AU641694B2 - Microencapsulated agricultural chemicals - Google Patents

Microencapsulated agricultural chemicals

Info

Publication number
AU641694B2
AU641694B2 AU64207/90A AU6420790A AU641694B2 AU 641694 B2 AU641694 B2 AU 641694B2 AU 64207/90 A AU64207/90 A AU 64207/90A AU 6420790 A AU6420790 A AU 6420790A AU 641694 B2 AU641694 B2 AU 641694B2
Authority
AU
Australia
Prior art keywords
agrochemical
prepolymer
microcapsules
formaldehyde
dicamba
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
AU64207/90A
Other versions
AU6420790A (en
Inventor
David C Creech
Ralston Curtis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sandoz AG
Original Assignee
Sandoz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sandoz AG filed Critical Sandoz AG
Publication of AU6420790A publication Critical patent/AU6420790A/en
Application granted granted Critical
Publication of AU641694B2 publication Critical patent/AU641694B2/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/06Making microcapsules or microballoons by phase separation
    • B01J13/14Polymerisation; cross-linking
    • B01J13/18In situ polymerisation with all reactants being present in the same phase
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/26Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests in coated particulate form
    • A01N25/28Microcapsules or nanocapsules

Description

MICROENCAPSULATED AGRICULTURAL CHEMICALS
The present invention concerns a icroencapsulated agrochemical, compositions containing it and processes for its production.
When putting agrochemicals in a suitable form for application, formulations are desirable which optimise the effect of the active ingredient on the target organism whilst at the same time minimising its effect on the environment, particularly with respect to animals and plants which are not targeted. One such formulation technique which in recent years has been extensively investigated with respect to agrochemicals is microencapsulation. Various techniques for microencapsulation have been known for some time particularly in connection with pharmaceuticals and dyestuffs.
Examples of known microencapsulation techniques are disclosed for example in the following patents.
USP 3,516,941 describes the use of urea-formaldehyde (UF) resins for encapsulating water insoluble fill material including agrochemicals.
USP 4,105,823 describes the use of UF and melamine-formaldehyde (MF) precondensates for crosslinking with other soluble polymers to microencapsulate finely divided particulate material.
USP 4,534,783 describes a discontinuous two-phase microencapsulation procedure for water soluble materials including agrochemicals. USP 4,557,755 describes microencapsulation of agrochemicals employing a cationic urea resin forming polycoπdensates with UF, MF or thioureaformaldehyde (TUF) prepolymers.
Each of these references in turn describes further microencapsulation techniques.
A particular problem encountered with certain agrochemicals especially herbicides when applied to the soil is their tendency to leach rapidly from the target zone when subjected to rainfall or irrigation particularly in lighter soils which include coarse to moderately coarse texture soils and soils of low organic matter content, e.g. < 2.0 weight X organic matter. This problem usually precludes or restricts the use of such agrochemicals for preemergent application. Thus in the case of a herbicide suffering from this drawback persistence in the soil zone where germination of early weeds occurs can only be achieved, if at all, by repeated application or application at higher rates which increase the risk of damage to young crop plants or is uneconomical and environmentally undesirable.
In spite of the existence of many varied microencapsulation techniques in some cases for decades it has until now not been possible to provide a commercially viable icroencapsulated form of such rapidly leaching agrochemicals which will achieve the four main objectives of maintaining weed control, reducing leaching below the targeted soil zone, increasing persistence in the soil, particularly the weed seed germination zone, and preventing crop injury.
It has now surprisingly been found that excellent results can be obtained by microencapsulating a rapidly leaching agrochemical in a crosslinked polymer formed from urea-, thiourea- and/or melamine-formaldehyde prepolymers.
The present invention therefore provides a process for microencapsulating a rapidly leaching agrochemical comprising the steps of a) adding to a suspension of the agrochemical in a liquid a urea-, thiourea- or melamine-formaldehyde prepolymer or mixtures thereof and
b) curing said prepolymer to provide a crosslinked polymer enclosing the agrochemical.
This microencapsulation process may be carried out in a single stage or in successive stages by repeating steps a) and b).
In another aspect the invention concerns an agricultural composition comprising a rapidly leaching agrochemical microencapsulated in a crosslinked urea-, thiourea, or melamineformaldehyde prepolymer or mixed prepolymer together with an agriculturally acceptable carrier.
A further aspect of the invention concerns a method of controlling undesirable pests or plant growth which comprises applying to the locus or anticipated locus of said undesirable pests or plant growth an effective amount of a rapidly leaching agrochemical microencapsulated in a crosslinked urea-, thiourea- or melamine-formaldehyde prepolymer or mixed prepolymer.
