AU712838B2 - Volatile materials treatment system - Google Patents

Volatile materials treatment system Download PDF

Info

Publication number
AU712838B2
AU712838B2 AU21206/99A AU2120699A AU712838B2 AU 712838 B2 AU712838 B2 AU 712838B2 AU 21206/99 A AU21206/99 A AU 21206/99A AU 2120699 A AU2120699 A AU 2120699A AU 712838 B2 AU712838 B2 AU 712838B2
Authority
AU
Australia
Prior art keywords
retort
contaminated
afterburner
cylindrical body
gases
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
AU21206/99A
Other versions
AU2120699A (en
Inventor
Edward Elliott Finsten
Struan Glen Robertson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tox Free Systems Inc
Tox Free Systems Ltd
Original Assignee
Tox Free Systems Inc
Tox Free Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU70804/96A external-priority patent/AU705861B2/en
Application filed by Tox Free Systems Inc, Tox Free Systems Ltd filed Critical Tox Free Systems Inc
Priority to AU21206/99A priority Critical patent/AU712838B2/en
Publication of AU2120699A publication Critical patent/AU2120699A/en
Application granted granted Critical
Publication of AU712838B2 publication Critical patent/AU712838B2/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Description

F
Our Ref: 722232 P/00/011 Regulation 3:2
AUSTRALIA
Patents Act 1990
ORIGINAL
COMPLETE SPECIFICATION STANDARD PATENT
V
V.
V
V
V
S
Applicant(s): Tox Free Systems, Inc.
Prentice-Hall Corp Systems 32 Loockerman Square, Suite L-100 Dover, Kent Delaware UNITED STATES OF AMERICA Tox Free Systems Limited 42 Sedger Road Kenthurst New South Wales 2156
AUSTRALIA
DAVIES COLLISON CAVE Patent Trade Mark Attorneys Level 10, 10 Barrack Street SYDNEY NSW 2000 Volatile materials treatment system Address for Service: Invention Title: The following statement is a full description of this invention, including the best method of performing it known to me:- 5020 P:\WPDOCS\DYS\SPECIE\722232.SPB 15/3/99 -1- VOLATILE MATERIALS TREATMENT SYSTEM This invention relates to the treatment of volatile contaminants. The invention is particularly suitable for, but not limited to, the removal of contaminants from solids and liquids.
The contaminants may include, but are not limited to, petroleum products (eg. petrol, oils, greases); phenols; coaltar; cyanide; pesticides; PCB's; HCB's, organochlorine pesticides and arsenics.
10 The treatment of contaminated soils and liquid wastes is a worldwide problem. Often, the contaminated soils or liquids are simply removed and transferred to a toxic waste dump or pond. This does no more than move the problem. For contaminants such as PCB's, the environmental protection authorities around the world specify strict conditions for their disposal in very high temperature incinerators, eg. found in the vessel "Vulcanus".
International Patent Application No. PCT/AU93/00646 (International Publication No.
WO 94/15150) (Robertson) discloses a stationery retort where toxic waste and other contaminants are removed from soil, the soil being agitated and being brought into contact with the retort walls to cause the wastes and contaminants to be desorbed. The retort has proved successful in the removal of toxic waste and contaminants from many types of soil.
It is an object of the present invention to provide improved methods and apparatus for use in removing volatile contaminants from solids or liquids.
According to one aspect of the present invention there is provided a method for the treatment of volatile material(s) in contaminated material(s) including the steps of: feeding the contaminated material(s) to a retort assembly which includes a rotatable retort at least partially disposed within a combustion chamber which is heated by heating means; causing the contaminated material(s) to contact the wall(s) of the retort to cause the 1
F,
P:\WPDOCS\DYS\SPECIE\722232.SPE 15/3/99 -2volatile material(s) to be given off as gases; discharging the treated material from the retort; transferring the gases to an afterburner for combustion; and returning the combustion gases from the afterburner to the retort assembly to provide assistance in heating the contaminated material(s) being treated in the retort.
According to another aspect of the present invention there is provided apparatus for the treatment of volatile material(s) in contaminated material(s) including a retort assembly which includes a rotatable retort disposed at least partially within a combustion chamber with heating means to indirectly heat the rotatable retort; said rotatable retort include a feed end through which the contaminated material(s) are fed to the retort and a discharge end from which the materials are discharged from the retort; an afterburner; means to transfer the volatile material(s) given off as gases to the afterburner for combustion; and means for passing the combustion gases from the afterburner to the retort assembly to provide additional 15 heat for use in the heating of contaminated material(s) in the retort.
V. Preferably, the apparatus includes a high temperature filter through which the gaseo-as volatile material(s) pass after leaving the retort and prior to entering the afterburner.
