AU4449399A - Orally administrable opioid formulations having extended duration of effect - Google Patents

Orally administrable opioid formulations having extended duration of effect Download PDF

Info

Publication number
AU4449399A
AU4449399A AU44493/99A AU4449399A AU4449399A AU 4449399 A AU4449399 A AU 4449399A AU 44493/99 A AU44493/99 A AU 44493/99A AU 4449399 A AU4449399 A AU 4449399A AU 4449399 A AU4449399 A AU 4449399A
Authority
AU
Australia
Prior art keywords
release
dosage form
sustained
substrates
beads
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
AU44493/99A
Inventor
Mark Chasin
Benjamin Oshlack
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Euro Celtique SA
Original Assignee
Euro Celtique SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU17807/97A external-priority patent/AU1780797A/en
Application filed by Euro Celtique SA filed Critical Euro Celtique SA
Priority to AU44493/99A priority Critical patent/AU4449399A/en
Publication of AU4449399A publication Critical patent/AU4449399A/en
Priority to AU2005201142A priority patent/AU2005201142B2/en
Abandoned legal-status Critical Current

Links

Description

S F Ref: 374393D2
AUSTRALIA
PATENTS ACT 1990 COMPLETE SPECIFICATION FOR A STANDARD PATENT
ORIGINAL
Name and Address of Applicant: Actual Inventor(s): Address for Service: Invention Title: Euroceltique S.A.
122 Boulevard de la Petrusse Luxembourg
LUXEMBOURG
Benjamin Oshlack and Mark Chasin Spruson Ferguson, Patent Attorneys Level 33 St Martins Tower, 31 Market Street Sydney, New South Wales, 2000, Australia Orally Administrable Opioid Formulations Having Extended Duration of Effect a The following statement is a full description of this invention, including the best method of performing it known to me/us:- 5845 iR.
ORALLY ADMINISTRABLE OPIOID FORMULATIONS HAVING EXTENDED DURATION OF EFFECT BACKGROUND OF THE INVENTION The present invention relates to bioavailable sustained-release pharmaceutical formulations of analgesic drugs, in particular opioid analgesics, which provide an extended duration of effect when orally administered.
It is known in the pharmaceutical art to prepare compositions which provide for controlled (slow) release of pharmacologically active substances contained in the compositions after oral administration to humans and animals. Such slow release compositions are used to delay absorption of a medicament until it has reached certain portions of the alimentary tract. Such sustained-release of a medicament in the alimentary tract further maintains a desired concentration of said medicament in the blood stream for a longer duration than would occur if conventional rapid release dosage forms are administered.
Slow release formulations known in the art include specially coated pellets, coated tablets and capsules wherein the slow release of the active medicament is brought about through selective breakdown of the coating of the preparation or through compounding with a special matrix to affect the release of a drug. Some slow release formulations provide for related sequential release of a single dose of an active compound at predetermined periods after administration.
It is the intent of all sustained-release preparations to provide a longer period of pharmacologic response after the administration of the drug and is ordinarily experienced after the administration of the rapid release dosage forms. Such longer periods of response provide for many inherent therapeutic benefits that are not achieved with corresponding short acting, immediate release preparations.
35 This is especially true in the treatment of cancer patients or other patients in need of treatment for the alleviation of moderate to severe pain, where blood levels of an opioid analgesic medicament must be maintained at a therapeutically effective level to provide pain relief. Unless conventional rapid acting drug therapy is carefully administered at frequent intervals to maintain effective steady state blood levels of the drug, peaks and valleys in the blood level of the active drug occur because of the rapid absorption, systemic excretion of the compound and through metabolic inactivation, thereby producing special problems in maintenance of analgesic efficacy.
The prior art teaching of the preparation and use of compositions providing the sustained-release of an active compound from a carrier is basically concerned with the release of the active substance into the physiologic fluid of the alimentary tract. However, it is generally recognized that the mere presence of an active substance in the gastrointestinal fluids does not, by itself, insure bioavailability.
In order to be absorbed, the active drug substance must be in solution. The time required for a given proportion of an active substance from a unit dosage form is determined as the proportion of the amount of active drug substance released from a unit dosage form over a specified time base by a test method conducted under standardized 25 conditions. The physiologic fluids of the gastrointestinal tract are the media for determining dissolution time. The present state of the art recognizes many satisfactory test procedures to measure dissolution time for pharmaceutical compositions, and these test procedures are described in 30 official compendia world wide.
Although there are many diverse factors which influence the dissolution of drug substance from its carrier, the dissolution time determined for a pharmacologically active substance from the specific composition is relatively constant and reproducible. Among the different factors affecting the dissolution time are the surface area of the drug substance presented to the dissolution solvent medium, the pH of the solution, the solubility of the substance in the specific solvent medium, and the driving forces of the saturation concentration of dissolved materials in the solvent medium. Thus, the dissolution concentration of an active drug substance is dynamically modified in its steady state as components are removed from the dissolution medium through absorption across the tissue site. Under physiologic conditions, the saturation level of the dissolved materials is replenished from the dosage form reserve to maintain a relatively uniform and constant dissolution concentration in the solvent medium providing for a steady state absorption.
The transport across a tissue absorption site of the gastrointestinal tract is influenced by the Donnan osmotic equilibrium forces on both sides of the membrane since the direction of the driving force is the difference between the concentrations of active substance on either side of the membrane, the amount dissolved in the gastrointestinal fluids and the amount present in the blood. Since the blood levels are constantly being modified by dilution, circulatory changes, tissue storage, metabolic conversion and systemic excretion, the flow of active materials is directed from the gastrointestinal tract into the blood stream.
~Notwithstanding the diverse factors influencing both dissolution and absorption of a drug substance, a strong correlation has been established between the in-vitro dis- **30 solution time determined for a dosage form and (in-vivo) bioavailability. The dissolution time and the bioavailability determined for a composition are two of the most significant fundamental characteristics for consideration when evaluating sustained-release compositions.
4 It has previously been known in the art that sustained-release compositions of opioids or salts thereof could be prepared in a suitable matrix. For example, in U.S. Patent Nos. 4,990,341 and 4,844,909 (Goldie, et al.), both assigned to the assignee of the present invention, describes hydromorphone compositions wherein the dissolution rate in vitro of the dosage form, when measured by the USP Paddle or Basket Method at 100 rpm in 900 ml aqueous buffer (pH between 1.6 and 7.2) at 37" C, is between 12.5 and 42.5% (by wt) hydromorphone released after 1 hour, between 25 and 55% (by wt) released after 2 hours, between and 75% (by wt) released after 4 hours and between and 85% (by wt) released after 6 hours, the in vitro release rate being independent of pH between pH 1.6 and 7.2 and chosen such that the peak plasma level of hydromorphone obtained in vivo occurs between 2 and 4 hours after administration of the dosage form. At least 12 hours of pain relief is obtained with the hydromorphone formulations.
Once-a-day orally administrable dosage forms have previously been developed in the art and are commercially available. However, currently, there are no orally administered opioid formulations commercially available which provide an extended duration of effect, greater than about 12 hours. Examples of commercially available once-a- "25 day dosage forms include Dilacor® XR (diltiazem hydroxide, extended-release capsules, available from Rhone-Poulenc Rorer), Thorazine® Spanule® (chlorpromazine HCl, extendedrelease capsules, available from SmithKline Beecham), Theo- 24® (theophylline, extended-release capsules, available 30 from Searle), TheoX® (theophylline, extended-release tablets, available from Carnrick), Theo-dur® (theophylline, extended-release tablets, available from Key), Theo-Sav® (theophylline, extended-release tablets, available from Sauage), Uriphyl® Unicontin® (theophylline, extendedrelease tablets, available from Purdue Frederick), T-Phyl® Unicontin® (theophylline, extended-release tablets, available from Purdue Frederick), Tenuate Dospan® (diethyl- I propion HC1, extended-release tablets, available from Marion Merrill Dow), Tepanil® Ten-Tab® (diethylpropion HC1, extended-release tablets, available from 3M Riker), Desoxyn® Gradumet® (phenmetrazine HC1, extended-release tablets, available from Abbott), Dexedrine® Spanule® (dextroamphetamine, extended-release capsules, available from SmithKline Beecham), Compazine® Spanule® (prochlorperazine maleate, extended-release capsules, available from SmithKline Beecham), Indocin® SR (indomethacin, extendedrelease capsules, available from Merck), Betachron® (propranolol HC1, extended-release capsules, available from Inwood), Inderal® LA (propranolol HC1, extended-release capsules, available from Wyeth-Ayerst), Inderide® LA (propranolol HCl and hydrochlorothiazide, extended-release capsules from Wyeth-Ayerst), Procardia XL® (nifedipine, extended-release tablets, available from Pfizer), Mestinon® Timespan® (pyridostigmine Br, extended-release tablets, available from ICN), Temaril® Spanule® (trimeprazine tartrate, extended-release capsules, available from Herbert), AL-R® 6 (chlorpheniramine maleate, extendedrelease capsules, available from Saron), Chlor-Trimeton® Allergy Repetabs® (chlorpheniramine maleate, extended- 25 release tablets, available from Schering-Plough), Adipost® (phendimetrazine tartrate, extended-release capsules, available from Ascher), Bontril® Slow-Release (phendimetrazine tartrate, extended-release capsules, available from Carnrick), Melfiat®-105 Unicelles® (phendimetrazine tar- 30 trate, extended-release capsules, available from Solway), Prelu-2® (phendimetrazine tartrate, extended-release capsules, available from Boehringer Ingelheim), PT 105® (phendimetrazine tartrate, extended-release capsules, available from Legere), Wehless®-105 Timecelles (phendimetrazine tartrate, extended-release capsules, available from
