AU641101B1 - Thermoplastic microspheres, process for their preparation and use of the microspheres - Google Patents

Thermoplastic microspheres, process for their preparation and use of the microspheres Download PDF

Info

Publication number
AU641101B1
AU641101B1 AU33775/93A AU3377593A AU641101B1 AU 641101 B1 AU641101 B1 AU 641101B1 AU 33775/93 A AU33775/93 A AU 33775/93A AU 3377593 A AU3377593 A AU 3377593A AU 641101 B1 AU641101 B1 AU 641101B1
Authority
AU
Australia
Prior art keywords
microspheres
chlorine
free aliphatic
blowing agent
fluorohydrocarbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
AU33775/93A
Inventor
Johan Gottfrid Lindgren
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casco Adhesives AB
Original Assignee
Casco Nobel AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Casco Nobel AB filed Critical Casco Nobel AB
Application granted granted Critical
Publication of AU641101B1 publication Critical patent/AU641101B1/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/32Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof from compositions containing microballoons, e.g. syntactic foams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/06Making microcapsules or microballoons by phase separation
    • B01J13/14Polymerisation; cross-linking
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/143Halogen containing compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/18Fireproof paints including high temperature resistant paints
    • C09D5/185Intumescent paints

Description

AUSTRALIA
Patents Act 1990 COMPLETE SPECIFICATION STANDARD PATENT
S
0e *S 3 S Applicankt(s): CASCO NOBEL AB invention Title: THERMOPLASTIC NICROSPHERES, PROCESS FOR THEIR PREPARATION AND USE OF THE
MICROSPHERES
S
S S SS S 55
S.
The following statement is a full description of this invention, including the best method of performing it known to me/us: Thermoplastic microspheres, process for their preparation and use of the microspheres The present invention relates to thermoplastic microspheres and more particularly to such microspheres containing special blowing agents. The invention also relates to preparation of the microspheres and the use of these.
Expandable and expanded thermoplastic microspheres are used in a great number of fields, for example as fillers in polymers, paints, plastisols, paper, cable insulation etc, and have been produced on a commercial scale for several years. Expandable thermoplastic microspheres are principally prepared according to the process disclosed in the US patent 3615972. The microspheres are thus conventionally prepared by suspension polymerisation of a liquid monomer or monomer mixture containing a con- Sdensed blowing agent which is dispersed in an aqueous phase containing a suspending agent and polymerisation initiator.
The microspheres obtained after the polymerisation consist S: 20 of a polymer shell which encapsulates the liquid, volatile blowing agent. The spheres expand by heating to a temperature above the boiling point of the blowing agent and above the softening point of the polymer.
At the production of expandable thermoplastic microspheres hydrocarbons such as n-butane, isobutane, isopentane and neopentane are conventionally used, and especially isobutane and isopentane which give microspheres with very good expansion capability. The commercially available microsphere product Expancel(R) contains iso- 30 butane as blowing agent and has a polymer shell of a copolymer of vinylidene chloride and acrylonitrile. Other blowing agents than pure hydrocarbons have been suggested for use in the preparation of microspheres. In the above mentioned US patent 3615972 it is, for example, mentioned that certain chlorofluorocarbons can be used, but these have, however, not been used commercially; Chlorofluorocarbons do not give the microspheres satisfactory expansion properties and they also have other disadvantages.
According to the present invention it has been found that aliphatic fluorocarbons and fluorohydrocarbons are excellent blowing agents for microspheres and give spheres with very good expansion properties. Expanded microspheres containing aliphatic fluorocarbons and fluorohydrocarbons have densities of corresponding magnitude as those containing isobutane and isopentane. The use of the specific blowing agents also lead to other advantages, particularly with regard to fire properties and insulation properties.