20 According to yet another aspect of the present invention there is provided a high temperature filter which is suitable for use but not limited to the treatment of volatile gaseous contaminated material, the filter including a main body having first and second chambers therein which chambers when the filter is in its operative position include an upper region and a lower region, an opening providing communication between the chambers, said opening being at the lower region of the chambers, an inlet for delivering gaseous contaminated material to the first chamber in the upper region thereof, an outlet for discharging the gaseous material from the second chamber, a solids collection zone adjacent the opening, a solids discharge outlet for discharging solids from the solids collection zone, a baffle opposite to and spaced from the inlet upon which incoming gases impinge and filter means for filtering the gaseous material passing out of the second chamber via the outlet.
r P:\WPDOCS\DYS\SPECIEY722232.SPE 15/3/99 -3- According to another aspect of the present invention there is provided a retort for use in the treatment of volatile material, the retort including a cylindrical body which is mounted for rotation about its longitudinal axis, said body having an infeed end and an outlet end, a combustion chamber, said cylindrical body being at least partially located within the combustion chamber, a plurality of balls or like elements disposed within the cylindrical body arranged to interact with contaminated material when the cylindrical body is rotating to break down the material and dislodge carbonised material which may form on the internal wall of the cylindrical body. The retort is particularly suitable for use in apparatus of the type *described herein.
Preferably the retort includes a cage within the cylinder which retains the balls in th e region of the wall of the cylindrical body. Preferably, the balls are arranged in groups, the groups being at spaced intervals along the interior of the cylindrical body. The cage includes S: spaced apart peripherally extending members which are adapted to assist in retaining the balls 15 in each group at a particular location within the cylindrical body Preferably, the balls are made of ceramic material. Preferably, the cage is mounted for rotation in the opposite direction to the cylindrical body.
o.
In one embodiment of the invention the combustion gases are passed through the 20 interior of the retort. In another embodiment the combustion gases are passed to the heating means.
When the contaminated material to be treated is in the form of solids, the solids are preferably passed through a grizzly or sieve prior to entering the retort to remove oversized material. If desired the solids may in addition to or alternatively to the above be passed through a mill prior to entering the retort so as to reduce the particle or granule size of the solids.
When the contaminated material is in the form of liquid, the water content of the liquid is preferably reduced prior to entering the retort. To this end the liquids may be P:\WPDOCS\DYS\SPECIE\722232.SPE 15/3/99 -4preheated to boil off the water prior to entering the retort.
Preferably, the rotary retort rotates about an axis inclined at a small angle to th( horizontal and is substantially surrounded by a combustion chamber to enable indirect heating of the retort.
Preferably, the combustion gases pass through a scrubber before being released iun the atmosphere after passing through the retor. The gases from the high temperature fi.:t may be passed through a condenser, where the condensate contains hydrocarbon fraction 10 such as fuel oil and lubrication oil fractions.
In the high temperature filter according to the invention, the baffle is preferabl defined by a wall which separates the said first and second chambers, Preferably, the wa.
extends froin an .upper intemrna' wall of the chambers ana terminates at point .spacea ro- 15 a lower interal wall of the chambers, the space between tbhe f-ee end o the wall andi thilower internal wall of the filter defining the opening. The wall may have fins thereon.
Preferably, the discharge outlet comprises a plurality of outlet ports in the upper wall of said second chamber. Preferably, the filter means comprises a plurality of ceramic candles, each ceramic candle being associated with a respect outlet, the ceramic candles extending into the second chamber.
There may further be provided a gas collecting chamber for receiving the gaseous material from the outlets and a discharge outlet for discharging the gaseous material from the gas collecting chamber. Fan suction means may be provided for drawing the gaseous material from the second chamber through the outlets.
The filter may further include pulsing means for delivering a gas under pressure to the filter means in the opposite direction of normal flow for cleaning the filter means.
Preferably, the gas used in the pulsing means is nitrogen.
i P:\WPDOCS\DYS\SECIE\722232.SPE 15/3/99 A heat jacket is preferably provided which at least partially surrounds the main body of the filter.
A further embodiment of the invention is particularly suited for the treatment of material containing organochlorine pesticides such as DDT, DDE and DDD and various arsenic based compounds. Such material is found in soil from cattle dip sites.