M
Hauck), Preludin® Endurets® (phenmetrazine HC1, extendedrelease tablets, available from Boehringer Ingelheim), Caffedrine (caffeine, extended-release capsules, available from Thompson), Diamox® Sequels® (acetazolamide, extendedrelease capsules, available from Storz), Verelan® (verapamil HC1, extended-release capsules cont. pellets, available from Wyeth-Ayerst), Calan® SR Caplets® (verapamil HC1, extended-release tablets, available from Searle), Isoptin® SR (verapamil:HC1, extended-release tablets, available from Knoll), Verapamil: HC1 Tablets (verapamil HC1, extendedrelease tablets, available from GoldLine), and Artane® Sequels® (trihexyphenidyl HC1, extended-release capsules, available from Lederle).
There is a need in the art to develop drug formulations which provide a duration of effect lasting longer than twelve hours such as a drug that may be administered to a pati nt only once a day. Many of the oral opioid analgesic iormulations that are currently available in the market must be administered every four to six hours daily with a sele.ted few formulated for less frequent 12 hour dosing.
Morphin,, which is considered to be the prototypic opioid analge-sic, has been formulated into 12 hour controlled-releaise formulations MS Contin® tablets, 25 commercially available from Purdue Frederick Company).
An orally administrable opioid formulation which would provide an extended duration of effect would be highly desirable. Such an oral sustained-release formulation of an opioid analgesic would provide effective steady-state S* 30 blood level! plasma levels) of the drug when orally administered such that a duration of effect greater than 12 hours, and more preferably, of about 24 hours or more, which formulation is bioavailable as well.
It is accordingly an object of the present invention to provide an orally administered pharmaceutical dosage form of an opioid analgesic that is suitable for once-a-day administration.
Another object of the present invention is to provide a sustained-release products which provides effective steady-state blood levels in a human patient for greater than 12 hours, preferably at least 24 hours, which products are bioavailable.
Still another object of the present invention is to provide a method of treating a patient with an orally administrable dosage form of an opioid analgesic which provides a desired analgesic effect for a period of time greater than 12 hours, preferably for at least 24 hours and which dosage form is bioavailable.
In accordance with the above objects and others which will be apparent from the further reading of the specification and of the appended claims, the present invention is related to the surprising discovery that in order to provide a 24 hour dosage form of an opioid analgesic, it is necessary to do so via a sustained multiparticulate system.
More particularly, the present invention is related to the surprising discovery that while sustained-release tablets 25 and sustained-release multiparticulate systems containing opioid analgesics may be prepared which provide an in-vitro dissolution indicative of a 24 hour formulation, only sustained-release multiparticulate systems of opioid analgesics are bioavailable. This is true even when the sustained-release tablets have an in-vitro dissolution profile which is virtually equivalent to that provided by the multiparticulate system.
More particularly, the present invention relates to a sustained-release oral analgesic dosage form for once-a-day administration, comprising a unit dose of a plurality of inert pharmaceutically acceptable substrates. The unit dose of the substrates comprises an analgesically effective amount of an opioid analgesic or a salt thereof. Each of said substrates having a diameter from about 0.1 mm to about 3 mm. The unit dose is bioavailable and provides effective blood levels of the opioid analgesic for at least about 24 hours. The unit dose of the substrates may be, for example, contained within a hard gelatin capsule for oral administration.
In certain preferred embodiments of the present invention, each of the substrates has a diameter from about mm to about 2 mm (narrower range).
The present invention is further related to a bioavailable sustained-release opioid analgesic dosage form for once-a-day oral administration, comprising inert pharmaceutically acceptable beads having a diameter, from about 0.1 mm to about 3 mm coated with an analgesically effective amount of an opioid analgesic or a salt thereof.
The beads further comprise a sustained-release overcoat comprising an effective amount of a hydrophobic material selected from the group consisting of an acrylic polymer such as copolymers of acrylic and methacrylic acid; (ii) an alkylcellulose such as ethylcellulose; (iii) other commonly used retardant coatings such as shellac, zein, and 25 hydrophobic waxy-type products, such as hydrogenated castor oil or hydrogenated vegetable oil, or (iv) mixtures of any of groups to provide a sustained-release of said opioid analgesic in aqueous solutions for at least about 24 hours.
30 The present invention is further related to a method for obtaining a bioavailable sustained-release opioid analgesic dosage form for once-a-day oral administration, comprising preparing a plurality of substrates comprising a unit dose of an oral analgesic in a sustained-release form, each of which substrates having a diameter from about 0.1 mm to about 3 mm. The substrates are manufactured to provide an in-vitro dissolution indicative of a once-a-day product.
The term "bioavailable" is defined for the purposes of the present invention as the total amount of a drug substance that is absorbed to be available to provide the desired therapeutic effect after administration of a unit dosage form, as compared to the known reference drug product, as commonly determined and accepted by Governmental Regulatory Agencies, such as the United States FDA.
The term "bioavailability" is defined for purposes of the present invention as the extent to which the drug opioid analgesic) is absorbed from the unit dosage forms and becomes available at the site of drug action.
The terms "sustained release" and "extended duration" are defined for purposes of the present invention as the release of the drug opioid analgesic) at such a rate that blood plasma) levels are maintained within the therapeutic range but below toxic levels over a period of time greater than 12 hours, more preferably for about 24 hours, or longer.
The term "substrate" is defined for the purposes of the present invention as spheroids, beads, microspheres, seeds, pellets, ion-exchange resin beads, and other multi- 25 particulate systems comprising the drug(s), which have a diameter from about 0.1 mm to about 3 mm, preferably between 0.5 mm and 2.0 mm.
The term "unit dose" is defined for purposes of the present invention as the total amount of substrates needed 30 to administer a desired dose of drug opioid analgesic) to a patient.
The sustained-release substrates of the present invention permit release of the opioid (or salt) over a sustained period of time in an aqueous medium. The term "aqueous medium" is defined for purposes of the present invention as any pharmaceutically acceptable dissolution medium, gastric fluid and/or intestinal fluid.
BRIEF DESCRIPTION OF THE DRAWING The following drawing is illustrative of an embodiment of the invention and is not meant to limit the scope of the invention as encompassed by the claims.
Figure 1 is a graphical representation of the formulation dissolution obtained for Examples 1-4.
DETAILED
DESCRIPTION
The multiparticulate systems of the present invention may incorporate one or more compounds known as opioid analgesics. Opioid analgesic compounds which may be used in the present invention include alfentanil, allylprodine, alphaprodine, anileridine, benzylmorphine, bezitramide, buprenorphine, butorphanol, clonitazene, codeine, cyclazocine, desomorphine, dextromoramide, dezocine, diampromide, dihydrocodeine, dihydromorphine, dimenoxadol, dimepheptanol, dimethylthiambutene, dioxaphetyl butyrate, dipipanone, eptazocine, ethoheptazine, ethylmethylthiambutene, ethylmorphine, etonitazene fentanyl, heroin, hydrocodone, hydromorphone, hydroxypethidine, isomethadone, ketobemidone, levallorphan, levorphanol, levophenacyl- 25 morphan, lofentanil, meperidine, meptazinol, metazocine, methadone, metopon, morphine, myrophine, nalbuphine, narceine, nicomorphine, norlevorphanol, normethadone, nalorphine, normorphine, norpipanone, opium, oxycodone, oxymorphone, papaveretum, pentazocine, phenadoxone, pheno- 30 morphan, phenazocine, phenoperidine, piminodine, piritramide, propheptazine, promedol, properidine, propiram, propoxyphene, sufentanil, tilidine, salts thereof, mixtures of any of the foregoing, mixed mu-agonists/antagonists, muantagonist combinations, and the like.