A further aspect of the invention concerns new, very sparingly soluble salt forms of rapidly leaching agrochemicals.
Microencapsulation according to the invention is particularly suited for agrochemicals where the usual locus of the pests or undesired plant growth to be combatted is in the upper layers of the soil. Microcapsules according to the invention can also be used in watery loci such as mosquito breeding areas or paddy fields.
Microencapsulation according to the invention is especially suited to agrochemicals where rapid leaching ability would normally preclude or restrict pre-emergent long lasting application. Examples of such agrochemicals are those containing a carboxylic acid group. Preferred examples of such compounds are herbicides particularly pre-emergent herbicides such as benzoic acid and phenoxycarboxylic acid derivatives e.g. dicamba, MCPA, 2,4-D or as well as other herbicides e.g. glyphosate, alachlor, acetochlor, metolachlor and 2-chloro-N-[1-methyl-2-methoxy]-N-(2,4-dimethyl-thien-3-yl)acetamide, which is described in US Patent No. 4,666,502.
The agrochemical may be in a solid crystalline or amorphous form or in liquid form, e.g. an oil. The agrochemical can be soluble in the liquid in which it is suspended, but in these cases, the agrochemical must be present in excess amount, i.e. the liquid should be super-saturated with agrochemical.
This application is especially directed, therefore, to salt forms of the aforementioned herbicides which are only sparingly soluble in the liquid, e.g. water, in which they are suspended, e.g. inorganic salts such as sodium, potassium, calcium, copper, iron, aluminium or organic salts such as dimethylamine, aminopropylmorpholine, and the fatty amine organic salts having carbon chains of fourteen or more atoms such as the triamylamine, tridecylamine, dimethyldodecylamine, Adogen* (primary, n-alyl, C16 ave.) and PrimeneR (primary tert-alkyl, Cι4 ave.) salt forms. Preferred salt forms are those which are only sparingly water soluble and are stable under hydrolytic conditions, e.g. the aluminium, iron, copper and calcium salts.
The aluminium and iron, i.e. the Al(III) and Fe(III) salt forms of dicamba, MCPA and 2,4-D are the preferred salt forms. It is believed that the aluminium salt of MCPA and the Fe(III) salt of MCPA and dicamba are novel.
Such salt forms can be prepared according to conventional and known procedures for preparing aluminium or iron salts of compounds that bear a carboxylic acid group, e.g. by combining the compound with a desired metal e.g. FeCl3 or A1C13 in solution. In some situations, metal complexes of the compounds will be formed. This application is also especially directed to herbicides which are only sparingly soluble in water, e.g. alachlor, acetochlor, metolachlor and 2-chloro-N-[l-methyl-2-methoxy]-N-(2,4-dimethyl- thien-3-yl)acetamide.
Suitable liquids for suspending the agrochemical are inert and are typically selected such that the agrochemical is only sparingly soluble therein while the prepolymer or prepolymer mix is miscible therein. Typically, the liquid will be water, although organic liquids that are inert and in which the prepolymer or prepolymer mix is miscible are also envisaged.
Urea-, thiourea, and melamine-formaldehyde resins, prepolymers and polymers and their preparation are known in the art and are described for example in "The Organic Chemistry Synthetic High Polymers", Robert W. Lenz, Interscience Publishers (1967) pp. 142-151; KIRK-OTHMER Encyclopedia of Chemical Technology, 3rd ed. v. 2 pp. 440-469. Many such resins are prepolymers and are also commercially available.
Particularly preferred in the practice of the invention are urea- or melamine-formaldehyde resins and prepolmyers or mixtures thereof that are miscible in the liquid in which the agrochemical is suspended, with melamine-formaldehyde resins and prepolymers being especially preferred optionally mixed with urea-formaldehyde prepolmyers. Where mixtures of melamine-formaldehyde (MF) prepolymers and urea-formaldehyde prepolymers (UF) are employed, the weight ratio of MF:UF preferably ranges from 1:4 to 4:1.
In order to optimise the amount of material incorporated in the raicrocapsules it may be desirable to have the agrochemical in sparingly soluble form e.g. preferably in a form that is less than 2 X by weight soluble in the liquid in which it is suspended, more preferably less than 1 % by weight soluble. In the case of agrochemicals capable of forming salts with bases for example crystalline salts with heavier metals such as aluminium or iron are preferred.
To further increase the amount of crystalline material available for encapsulation and especially in situations where wet milling of the material to a desired particle size is required prior to microencapsulation it is advantageous to reduce the amount of liquid (preferably water) used to suspend the material in most cases to form a slurry.
The desired particle size of the material to be encapsulated will vary according to the nature of the material, its intended use and prepolymer employed. As a rule satisfactory results are obtained with crystal particle sizes from 1 to 20 μ, preferably 1 to 5, more preferably 2 or 3, especially ca. 2 μ.
The desired particle size and active ingredient content of the finished microcapsules will also depend on intended applications. Satisfactory results are obtained with microcapsules of between 1 and 120 y, especially 10 to 50 μ, particularly 10 to 25 μ having active ingredient content of 10 to 60 X a.i. especially 25 to 35 X for use in crops. Considerably lower a.i. content of e.g. 1 to 2.5 X may also be employed for example where use in home gardens or lawns is envisaged or where the active ingredient is highly active at low concentrations.
