AU639679B2 - Battery monitoring system - Google Patents

Battery monitoring system

Info

Publication number
AU639679B2
AU639679B2 AU48004/90A AU4800490A AU639679B2 AU 639679 B2 AU639679 B2 AU 639679B2 AU 48004/90 A AU48004/90 A AU 48004/90A AU 4800490 A AU4800490 A AU 4800490A AU 639679 B2 AU639679 B2 AU 639679B2
Authority
AU
Australia
Prior art keywords
battery
efficients
output
arrangement
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
AU48004/90A
Other versions
AU4800490A (en
Inventor
Andrew Simon Clegg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PM-MENDES (INTERNATIONAL) Ltd
Original Assignee
Opalport Electronics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Opalport Electronics Ltd filed Critical Opalport Electronics Ltd
Priority to AU48004/90A priority Critical patent/AU639679B2/en
Publication of AU4800490A publication Critical patent/AU4800490A/en
Application granted granted Critical
Publication of AU639679B2 publication Critical patent/AU639679B2/en
Assigned to PM-MENDES (INTERNATIONAL) LIMITED reassignment PM-MENDES (INTERNATIONAL) LIMITED Alteration of Name(s) in Register under S187 Assignors: OPALPORT ELECTRONICS LIMITED
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

BATTERY MONITORING SYSTEM
This invention relates to a battery monitoring system.
In the use of battery operated equipment, such as battery powered electric vehicles and standby power systems, it is desirable to monitor the battery in order to provide from time to time a prediction informing the user of the remaining capacity in the battery.
It is an object of the present invention to provide a battery monitoring system.
According to the present invention a battery monitoring system comprises, first means for evaluating the level of instantaneous current drawn from a battery when supplying a load; second means for evaluating the level of instantaneous battery voltage; third means for computing from the output of the first and second means the level of instantaneous power delivered by the battery; fourth means for determining a final battery voltage level at which the capacity of the battery is exhausted; fifth means for evaluating from the output of the third and fourth means the estimated final battery current; sixth means for calculating according to a first pre¬ determined algorithm the total discharge duration of the battery according to the outputs of the fourth and fifth means; seventh means for calculating according to a second
SUBSTITUTESHEET predetermined algorithm the accumulated discharge duration according to the output of the first and second means; eighth means for assessing the remaining discharge duration available from the battery from the outputs of the sixth and seventh means; wherein said first predetermined algorithm comprises a hyperbolic equation having first co-efficients selected from a stored table of such first co-efficients by the output of the fourth means, and said second predetermined algorithm comprises a cubic equation having second co¬ efficients selected from a stored table of such second co-efficients by the output of said first means.
An embodiment of the present invention will now be described with reference to the accompany drawing, in which:
Fig. 1 schematically illustrates a battery monitoring system according to the present invention; and
Fig. 2 illustrates in graphical form details useful for an understanding of the Fig. 1 system. A battery monitoring system 10 in accordance with the present invention is illustrated in Fig. 1 and monitors the condition of battery 9 which is connected to supply a load .8. System 10 comprises a first evaluating arrangement 11 for evaluating the level of instantaneous current drawn from the battery 9, and a second evaluating arrangement 12 for evaluating the level of instantaneous battery voltage. The outputs of arrangements 11 and 12 are fed to a third arrangement 13 which computes the level of instantaneous power delivered by the battery. A fourth arrangement 14, in this embodiment containing a preset value, determines a final voltage level for the battery 9 when the capacity of the battery is exhausted and the outputs of arrangements 13 and 14 are delivered to a fifth arrangement 15 which evaluates the estimated final battery current. The output of arrangement 15, together with the output of arrangement 14, is delivered to a sixth arrangement 16 for calculating according to a first predetermined algorithm (as will be explained) the total discharge duration of the battery 9. The outputs of the first and second arrangements 11, 12, in addition to being fed to the third arrangement 13 are fed to a seventh arrangement 17 which is arranged to evaluate according to a second predetermined algorithm (as will be explained) the accumulated discharge duration and the outputs of the sixth and seventh arrangements 16, 17, are fed to an eighth arrangement 18 which evaluates the remaining discharge duration available from the battery 9. The algorithms which are used in the system 10 are formulated on the basis of the output from first arrangement 11 being in a normalised form, in part this simply being a percentage of the ten hour discharge rate but in part being modified by variations in temperature of the battery 9 with respect to a predetermined temperature (usually 15°C) .