11 In certain preferred embodiments, the opioid analgesic is selected from morphine, codeine, hydromorphone, hydrocodone, oxycodone, dihydrocodeine, dihydromorphine, oxymorphone, or mixtures thereof.
In one preferred embodiment the sustained-release opioid oral dosage form of the present invention includes hydromorphone as the therapeutically active ingredient in an amount from about 4 to about 64 mg hydromorphone hydrochloride. Alternatively, the dosage form may contain molar equivalent amounts of other hydromorphone salts or of the hydromorphone base. In other preferred embodiments where the opioid analgesic is other than hydromorphone, the dosage form contains an appropriate amount to provide a substantially equivalent therapeutic effect. For example, when the opioid analgesic comprises morphine, the sustained-release oral dosage forms of the present invention include form about 5 mg to about 800 mg morphine, by weight. When the opioid analgesic comprises oxycodone, the sustained-release oral dosage forms of the present inven- 20 tion include from about 5 mg to about 400 mg oxycodone.
The sustained-release dosage forms of the present invention generally achieve and maintain therapeutic levels substantially without significant increases in the intensity and/or degree of concurrent side effects, such as nausea, vomiting or drowsiness, which are often associated with high blood levels of opioid analgesics. There is also evidence to suggest that the use of the present dosage forms leads to a reduced risk of drug addiction. Furthermore, the sustained-release dosage forms of the present in- 30 vention preferably release the opioid analgesic at a rate that is independent of pH, between pH 1.6 and 7.2.
In other words, the dosage forms of the present invention avoid "dose dumping" upon oral administration.
In the present invention, the oral opioid analgesics have been formulated to provide for an increased duration of analgesic action allowing once-daily dosing. Surprisingly, these formulations, at comparable daily dosages of conventional immediate-release drug, are associated with a lower incidence in severity of adverse drug reactions and can also be administered at a lower daily dose than conventional oral medication while maintaining pain control.
The substrates of the present invention may further include one or more additional drugs which may or may not act synergistically with the opioid analgesics of the present invention. Examples of such additional drugs include non-steroidal anti-inflammatory agents, including ibuprofen, diclofenac, naproxen, benoxaprofen, flurbiprofen, fenoprofen, flubufen, ketoprofen, indoprofen, piroprofen, carprofen, oxaprozin, pramoprofen, muroprofen, trioxaprofen, suprofen, aminoprofen, tiaprofenic acid, fluprofen, bucloxic acid, indomethacin, sulindac, tolmetin, zomepirac, tiopinac, zidometacin, acemetacin, fentiazac, clidanac, oxpinac, mefenamic acid, meclofenamic acid, flufenamic acid, niflumic acid tolfenamic acid, diflurisal, 20 flufenisal, piroxicam, sudoxicam or isoxicam, and the like.
Other suitable additional drugs which may be included in the dosage forms of the present invention include acetaminophen, aspirin, and other non-opioid analgesics.
For example, if a second (non-opioid) drug is included in the formulation, such drug may be included in controlled release form or in immediate release form. The additional drug may be incorporated into the controlled release matrix along with the opioid; incorporated into the controlled release coating; incorporated as a separated controlled 30 release layer or immediate release layer; or may be incorporated as a powder, granulation, etc., in a gelatin capsule with the substrates of the present invention.
The sustained-release preparations of the present invention may be used in conjunction with any multiparticulate system, such as beads, spheroids, microspheres, seeds, pellets, ion-exchange resin beads, and other multiparticulate systems in order to obtain a desired sustainedrelease of the therapeutically active agent. Beads, granules, spheroids, or pellets, etc., prepared in accordance with the present invention can be presented in a capsule or in any other suitable unit dosage form.
When the substrates of the present invention are inert pharmaceutical beads, the inert pharmaceutical beads may be from about 8 mesh to about 50 mesh. In certain preferred embodiments, the beads are, nu pariel 18/20 beads.
In certain preferred embodiments of the present invention, the sustained-release opioid dosage forms comprise a plurality of substrates comprising the active ingredient, which substrates'are coated with a sustained-release coating. The coating formulations of the present invention should be capable of producing a strong, continuous film that is smooth and elegant, capable of supporting pigments and other coating additives, non-toxic, inert, and tackfree.
In order to obtain a sustained-release of the opioid sufficient to provide an analgesic effect for the extended durations set forth in the present invention, the substrate comprising the therapeutically active agent may be coated with a sufficient amount of hydrophobic material to obtain a weight gain level from about 2 to about 30 percent, although the overcoat may be greater depending upon the to physical properties of the particular opioid analgesic compound utilized and the desired release rate, among other to** things.
The solvent which is used for the hydrophobic material may be any pharmaceutically acceptable solvent, including water, methanol, ethanol, methylene chloride and mixtures thereof. It is preferable however, that the coatings be based upon aqueous dispersions of the hydrophobic material.
14 In certain preferred embodiments of the present invention, the hydrophobic polymer comprising the sustainedrelease coating is a pharmaceutically acceptable acrylic polymer, including but not limited to acrylic acid and methacrylic acid copolymers, methyl methacrylate copolymers, ethoxyethyl methacrylates, cynaoethyl methacrylate, aminoalkyl methacrylate copolymer, poly(acrylic acid), poly(methacrylic acid), methacrylic acid alkylamide copolymer, poly(methyl methacrylate), polymethacrylate, polyacrylamide, aminoalkyl methacrylate copolymer, poly(methacrylic acid anhydride), and glycidyl methacrylate copolymers.
In certain preferred embodiments, the acrylic polymer is comprised of one or more ammonio methacrylate copolymers. Ammonio methacrylate copolymers are well known in the art, and are described in NF XVII as fully polymerized copolymers of acrylic and methacrylic acid esters with a low content of quaternary ammonium groups.
In one preferred embodiment, the acrylic coating is an acrylic resin lacquers used in the form of an aqueous dispersion, such as that which is commercially available from Rohm Pharma under the Tradename Eudragit. In further preferred embodiments, the acrylic coating comprises a Smixture of two acrylic resin lacquers commercially available from Rohm Pharma under the Tradenames EudragitO RL D and Eudragit RS 30 D, respectively. Eudragit® RL 30 D and Eudragit® RS 30 D are copolymers of acrylic and methacrylic esters with a low content of quaternary ammonium groups, the molar ratio of ammonium groups to the remaining neutral (meth)acrylic esters being 1:20 in Eudragit® RL D and 1:40 in EudragitO RS 30 D. The mean molecular weight is about 150,000. The code designations RL (high permeability) and RS (low permeability) refer to the perme- S ability properties of these agents. Eudragit® RL/RS mixtures are insoluble in water and in digestive fluids.
However, coatings formed from the same are swellable and permeable in aqueous solutions and digestive fluids.
The Eudragit® RL/RS dispersions of the present invention may be mixed together in any desired ratio in order to ultimately obtain a sustained-release formulation having a desirable dissolution profile. Desirable sustainedrelease formulations may be obtained, for instance, from a retardant coating derived from 100% Eudragit® RL, Eudragit® RL and 50% Eudragit® RS, and 10% Eudragit® RL:Eudragit® 90% RS. Of course, one skilled in-the art will recognize that other acrylic polymers may also be used, such as, for example, Eudragit®
L.
In other preferred embodiments, the hydrophobic polymer which may be used for coating the substrates of the present invention is a hydrophobic cellulosic material such as ethylcellulose. Those skilled in the art will appreciate that other cellulosic polymers, including other alkyl cellulosic polymers, may be substituted for part or all of the ethylcellulose included in the hydrophobic polymer coatings of the present invention.
One commercially-available aqueous dispersion of ethylcellulose is Aquacoat® (FMC Corp., Philadelphia, Pennsylvania, Aquacoat® is prepared by dissolving the ethylcellulose in a water-immiscible organic solvent and 25 then emulsifying the same in water in the presence of a surfactant and a stabilizer. After homogenization to generate submicron droplets, the organic solvent is evaporated under vacuum to form a pseudolatex. The plasticizer is not incorporated in the pseudolatex during the manufacturing 30 phase. Thus, prior to using the same as a coating, it is necessary to intimately mix the Aquacoat® with a suitable plasticizer prior to use.