According to this aspect of the present invention there is provided a method for treatment of volatile material(s) in contaminated material(s) including organochlorine *o pesticides and arsenic based compounds including the steps of: feeding the contaminated material(s) to a retort assembly which includes a rotatable retort at least partially disposed within a combustion chamber which is heated by heating means; causing the contaminated material(s) to contact the wall(s) of the retort to cause the 15 volatile material(s) to be given off as gases; discharging the treated material from the retort into a high temperature filter; thereafter transferring the gases to an afterburner for combustion and at the same time introducing water vapour into the afterburner.
According to yet another aspect of the present invention there is provided apparatus for treatment of volatile material(s) in contaminated material(s) including organochlorine pesticides and arsenic based compounds including a retort assembly which includes a rotatable retort having an infeed end through which material is fed to the retort and an outlet, the retort being at least partially disposed within a combustion chamber which is heated by heating means, whereby in use, the contaminated material(s) is caused to contact the wall(s) of the retort to cause the volatile material(s) to be given off as gases; a high temperature filter which receives the material from the retort, an afterburner for combustion of the gases and means for introducing water vapour into the afterburner.
1 P:\WPDOCS\DYS\SPECIE\722232SPE 15/3/99 -6- In this particular process the contaminated material is preferably firstly pretreated to remove water from the material. This may be done by the use of a preheater. The material is then transferred to a retort where the contaminant compounds are vaporised. The contaminants in the gas stream so formed are then transferred to a high temperature filter which may be of the type described earlier where further particulate matter is separated from the gas. The remaining gaseous component is transferred to an afterburner. The afterburner thermally destructs the organochlorine pesticides to produce simple products of combustion and hydrogen chloride gas. The arsenic component of the gas will pass through the afterburner primarily as arsenic trioxide.
If desired water vapour which may be conveniently drawn from the preheater is fed into the afterburner.' The introduction of the water vapour causes a water/gas reaction which assists in the production of hydrogen chloride and arsenates.
a.* The -gas stream then passes to a condenser wherein the gas is rapidly cooled so as to condense the arsenates for collection as particulate matter. After the gas stream leaves the condenser calcium carbonate can be added to the stream to neutralise the hydrogen chloride.
The gas can be finally passed through a dust collector device whereafter the gas can pass to atmosphere.
As mentioned earlier the gases leaving the afterburner are cooled so as sublimate (condense) the arsenic and arsenic trioxide. Two alternative systems are envisaged 1. indirect air cooled; or 2. evaporative cooling through injection of water into the gas stream.
The gas stream leaving the afterburner is cooled to preferably about 110 0 C in the condenser and then may be dosed with calcium carbonate (CaCO 3 (lime). The calcium
I
P:\WPDOCS\DYS\SPECIE\72232.SPE 15/3/99 -7carbonate reacts with the constituents of the gas stream to neutralise the hydrochloric acid and absorb moisture in the gas stream. The lime assists in minimising moisture problems on the filter bags, and can be collected in a dust collection bin.
The dust collector which may be in the form of a baghouse will remove the particulate arsenic trioxide which condenses below at approximately 120 0 C and collects on the filter media. The gas stream will exit the baghouse at approximately 100 0 C and be vented to atmosphere. An auxiliary fan on the baghouse will be used in conjunction with the high temperature filter fan in order to overcome the additional pressure loss in the system. The 10 fans will be balanced using dampers in the system. The contaminated particulate (arsenic be trioxide, spent lime) can be collected in plastic lined 200 L drums for disposal at authorised landfills.
S*
To enable the invention to be fully understood, preferred embodiments of the invention in its various aspects will now be described with reference to the accompanying drawings in which: Figure 1 is a schematic circuit diagram of a first embodiment for the treatment of *o contaminated solids;
S
Figure 2 is a schematic view of the retort of the first embodiment; Figure 3 is a more detailed schematic view of the retort of the first embodiment; Figure 4 is a schematic sectional side view of a high temperature filter according to the present invention; Figure 5 is a schematic side view of an afterburner for use in the present invention; Figure 6 is a schematic view of a second embodiment for the treatment of P:\WPDOCS\DYS\SPECIE\22.SPE 15/3/99 9 9 9999 99 9 *9 9 9 9 9* 9.99 99 9 9 99.9 9 -8contaminated liquids; Figure 7 is a schematic view of a third embodiment for the treatment of contaminated liquids; Figure 8 is a schematic view of a further embodiment particularly suited for the treatment of organochlorine pesticides and arsenic compounds; Figure 9 is a schematic side elevation of a part of a high temperature filter according 10 to another form of the invention; Figure 10 is a side elevation of a manifold as shown in Figure 9; Figure 11 is a schematic side elevation of one form of condenser which can be used in the embodiment of Figure 8; Figure 12 is a schematic side elevation of another form of condenser which can be used in the embodiment of Figure 8; 20 Figure 13 is a sectional view of a retort according to one embodiment of the invention; Figure 14 is a modified form of the retort shown in Figure 13.