Accordingly, a temperature sensor 21 is provided for sensing battery temperature and the output of sensor 21 operates an arrangement 22 to establish a temperature correction factor which is fed to the first arrangement 11. The arrangement 11 therefore comprises a current sensor 11A, a temperature normalising unit 11B and a scaling unit lie The second arrangement 12 comprises a voltage sensor 12A, a preset store 12B containing the number of individual cells within the specific battery 9 and an arithmetic unit 12C which provides the output for arrangement 12 so that the output is measured volts per cell. The third arrange- ment 13 evaluates the level of instantaneous power delivered by the battery by multiplication of the values delivered to it by the first and second arrangements 11, 12. The fourth arrangement 14 is provided in this example in a preset manner, with the final voltage level of each cell and the fifth arrangement 15 contains a calculating unit 15A which by division of the power value delivered to it by arrangement 13 and the voltage measure delivered by arrangement 14 evaluates the final current and this is scaled by unit 15B to the ten hour discharge rate. The sixth arrangement 16 comprises an arrangement 16A which stores a first set of co-efficients and which is arranged to output a single set of such co-efficients to unit 16B according to the voltage value provided to unit 16A by arrangement 14. Unit 16B is a calculation unit which evaluates a hyperbolic equation having specified co¬ efficients as delivered by unit 16A and a specified variable as delivered by unit 15B. The evaluation of this hyperbolic equation establishes a total duration of battery discharge.
The seventh arrangement 17 comprises a unit 17A which stores a table of second co-efficients and according to the value of scaled current delivered to it by unit 11C provides a specific set of such second co-efficients to a calculating unit 17B which is arranged to evaluate the accumulated discharge time from a predetermined cubic equation relating instantaneous voltage with accumulated discharge time.
The eighth unit 18 is arranged to subtract the values delivered to it by units 16 and 17 to thereby provide a measure of the remaining time to final discharge of the battery 9. Arrangement 18 may also express the remaining discharge time available as a percentage of the total discharge time or may express the accumulated discharge time as a percentage of the total discharge time.
The cubic equation evaluated by unit 17B is derived from graphical data provided by battery manufacturers expressing the relationship between measured battery voltage and accumulated discharge time for a particular level of instantaneous current. It has been found that the divergence between the graphical data and the cubic equation is minimal as illustrated by Fig. 2 and by storing sets of co-efficients in unit 18A for particular values of current a substantial reduction of storage space is achieve together with an increased ability to interpolate for unstored sets of co-efficients. Likewise the hyperbolic equation evaluated by unit 16B is derived from graphical data provided by battery manufacturers expressing the total discharge period to a particular value of final battery voltage for a series of specific values of instantaneous battery voltage and the divergence between the hyperbolic equation and the graphical data is negligible. Interpolation of unstored co-efficients for the hyperbolic equation is readily effected by unit 16A. By way of operation of the system 10 a specific example will now be evaluated for a battery of the lead acid HCP17 type having the following parameters:
Ampere hour rate 800 = 10 hour capacity No. of cells 164 Temperature correction factor 1% per °C Rated temperature 15°C Final voltage 294 Final volt/cell 1.79 The following measurements are taken: Current 146 Amperes
Voltage 314.8 Volts
Temperature 20°C
1) Sensor 11A measures the present current (i. ) flowing through the battery leads as + 146 amps, the positive sign indicating that the battery is being discharged.
Unit 11B normalises i. to rated temperature (15°C) and because the measured temperature in the battery room is 20°C the temperature correction factor provided by unit 22 is: tempco = 1 + (20 - 15) x (1/100) = 1.05 so that the temperature-corrected discharge current is 146.0 ÷ 1.05 = 139.05
Unit 11C calculates current in terms of the 10 hour capacity of the battery, to give a percentage, so that i the output of arrangement 11 is: i = (139.05 x 100) ÷ 800 = 17.38%
P
2) Sensor 12A measures the battery voltage as 314.8 volts d.c.
Unit 12B divides the battery voltage by the number of cells (164) to give cell voltage: v. = 314.8 / 164 = 1.9195 m
3) Arrangement 13 calculates power demand.
Power = v. x i = 1.9195 x 139.05 = 266.90 watts in p
4) Unit 15A calculates final current ij. = power / vf (vf is the preset final voltage, i.e. 1.79 established in arrangement 14) . if = 266.90 / 1.79 = 149.11 amps and this is scaled by unit 15B to be 18.64 % of the 10 hour capacity.