Another aqueous dispersion of ethylcellulose is commercially available as Surelease® (Colorcon, Inc., West Point, Pennsylvania, This product is prepared by 16 incorporating plasticizer into the dispersion during the manufacturing process. A hot melt of a polymer, plasticizer (dibutyl sebacate), and stabilizer (oleic acid) is prepared as a homogeneous mixture, which is then diluted with an alkaline solution to obtain an aqueous dispersion which can be applied directly onto substrates.
In embodiments of the present invention where the coating comprises an aqueous dispersion of a hydrophobic polymer, the inclusion of an effective amount of a plasticizer in the aqueous dispersion of hydrophobic polymer will further improve the physical properties of the film.
For example, because ethylcellulose has a relatively high glass transition temperature and does not form flexible films under normal coating conditions, it is necessary to plasticize the ethylcellulose before using the same as a coating material. Generally, the amount of plasticizer included in a coating solution is based on the concentration of the film-former, most often from about 1 to about 50 percent by weight of the film-former. Concentra- 20 tion of the plasticizer, however, can only be properly determined after careful experimentation with the particular coating solution and method of application.
Examples of suitable plasticizers for ethylcellulose include water insoluble plasticizers such as dibutyl sebacate, diethyl phthalate, triethyl citrate, tibutyl citrate, and triacetin, although it is possible that other water-insoluble plasticizers (such as acetylated monoglycerides, phthalate esters, castor oil, etc.) may be used. Triethyl citrate is especially preferred.
30 Examples of suitable plasticizers for the acrylic polymers of the present invention include citric acid esters such as triethyl citrate NF XVI, tributyl citrate, dibutyl phthalate, and possibly 1,2-propylene glycol, polyethylene glycols, propylene glycol, diethyl phthalate, castor oil, and triacetin, although it is possible that 17 other water-insoluble plasticizers (such as acetylated monoglycerides, phthalate esters, castor oil, etc.) may be used. Triethyl citrate is especially preferred.
The sustained-release profile of the formulations of the invention can be altered, for example, by varying the thickness of the hydrophobic coating, changing the particular hydrophobic material used, or altering the relative amounts of, different acrylic resin lacquers, altering the manner in which the plasticizer is added when the sustained-release coating is derived from an aqueous dispersion of hydrophobic polymer), by varying the amount of plasticizer relative to hydrophobic polymer, by the inclusion of additional ingredients or excipients, by altering the method of manufacture, etc.
Sustained-release spheroids or beads, coated with a therapeutically active agent are prepared, e.g. by dissolving the opioid analgesic in water and then spraying the solution onto a substrate, for example, nu pariel 18/20 beads, using a Wurster insert. Optionally, additional 20 ingredients are also added prior to coating the beads in order to assist the hydromorphone binding to the substrates, and/or to color the solution, etc. For example, a product which includes hydroxypropyl methylcellulose, etc. with or without colorant may be added to the solution and the solution mixed for about 1 hour) prior to application of the same onto the beads. The resultant S* coated substrate, in this example beads, may then be optionally overcoated with a barrier agent, to separate the therapeutically active agent from the hydrophobic sus- 30 tained-release coating. An example of a suitable barrier agent is one which comprises hydroxypropyl methylcellulose.
However, any film-former known in the art may be used. It is preferred that the barrier agent does not affect the dissolution rate of the final product.
The hydromorphone, HPMC protected (optional) beads may then be overcoated with hydrophobic polymer, preferably with an effective amount of plasticizer.
The coating solutions of the present invention may contain, in addition to the film-former, plasticizer, and solvent system water), a colorant to provide elegance and product distinction. Color may be added to the solution of the therapeutically active agent instead, or in addition to the aqueous dispersion of hydrophobic polymer.
The plasticized aqueous dispersion of hydrophobic polymer may be applied onto the substrate comprising the therapeutically active agent by spraying using any suitable spray equipment known in the art. In a preferred method, a Wurster fluidized-bed system is used in which an air jet, injected from underneath, fluidizes the core material and effects drying while the acrylic polymer coating is sprayed on. A sufficient amount of the aqueous dispersion of hydrophobic polymer to obtain a predetermined sustainedrelease of said therapeutically active agent when said coated substrate is exposed to aqueous solutions, e.g.
V gastric fluid, is preferably applied, taking into account the physically characteristics of the therapeutically active agent, the manner of incorporation of the plasticizer, etc. After coating with the hydrophobic polymer, a 25 further overcoat of a film-former, such as Opadry®, is optionally applied to the beads. This overcoat is provided, if at all, in order to substantially reduce agglomeration of the beads.
Next, the coated beads are cured in order to obtain a stabilized release rate of the therapeutically active agent.
When the coating comprises an aqueous dispersion of ethylcellulose, the coated substrate is preferably subjected to curing at a temperature greater than the glass transition temperature of the coating solution 19 ethylcellulose) and at a relative humidity from about to about 100%, until the curing endpoint is reached, e.g., about 60°C and a relative humidity from about 60% to about 100% for a time period from about 48 to about 72 hours.
In preferred embodiments of the present invention directed to :the acrylic coating, a stabilized product is obtained by subjecting the coated substrate to oven curing at a temperature above the Tg of the plasticized acrylic polymer for the required time period, the optimum values for temperature and time for the particular formulation being determined experimentally. In certain embodiments of the present invention, the stabilized product is obtained via an oven curing conducted at a temperature of about for a time period from about 24 to about 48 hours or longer.
The release of the therapeutically active agent from the sustained-release formulation of the present invention can be further influenced, adjusted to a desired rate, by the addition of one or more release-modifying agents, or by providing one or more passageways through the coating. The ratio of hydrophobic polymer to water soluble material is determined by, among other factors, the release rate required and the solubility characteristics of the materials selected.
25 The release-modifying agents which function as poreformers may be organic or inorganic, and include materials that can be dissolved, extracted or leached from the coating in the environment of use. The pore-formers may comprise one or more hydrophilic polymers such as hydroxy- 30 propylmethylcellulose.
The sustained-release coatings of the present inven- .oo tion can also include erosion-promoting agents such as starch and gums.
The sustained-release coatings of the present invention can also include materials useful for making microporous lamina in the environment of use, such as polycarbonates comprised of linear polyesters of carbonic acid in which carbonate groups reoccur in the polymer chain.
The release-modifying agent may also comprise a semipermeable polymer.
In certain preferred embodiments, the release-modifying agent is selected from hydroxypropylmethylcellulose, lactose, metal stearates, and mixtures of any of the foregoing.
The sustained-release coatings of the present invention may also include an exit means comprising at least one passageway, orifice, or the like. The passageway may be formed by such methods as those disclosed in U.S. Patent Nos. 3,845,770; 3,916,889; 4,063,064; and 4,088,864 (all of which are hereby incorporated by reference). The passageway can have any shape such as round, triangular, square, elliptical, irregular, etc.
In other embodiments of the present invention, the present invention may utilize a multiparticulate sustainedrelease matrix. Suitable materials for inclusion in a sustained-release matrix are S* Hydrophilic polymers, such as gums, cellulose ethers, acrylic resins and protein derived materials. Of o*"f these polymers, the cellulose ethers, especially hydroxy- 25 alkylcelluloses and carboxyalkylcelluloses, are preferred.
The oral dosage form may contain between 1% and 80% (by weight) of at least one hydrophilic or hydrophobic polymer.
S Digestible, long chain (CC 50 especially C, 1
-C,
0 substituted or unsubstituted hydrocarbons, such as fatty acids, fatty alcohols, glyceryl esters of fatty acids, mineral and vegetable oils and waxes. Hydrocarbons having a melting point of between 25° and 90*C are preferred. Of these long chain hydrocarbon materials, fatty (aliphatic) alcohols are preferred. The oral dosage form may contain up to 60% (by weight) of at least one digestible, long chain hydrocarbon.
Polyalkylene glycols. The oral dosage form may contain up to 60% (by weight) of at least one polyalkylene glycol.
For example, a suitable matrix may be one which comprises at least one water soluble hydroxyalkyl cellulose, at least one C 12
-C,
3 preferably C, 1
-C