The desired particle size can be achieved by milling of finished agglomerated microencapsulate product or preferably by controlled crosslinking by employing multi-step addition/curing of prepolymers.
In carrying out the process according to the invention the material to be encapsulated is suspended or slurried in a liquid, preferably water. It is a property of rapidly leaching agrochemicals that they exhibit relatively high solubility in water. Thus when practising the process of the invention it is desirable to have the agrochemical in a form which is of reduced solubility in order to provide an optimal amount of material available for microencapsulation. More soluble salt forms may be also used but are subject to stricter control of solvent amount or repeated recycling to obtain a higher percent content of a.i. if desired.
In order to avoid premature crosslinking of prepolymer it may be necessary for the suspension of a.i. to be encapsulated to be not too strongly acid at the initiation of polymerization, e.g. to have a pH of >4, especially >5.0. This can be achieved by basifying the suspension with a base however this is less desirable as it may increase solubility of the crystals. Advantageously the desired pH is achieved by having the a.i. in a crystalline form which upon suspension in the desired solvent results in the pH desired, e.g. in the form of the aluminium or iron salt.
The suspension may optionally contain further additives such as dispersants, surfactants, antifoaming agents, etc., e.g. those based on naphthalene sulphonates or acetylenic diols.
When pre-milling of the crystalline a.i. to a desired particle size is desired the suspension is preferably in the form of a slurry which may be wet-milled, e.g. by pebble milling.
Advantageously the UF/TUF/MF resins or mixtures thereof are employed in the form of prepolymers. This has the advantage of allowing elimination of undesirable traces of unpolymerized urea, thiourea, melamine and formaldehyde prior to use in the microen¬ capsulation process.
The prepolymer or prepolymer mix is preferably added in the same liquid used to form the slurry and is miscible in such liquid, usually water. By miscible is meant that the prepolymer or prepolymer mix is capable of mixing or dissolving in the liquid such that it surrounds the suspended agrochemical when polymerization is initiated. Addition of the desired amount of prepolymer can be carried out in one aliquot or in a series of lesser aliquots with curing after each addition. This latter procedure facilitates careful control of the particle size of the finished microcapsules and is preferred.
Alternatively, prepolymer can be formed in situ according to known methods e.g. as referenced above, and the active ingredient then added.
The ratio of prepolymer to active ingredient will vary according to the nature of the a.i. and the prepolymer themselves as well as the desired properties of the finished product. For some applications of finished product, satisfactory results are obtained with an excess of prepolymer e.g. a 1.5 to 6 fold, preferably 2 to 5 fold, especially 2 to 4 fold. For other applications of finished product, satisfactory results are obtained with an equivalent to excess amount of active ingredient, e.g. a weight ratio of prepolymer to active ingredient of 1:1 to 1:2. Thus, the weight ratio of prepolymer to active ingredient employed to prepare a finished product suitably varies from 6:1 to 1:2. Moreover, for some applications, the finished product may consist of a mixture of microcapsules having various prepolymer to active ingredient weight ratios.
In cases where dicamba is employed as a.i., it is preferably employed in iron or aluminium salt form. Melamine-formaldehyde and urea-formaldehyde are preferred prepolymers and are preferably employed in a weight ratio of prepolymer to dicamba salt of 4:1 to 1:2, more preferably 2:1 to 1:1.
Curing of the prepolymer or prepolymer mix can be accomplished in conventional manner, e.g. by warming or acid catalysis or both. Preferably curing is carried out by lowering pH with an acid, preferably a mild acid such as citric acid or fumaric acid to a pH below about 6, e.g. pH about 3-6, depending on the particular prepolymer and reaction conditions and warming to ca. 35° to 50°C for 2 to 10 hours with optional additional stirring at room temperature for ca. 24 hours. Preferably, the pH is about 5 at the initiation of polymerisation and can subsequently be lowered to, e.g. 3.
Microencapsulation may be accomplished in a single stage or in repeated stages, e.g. two, three, four or more stages depending on the desired release rate of agrochemical and/or particle size. Each successive stage is carried out by repeating the steps mentioned above, i.e. by adding a quantity of prepolymer to the reaction mixture and curing by warming or acid catalyst or both.
The microcapsules may be isolated from the reaction mixture in conventional manner e.g. by filtration and/or drying.
To facilitate application the microcapsules of the invention may be formulated in conventional manner, e.g. as dusts, granules, solutions, emulsions, wettable powders or flowables, suspensions and the like with conventional carriers and optionally other adjuvants. To prevent premature release of a.i. solid formulations are preferred. Such formulated microcapsules may be prepared in conventional manner e.g. by mixing, spray-drying and the like.