5) Arrangement 16 calculates the finish time T, using final current (if) from a hyperbolic equation of the form
where the hyperbolic co-efficients (a,b,c) are stored in unit 16A for specified final voltage values; e.g.
From the above table unit 16A selects the co-efficients for the set end point voltage of 1.79: 1.79 - 74.9541 6913.18 3857.27 and the finish time T for the specified final current of 18.64% is calculated using the hyperbolic equation: T •*= -74.9541 + (6913 / 18.64) + (3857.27 / (18.64) 2 = 307.06
6) Unit 17 calculatesthe accumulated discharge time t from a cubic equation of the form
2 3 V = a + bt + ct + dt where the cubic co-efficients (a,b,c,d) are stored in unit
17A for specified levels of current i , e.g.
-2 (where E-2 represents 10 etc.-)
Accordingly the cubic equation is:
20 V = a + b-t + ct "+ d-t
We know the following variables
V = cell voltage = 1.9195 a = calculated coefficient = 1.96496 b = calculated coefficient = -0.01432
25 c = calculated coefficient = 0.000577 d = calculated coefficient = -0.00058 and unit 17B solves this equation, by iteration, for t, th result being t = 161 minutes.
7) Arrangement 18 evaluates the remaining time as the difference between final time and present time = 307 - 161 = 146 minutes so that if the discharge continues at the present rate the battery will last for a further 146 minutes.
Additionally arrangement 18 may evaluate the percent discharge remaining as (Remaining time / finish time) x 100 = (146 / 307) x 100 = 47.56% so that the battery has 47.5% of its charge remaining.
It will be appreciated that in the foregoing example, for both the cubic and hyperbolic equations the sets of stored co-efficients and their identifier contain an identifier equal in value to that produced by arrangement 11 and by arrangement 14 but, particularly for arrangement 11 which outputs a measure of instantaneous current which is likely continuously to change, there is no guarantee that the evaluated current value is identical to an identifier within store unit 17A. Accordingly, unit 17A is adapted to interpolate between the nearest stored identifiers and their stored co-efficients to obtain the required identifier and required co-efficients.
For example, in the event that the identifier and its co-efficients are not stored in unit 17A interpolation is made between the -efficients stored for storedidentifier 18.0 and those of stored identifier 15.5 (see the previous Table I) by calculating the ratio that 17.38 is between 15.5 and 18.0 (76%) and for each stored co-efficient evaluating the interpolated value. Thus, taking co¬ efficient a as the example: a = (1.964 / 1.968) x 0.76 + 1.968
= 1.965 Interpolation may be carried out on a similar basis by unit 16A in the case where the final voltage Vf is not a preset value as dictated by the battery manufacturers which normally a value specifically contained as an identifier in store unit 16A.
It will be understood that in the system 10 which has been described the system outputs on a continuous (very rapid sampling) basis the prediction of the battery capacit remaining at any point in time and this prediction can, if so desired, be used to set or operate alarm devices guarding the battery and load arrangement. The system 10 may be modified to incorporate a self- learning regime by comparing the projected discharge of the battery 9 with the actual discharge by means of which the system 10 self-adjusts for inefficiencies of the battery and load arrangement and for battery ageing. This is achieved using "electrically erasable programmable read only memory" (EEPROM) . Each time a discharge takes place, the system 10 records all the vital parameters and then integrates them with previously stored derived measurements. For example calculations made during the discharge and recharge of the battery allow the system to calculate the effective "charging efficiency". That is to say the percentage of energy that has to be returned to the battery in order to return it to the fully charged state or to a predetermined percentage thereof. To achieve this the system stores the following data for each charge/discharge cycle:
Battery energy level at end of discharge (EEPD) . Energy returned to battery during recharge (ER) . Battery energy level at start of next discharge (ESND) . The charging efficiency can be expressed as:-
ESND - EEPD
Charge Efficiency (CE) = X 100
ER
The result from each charge/discharge cycle is integrated into a continuous store, the "historical charge efficiency" The system therefore "learns" the charging efficiency of the battery, load and charging unit.
Logging of previous recharge rates, times and efficiencies allow the system to indicate the predicted recharge time required to return the battery to a charged state. In order to calculate the required recharge time the system records one further parameter:-
Charge Rate (CR) Expressed in Ampere/minutes and derives
Depth of Discharge (DD) as % Fully Charged energy level The recharge time then can be expressed as:-
DD CR
Charge Time (minutes) = — X —
CE BC where BC is the Battery Capacity expressed in Ampere/minut
All the above variables are stored in electrically erasable programmable read only memory (EEPROM) .