22 aliphatic alcohol and, optionally, at least one polyalkylene glycol. The at least one hydroxyalkyl cellulose is preferably a hydroxy (C, to C 6 alkyl cellulose, such as hydroxypropylcellulose, hydroxypropylmethylcellulose and, especially, hydroxyethyl cellulose. The amount of the at least one hydroxyalkyl cellulose in the present oral dosage form will be determined, inter alia, by the precise rate of opioid release required. The at least one aliphatic alcohol may be, for example, lauryl alcohol, myristyl alcohol or stearyl alcohol. In certain preferred embodiments, the at least one aliphatic alcohol is cetyl alcohol or cetostearyl alcohol. The amount of the at least one aliphatic alcohol in the present oral dosage form will be determined, as above, by the precise rate of opioid release required. It will also depend on whether at least one polyalkylene glycol is present in or absent from the oral dosage form.
In the absence of at least one polyalkylene glycol, the oral dosage form preferably contains between 20% and (by wt) of the at least one aliphatic alcohol. When at least one polyalkylene glycol is present in the oral dosage Sform, then the combined weight of the at least one aliphatic alcohol and the at least one polyalkylene glycol preferably constitutes between 20% and 50% (by wt) of the total dosage.
In one embodiment, the ratio of, at least one hydroxyalkyl cellulose or acrylic resin to at least one aliphatic alcohol/ polyalkylene glycol determines, to a considerable extent, the release rate of the opioid from the formulation. A ratio of the at least one hydroxyalkyl cellulose to at least one aliphatic alcohol/ polyalkylene glycol of between 1:2 and 1:4 is preferred, with a ratio of between 1:3 and 1:4 being particularly preferred.
At least one polyalkylene glycol may be, for example, polypropylene glycol or, preferably, polyethylene glycol.
The number average molecular weight of the at least one polyalkylene glycol is preferred between 1000 and 15000 especially between 1500 and 12000.
Another suitable sustained-release matrix would comprise an alkylcellulose (especially ethyl cellulose), a C 12 to C 36 aliphatic alcohol and, optionally, a polyalkylene glycol.
In addition to the above ingredients, a sustainedrelease matrix may also contain suitable quantities of other materials, diluents, lubricants, binders, granulating aids, colorants, flavorants and glidants that are conventional in the pharmaceutical art.
In order to facilitate the preparation of a solid, sustained-release oral dosage form according to this invention there is provided, in a further aspect of the present invention, a process for the preparation of a solid, sustained-release oral dosage form according to the 25 present invention comprising incorporating opioids or a salt thereof in a sustained-release matrix. Incorporation in the matrix may be effected, for example, by forming granules comprising at least one water soluble hydroxyalkyl cellulose and opioid or an opioid salt, mixing the hydroxyalkyl cellulose containing granules with at least one aliphatic alcohol, and optionally, compressing and shaping the granules. Preferably, the granules are formed by wet granulating the hydroxyalkyl cellulose/opioid with water. In a particularly preferred embodiment of this process, the amount of water added during the wet granulation step is preferably between 1.5 and 5 times, especially between 1.75 and 3.5 times, the dry weight of the opioid.
In yet other alternative embodiments, a spheronizing agent, together with the active ingredient can be spheronized to form spheroids. Microcrystalline cellulose is preferred. A suitable microcrystalline cellulose is, for example, the material sold as Avicel PH 101 (Trade Mark, FMC Corporation). In such embodiments, in addition to the active ingredient and spheronizing agent, the spheroids may also contain a binder. Suitable binders, such as low viscosity, water soluble polymers, will be well known to those skilled in the pharmaceutical art. However, water soluble hydroxy lower alkyl cellulose, such as hydroxy propyl cellulose, are preferred. Additionally (or alternatively) the spheroids may contain a water insoluble polymer, especially an acrylic polymer, an acrylic copolymer, such as a methacrylic acid-ethyl acrylate copolymer, or ethyl cellulose. In such embodiments, the sustained-release coating will generally include a water insoluble material such as a wax, either alone or in admixture with a fatty alcohol; or shellac or zein.
The substrates of the present invention may also be 25 prepared via a melt pellitization technique. In such circumstance, the opioid in finely divided form is combined with a binder (also in particulate form) and other optional .0:0 inert ingredients, and thereafter the mixture is pelletized, by mechanically working the mixture in a high 30 shear mixer to form the pellets (granules, spheres). Thereafter, the pellets (granules, spheres) may be sieved in order to obtain pellets of the requisite size. The binder material is preferably in particulate form and has a melting point above about 40' C. Suitable binder substances include, for example, hydrogenated castor oil, hydrogenated vegetable oil, other hydrogenated fats, fatty alcohols, fatty acid esters, fatty acid glycerides, and the like.
In certain embodiments of the present invention, an effective amount of opioid in immediate release form is included in the unit dose comprising the substrates of the present invention. The immediate release form of the opioid is included in an amount which is effective to shorten the time to maximum concentration of the opioid in the blood plasma), such that the is shortened to a time of, from about 2 to about 4 hours. This causes the blood concentration curve to have an early peak rather than the substantially flattened curves currently recommended by those skilled in the art. It has been discovered that by including such an effective amount of immediate release opioid in the unit dose, the experience of relatively higher levels of pain in patients is significantly reduced. In such embodiments, an effective amount of the opioid in immediate release form may be coated onto the substrates of the present invention. For example, where 20 the extended release opioid from the formulation is due to a controlled release coating,' the immediate release layer would be overcoated on top of the controlled release coating. On the other hand, the immediate release layer .o may be coated onto the surface of substrates wherein the opioid is incorporated in a controlled release matrix.
Where a plurality of the sustained release substrates comprising an effective unit dose of the opioid are incorporated into a hard gelatin capsule, the immediate release 604 portion of the opioid dose may be incorporated into the 30 gelatin capsule via inclusion of the sufficient amount of immediate release opioid as a powder or granulate within the capsule. Alternatively, the gelatin capsule itself may be coated with an immediate release layer of the opioid.
One skilled in the art would recognize still other alternative manners of incorporating the immediate release opioid portion into the unit dose. Such alternatives are deemed to be encompassed by the appended claims.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The following examples illustrate various aspects of the present invention. They are not to be construed to limit the claims in any manner whatsoever.
EXAMPLE 1 Sustained-Release Beads With Ethylcellulose C6ating In Example 1, morphine sulfate sustained-release beads with a 5% w/w sustained-release of ethylcellulose were prepared, including 3% of HPMC as a pore-former in the coating.
Morphine sulfate beads are first manufactured using a rotor processing technique. The formula of the morphine sulfate bead to which the sustained-release coating is applied is set forth in Table 1 below: 20 TABLE 1 Amt/Unit Ingredient (mq) Percent Morphine Sulfate Powder 30 mg 14.3% Lactose Hydrous Impalpable 42.5 mg 20.2% PVP 2.5 mg 1.2% Sugar Beads 18/20 125 mg 59.4% Purified Water qs Opadry® Red YS-1-1841 10.5 mq 4.9% Total 210.5 mg 100.0% The morphine sulphate beads were then overcoated with a sustained-release coating. The formula for the sustainedrelease coating is set forth in Table 2 below: 26 TABLE 2 Amt/Unit Ingredient (mq) Percent Morphine Sulfate Base Beads 210.5 mg 89.7% Aquacoat ECD 30 (solids) 10.2 mg 4.3% Methocel E5 Premium 0.3 mg 0.1% Triethyl Citrate 2.1 mg 0.9% Purified Water qs Opadry® Red YS-1-1841 11.7 mg Purified Water s Total 234.8 mg 100.0% The sustained-release coating was manufactured as follows: The pore former Methocel E5 Premium (HPMC), is dispersed and dissolved in purified water to yield a 2% w/w solution. An Aquacoat dispersion is plasticized with triethyl citrate for approximately 30 minutes. After minutes the HPMC dispersion is mixed into the plasticized Aquacoat dispersion, and blended for an additional 15-30 minutes. A load of the morphine sulfate beads is charged into a Uniglatt Wurster Insert equipped with a 1.2 mm fluid nozzle. The beads are then filmcoated with the Aquacoat/ HPMC dispersion (in a ratio of 93:7) to a weight gain of 25 After completion of the coating process, the coated beads are taken from the Wurster Insert to a tray and then cured in a chamber at a temperature of 60" C and humidity of 80% RH for 72 hours. Upon completion of the curing 30 process, the beads are dried to a LOD of 4% or less. The beads are then given a final overcoating of Opadry® Red YS- 1-1841 (15% w/w solution) with the use of the Wurster Insert. The coated morphine sulfate beads are then filled into hard gelatin capsules.
35 Dissolution testing were conducted on the finished products via USP Apparatus II-(Paddle Method). The ,capsules were placed into 700 ml of simulated gastric fluid (without enzymes) for the first hour at 100 rpm and 37" C, 27 and then placed into 900 ml of simulated gastric fluid (without enzymes) after the first hour. The results are set forth in Table 3 below: TABLE 3 Percent Morphine Time Sulfate Dissolved 1 hour 18.4% 2 hours 28.4% 4 hours 46.7% 8 hours 73.1% 12 hours 86.0% 18 hours 95.0% 24 hours 99.0% The dissolution testing as set forth in Table 3 indicates that 100% of the morphine sulfate dissolved after 12 hours.