Application of the microcapsules of the present invention is made according to conventional procedure to the weeds or pests or their locus using an effective equivalent amount of active ingredient.
In the case of commercial available products, the effective amount will be based on the a.i. content and release profile of the microcapsules to correspond to the known effective application rate e.g. in the case of dicamba 0.05 to 2 lb/ac (approximately 0.055 to 2.2 kg/ha), especially 0.1 to 1 lb/ac (approximately 0.11 to 1.1 kg/ha). The optimum usage of the microcapsules of the present invention is readily by one of ordinary skill in the art using routine testing such as greenhouse testing and small plot testing.
For example, in the pre-emergent control of weeds a half-life of from 30-45 days would be desirable (time required for 50 X of a.i. to be released from the microcapsule).
Suitable formulations contain from 0.01 to 99 X by weight of active ingredient, from 0 to 20 % of surfactant and from 1 to 99.99 X of solid or liquid diluent(s). Higher ratios of surfactant to active ingredient are sometimes desirable and are achieved by incorporation into the formulation or by tank mixing. Application forms of a composition generally contain between 0.01 and 25 X by weight equivalent of active ingredient. Lower or higher levels of active ingredient can, of course, be present depending on the intended use, the physical properties of the microcapsules and the mode of application. Concentrate forms of a composition intended to be diluted before use generally contain between 2 and 90 X, preferably between 5 and 81 X by weight equivalent of active ingredient.
The microcapsules can be combined with a cyclodextrin to make a cyclodextrin inclusion complex for application to the pest or its locus.
Agriculturally acceptable additives may be employed in the composition to improve performance and to reduce foaming, caking and corrosion, for example.
"Surfactant" as used herein means an agriculturally acceptable material which imparts emulsifiability, spreading, wetting, dispersibility or other surface-modifying properties. Examples of surfactants are sodium lignin sulfonate and lauryl sulfate.
"Diluent" as used herein means a liquid or solid agriculturally acceptable material used to dilute a concentrated material to a usable or desirable strength. For dusts or granules it can be e.g. talc, kaolin or diatomaceous earth, for liquid concentrate forms for example a hydrocarbon such as xylene or an alcohol such as isopropanol, and for liquid application forms e.g. water or diesel oil. Microcapsule formulations may optionally contain further active ingredient such as herbicide, insecticides, acaricides, fungicides and the like. For example, it may be advantageous to formulate microcapsules according to the invention together with the same or other active ingredient in unencapsulated form to achieve initial control prior to the onset of controlled release from the microcapsules. Such unencapsulated material can for example be applied in the form of a spray dried coating on the microcapsules. Alternatively, premix or tank-mix of unencapsulated with encapsulated material can be appropriate.
Combinations of unencapsulated and encapsulated material should be formulated in amounts and applied at rates sufficient to achieve initial weed control without causing undue crop damage. In the case of Dicamba, satisfactory results are achieved when the unencapsulated form is applied at a rate ranging from abut 0.125 to 0.25 lb/ac (about 0.138 to 0.28 kg/ha) whilst the encapsulated form is applied at a rate of about 1.0 lb a.i./ac (about 1.1 kg a.i./ha). Thus, suitable weight ratios for formulations containing unencapsulated and encapsulated Dicamba range from 1:8 to 1:4 unencapsulated: encapsulated a.i.
As a further alternative a formulation may consist of a mixture of microcapsules having various prepolymer to a.i. weight ratios.
Combinations mentioned above can allow for effective, continuous control over periods as long as 1 to 75 days.
The following examples illustrate the invention. Temperatures are given in degrees centigrade. EXAMPLE 1
a) Preparation of the aluminium salt of dicamba
100 g of Dicamba aminopropyl morpholine salt (prepared by mixing technical Dicamba, aminopropyl morpholine and distilled water) in 150 ml of deionized water are mixed with 21.8 g of A1C13-6H20 in 44 ml of water at 80° for 2 hours, cooled to 40° and filtered.
b) Preparation of Microcapsules
The wet filter-cake of example la (dica ba-Al content ca. 40 g) is slurried with 50 ml of deionized water and 2.0 g of Morwet D425 (Sodium Naphthalene Formaldehyde Condensate - Petrochemicals Company, Inc.) was pebble milled for 9 hrs, a further 20 ml of deionized water and 0.5 g of Morwet D425 are added and milling continued for a further 2 hrs. to give a final median particle size of 3.7 μ. This slurry is diluted with deionized water to 188 g. To this slurry are added with stirring 172 g of diluted urea-formaldehyde prepolymer (prepared by refluxing 24 g of urea and 48 g of formaldehyde for 1 hr at 70° with stirring and diluting the result with 100 ml of deionized water), 40 g of CYMELR 385 Resin (methylated melamine-formaldehyde resin formulation containing approximately 80 X by weight active resin, M.W. approximately 250, - American Cyanamid Company) and 2 g of citric acid dropping the pH of the slurry from 6.0 to 5.1. The temperature is slowly raised to 50° with a water bath. After stirring for 2% hrs the pH is 4.1. After stirring for a further 4 hrs. a further 1 g of citric acid is added reducing pH further to 3.2. After an additional V hrs. stirring, the mixture is cooled to 40°, filtered and dried at 54° to yield 77 g of median particle size 15.7 y. EXAMPLE 1.1