Referring to Figures 1-3, the rotary retort 10 has a cylindrical retort wall 11 rotatably journalled within a combustion chamber 12 heated by a plurality of burners 13 to provide indirect heating to the interior of the retort Ceramic seals form an airproof seal between the moving retort wall 11 and the fixed ends of the combustion chamber 12 (or of a support structure for the retort), and also act as P:\WPDOCSDYS\SPECIE\22232.SPE 15/3/99 -9an explosion vent in case of a volatile mix release caused by oxygen in the retort. (Preferably, a nitrogen purge is provided for the retort to prevent the oxygen levels becoming dangerous.) As shown in Figure 3, fins, blades or the like 14 are provided on the inner face of the retort wall 11 to increase the agitation of materials passing through the retort and to improve theheat transfer from the retort wall 11 to the materials.
Contaminated solids 20 are transferred via conveyor 21 to a grizzly 22 where oversized particles are removed. The acceptable particles are fed to the interior of the retort 10 10 via a rotary valve 23. As the contaminated solids move through the retort 10, volatile contaminants are given off as gases and are transferred via a gas line 15 to a high temperature 0 t filter 30 to be hereinafter described in more detail. The high temperature filter 30 is heated by the combustion gases from the combustion chamber 12 (being transferred via a line 16).
6* 0 t 15 A rotary valve 17 discharges the treated solids to a product in 18 and a conveyor 19 *may be provided to transfer the treated solids from the product bin 18 to a dump pile 19A.
S
*ga Referring now to Figure 4, the high temperature filter 30 is maintained above 500'C above the combustion gases from the retort being fed via line 16 to a heat jacket 31 to prevent S" 20 condensation of the volatile gases 32. The volatile gases enter a first chamber 33 and impinge on a wall 34 which acts as a baffle and separates the first chamber 33 from a second chamber The wall 34 may have fins or plates thereon for the transfer of heat as well as to slow the gas stream down. As the volatile gases 32 sharply change path when passing from the first chamber 33 to the second chamber 35, most of the particulates 36 in the volatile gases 32 collect at the bottom of the high temperature filter 30 and can be selectively discharged by a rotary valve 37 and line 38 to the product bin 18. The combustion gases 32 then pass through ceramic candles 39 which capture particles down to -1 micron. The interiors of the ceramic candles 39 are connected to a plenum or chamber 40 and the volatile gases 32 are drawn from the plenum by a suction fan 41. The suction fan generates a partial vacuum in the high temperature filter 30 (and the retort 10) and assists in causing the ceramic seals to P:\WPDOCS\DYS\SPECIE\722232.SPE 15/3/99 seal against the ends of the retort wall 11. An explosion vent in the form of a door 63 may be provided in the wall of the filter the door being arranged to open in the event of an explosion.
To prevent the oxygen level in the high temperature filter 30 reaching dangerous levels, sensor means (not shown) monitor the oxygen levels and if required, nitrogen from a supply tank 42 is injected into the line 15 via one or more nozzles connected to a valve 43.
To remove the particulates 36 which tend to coat the exterior of the ceramic candles 10 39, an air compressor 44 is connected to a manifold 45 via a valve 46. A respective pipe 47 extends from the manifold 45 into the interior of each ceramic candle 39 and sensor means S"(not shown) which monitor the gas flow through the ceramic candles, operate the valve 46 so that a blast of air is injected into the interior of the ceramic candles, via the pipes 47 to cause a countercurrent flow to the flow of the volatile gases 32 to dislodge the particulates from the candles for collection in the bottom of the high temperature filter Figures 9 and 10 show a modified form of apparatus for introducing nitrogen into the high temperature filter as well as for removing the particles from the candles. In the apparatus as shown nitrogen is fed from a manifold 401 having a plurality of outlets 402 to 406. Each outlet is connected to a transfer tube 407 which extends into the filter at a position above the candles 39. The tube has a series of downwardly facing holes 408 each hole being associated with a respective candle. The arrangement is such that a blast of nitrogen can be directed downwardly to clear the candles and at the same time deliver nitrogen to the filter.
The volatile gases 32 are conveyed via a line 48 to an afterburner 50 (see Figure in which combustion air is injected via a number of inclined injection pipes 51 to create a vortex for efficient combustion of the volatile gases. In one embodiment the combustion gases 52 from the afterburner pass through a plenum 53 to a line 54 which is connected to a pipe or conduit 55 extending through the interior of the retort 10. In another embodiment the P:\WPDOCS\DYS\SPECIE\722232.SPE- 15/3/99 -11gases can pass along line 54 and instead of passing through the retort can be fed to the burners 13 as shown by dash line 62 in Figure 1.