The present invention thus relates to thermoplastic microspheres containing chlorine-free aliphatic flucrocarbons and fluorohydrocarbons as further defined in the claims. The invention also relates to a method for the production of the microspheres and to the use of these as additives/fillers in products for which heat inulation capacity and/or fire resistance are of importance.
The basis for the present invention is thus the use of chlorine-free aliphatic fluorocarbons and fluorohydro- Scarbons as blowing agent in the production of expandable 20 thermoplastic microspheres. The expandable thermoplastic microspheres encapsulates the volatile chlorine-free aliphatic fluorocarbons and fluorohydrocarbons in liquid form in a shell of polymerized ethylenically unsaturated monomer or mixture of ethylenically unsaturated monomers.
When the expandable microspheres are heated to temperatures *E above the boiling point of the blowing agent and above the softening point of the polymer the propellant is volatilized and the microspheres expand which results in microspheres having a substantially increased diameter and which 30 contain the blowing agent in gas form.
The microspheres according to the present invention contains chlorine-free aliphatic fluorocarbons and/or fluorohydrocarbons. These can make up the whole amount of blowing agent but it is also within the sccpa of the invention that the microspheres contain these blowing agents in combination with other per se conventionally used blowing agents such as n-butane, isobutane, isopentane and neopentane and preferably in combination with isobutane or isopentane. The amount of other blowing agent than fluorocarbons or fluorohydrocarbons should suitably not exceed by weight and preferably not exceed 25% in order to utilize the advantages obtained with fluorocarbons and fluorohydrocarbons. The greatest advantages with regard to fire and insulation are of course obtained when the entire amount of blowing agent is made up from fluorocarbons or fluorohydrocarbons. However, mixtures with other blowing agents can be advantageous for example to compensate for high pressures during polymerisation when the utilized fluorocarbon or fluorohydrocarbon has a lower boiling point.
The thermoplastic shell of the microspheres is made up from polymers or copolymers of ethylenically unsaturated monomers. Examples of suitable monomers are vinyl chloride, vinylidene chloride, acrylonitrile, methacrylonitrile, acrylic esters, methacrylic esters, styrene etc, and mixtures of two or more of these. Preferred microspheres have a shell based on a copolymer containing acrylonitrile 20 and then particularly copolymers of acrylonitrile and vinylidene chloride and/or methyl methacrylate and/or methacrylonitrile. These copolymers can for example contain 30 to 80% by weight of acrylonitrile, 0 to 70% by weight of vinylidene chloride and/or 0 to 50% by weight of methyl 25 methacrylate and/or methacrylonitrile. The shell of the microspheres can be cross-linked or not cross-linked.
ve* The expandable microspheres can be prepared in per se known manner by suspension polymerisation of the monomers using conventional polymerisation initiators such as S" 30 dialkyl peroxides, diacyl peroxides, peroxy esters, peroxy dicarbnnates and azo compounds. The polymerisable monomer or monomer mixture, the condensed blowing agent, optional cross-linking agent and the initiator are suspended in an aqueous medium containing suspending agent in a reaction vessel. As cross-linking agents divinylbenzene, ethylene glycol dimethacrylate, triethylene glycol dimethacrylate, triallyl isocyanate etc, can for example be used. Usually a powder stabilizer, such as colloidal silicic acid, is used as suspending agent. The powder stabilizer is usually used in combination with a so-called co-stabilizer, such as for example polyethylene oxide, polyethyleneimine, tetra.nethylammonium hydroxide, condensation products of diethanolamine and adipic acid, condensation products of urea and formaldehyde. The powder stabilizer is usually used in an amount of from about 3 to about 10% by weight, based on the monomer, while the co-stabilizer usually is used in an amount of some tenth The blowing agent, the chlorine-free aliphatic fluorocarbons and fluorohydrocarbons and optional other blowing agents, as stated earlier, is usually used in amounts of from about 10 to about 70% by weight, based on total monomer weight, so that they make up from about 10 to about 45% of the weight of the