a) Preparation of the iron salt of dicamba
93.0 g of technical dicamba is dissolved in 250 ml water containing 52.0 g of 45 X KOH. The pH is adusted to 7.0 with extra KOH or dicamba. While the above solution is stirred a second solution consisting of 36.7 g FeCl3-6H20 dissolved in 71.0 g water is added dropwise over a period of Vk hrs. When complete the resulting slurry is warmed to 60°C for 2 hrs. After cooling the salt is filtered, washed and dried at 54°C.
b) Preparation of microcapsules
25.0 g of the salt from part a) is transferred to a (000) Norton pebble mill along with 4.0 g of Morwet D425, 2 drops of Surfynol- TG-E (acetylenic diol surfactant - Air Products and Chemicals Inc.) and water to make a total of 100 g. This slurry is milled for 10 hrs reducing the mean particle size to 2.2 μ.
The above milled salt is transferred to an 800 ml beaker and while mixing with an overhead mounted stirrer, 16.6 g of CymelR 385 is added along with 2 drops of FoamasterR FLM (30 X silicone emulsion defoamer - Henkel Corp.) and citric acid to pH 5.6. The system is warmed by water bath to 50°C for 30 min and cooled to 25°C. During the warming cycle a 4.4 solution of Morwet D425 in water is added to thin the solution and maintain proper mixing. This procedure is repeated twice, each time using 16.6 g of CymelR 385. The total volume is doubled after the last addition of Morwet solution. The capsule slurry is stirred for 24 hours total, filtered, washed and dried at 54°C to yield capsules containing 18.8 X a.i. with a mean particle size of 21 μ. EXAMPLE 2
a) Preparation of aluminium salt of dicamba
110.5 g of technical dicamba acid are added with stirring to a mixture of 62.35 g of 45 X aq KOH and 95.65 g of deionized water. A mixture of 60.35 g of A1C13-6H20 in 125 g of deionized water is then added with stirring over a 5 minute period followed by further 10 g of deionized water. A further 31.16 g of 45 X aq. KOH and 10.33 g of deionized water are then added and the resulting mixture refluxed for 2 hours with stirring at 80°. The resulting mixture is then filtered.
b) Preparation of microcapsules
A slurry of the wet filter cake from Example 2a) (Dicamba-Al content ca. 30 g) is pebble milled with 115 g of deionized water 4 g of MORWET D425 and 3 drops of SURFYN0LR TG-E to a median particle size of 1.8 μ. To this slurry is added 20 g of CYMEL 385 in 40 g of deionized water and 1 g of citric acid to pH 5.4 and the temperature raised (water bath) over a 2 hr period to ca. 40°. After cooling to ca 25° a further 20 g of CYMEL 385 in 50 g of deionized water are added and the temperature again raised to ca 40° over 1 hr. This procedure is repeated with a further 20 g of CYMEL 385 in 44 g of deionized water. After final cooling the mixture is filtered and the microcapsules dried at 54° to yield a median particle size 18.9 μ.
EXAMPLE 3
The procedure is analogous to Example 2 except that the higher temperature in the microencapsulated phase is 50° rather than 40°. microcapsules of median particle size 20.3 μ are obtained. EXAMPLE 4
The active ingredient content of the microcapsules is determined by heating the capsules with concentrated HCl, diluting the resultant solution, and analysing by HPLC with external standard quantitation.
The a.i. content of the capsules of Examples 1, 1.1, 2 and 3 is 33, 18.8, 33 and 31 X respectively.
EXAMPLE 5
Formulation as wettable powder
The following components are combined to yield a wettable powder.
a) Microcapsules according to Example 2b): 94 X.
b) Aerosol 0TB (American Cyanamid - Dioctylester of Na-Sulfosuccinic acid): 3 X and
c) Morwet D425: 3 X
The inerts are preground before mixing with microcapsules to avoid capsule breakage.
EXAMPLE 5.1
Sprayable formulation
75 Parts by weight of microcapsules prepared according to Examples 1, 1.1, 2 or 3 are slurried in water. 25 parts of Morwet D425 are added and the resulting mixture is spray dried to yield a sprayable formulation. EXAMPLE 6
Field Test
Velvetleaf, red root pigweed and morningglory seeds are planted and tilled ca. 2 inches (5.1 cm) deep and corn seed then sown. The microcapsules of Examples 1, 2 and 3 (as wettable powders) and BanvelR (dimethylamine salt of Dicamba - Sandoz Crop Protection Corporation) are then applied to the soil surface by spraying aqueous tank mix at a rate of 1 lb per acre (about 1.1 kg/ha dicamba acid equivalent) with 3 replications. One inch (2.54 cm) of water is applied immediately after application followed by 1.25 inches (3.2 cm) 2 days later. Weed control and corn injury are evaluated 2 weeks after treatment. After evaluation a further 3 inches (7.6 cm) of water are applied over a 2 day period. Plots are treated with Gramoxone Super (paraquat, ICI Americas Inc.) at 0.5 lb a.i. per acre (about 0.55 kg/ha) and 5 days later velvetleaf and pigweed are resown and further 2.5 inches (6.4 cm) of water applied. Evaluation of weed control takes place 42 days after replanting.
The formulations of Examples 1, 2 and 3 showed no control at two weeks compared with BANVEL whereas after 65 days control was as follows:
This demonstrates the excellent persistence in the weed target zone of the microcapsules according to the invention compared with the same active ingredient in conventional form.