EXAMPLE 2 Sustained-Release Beads With Acrylic Polymer Coatinq In example 2, morphine sulfate sustained-release beads with a 5% w/w sustained-release Eudragit RS were prepared, including a 10% immediate release morphine sulfate overcoat.
Morphine sulfate beads are first manufactured using a 25 rotor processing technique. The formula of the morphine sulfate bead to which the sustained-release coating is applied is set forth in Table 4 below: TABLE 4 I rAmt/Unit I n r e d ent m) Percent Morphine Sulfate Powder 30 mg 14.3% Lactose Hydrous Impalpable 42.5 mg 20.2% PVP 2.5 mg 1.2% Sugar Beads 18/20 125 mg 59.4% 35 Purified Water qs m Opadry Red YS-1-1841 10.5 mg 4.9% Total 210.5 mg 100.0% 40 A sustained-release coating was then applied to the morphine sulfate beads. The formula for the functional coating is set forth in Table 5 below: TABLE Amt/Unit Ingredient (mg) Percent Morphine Base Beads 189.45 mg 86.7% Retardant Coating Eudragit RS 30D 9.5 mg 4.3% Triethyl Citrate 1.9 mg 0.9% Talc 3.8 mg 1.7% Purified Water qs Overcoat Morphine Sulfate Powder 3.0 mg 1.4% Opadry Red YS-1-1841 10.8 mg Purified Water os Total 218.45 mg 100.0% The sustained-release coating is manufactured as follows: The Eudragit RS 30D is plasticized with triethyl citrate and talc for approximately 30 minutes. A load of the morphine sulfate beads is charged into a Wurster Insert of a Glatt equipped with a 1.2 mm spray nozzle and the beads are coated to a weight gain of The final 25 protective Opadry dispersion overcoat is then applied in the Wurster Insert. Upon completion the beads are cured for two days in a dry oven of 45*C. The cured beads were then filled into gelatin capsules at a 30 mg strength.
Dissolution testing were .conducted on the gelatin capsules via U.S.P. Apparatus II (Paddle Method). The capsules were placed into 700 ml of simulated gastric fluid (without enzymes) for the first hour at 100 rpm and 37' C, and then placed into 900 ml of simulated gastric fluid (without enzymes) after the first hour. The results of the 35 percent of morphine sulfate dissolved in relation to time, are set forth in Table 6 below: TABLE 6 Percent Morphine Time Sulfate Dissolved 1 hour 11.9% 2 hours 15.4% 4 hours 28.1% 8 hours 58.3% 12 hours 79.2% 18 hours 92.0% 24 hours 96.6% The dissolution testing as set forth in Table 6 indicates that 96.6% of the morphine sulfate dissolved after 24 hours.
EXAMPLE 3 High Load Sustained-Release Beads With Acrylic Polymer Coating In certain circumstances, patients require higher doses of morphine sulfate. However, if the low load beads of Examples 1 and 2 were filled to a weight equivalent to mg or more, the capsules would be relatively large, and difficult to swallow. Therefore, in Example 3, beads with a higher loading of morphine sulfate were produced with the use of the powder layering technique in the Glatt Rotor 25 Processor. The formulation of the high load beads, as well as a comparison of the high load beads with the low load beads of Examples 1 and 2, are set forth in Table 7 below: TABLE 7 *9
S
S. 5.55
S
S
S
S
59*5e High Load Bead Ingredient mg/unit Morphine Sulfate Powder 30.0 mg Lactose 6.0 mg Povidone C-30 1.25 mg Sugar Beads 7.75 mg Opadry 2.37 mg Purified Water qs Total 47.37 mg Percent
(%M
Low Load Bead (Examples 1 2 ma/unit 63.3% 12.7% 2.6% 16.4% 5.0% 100.0% 30.0 mg 42.5 mg 2.5 mg 125.0 mg 10.5 mg qs 210.5 mg Percent 14.3% 20.2% 1.2% 59.4% 4.9% 100.0% Since high load beads of Example 3 are different from the low load beads of Examples 1 and 2, the sustainedrelease coating a different acrylic polymer Eudragit® RL, which is more soluble than Eudragit® RS) is utilized, as well as extra HPMC protective coat between the Eudragit layer and the morphine immediate release layer to further enhance stability. The formula of the sustainedrelease coating of Example 3 is set forth in Table 8 below: TABLE 8 Amt/Unit Ingredient (mg) Percent L(% Morphine (high load) base beads 42.63 mg 78.8% Retardant Coating Eudragit RS 30D 2.1 mg 3.9% Eudragit RL 30D 0.05 mg 0.1% Triethyl Citrate 0.45 mg 0.8% Talc 0.85 mg 1.6% Overcoatings Opadry Blue YS-1-10542A 2.45 mg Purified Water qs Morphine Sulfate Powder 3.0 mg Opadry Blue YS-1-10542A 2.55 mg 4.8% 25 Purified Water qs-- Total 54.08 mg 100.0% The sustained-release and the immediate release coat- 30 ings were applied in the manner described in Example 2.
The cured beads were then filled into gelating capsules at a strength of 30 mg.
The capsules were then subjected to dissolution testing applying the method described in Example 1. The 35 results of dissolution testing is set forth in Table 9 below: Time 1 hour 2 hours 4 hours 8 hours 12 hours 18 hours 24 hours TABLE 9 Percent Morphine Sulfate Dissolved 11.7% 12.1% 22.0% 45.3% 63.7% 81.8% 92.5% The dissolution testing as set forth in Table 9 indicates that 92.5% of the morphine sulfate dissolved after 24 hours.
EXAMPLE 4 Sustained-Release Tablets Controlled release morphine sulfate tablets were developed with an in-vitro dissolution profile that would be suitable for once-a-day administration. The formula of the morphine sulfate tablets is set forth in Table below.
0.9.
0000 0*t 0 0 0 0* 0 25 Inaredient Morphine Sulfate Lactose Povidone Eudragit RS 30D (solids) 30 Triacetin Cetostearyl alcohol Talc Magnesium stearate Total TABLE Amt/Unit (mq) 60.0 mg 36.1 mg 6.0 mg 12.0 mg 1.4 mg 30.0 mg 3.0 mg 1.5 mq 150.0 mg Percent 40.0% 24.1% 0.9% 20.0% 100.0% These tablets are manufactured in the following manner: The morphine sulfate, lactose and povidone were added and mixed in fluid bed granulator. The triacetin, a plasticizer was mixed into the Eudragit RS 30D dispersion for about 30 minutes, and then was sprayed onto the powders 32 using a 1.2 mm nozzle in the fluid bed. Once the spraying is completed, the granulate is screened. The cetostearyl alcohol is then melted and mixed into the granulation in a standard mixing bowl. The granulate is then cooled, screened and lubricated with talc and magnesium stearate.
Tablets were then compressed at a weight of 150 mg.
Dissolution testing of these morphine sulfate tablets was then conducted using the method described in Example 1.
The results of the dissolution testing of these tablets is set forth in Table 11 below: TABLE 11 Percent Morphine Time Sulfate Dissolved 1 hour 20.9% 2 hours 29.3% 4 hours 40.8% 8 hours 59.9% 12 hours 69.7% 18 hours 82.9% 24 hours 90.5% The results of dissolution of the morphine sulfate .tablets as set forth in Table 11 shows that 90.5% of the morphine sulfate dissolved in 24 hours.
25 Examples i, 2, 3 and 4 were plotted on a dissolution graph (see Fig. 1) and it can be observed that the dissolution of the morphine sulfate tablets of Example 4 are approximately the same as the three bead examples. The release rate of the tablets of Example 4 lies with the dissolution of the bead products (Examples For reference purposes, the dissolution of MS Contin® 30 mg and mg tablets were also plotted on Fig. 1. MS Contin® tablets are well known morphine sustained-release tablets that are commercially available from the Purdue Frederick Company for twice-a-day administration.
EXAMPLE IN-VIVO BIOAVAILABILITY
STUDIES
The bead products of Examples 1, 2 and 3 were then studied in separate human bioavailability studies at a dose of 30 mg. Each study also used a 30 mg strength MS Contin® as a reference in a cross-over design. The 60 mg tablet of Example 4 was compared to MS Contin® 60 mg as a reference in a cross-over study. The results of all four bioavailability studies are set forth in Tables 12-15 below. In Table 16, the in-vivo results of Example 4 are .set forth with the results adjusted to a 30 mg strength. In each of Tables 12-16, C, ,x is expressed in ng/ml; is expressed in hours; W.o represents the peak width at half height in hours; and AUC represents the area under the curve (0 to infinity), expressed in ng-hr/ml.
TABLE 12 Beads Example 1 Cnx I~n W50 AUC Bioavail.
MS Contin® 30 mg Tablets 13 2.3 5 103 (100) Experimental .Bead Formulation 5.9 5.6 11.5 101 98 TABLE 13 Beads Example 2 30 S x W50 AUC Bioavail.
MS Contin® mg Tablets 13 2.2 5 99 (100) 35 Experimental Bead Formulation 5.4 5.9 17 107 108 34 TABLE 14 Beads Example 3 MS Contin® mg Tablets Experimental Bead Formulation nma T a W50 11.8 2.8 5
AUC
114 Bioavail.
(100) 3.8 10.1 47 125 110 TABLE Tablets Example 4 T.x. W50 MS Contin® mg Tablets 18.2 2.7 5.56
AUC
195.6 Bioavail.
(100) Experimental Tablet Formulation 8.8 3.2 13.19 129.5 TABLE 16 Example 4 Adjusted to 30 ma Strenath f i a.
a MS Contin® Experimental 35 Tablet Formulation Cnax ax W50 9.1 2.7 5.56 4.4 3.2 13.19
AUC
97.8 64.8 (100) 66 Bioavail.
From the bioavailability studies, it can be observed that all three of the bead products of Examples 1, 2 and 3 exhibit pharmacokinetic properties which would allow them to be suitable for once-a-day administration. In other words, the bead products of Examples 1-3 were all bioavailable (as determined by comparing the AUC of the bead product to the AUC of the reference standard, MS Contin®).
However, the tablet products of Example 4 were surprisingly not bioavailable despite the reduction of the peak plasma concentration (Cmax) and the lengthening of the time to reach peak plasma concentration and W-50 and even though the dissolution studies show that the morphine sulfate was released from the tablet products in-vitro over the same time period as the bead products.
Therefore, it is surprising result that a bioavailable once-a-day product was only produced when the sustained release opioid was formulation as a multiparticulate system (in this instance beads) as opposed to the sustained release tablet formulation, which from all other indications would have been expected to have substantially identical bioavailability.
The examples provided above are .not meant to be exclusive. Many other variations of the present invention would be obvious to those skilled in the art, and are contemplated to be within the scope of the appended claims.
o S
SS