The pipe 55 has a plurality of helical flytes 56 to further promote the agitation of the laminated solids 50 in the retort 10, and to promote the transfer of heat from the combustion gases to the solids. As shown in Figure 1, the flow of the combustion gases 52 from the afterburner is concurrent with the flow of solids through the retort 10 and the heat from the combustion gases 52 reduces the heat requirements for the retort provided by the burners thereby reducing the input energy demand and cost. (This means that the volatile 10 contaminants in the soil are used to provide a portion of the energy demands for the treatment of the soil and so the volatile materials, which normally have a highly negative economic S"value, are given at least a partial positive economic value.) From the pipe 55, a line 57 S"transfers the combustion gases 52 to a scrubber 58 and thereby to the end stack 59 for release to the atmosphere.
Referring now to a second embodiment of Figure 6, liquid contaminants from a pond 120 are fed to a concentrator 121 where the water content of the liquids is minimised and the concentrated contaminated liquid is transferred to a tank 122. The contaminated liquid is pumped via a pump 122a to spray nozzles 123 which inject the contaminated liquid into the retort 10. The contaminated liquid comes into contact with the interior of the retort wall 11 and the conduit 55 to cause the volatile contaminants to be given off as gases as hereinbefore described and any non-volatile solids are discharged via rotary valve 17 to the product bin 18.
It will be noted that line 54 connects the afterburner 50 to the conduit 55 so that the flow of combustion gases 52 from the afterburner is countercurrent to the flow of the contaminated liquids through the retort In the embodiment of Figure 7, which is particularly suitable for the treatment of refinery tank bottoms, the contaminated refinery products containing, eg. 50-80% water, is pumped from a refinery tank 220 to a preheater 222 where the water and light hydrocarbon P:\WPDOCS\DYS\SPECIE\722232.SPE 15/3/99 -12fraction(s) are boiled off at, eg. 120°C plus and fed by line 260 to the afterburner 50. A hot filtering device 261 removes particulates from the water/gas stream and feeds them to the high temperature filter 30 via a rotary valve 262. The concentrated liquid from the preheater 222 is sprayed into the retort 10 as hereinbefore described. The preheater 122 is heated by combustion gases from the retort 10 via line 223.
From the retort, the non-volatile solids are discharged via rotary valve 17 to the bin 18, and the volatile gases are transferred to the high temperature filter 30. The volatile gases are transferred from the filter 30 to a condenser 270 via line 271 at a temperature of, eg.
10 500°C. The gases are cooled and the condensate is collected as fuel oil, which is drawn off to tank 272 via line 273. By arranging the Condenser 270 as a "fractional distillation unit", the condensate may be separated into a lubrication oil component (drawn off at, eg.
300-500°C) to tank 274 via line 275, and a diesel substitute component (at, eg. 200-300 0
C)
S via line 273 to tank 272.
The remaining volatiles from the condenser 270 are fed to the afterburner 50 via line 48. These volatiles, and the 222 water/light HC fraction from the preheater, may be burnt at, eg. 1200°C with a residence time of, eg. 20 seconds. The energy from the afterburner is recycled to heat the preheater 223 and the high temperature filter 30. The high temperature filter and pre-treatment feed and product lines are surrounded by a heating jacket to maintain temperature and the heat is sourced from the combustion chamber excess gases.
This method markedly reduces the costs of treating the refinery tank bottoms, and the costs are offset by the recovery of the valuable condensates(s).
Figure 8 shows a further embodiment of the invention which is particularly suited for the treatment of material containing organochlorine pesticides such as DDT, DDE and DDD and various arsenic based compounds. Such material is found in soil from cattle dip sites.
In this particular arrangement the contaminated material is preferably firstly pretreated P:\WPDOCS\DYS\SPECIE\722232.SPE- 15/3/99 13 to remove water from the material. This may be done by the use of a preheater 501. The material is then transferred to retort 503 where the contaminant compounds are vaporised.
The contaminants in the gas stream so formed are then transferred to high temperature filter 504 which may be which may be of the type described earlier where further particulate matter is separated from the gas. The remaining gaseous component is transferred to afterburner 506. The afterburner thermally destructs the organochlorine pesticides to produce simple products of combustion and hydrogen chloride gas. The arsenic component of the gas will pass through the after burner primarily as arsenic trioxide.
10 If desired water vapour which may be conveniently drawn from the preheater 501 is S• fed into the afterburner 506 via line 510. The introduction of the water vapour causes a water/gas reaction which assists in the production of hydrogen chloride and arsenates.