Claims (18)

WHAT IS CLAIMED IS: -
1. A process for microencapsulating a rapidly leaching agrochemical comprising the steps of
a) adding to a suspension of the agrochemical in a liquid a urea-, thiourea- or melamine-formaldehyde prepolymer or mixtures thereof, said prepolymer or mixture being miscible in said liquid, and
b) curing said prepolymer to provide a crosslinked polymer enclosing the agrochemical.
2. A process according to Claim 1 wherein the agrochemical is in crystalline form.
3. A process according to Claims 1 to 2 wherein the agrochemical to be encapsulated is suspended in sparingly soluble form at a pH of > 4.
4. A process according to Claims 1 to 3 wherein the prepolymer is a melamine-formaldehyde prepolymer or a mixture of a melamine- formaldehyde prepolymer and a urea-formaldehyde prepolymer.
5. A process according to Claim 1 to 4 wherein microencapsulation is carried out in successive stages by repeating steps a) and b).
6. A process according to Claims 1 to 5 wherein the mean particle size of the agrochemical is from 1 to 5 μ.
7. A process according to Claims 1 to 6 wherein the particle size of the microcapsule product is from 10 to 50 μ.
8. A process according to Claims 1 to 7 wherein the agrochemical is selected from the group consisting of alachlor, acetochlor, metolachlor and 2-chloro-N-[l-methyl-2-methoxy]-N- (2,4-dimethyl-thien-3-yl)acetamide, and the iron or aluminium salt form of dicamba, MCPA or 2,4-D.
9. A process according to Claim 8, wherein the agrochemical is dicamba.
10. Microcapsules comprising a rapidly leaching agrochemical microencapsulated in a crosslinked urea-, thiourea- or melamine-formaldehyde prepolymer or mixed prepolymer.
11. Microcapsules according to Claim 10 wherein the crosslinked polymer is a melamine-formaldehyde polymer or a mixture of a melamine-formaldehyde polymer and a urea-formaldehyde polymer.
12. Microcapsules according to Claims 10 to 11 wherein the mean particle size of the crystalline agrochemical is from 1 to 5 μ.
13. Microcapsules according to Claims 10 to 12, wherein the agrochemical is an agrochemical selected from the group consisting of alachlor, acetochlor, metolachlor and 2-chloro-N-[l-methyl-2- methoxy]-N-(2,4-dimethyl-thien-3-yl)acetamide, or the iron or aluminium salt of dicamba, MCPA and 2,4-D.
14. Microcapsules according to Claims 10 to 13 wherein the agrochemical is dicamba.
15. An agricultural composition comprising microcapsules according to Claims 10 to 14 with an agriculturally acceptable carrier.
16. A composition according to Claim 15 further comprising an unencapsulated agrochemical.
17. A method of controlling undesirable pests or plant growth which comprises applying to the locus or anticipated locus of said undesirable pests or plant growth an effective amount of micro¬ capsules according to the process of Claims 10 to 16.
18. An agrochemical selected from the group consisting of the iron (III) salt of dicamba or MCPA and the aluminium salt of MCPA.
AU64207/90A 1989-09-28 1990-09-24 Microencapsulated agricultural chemicals Ceased AU641694B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US41379589A 1989-09-28 1989-09-28
US413795 1989-09-28