Claims (27)

1. A sustained-release oral analgesic dosage form for once-a-day administration, comprising: a unit dose of a plurality of inert pharmaceutic- ally acceptable substrates comprising an analgesically effective amount of an opioid analgesic or a salt thereof in sustained release form, each of said substrates having a diameter from about 0.1 mm to about 3 mm, said unit dose being bioavailable and providing effective blood levels of said opioid analgesic for at least about 24 hours.
2. The dosage form of claim 1, wherein said sub- strates are selected from the group consisting of spher- oids, beads, microspheres, seeds, pellets, ion-exchange resin beads, granules, and mixtures thereof.
3. The dosage form of claim 2, wherein said sub- strates are inert beads coated with said opioid analgesic.
4. The dosage form of claim 2, wherein said sub- *strates comprise matrices of a substantially uniform mix- ture of said opioid analgesic and a hydrophobic material.
5. The dosage form of claims 1 4 which provides a peak plasma level of said opioid in-vivo from about 2 to about 10 hours after administration.
6. The dosage form of claims 1 4 which provides a 30 peak plasma level of said opioid in-vivo from about 2 to about 4 hours after administration.
S7. The dosage form of claims 1 6, wherein each of said substrates having a diameter from about 0.5 mm to about 2 mm. 37
8. The dosage form of claim 3, wherein each of said beads is from about a 8 mesh bead to about 50 mesh bead.
9. The dosage form of claim 1, further comprising release-modifying agents, said release-modifying agents comprising one or more hydrophilic polymers such as hydroxypropylmethylcellulose.
A bioavailable sustained-release opioid analgesic dosage form for once-a-day oral administration, comprising inert pharmaceutically acceptable beads having a diameter from about 0.1 mm to about 3 mm coated with an analgesically effective amount of an opioid analgesic or a salt thereof,-said beads further comprising an sustained- release overcoat comprising an effective amount of a hydrophobic material selected from the group consisting of an acrylic polymer, an alkylcellulose, shellac, zein, hydrogenated vegetable oil, hydrogenated castor oil, and mixture of any of the foregoing to provide a sustained 20 release of said opioid analgesic in aqueous solutions for at least about 24 hours.
11. The dosage form of claims 1 10, wherein said opioid analgesic consists of from about 2 mg to about 64 mg hydromiu phone.
The dosage form of claims 1 11, wherein said opioid analgesic consists of from about 5 mg to about 800 mg mcrphine.
13. The dosage form of claims 1 11, wherein said opicid analgesic consists of from about 5 mg to about 400 mg (xycodone. a
14. The dosage form of claims 1 11 which provides a peak plasma level of said opioid in-vivo from about 3 to about 10 hours after administration.
15. The dosage form of claims 1 14, wherein said unit dose of said beads are contained within a hard gelatin capsule.
16. The dosage form of claims 1 15, wherein said opioid analgesic is selected form the group consisting of morphine, codeine, hydromorphone, hydrocodone, oxycodone, oxymorphone, dihydrocodeine, dihydromorphine, and mixtures thereof.
17. The dosage form of claims 1 15, wherein said opioid analgesic is selected from the group consisting of alfentanil, allylprodine, alphaprodine, anileridine benzylmorphine, bezitramide, buprenorphine, butorphanol clonitazene, codeine, cyclazocine, desomorphine, dextro- moramide, dezocine, diampromide, dihydrocodeine, dihydro- Smorphine, dimenoxadol, dimepheptanol, dimethyithiambutene, *dioxaphetyl butyrate, dipipanone, eptazocine, ethohepta- zine, ethylmethylthiambutene ethylmorphine, etonitazene fentanyl, heroin, hydrocodone, hydromorphone, hydroxype- thidine, isomethadone, ketobemidone, levallorphan, levor- Sphanol, levophenacyl morphan, lofentanil, meperidine, meptazinol, metazocine, methadone, metopon, morphine, myrophine, nalbuphine, narceine, nicomorphine, norlevor- 0 phanol, normethadone, nalorphine, normorphine, norpipanone, Opum, oxycodone, Oxymorphone, papaveretum, pentazocine, phenadoxone, phenomorphan, phenazocine, phenoperidine, piminodine, piritramide, propheptazine, promedol, proper- idine, propiram, propoxyphene, sufentanil, tilidine, salts thereof and mixtures thereof. 39
18. The dosage form of claims 1 17, which further comprises a non-steroidal anti-inflammatory agent selected from the group consisting of ibuprofen, diclofenac, nap- roxen, benoxaprofen, flurbiprofen, fenoprofen, flubufen, ketoprofen, indoprofen, piroprofen, carprofen, oxaprozin, pramoprofen, muroprofen, trioxaprofen, suprofen, amino- profen, tiaprofenic acid, fluprofen, bucloxic acid, indo- methacin, sulindac, tolmetin, zomepirac, tiopinac, zido- metacin, acemetacin, fentiazac, clidanac, oxpinac, mefen- amic acid, meclofenamic acid, flufenamic acid, -niflumic acid tolfenamic acid, diflurisal, flufenisal, piroxicam, sudoxicam or isoxicam, and mixtures of any of the fore- going.
19. The dosage form of claims 1 18, wherein said hydrophobic material is selected from the group consisting of En acrylic polymer, an alkylcellulose, shellac, zein, hydrogenated vegetable oil, hydrogenated castor oil, and mixtures of any of the foregoing.
20. The dosage form of claims 1- 18, wherein said hydrophobic material is applied to said plurality of said substrates as an aqueous dispersion.
21. A method for obtaining a bioavailable sustained- release opioid analgesic dosage form for once-a-day oral administration, comprising preparing a plurality of sub- strates comprising a unit dose of an oral analgesic in a sustained release form, each of said substrates having a S30 diameter from about 0.1 mm to about 3 mm, said substrates being manufactured to provide an in-vitro dissolution indicative of a once-a-day product.
22. A method of treating a patient for moderate to severe pain with a bioavailable sustained-release opioid analgesic dosage form for once-a-day oral administration, comprising preparing a plurality of substrates comprising a unit dose of an opioid analgesic, each of said substrates having a diameter from about 0.1 mm to about 3 mm, said substrates being manufactured in a sustained release form to provide therapeutically effective blood levels of said opioid analgesic for about 24 hours or more, and adminis- tering said unit dose to a patient to alleviate moderate to severe pain for about 24 hours or more.
23. The method of claims 21 and 22, wherein said substrates are selected from the group consisting of spheroids, beads, microspheres, seeds, pellets, ion- exchange resin beads, granules, and mixtures thereof, further comprising preparing said substrates by coating inert beads with said opioid analgesic, and thereafter overcoating with a hydrophobic material is selected from 20 the -oup consisting of an acrylic polymer, an alkyl- cellui se, shellac, zein, hydrogenated vegetable oil, hydrogenated castor oil, and mixtures of any of the foregoing.
24. The method of claims 21 22, further comprising 0 V. preparing said substrates as matrices of a substantially uniform mixture of said opioid analgesic and a hydrophobic Ct mater: al. SC. 30
25. The method of claims 21 24, further comprising preparing said substrates such that said unit dose provides a peak plasma level of said opioid in-vivo from about 2 to Sabout 10 hours after administration. -41
26. The method of claims 21 25, further comprising incorporating said unit dose of said substrates within a hard gelatine capsule.
27. A sustained-release oral analgesic dosage form for a once-a-day administration substantially as herein described with reference to any one of Examples 1 to 3. Dated 8 April, 1997 Euroceltique S.A. Patent Attorneys for the Applicant/Nominated Person SPRUSON FERGUSON *SS e*. IN:\LIBU13426:JED
AU44493/99A 1993-10-07 1999-08-13 Orally administrable opioid formulations having extended duration of effect Abandoned AU4449399A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU44493/99A AU4449399A (en) 1993-10-07 1999-08-13 Orally administrable opioid formulations having extended duration of effect
AU2005201142A AU2005201142B2 (en) 1993-10-07 2005-03-17 Orally Administrable Opioid Formulations Having Extended Duration of Effect