produced expandable microspheres. The process equipment used for the polymerisation is decisive for the choice of the chlorine-free aliphatic fluorocarbons and fluorohydrocarbons since a too low boiling point for these gives rise to too high pressures 20 during the polymerisation process. The boiling point should usually not be lower than -40°C and preferably not lower than -20°C. The upper limit for the boiling point of the compounds is in the first hand dependent on the monomer composition, since the boiling point of the compounds shall be below the softening point for the polymer in question in order to carry out expansion of the microspheres. Generally the boiling point of the compounds should thus not exceed 0 C and as a rule not exceed 40 0 C. As examples of fluorocarbons and fluorohydrocarbons which can be used can be mentioned CH 2
FCF
3
CH
3
CHF
2
CH
3 CH2F, CF 3
CF
2
CF
3
CF
3
CF
2
CF
2
CF
3 cyclo-C 4
F
8
CF
3
(CF
2 3
CF
3 and CF 3
CHFCF
3 2Hheptafluoropropane (CF 3
-CHF-CF
3 is especially suitable.
The polymerisation can be carried out in per se known manner and usually polymerisation temperatures of from about 40 0 C to about 70 0 C are used and the polymerisace is normally post-treated by filtration, washing and dewatering. The particle size for the unexpanded spheres, and thus also for the expanded spheres, can vary within wide limits and is selected with regard to the desired properties of the finished product. At the polymerisation the particle size is controlled mainly by the composition of the polymerisation mixture and the degree of stirring. 1 pm to 1 mm, preferably 2 pm to 0.5 mm and especially 5 pm to 50 Pm can be mentioned as examples of particles sizes of u:nexpanded spheres.
The expandable spheres are expanded by heating to a temperature which gives rise to softening of the polymer shell and volatilization of the propellant whereby the particles expand to a diameter substantially .larger than the diameter for the unexpanded particles and the expansion can be carried out in per se known manners. The spheres can for example be dried and expanded by dispersing the unexpanded spheres in an inert liquid, atomization of the g: dispersion and bringing this in contact with a warm inert gas stream. Another suitable manner for expansion is disclosed in the European patent application 0348372.
According to this process the expandable microspheres are 20 first dried to a certain dry content and then expanded by heating, eg by IR-heating. The expansion temperature is set by the boiling point of the blowing agent and the softening point of the shell-polymer and is usually within the range S. of from about 70°C to about 140 C. It has been found that the blowing agents used according to the present invention S. give at least as good expansion as the commercially used blowing agents isobutane and isopentane and thereby give expanded microspheres with about the same densities as Sthose which are commercially acceptable. This is in con- 30 trast to chlorofluorocarbons and chlorofluorohydrncarbons which give substantially inferior expansion, which is believed to be due to their interference at the polymerisation, and expanded microspheres which have densities about 3 to about 7 times higher than when isobutane or isopentane is used. Compared with isobutane and isopentane 2H-heptafluoropropane, for example, is also advantageous since it is non-combustible which is of importance both at the production and the use of the microspheres. Since the compounds are non-combustible problems with dust explosions in connection with drying of expandable as well as of expanded spheres are reduced. Another advantage in comparison with isobutane and isopentane is that for example 2H-heptafluoropropane has substantially lowe2 thermal conductivity which broadens the fields of application for the microspheres. Compared with chlorofluorocarbons the present fluorocarbons and fluorohydrocarbons are also advantageous since they do not have any ozone degrading effect.
