embodiments use an exposure control signal magnetically or optically recorded between an edge of the photographic film and an effective exposure area of the photographic film.
,These embodiments use the same position on the film for an 2o order information area as in the previously explained embodiment, and this order information area is used by the automatic printer system at the time the photographic prints are made. The exposure control signal can be used not only by the processor but also by the user, and the Suser can print by a simple printer system according to the present invention. Such a home printing system can be combined with a computer system or a television for display.
43 An exposure control signal is magnetically or optically recorded between an edge of the photographic film and an effective exposure area of the photographic film.
This signal can be used not only by the processor but also by the individual user, so that the individual can print using a relatively simple printer system. This simple home system can be combined with a computer system or a television for display. Also, an exposure control signal may include an auxiliary signal for controlling a printer system or indicating certain features to the user. Avoiding the use of the punched in notch required in previously proposed systems allows use in many applications.
Having described preferred embodiments of the invention with reference to the *10 accompanying drawings, it is to be understood that the invention is not limited to those precise embodiments and various changes and modifications could be effected by one .i skilled in the art without departing from the spirit or scope of the present invention, as defined in the appended claims.
[R:\LIBKjO0173 .docml

Claims (14)

1. A photographic image apparatus for transforming an image on a frame of a photographic film to a video signal, said photographic image apparatus comprising: a body; film feed means disposed on said body for feeding a photographic film; image transforming means disposed on said body for transforming an image on said photographic film to a video signal; first means disposed on said body for detecting a frame position indicator located lo on said photographic film and generating a frame control signal; second means disposed on said body for magnetically or optically detecting aspect information non-mechanically recorded in a marginal area along an edge of said photographic film and generating an aspect control signal, said aspect information indicating an aspect of an effective area on said photographic film where an exposure area Is is to be printed on a photographic paper; and control means for controlling said film feed means in response to said position control signal and for controlling said image transforming means to control an aspect of said video signal depending on said aspect control signal.
2. A photographic image apparatus as claimed in claim 1, wherein said image transforming means includes an image transform device, an optical system for projecting •the image on the frame of the photographic film to said image transformer device, and a controller for controlling said optical system and adjusting a focus or a size of the image projected on said image transformer device in response to said aspect control signal. o
3. A photographic image apparatus as claimed in claim 1, wherein said control means generates a frame number signal, and said photographic image apparatus further comprises: mixing means for mixing said video signal with said frame number signal.
4. A photographic image apparatus as claimed in claim 1, wherein said image transforming means includes a charge coupled device and a switch controller for selecting an image area of said charge coupled device in response to said aspect control signal.
I:\DayLib\L1BQ\ 06.doc A photographic image apparatus as claimed in claim 4, wherein said switch controller includes an electric shutter controller for controlling a shutter speed in response to said aspect control signal.
6. A photographic image apparatus as claimed in claim 1, wherein said image transforming means includes a charge coupled device and a switch controller for controlling an effective shutter speed of said charge coupled device in response to said aspect control signal. io
7. A photographic image apparatus as claimed in claim 1, wherein said image transforming means includes an image transformer device, an optical system for projecting the image of the photographic film to said image transformer device, and a controller for controlling said optical system and adjusting one of a brightness and a size of the image on said image transformer device in response to said aspect control signal. oF•
8. A photographic image apparatus as claimed in claim 7, wherein said optical system includes one of a zoom lens or and a diaphragm.
9. A photographic image apparatus as claimed in claim 1, wherein said frame 20 position indicator is one of a hole, an optical mark, or a magnetic mark.
"10. A photographic image apparatus as claimed in claim 1, wherein said photographic image apparatus further comprises: mixing means for mixing said video signal with the detected aspect information. go
11. A photographic image apparatus as claimed in claim 1, wherein the control means further controls parameter of said video signal in response to said detected aspect information.
12. A photographic image apparatus as claimed in claim 11, wherein one of said parameter is a display area size of the video signal.
13. A photographic image apparatus according to any one of the preceding claims, Sfurther comprising: I:\DayLib\LIBQ\1 06.doc -46- an interface for receiving a printing order and magnetic recording means for recording said printing order on the photographic film.
14. A photographic image apparatus as claimed in claim 13, wherein said interface is a remote controller. DATED this twentieth Day of July, 2000 Sony Corporation Patent Attorneys for the Applicant SPRUSON FERGUSON *:\Dayib\BQ\ *I:\DayLib\LIBQ\106.doc
AU26437/00A 1995-05-22 2000-04-06 Photographic image system Ceased AU750111B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU26437/00A AU750111B2 (en) 1995-05-22 2000-04-06 Photographic image system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US445772 1995-05-22
AU26437/00A AU750111B2 (en) 1995-05-22 2000-04-06 Photographic image system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
AU50729/96A Division AU716058B2 (en) 1995-05-22 1996-04-17 Photographic and video image system

Publications (2)

Publication Number Publication Date
AU2643700A AU2643700A (en) 2000-06-15
AU750111B2 true AU750111B2 (en) 2002-07-11

Family

ID=3715000

Family Applications (1)

Application Number Title Priority Date Filing Date
AU26437/00A Ceased AU750111B2 (en) 1995-05-22 2000-04-06 Photographic image system

Country Status (1)

Country Link
AU (1) AU750111B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4642700A (en) * 1983-12-30 1987-02-10 Fuji Photo Film Co., Ltd. Method of and apparatus for producing video signal associated with photographic image

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4642700A (en) * 1983-12-30 1987-02-10 Fuji Photo Film Co., Ltd. Method of and apparatus for producing video signal associated with photographic image

Also Published As

Publication number Publication date
AU2643700A (en) 2000-06-15

Similar Documents

Publication Publication Date Title
AU716058B2 (en) Photographic and video image system
US6366337B1 (en) Photographic and video image system
US6583851B2 (en) Photographic and video image system
US6470152B2 (en) Photographic and video image system
US6115558A (en) Photographic camera system
AU750111B2 (en) Photographic image system
AU767656B2 (en) Photographic image system
AU747050B2 (en) Photographic image apparatus
KR100491192B1 (en) Photographic image apparatus and method, and photographic image transforming apparatus

Legal Events

Date Code Title Description
FGA Letters patent sealed or granted (standard patent)