The gas stream then passes to condenser 512 wherein the gas is rapidly cooled so as to condense the arsenates for collection as particulate matter at vessel 514. After the gas stream leaves the condenser 512 calcium carbonate can be added to the stream via hopper 516 to neutralise the hydrogen chloride.
:The gas can be finally passed through a dust collector device 518 whereafter the gas can pass to atmosphere. The dust collector 518 which may be in the form of a baghouse will remove the particulate arsenic trioxide which condenses below at approximately 120 0 C and collects on the filter media. The gas stream will exit the baghouse at approximately 100 0
C
and be vented to atmosphere. An auxiliary fan on the baghouse will be used in conjunction with the high temperature filter fan in order to overcome the additional pressure loss in the system. The fans will be balanced using dampers in the system. The contaminated particulate (arsenic trioxide, spent lime) will be collected in plastic lined 200 L drums for disposal at authorised landfills.
Two examples of condensers which can be used are shown in Figures 11 and 12.
Figure 11 shows an evaporate cooling arrangement wherein the gases leave the afterburner P:\WPDOCS\DYS\SPECIE\7232.SPE 15/3/99 -14and travel along an inverted U-tube 601. Water spray a fed from reservoir 602 to spray heads 603 by pump 604 so as to rapidly cool the gas before it leaves the condenser.
Figure 12 shows an indirect air cooled arrangement where gases enter the top of the condenser 700. A series of fans 701 create an air flow across the condenser thereby cooling the gases before they exit at the bottom.
~Figures 13 and 14 show two arrangements of a retort which is suitable for use in various forms of apparatus described herein. Referring to the drawings the retort 800 10 includes a cylindrical body 801 which is mounted for rotation about its central axis for example on shaft 810. The retort 800 is disposed within a combustion chamber (not shown) the ends being sealed by ceramic seals (not shown). The retort has an infeed end 802 through contaminated material is fed into the retort and an outlet 803. A plurality of flytes 808 are formed on the internal wall of the cylindrical body 801 the flytes preferably having a 5 pitch.
V The retort 800 further includes a cage 815 which is mounted within the cylindrical body 801. The cage 815 comprises a series of horizontal elements or rods 816 and a series of circumferential elements 817 connected together to form a unitary structure. The circumferential elements 817 are arranged in pairs on the region of the space between adjacent flytes 808. The cross-sectional diameter of the cage 815 is less than that of the internal cross-sectional diameter of cylindrical body 801 thereby forming an annular space 818 between the cylindrical body 801 and the cage 815.
The cage 815 is mounted for rotation and preferably is arranged to rotate in the opposite direction to that of the cylindrical body.
A plurality of balls 806 or like elements are disposed in the space 818 and are arranged to interact with contaminated material when the parts are rotating to break down the material and dislodge carbonised material which may form on the internal wall of the P:\WPDOCS\DYS\SPECIE\722232.SPE -15/3/99 15 cylindrical body 801. The balls 806 are arranged in groups disposed at spaced intervals along the cylindrical body and are retained in position by respective pairs of circumferential elements 817 In the embodiment shown in Figure 14 there is further provided a series of arms 820 which can assist in moving the balls during rotation of the parts. The arms 820 can either rotate with the cage on shaft 810 or can be fixed to the internal wall of the cylindrical body 801.
!0 The balls are arranged in groups each group which are held in place by the cage 815 and more particularly by the element 817 projecting into space 818. The groups of balls are being disposed at spaced intervals along the cylindrical body.
NB: For both contaminated solids or liquids, the flow of the combustion gases 52 15 through the retort may be either concurrent or countercurrent to the flow of the contaminated *a a• materials.
The recycling of the afterburner gases back into the retort 10 via the tube, pipe or conduit 55 minimises the energy input to the retort by the burners.
The provision of the heat fins or flytes 56 on the pipe or conduit 55 not only increases the radiant surface area of the retort, but also assists in breaking up any large particles. In addition, the recycling pipe or conduit also helps create a convection environment with improves the volatile removal process, the convection improvement being created by the moving retort wall and by rotation of the pipe or conduit The energy sources for the burners 13 may include liquid petroleum gas, propane, natural gas, recycled hydrocarbons or other readily available energy sources.
The volatiles which may be treated by the method and apparatus of the present P:\WPDOCS\DYS\SPECIE\722232.SPE- 15/3/99 -16invention include hydrocarbons, organo-chlorides, arsenics, hydrogenated hydrocarbons, PCB's, coaltars and the like.
The operating temperature in the retort will be dependent on the volatile contaminants being treated and the retort may be operated at different temperatures to enable different volatiles to be treated on a fractional basis.
SVarious changes and modifications may be made to the embodiments described without departing from the present invention.