Expandable and expanded thermoplastic microspheres have a large number of applications. The use of unexpanded microspheres is based on the expansion capability of the spheres and they are then expanded in situ in the materials in which they are incorporated when these materials are heated. As some examples of such use can be mentioned printing inks for the production of relief print on paper and textiles, fillers in paper and board and foaming of for example PVC-plastisol. At the use of expanded microspheres 20 the low density and filling effect of the spheres are utilized and they can for example be used as fillers in paints, putty, polymers and resins such as polyester, polyurethane, epoxy resins, composite materials based on polymers, paper, insulation materials etc.. The micro- 25 spheres of the present invention can be used for the same *4 purposes for which microspheres are generally used. The present microspheres are particularly suitable for use in products for which fire resistance and thermal insulating capacity are of importance since the microspheres are 30 advantageous in such applications since they contain chlorine-free fluorocarbons and fluorohydrocarbons, such as 2H-heptafluoropropane, which are non-combustible and which have low thermal conductivity. The present invention thus also relates to use of the microspheres in fire-resistant paints and in insulation materials. In fire-resistant' paints the microspheres are used as fillers/additives. The unexpanded microspheres are advantageously used in fireresistant paints since they expand at heating and thereby 7 give an insulating layer which protects the substrate. When the temperature becomes so high that the microspheres break the non-combustible blowing agent is releases and the fire is retarded. As concerns insulation materials the entire product can be made up from microspheres, for economical reasons the microspheres are, however, also in this application as a rule used as fillers/additives. As examples of insulation materials wherein the microspheres can be used are jointing compounds for, among other things, cable entries, where good insulation and fire-resistant properties are desired.
The invention is further illustrated in the following examples which, however, are not intended to limit the same. Parts and per cent relate to parts by weight and per cent by weight respectively, unless otherwise stated.
Example 1 125 parts of water were mixed with 5.5 parts of 1 molar NaOH-solution and 10 parts of 10% acetic acid solution, 6 parts of 40% colloidal silicic acid, 0.5 parts of a condensation product of diethanolamine and adipic acid and parts of dicetyl peroxydicarbonate and charged to a 1 reactor equipped with stirrer. The reactor was sealed and evacuated. A mixture of 0.3 parts of divinylbenzene, 7 parts of methylmethacrylate, 32 parts of acrylonitrile, 32 S. 25 parts of vinylidene chloride and 29 parts of 2H-heptafluoropropane were then charged. The polymerisation mixture was stirred at 850 rpm during 60 minutes. After homogenization the rotation speed was lowered to 400 rpm and the S: mixture was then heated to 55°C and polymerized at this temperature for 8 hours. The obtained polymerisate was washed and dewatered. The unexpanded microspheres had an average particle size, by weight, of 16 pm. The microspheres were dried and their expansion capacity was investigated by means of thermomechanical analysis. They were found to have the same expansion capacity and temperature resistance as if isobutane or isopentane had been used, ie a density of about 17 kg/m 3 was reached.
Comparative Examples 2a) 2c) The process according to Example 1 was repeated with other blowing agents.
2a) Instead of 2H-heptafluoropropane 12 parts of isopentane were used. The dried microspheres had a density below kg/m 3 2b) Instead of 2H-heptafluoropropane 30 parts of trichlorofluoromethane were used. The dried microspheres had a density of about 60 kg/m 3 2c) Instead of 2H-heptafluoropropane 30 parts of 1,1-dichloro-2,2,2-trifluoroethane were used. The dried microspheres had a density of about 100 kg/m 3 Example 3 For evaluation of the heat insulation capacity of products produced from microspheres according to the invention a plate having the dimensions 300x400x20 mm was produced. This was produced by spreading dry unexpanded microspheres, prepared according to Example 1, in a mould which was then sealed and placed in an oven where it was S 20 allowed to stand during 45 minutes at a temperature of 135 0 C. The obtained plate had a density of 40 kg/m 3 The heat conductivity was measured to 0.0235 W/m°C. For a plate produced in the same manner from microspheres containing S• isobutane as the blowing agent the measured heat conductivity was 0.0275 W/mOC. A clearly improved insulation capability was thus obtained with microspheres according to the invention containing 2H-heptafluoropropane as blowing agent.
*i