Publications (2)

Publication Number Publication Date
AU6420790A AU6420790A (en) 1991-04-28
AU641694B2 true AU641694B2 (en) 1993-09-30

Family

ID=23638669

Family Applications (1)

Application Number Title Priority Date Filing Date
AU64207/90A Ceased AU641694B2 (en) 1989-09-28 1990-09-24 Microencapsulated agricultural chemicals

Country Status (16)

Country Link
EP (1) EP0445266A1 (en)
JP (1) JPH04502016A (en)
KR (1) KR920700535A (en)
CN (1) CN1050483A (en)
AU (1) AU641694B2 (en)
BR (1) BR9006932A (en)
CA (1) CA2040418A1 (en)
HU (1) HUT56998A (en)
IE (1) IE903470A1 (en)
IL (1) IL95801A0 (en)
MY (1) MY106614A (en)
PL (1) PL287075A1 (en)
PT (1) PT95429A (en)
WO (1) WO1991004661A2 (en)
YU (1) YU182890A (en)
ZA (1) ZA907807B (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0532463B1 (en) * 1991-09-11 1997-02-26 Ciba-Geigy Ag Conditioning of pesticides
GB9306852D0 (en) * 1993-04-01 1993-05-26 Ciba Geigy Ag Multiply-coated particles
GB9306808D0 (en) * 1993-04-01 1993-05-26 Ciba Geigy Ag Coated microparticle agglomerates
AU756668B2 (en) * 1997-12-24 2003-01-23 Kiwitech Limited Substantially water-insoluble matrix containing bioactive substances for slow release
EP1131152B1 (en) * 1998-11-12 2003-10-22 Fmc Corporation Process to prepare microencapsulated formulations
JP2000342956A (en) * 1999-04-01 2000-12-12 Dai Ichi Kogyo Seiyaku Co Ltd Microcapsule production method and microcapsule obtained thereby
JP2000302606A (en) 1999-04-15 2000-10-31 Novartis Ag Microcapsule of solid agrochemical, its production and application thereof
JP4121380B2 (en) * 2001-05-09 2008-07-23 トッパン・フォームズ株式会社 Microencapsulated antibacterial agent
CN100428886C (en) * 2005-12-30 2008-10-29 山东农业大学 High performance cypermethrin micro-capsule emulsion
US8530385B2 (en) 2007-12-13 2013-09-10 Donaghys Industries Limited Herbicidal formulations for combinations of dimethylamine and potassium salts of glyphosate
EP2482654B1 (en) * 2009-09-30 2016-03-02 BASF Corporation Low volatile amine salts of anionic pesticides
AU2011291580B2 (en) * 2010-08-18 2015-08-20 Monsanto Technology Llc Early applications of encapsulated acetamides for reduced injury in crops
EP2460404A1 (en) * 2010-12-01 2012-06-06 Basf Se Compositions containing identical polyamine salts of mixed anionic pesticides
CN106993617B (en) * 2011-08-16 2019-11-08 陶氏益农公司 The complex of weeding carboxylic acid and amine-containing polymer or oligomer
WO2013029005A1 (en) * 2011-08-25 2013-02-28 Dow Agrosciences Llc Pesticidal compositions with enhanced active ingredient retention in pest control zones
GB201115564D0 (en) * 2011-09-08 2011-10-26 Syngenta Ltd Herbicidal composition
AR095908A1 (en) 2013-03-26 2015-11-25 Basf Se MICROCAPPS THAT INCLUDE ANIONIC PESTICIDES
BR102016019512B8 (en) 2015-08-26 2022-10-11 Dow Agrosciences Llc COMPOSITION INCLUDING PROTECTIVE COMPLEX INCLUDING CLOQUINTOCET AND POLYMERS OR OLIGOMERS CONTAINING AMINE, ITS PREPARATION METHOD, AND METHOD FOR CONTROL OF UNDESIRABLE VEGETATION
US11109591B2 (en) 2017-04-24 2021-09-07 Taminco Bvba Single phase liquids of alkanolamine salts of dicamba