Claims (15)

1. Apparatus for treatment of volatile material(s) in contaminated material(s) including organochlorine pesticides and arsenic based compounds including a retort assembly which includes a rotatable retort having an infeed end through which material is fed to the retort and an outlet, the retort being at least partially disposed within a combustion chamber which is heated by heating means, whereby in use, the contaminated material(s) is caused to contact the wall(s) of the retort to cause the volatile material(s) to be given off as gases; 10 a heater for preheating the material prior to it entering the retort and the water vapour being transferred from the heater into the high temperature filter or afterburner; a high temperature filter which receives the material from the retort, an afterburner .for combustion of the gases and means for introducing water vapour into the afterburner.
2. A retort for use in the treatment of volatile material, the retort including a cylindrical body which is mounted for rotation about its longitudinal axis, said body having an infeed end and an outlet, a combustion chamber, said cylindrical body being at least partially located within the combustion chamber, a plurality of balls or like elements disposed within the cylindrical body arranged to interact with contaminated material when the cylindrical body is rotating to break down the material and dislodge carbonised material which may form on the internal wall of the cylindrical body; a cage within said cylindrical body, said balls being located in a space between said cage and the internal surface of said cylindrical body.
3. A retort according to claim 2 wherein said balls are arranged in groups, the groups being disposed at spaced intervals along the cylindrical body.
4. A retort according to claim 2 wherein said cage is mounted for rotation in the opposite direction to said cylindrical body.
5. Apparatus for the treatment of volatile material(s) in contaminated material(s) i P:\WPDOCS\DYS\SPECIE\722232.SPE 15/3/99 -18- including a retort assembly which includes a rotatable retort disposed at least partially within a combustion chamber with heating means to indirectly heat the rotatable retort; feeding means to feed the contaminated material(s) to the retort; said feeding means including a pretreatment means which in the case where the materials are solids removes oversized particles or granules and in the case where the materials are liquids removes or minimises the water content within the liquid; discharge means to discharge the treated material(s) from the retort; a high temperature filter which receives material from the retort; an afterburner; means to transfer the volatile material(s) given off as gases to the afterburner for combustion; and means for passing the combustion gases from the afterburner to the retort assembly to provide 10 additional heat for use in the heating of contaminated material(s) in the retort.
6. Apparatus according to claim 5 including means for passing the combustion gases "through the retort.
7. Apparatus according to claim 5 including means for passing the combustion gases to "the heating means.
8. Apparatus according to any one of claims 5 to 7 wherein the rotary retort is rotatable 1""about an axis at a small angle to the horizontal.
9. Apparatus according to any one of claims 5 to 8 further including ceramic end seals to seal the ends of the retort to the combustion chamber surrounding the retort.
Apparatus according to any one of claims 5 to 9 wherein said heating means includes one or more burners for indirect heating of the retort.
11. Apparatus according to any one of claims 5 to 10, wherein when the contaminated materials are solid material(s) said pretreatment means includes grizzly or sieve means and rotary valve means to selectively feed the contaminated solids to the retort. j P:\WPDOCS\DYS\SPECIE\722232.SPE 15/3/99 -19-
12. Apparatus according to claim 11 further including mill means between the source of the contaminated solids and the grizzly or sieve means to reduce the size of the contaminated solids.
13. Apparatus according to any one of claims 5 to 9 wherein when said material comprises liquids, the pretreatment means includes a separator or preheater to remove, or minimise, the water content of the contaminated liquids and spray means to feed the concentrated liquids to the retort. 10
14. Apparatus according to any one of claims 5 to 13 wherein the discharge means includes a rotary valve to selectively discharge the treated materials to a product bin.
15. Apparatus according to claim 13 wherein the heated water vapour is transferred from the preheater to the high temperature filter or of the afterburner. S Dated this 15th day of March, 1999 *0 TOX FREE SYSTEMS LIMITED AND TOX FREE SYSTEMS, INC. By Its Patent Attorneys DAVIES COLLISON CAVE
AU21206/99A 1995-10-06 1999-03-16 Volatile materials treatment system Ceased AU712838B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU21206/99A AU712838B2 (en) 1995-10-06 1999-03-16 Volatile materials treatment system