Claims (14)

1. Thermoplastic microspheres having a shell of polymerized ethylenically unsaturated monomer or mixture of ethylenically unsaturated monomers which encapsulates a blowing agent, characterized in that the blowing agent comprises a chlorine-free aliphatic fluorocarbon or fluoro- hydrocarbon.
2. Microspheres according to claim 1, characterized in that the microspheres are unexpanded and contain the chlorine-free aliphatic fluorocarbon or fluorohydrocarbon in liquid form.
3. Microspheres according to claim 1, characterized in that the microspheres are expanded and contain the chlorine-free aliphatic fluorocarbon or fluorohydrocarbon in gaa form. o
4. Microspheres according to any of the preceding claims, characterized in that the chlorine-free aliphati 4 fluorocarbon or fluorohydrocarbon has a boiling point of not lower than
5. Microspheres according to claim 4, characterized in that the chlorine-free aliphatic fluorocarbon or fluoro- .:hydrocarbon is 2H-heptafluoropropane.
6. Microspheres according to any of the preceding claims, characterized in that the entire amount of blowing 25 agent is a chlorine-free aliphatic fluorocarbon or fluoro- hydrocarbon.
7. Microspheres according to any of claims 1 to :characterized in that the blowing agent is made up from 0.6D chlorine-free aliphatic fluorocarbon or fluorohydrocarbon in combination with not more than 50% by weight of a blowing agent selected from the group n-butane, isobutane, isopentane and neopentane.
8. Microspheres according to any of the preceding claims, characterized in that the shell is based on a copolymer of acrylonitrile with vinylidene chloride and/or methyl methacrylate and/or methacrylonitrile.
9. A process for the production of thermoplastic microspneres by polymerisation of an ethylenically un- saturated monomer or a mixture of ethylenically unsaturated monomers in aqueous suspension in the presence of a blowing agent, characterized in that the blowing agent comprises a chlorine-free aliphatic fluorocarbon or fluorohydrocarbon.
10. A process according to claim 9, characterized in that the chlorine-free aliphatic fluorocarbon or fluoro- hydrocarbon has a boiling point of not lower than -40 0 C.
11. A. process according to claim 10, characterized in that the chlorine-free aliphatic fluorocarbon or fluoro- hydrocarbon is 2H-heptafluoropropane.
12. Use of expandable or expanded thermoplastic microspheres having a shell of polymerized ethylenically unsaturated monomer or mixture of ethylenically unsaturated monomers which encapsulates a blowing agent comprising a chlorine-free aliphatic fluorocarbon or fluorohydrocarbon in fire-resistant paints and insulation materials.
13. Use according to claim 12, whereby the chlorine- free aliphatic fluorocarbon or fluorohydrocarbon in the microspheres is 2H-heptafluoropropane.
14. Use according to claim 12 or 13, whereby the whole amount of blowing agent is made up from chlorine-free aliphatic fluorocarbon or fluorohydrocarbon. DATED THIS 25TH DAY OF FEBRUARY 1993 CASCO NOBEL AB By its Patent Attorneys: GRIFFITH HACK CO. Fellows Institute of Patent Attorneys of Australia Abstract Thermoplastic microspheres, unexpanded or expanded, which contain chlorine-free aliphatic fluorocarbons or fluoro- hydrocarbons. Chlorine-free aliphatic fluorocarbons or fluorohydrocarbons are used as blowing agent at the produc- tion of expandable thermoplastic microspheres. Expanded microspheres containing these blowing agents have very low densities. The use of the specific blowing agents also gives other advantages, especially with regard to fire and insulation properties and the microspheres are thus especially suitable for use in fire-resistant paints and insulation materials. e..a o 04
AU33775/93A 1992-03-06 1993-02-25 Thermoplastic microspheres, process for their preparation and use of the microspheres Ceased AU641101B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SE9200704A SE9200704L (en) 1992-03-06 1992-03-06 Thermoplastic microspheres, process for their preparation and use of the microspheres
SE9200704 1992-03-06

Publications (1)

Publication Number Publication Date
AU641101B1 true AU641101B1 (en) 1993-09-09

Family

ID=20385547

Family Applications (1)

Application Number Title Priority Date Filing Date
AU33775/93A Ceased AU641101B1 (en) 1992-03-06 1993-02-25 Thermoplastic microspheres, process for their preparation and use of the microspheres

Country Status (6)