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3516941A (en) * 1966-07-25 1970-06-23 Minnesota Mining & Mfg Microcapsules and process of making
US4534783A (en) * 1984-01-03 1985-08-13 Monsanto Co. High concentration encapsulation of water soluble-materials
US4557755A (en) * 1982-01-18 1985-12-10 Kureha Kagaku Kogyo Kabushiki Kaisha Microencapsulated agricultural chemical and process of preparation thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3074845A (en) * 1959-10-14 1963-01-22 Plant Products Corp Particulate pesticidal composition coated with an amido-aldehyde resin polymerized in situ
GB1507739A (en) * 1975-11-26 1978-04-19 Wiggins Teape Ltd Capsules
ATE30522T1 (en) * 1984-03-30 1987-11-15 Stauffer Chemical Co MICROCAPSULES AND METHODS OF MICROENCAPSULATION.
DD240843A1 (en) * 1985-09-13 1986-11-19 Adw Ddr METHOD OF MICROPELLING PESTICIDES
JPS62149607A (en) * 1985-12-25 1987-07-03 Kureha Chem Ind Co Ltd Capsule preparation of ethoprophos
MX172460B (en) * 1986-07-09 1993-12-17 Monsanto Co FORMULATIONS OF DISPERSIBLE GRANULES IN WATER AND PROCEDURE FOR THE PREPARATION
JPS63178840A (en) * 1987-01-19 1988-07-22 Toppan Moore Co Ltd Slowly-releasable microcapsule

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3516941A (en) * 1966-07-25 1970-06-23 Minnesota Mining & Mfg Microcapsules and process of making
US4557755A (en) * 1982-01-18 1985-12-10 Kureha Kagaku Kogyo Kabushiki Kaisha Microencapsulated agricultural chemical and process of preparation thereof
US4534783A (en) * 1984-01-03 1985-08-13 Monsanto Co. High concentration encapsulation of water soluble-materials

Also Published As

Publication number Publication date
MY106614A (en) 1995-06-30
BR9006932A (en) 1991-10-08
PT95429A (en) 1991-05-22
ZA907807B (en) 1992-05-27
JPH04502016A (en) 1992-04-09
AU6420790A (en) 1991-04-28
WO1991004661A2 (en) 1991-04-18
YU182890A (en) 1993-10-20
HUT56998A (en) 1991-11-28
KR920700535A (en) 1992-08-10
IL95801A0 (en) 1991-06-30
PL287075A1 (en) 1991-09-09
IE903470A1 (en) 1991-04-10
CA2040418A1 (en) 1991-03-29
WO1991004661A3 (en) 1991-05-16
CN1050483A (en) 1991-04-10
EP0445266A1 (en) 1991-09-11

Similar Documents

Publication Publication Date Title
US5462915A (en) Process for producing microcapsules
AU641694B2 (en) Microencapsulated agricultural chemicals
JP6339277B2 (en) Stable pesticidal composition
EP1652433B2 (en) Herbicidal compositions
CA2817243C (en) Herbicidal capsule suspensions of acetochlor containing reduced amounts of safener
US5783520A (en) Microencapsulated herbicidal compositions comprising clomazone and edible oils
JPH02288805A (en) Micro-capsulated agriculturelly-active substance
DK2531023T3 (en) improved formulation
CA2842763C (en) Capsule suspension formulation comprising polymeric wall encapsulated pendimethalin and clomazone
EP2552212B1 (en) An improved formulation
MXPA98000196A (en) Herbici compositions
CN106458783B (en) Microencapsulated nitrification inhibitor compositions
HU215771B (en) Capsules containing herbicidal 2-chloro-n-(ethoxymetil)-6&#39;-ethyl-o-acetotoluidide and process for producing thereof
CA2719026C (en) Surfactant compositions
US5733848A (en) Process for making microparticulate agricultural chemicals
JP2000191407A (en) Coated composition for agriculture
CA1118222A (en) Microencapsulated trifluoralin
CS223996B2 (en) Herbicide means
JPS62292752A (en) Novel alkenylacetamide and use as regulator for natural growth and breeding of turf