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
AUPN5857 1995-10-06
AU70804/96A AU705861B2 (en) 1995-10-06 1996-10-04 Volatile materials treatment system
AU21206/99A AU712838B2 (en) 1995-10-06 1999-03-16 Volatile materials treatment system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
AU70804/96A Division AU705861B2 (en) 1995-10-06 1996-10-04 Volatile materials treatment system

Publications (2)

Publication Number Publication Date
AU2120699A AU2120699A (en) 1999-05-13
AU712838B2 true AU712838B2 (en) 1999-11-18

Family

ID=3753880

Family Applications (1)

Application Number Title Priority Date Filing Date
AU21206/99A Ceased AU712838B2 (en) 1995-10-06 1999-03-16 Volatile materials treatment system

Country Status (1)

Country Link
AU (1) AU712838B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003042289A1 (en) * 2001-11-12 2003-05-22 Tox Free Solutions Limited Method and apparatus for the processing of carbon-containing polymeric materials

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112934936A (en) * 2021-01-28 2021-06-11 苏州逸凡特环境修复有限公司 Contaminated soil remediation and sewage purification combined system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2356294A1 (en) * 1973-11-10 1975-05-15 Air Preheater Refuse incinerator with gasifier and burner - prevents oxidation of metallic refuse and uses afterburner heat for oxidation
AU2500677A (en) * 1976-05-12 1978-11-16 Waterfront Nv Method of pyrolyzing refuse
EP0446930A1 (en) * 1990-03-14 1991-09-18 Wayne Technologies Pyrolytic conversion system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2356294A1 (en) * 1973-11-10 1975-05-15 Air Preheater Refuse incinerator with gasifier and burner - prevents oxidation of metallic refuse and uses afterburner heat for oxidation
AU2500677A (en) * 1976-05-12 1978-11-16 Waterfront Nv Method of pyrolyzing refuse
EP0446930A1 (en) * 1990-03-14 1991-09-18 Wayne Technologies Pyrolytic conversion system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003042289A1 (en) * 2001-11-12 2003-05-22 Tox Free Solutions Limited Method and apparatus for the processing of carbon-containing polymeric materials
US7188571B2 (en) 2001-11-12 2007-03-13 Tox Free Solutions Limited Method and apparatus for the processing of carbon-containing polymeric materials

Also Published As

Publication number Publication date
AU2120699A (en) 1999-05-13

Similar Documents

Publication Publication Date Title
US6213030B1 (en) Volatile materials treatment system
AU727756B2 (en) Process and apparatus for treating process streams from a system for separating constituents from contaminated material
US5230167A (en) Removal or organics and volatile metals from soils using thermal desorption
US5361514A (en) Removal of volatile and semi-volatile contaminants from solids using thermal desorption and gas transport at the solids entrance
US4715965A (en) Method for separating and recovering volatilizable contaminants from soil
US5188041A (en) Apparatus and method for low temperature thermal stripping of volatile organic compounds from soil and waste materials with non-oxidative co-current gases
US20030228196A1 (en) Thermal remediation process
US5523060A (en) Apparatus for retorting material
DK169810B1 (en) Method and facility for reprocessing contaminated earth
EP0155022B1 (en) Process and apparatus for cleansing soil polluted with toxic substances
EP3546546B1 (en) Device for processing scrap rubber
KR200284019Y1 (en) Equipment for dryer to waste and extracting an oil from the plastic waste that is linked to waste incinerator
US5176087A (en) Apparatus and method for low temperature thermal stripping of volatile organic compounds from soil and waste materials with non-oxidative cross-sweep gases
AU712838B2 (en) Volatile materials treatment system
AU705861B2 (en) Volatile materials treatment system
CA2233661C (en) Volatile materials treatment system
US5272833A (en) Soil remediation apparatus and method for same
US5595483A (en) Method and apparatus for thermal treatment of materials containing vaporizable substances
EP1015143B1 (en) Treatment of contaminated soil
KR0130123B1 (en) Apparatus of dust-liquid burning
WO2021038308A1 (en) A system and method for treatment of waste materials
WO2018174753A2 (en) Method for processing rubber-containing waste
CA2001966A1 (en) Procedure for processing waste oil

Legal Events

Date Code Title Description
FGA Letters patent sealed or granted (standard patent)