Country Link
EP (1) EP0559254A1 (en)
JP (1) JPH0649260A (en)
KR (1) KR930019739A (en)
AU (1) AU641101B1 (en)
CA (1) CA2090905A1 (en)
SE (1) SE9200704L (en)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE510857C2 (en) * 1994-11-14 1999-06-28 Casco Products Ab Coating composition based on polyvinyl chloride plastisol containing thermoplastic microspheres
US6559213B2 (en) 1995-03-16 2003-05-06 Henkel-Teroson Gmbh Plastisol composition
EP0861108B1 (en) * 1995-11-10 2004-04-07 Tretorn Research and Development Limited A ball and a method of manufacturing a ball
US5786095A (en) * 1996-07-03 1998-07-28 H.B. Fuller Licensing & Financing, Inc. Inorganic based intumescent system
US6919111B2 (en) 1997-02-26 2005-07-19 Fort James Corporation Coated paperboards and paperboard containers having improved tactile and bulk insulation properties
SE513860C2 (en) * 1998-01-16 2000-11-20 Glasis Holding Ab Fire-resistant board and method of making it
WO1999037706A1 (en) * 1998-01-26 1999-07-29 Kureha Kagaku Kogyo K.K. Expandable microspheres and process for producing the same
DE69913671T2 (en) * 1998-03-13 2004-06-17 Matsumoto Yushi-Seiyaku Co., Ltd., Yao HEAT-EXPANDABLE MICROCAPSULES AND METHOD FOR THE USE THEREOF
DE19812123A1 (en) * 1998-03-19 1999-09-30 Blanco Gmbh & Co Kg Casting compounds for the production of sanitary molded parts with more than one visible side
AUPQ118399A0 (en) * 1999-06-24 1999-07-22 Selleys Pty Limited Novel composition container apparatus and process
JP2002120510A (en) * 2000-07-27 2002-04-23 Bridgestone Corp Safe tire, complex and expandable composition used for it, and manufacturing method of safe tire
DE10130888A1 (en) 2001-06-27 2003-01-30 Henkel Teroson Gmbh Adhesion promoter for plastisols
DE10239631A1 (en) * 2002-08-23 2004-03-04 Carcoustics Tech Center Gmbh Insulating structural part for heat and noise insulation, has fire resistant coating, ceramic adhesive, expandable microhollow ceramic spheres and heat expanding propellant
JP2004155999A (en) * 2002-11-08 2004-06-03 Sekisui Chem Co Ltd Thermally expandable microcapsule
TWI299101B (en) * 2003-01-30 2008-07-21 Sipix Imaging Inc High performance capsules for electrophoretic displays
WO2004074396A1 (en) 2003-02-24 2004-09-02 Matsumoto Yushi-Seiyaku Co., Ltd. Thermoexpansible microsphere, process for producing the same and method of use thereof
US6872761B2 (en) 2003-04-24 2005-03-29 Henkel Kommanditgesellschaft Auf Aktien Compositions for acoustic-damping coatings
EP2357279A1 (en) * 2005-03-11 2011-08-17 International Paper Company Compositions containing expandable microspheres and an ionic compound as well as methods of making the same
DE102005017912A1 (en) 2005-04-18 2006-10-19 Henkel Kgaa Low temperature hardening of 1-component polyurethane adhesives or sealants for bonding plastics especially in headlamp manufacture involves exposure to microwave irradiation
DE102006014190A1 (en) 2006-03-24 2007-09-27 Henkel Kgaa Single component, hot-setting reactive composition, useful e.g. as an adhesive in automobile construction, comprises e.g. a liquid polyene, a block copolymer with a polyene block and a saturated block and/or a vulcanization system
DE102006016577A1 (en) 2006-04-06 2007-10-11 Henkel Kgaa Adhesives / sealants based on liquid rubbers
WO2008142849A1 (en) * 2007-05-21 2008-11-27 Matsumoto Yushi-Seiyaku Co., Ltd. Process for production of thermally expandable beads and application thereof
AU2014262383B2 (en) 2013-05-07 2017-04-27 Xflam Pty Ltd Processes for preparing foam composites
KR20160030089A (en) * 2013-05-07 2016-03-16 엑스플람 피티와이 리미티드 Foam composites
DE202013103055U1 (en) 2013-07-10 2014-10-13 Heimbach Gmbh & Co. Kg The paper machine belt
DE102013226505A1 (en) 2013-12-18 2015-06-18 Henkel Ag & Co. Kgaa Thermosetting rubber compositions with plastisol-like flow behavior
SE541300C2 (en) * 2015-03-05 2019-06-18 Matsumoto Yushi Seiyaku Kk Heat-expandable microspheres and application thereof
CN105218714A (en) * 2015-10-30 2016-01-06 浙江中天氟硅材料有限公司 A kind of flame retardant microcapsule and its preparation method and application
EP3587465A1 (en) 2018-06-27 2020-01-01 Solvay Sa Process for the preparation of a polyurethane foam
EP3696225B1 (en) 2019-02-18 2021-11-10 Eftec Nv Plastisol composition suitable for sealing of metal parts
CN109989207A (en) * 2019-04-15 2019-07-09 无锡市信文机械制造有限公司 A kind of compound forming machine baking oven of Balance route temperature
EP3950800A1 (en) 2020-08-03 2022-02-09 Henkel AG & Co. KGaA Improved corrosion resistance in rubber-based adhesives and sealants
JP7259140B1 (en) * 2021-07-29 2023-04-17 松本油脂製薬株式会社 THERMALLY EXPANDABLE MICROSPHERES, COMPOSITION, AND MOLDED PRODUCT
CN116179137B (en) * 2023-03-06 2023-10-13 广东德聚技术股份有限公司 Low-water vapor transmittance moisture-curable polyurethane hot melt adhesive