Claims (4)

Claims
1. A battery monitoring system is characterised by the combination of first means (11) for evaluating the level of instantaneous current drawn from a battery (9) when supplying a load (8) ; second means (12) for evaluating the level of instantaneous battery voltage; third means (13) for computing from the output of the first and second means (11, 12) the level of instantaneous power delivered by the battery (9) ; fourth means (14) for determining a final battery voltage level at which the capacity of the battery (9) is exhausted; fifth means (15) for evaluating from the output of the third and fourth means (13, 14) the estimated final battery current; sixth means (16) for calculating according to a first predetermined algorithm the total discharge duration of the battery (9) according to the outputs of the fourth and fifth means (15, 15); seventh means (17) for calculating according to a secon predetermined algorithm the accumulated discharge duration according to the output of the first and second means (11,12 eighth means (18) for assessing the remaining discharge duration available from the battery (9) from the outputs of the sixth and seventh means (16, 17); wherein said first predetermined algorithm comprises a hyperbolic equation having first co-efficients selected from a stored table of such first co-efficients by the output of the fourth means (14) , and said second predetermined algorithm comprises a cubic equation having second co-efficients selected from a stored table of such second co-efficients by the output of said first means (11) .
2. A system as claimed in claim 1, characterised in that a temperature sensor is provided for monitoring battery temperature the sensor output being connected to establish a correction factor used by said first means (11) .
3. A system as claimed in claim (1) , characterised in that each of the sixth and seventh means (16, 17) includes interpolation means to establish co-efficients intermediate those stored by the respective table.
4. A system as claimed in claim 2 characterised in that each of the sixth and seventh means (16, 17) includes interpolation means to establish co-efficients intermediate those stored by the respective table.
AU48004/90A 1989-11-29 1989-11-29 Battery monitoring system Ceased AU639679B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU48004/90A AU639679B2 (en) 1989-11-29 1989-11-29 Battery monitoring system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
AU48004/90A AU639679B2 (en) 1989-11-29 1989-11-29 Battery monitoring system

Publications (2)

Publication Number Publication Date
AU4800490A AU4800490A (en) 1991-06-26
AU639679B2 true AU639679B2 (en) 1993-08-05

Family

ID=3734776

Family Applications (1)

Application Number Title Priority Date Filing Date
AU48004/90A Ceased AU639679B2 (en) 1989-11-29 1989-11-29 Battery monitoring system

Country Status (1)

Country Link
AU (1) AU639679B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111007419A (en) * 2019-12-06 2020-04-14 国家电网公司 Transformer substation direct current system running state on-line monitoring system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3778702A (en) * 1971-07-13 1973-12-11 Curtis Instr Operating time remaining computer
US3971980A (en) * 1974-01-11 1976-07-27 Firma Akkumulatorenfabrik Dr. Leopold Jungfer Battery testing apparatus
AU613806B2 (en) * 1989-03-31 1991-08-08 Mitsubishi Denki Kabushiki Kaisha Cognition device for battery residual capacity

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3778702A (en) * 1971-07-13 1973-12-11 Curtis Instr Operating time remaining computer
US3971980A (en) * 1974-01-11 1976-07-27 Firma Akkumulatorenfabrik Dr. Leopold Jungfer Battery testing apparatus
AU613806B2 (en) * 1989-03-31 1991-08-08 Mitsubishi Denki Kabushiki Kaisha Cognition device for battery residual capacity

Also Published As

Publication number Publication date
AU4800490A (en) 1991-06-26

Similar Documents

Publication Publication Date Title
US5394089A (en) Battery monitor which indicates remaining capacity by continuously monitoring instantaneous power consumption relative to expected hyperbolic discharge rates
US5525890A (en) Battery unit and battery energy billing method
US5325041A (en) Automatic rechargeable battery monitoring system
US6215281B1 (en) Method and apparatus for reducing battery charge time and energy consumption, as in a nickel metal hydride battery pack
AU2002211434B2 (en) System and method for battery charging
US20080150491A1 (en) Method Of Estimating The State-Of-Charge And Of The Use Time Left Of A Rechageable Battery, And Apparatus For Executing Such A Method
US6504344B1 (en) Monitoring battery packs
US6317697B1 (en) Battery life determination apparatus and battery life determination method
WO2019117198A1 (en) Apparatus and method for estimating economic feasibility of storage battery
US5321627A (en) Battery monitor and method for providing operating parameters
CN110870130B (en) Battery system charge control device, battery system, and battery charge control method
EP1989563A1 (en) System and method for determining both an estimated battery state vector and an estimated battery parameter vector
GB2413225A (en) Battery charge management.
EP1247113A1 (en) System and method for determining battery state-of-health
CN110515002B (en) Battery capacity monitor
US5646507A (en) Battery charger system
US11394219B2 (en) Battery management system and method
CN102576054A (en) Method for controlling a battery and device for implementing the method
AU639679B2 (en) Battery monitoring system
JPH07501199A (en) battery management system
EP3605123A1 (en) Storage battery control device and control method
CA2008431C (en) Battery monitoring system
WO1997015839A1 (en) Battery monitor and method
JP3237229B2 (en) Secondary battery system
JPH0462488A (en) Rest capacity display device for storage battery