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3615972A (en) * 1967-04-28 1971-10-26 Dow Chemical Co Expansible thermoplastic polymer particles containing volatile fluid foaming agent and method of foaming the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59173132A (en) * 1983-03-22 1984-10-01 Matsumoto Yushi Seiyaku Kk Solvent-resistant heat expansive microcapsule
US4563481A (en) * 1984-07-25 1986-01-07 The Dow Chemical Company Expandable synthetic resinous thermoplastic particles, method for the preparation thereof and the application therefor
JPH03223346A (en) * 1990-01-30 1991-10-02 Asahi Chem Ind Co Ltd Preparation of expandable vinylidene chloride resin particle
JPH03225182A (en) * 1990-01-30 1991-10-04 Asahi Chem Ind Co Ltd Heat insulating material for refrigerator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3615972A (en) * 1967-04-28 1971-10-26 Dow Chemical Co Expansible thermoplastic polymer particles containing volatile fluid foaming agent and method of foaming the same

Also Published As

Publication number Publication date
SE9200704L (en) 1993-09-07
JPH0649260A (en) 1994-02-22
CA2090905A1 (en) 1993-09-07
SE9200704D0 (en) 1992-03-06
KR930019739A (en) 1993-10-18
EP0559254A1 (en) 1993-09-08

Similar Documents

Publication Publication Date Title
AU641101B1 (en) Thermoplastic microspheres, process for their preparation and use of the microspheres
EP0486080B1 (en) Expandable thermoplastic microspheres and a method for the production and use thereof
US6235800B1 (en) Heat-expandable microcapsules and method of utilizing the same
JP4362474B2 (en) Thermally expandable microspheres, method for producing the same and method for using the same
JP5107703B2 (en) Thermally clad ultra-low density microspheres
EP1981631B1 (en) Microspheres
KR101638208B1 (en) Thermally expandable microcapsule and foam-molded article
KR102179456B1 (en) Thermally expandable microspheres made from bio-based monomers
CN108912384A (en) Superhigh temperature expandable thermoplastic microspheres and its preparation method and application
KR20110058095A (en) Heat-expandable microparticles having good expandability and even particle diameter
JP6874223B2 (en) Thermally expandable microspheres prepared from biomonomers
US3740359A (en) Vinylidene chloride expandable microspheres
JP4633987B2 (en) Method for producing thermally expandable microcapsules
EP3441439B1 (en) Microsphere, thermally foamable resin composition, foam molded body and manufacturing method for same
WO2006083041A1 (en) Thermally foamable microsphere, process for producing the same, and composition
CA1040799A (en) Expandable ethylenically unsaturated polymer particle compositions
CN111218023B (en) Conductive thermal expansion microsphere with good flame retardance and preparation method thereof
EP0569234B2 (en) Thermoexpandable microcapsules having small particle size and production thereof
JP6668067B2 (en) Microsphere, thermofoamable resin composition containing the same, structural member, and molded article
JP2004155999A (en) Thermally expandable microcapsule
JP2012131867A (en) Thermally expandable microcapsule, resin composition and foamed sheet
US3630975A (en) Solvent resistant hollow beads of vinyl chloride copolymers with ethylene and a non-conjugated diene
JPS61171705A (en) Production of styrene resin beads
JPS5831103B2 (en) Method for producing expandable flame-retardant polyethylene polymer particles
JPS6140701B2 (en)