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US13350393A 1993-10-07 1993-10-07
US133503 1993-10-07
AU17807/97A AU1780797A (en) 1993-10-07 1997-04-09 Orally administrable opioid formulations having extended duration of effect
AU44493/99A AU4449399A (en) 1993-10-07 1999-08-13 Orally administrable opioid formulations having extended duration of effect

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
AU17807/97A Division AU1780797A (en) 1993-10-07 1997-04-09 Orally administrable opioid formulations having extended duration of effect

Related Child Applications (2)

Application Number Title Priority Date Filing Date
AU29207/02A Division AU2920702A (en) 1993-10-07 2002-03-28 Orally admistrable opioid formulations having extended duration of effect
AU2005201142A Division AU2005201142B2 (en) 1993-10-07 2005-03-17 Orally Administrable Opioid Formulations Having Extended Duration of Effect

Publications (1)

Publication Number Publication Date
AU4449399A true AU4449399A (en) 1999-10-14

Family

ID=27152400

Family Applications (1)

Application Number Title Priority Date Filing Date
AU44493/99A Abandoned AU4449399A (en) 1993-10-07 1999-08-13 Orally administrable opioid formulations having extended duration of effect

Country Status (1)

Country Link
AU (1) AU4449399A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008231110A (en) * 2000-10-30 2008-10-02 Euro-Celtique Sa Controlled-release hydrocodone formulation
WO2013153451A3 (en) * 2012-04-09 2014-01-23 QRxPharma Ltd. Controlled release formulations of opioids
US9669024B2 (en) 1999-10-29 2017-06-06 Purdue Pharma L.P. Controlled release hydrocodone formulations
US10179130B2 (en) 1999-10-29 2019-01-15 Purdue Pharma L.P. Controlled release hydrocodone formulations

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9669024B2 (en) 1999-10-29 2017-06-06 Purdue Pharma L.P. Controlled release hydrocodone formulations
US10179130B2 (en) 1999-10-29 2019-01-15 Purdue Pharma L.P. Controlled release hydrocodone formulations
US10076516B2 (en) 1999-10-29 2018-09-18 Purdue Pharma L.P. Methods of manufacturing oral dosage forms
US9675611B1 (en) 1999-10-29 2017-06-13 Purdue Pharma L.P. Methods of providing analgesia
US9669022B2 (en) 1999-10-29 2017-06-06 Purdue Pharma L.P. Controlled release hydrocodone formulations
US9669023B2 (en) 2000-10-30 2017-06-06 Purdue Pharma L.P. Controlled release hydrocodone formulations
JP2008231110A (en) * 2000-10-30 2008-10-02 Euro-Celtique Sa Controlled-release hydrocodone formulation
JP2016053074A (en) * 2000-10-30 2016-04-14 ユーロ−セルティーク エス.エイ. Controlled-release hydrocodone formulations
JP2015007112A (en) * 2000-10-30 2015-01-15 ユーロ−セルティーク エス.エイ. Controlled-release hydrocodone formulations
US9682077B2 (en) 2000-10-30 2017-06-20 Purdue Pharma L.P. Methods of providing analgesia
JP2017160250A (en) * 2000-10-30 2017-09-14 ユーロ−セルティーク エス.エイ. Controlled-release hydrocodone formulations
US10022368B2 (en) 2000-10-30 2018-07-17 Purdue Pharma L.P. Methods of manufacturing oral formulations
JP2012167106A (en) * 2000-10-30 2012-09-06 Euro-Celtique Sa Controlled-release hydrocodone formulation
WO2013153451A3 (en) * 2012-04-09 2014-01-23 QRxPharma Ltd. Controlled release formulations of opioids

Similar Documents

Publication Publication Date Title
US5968551A (en) Orally administrable opioid formulations having extended duration of effect
CA2133503C (en) Orally administrable opioid formulations having extended duration of effect
US5478577A (en) Method of treating pain by administering 24 hour oral opioid formulations exhibiting rapid rate of initial rise of plasma drug level
US6143322A (en) Method of treating humans with opioid formulations having extended controlled release
US5958459A (en) Opioid formulations having extended controlled released
US6716449B2 (en) Controlled-release compositions containing opioid agonist and antagonist
US20050020613A1 (en) Sustained release opioid formulations and method of use
US20140099376A2 (en) Sequestered antagonist formulations
US20130072514A1 (en) Sustained-Release Opioid Formulations and Methods of Use
AU4449399A (en) Orally administrable opioid formulations having extended duration of effect
US7740881B1 (en) Method of treating humans with opioid formulations having extended controlled release
EP1255547B1 (en) Controlled-release compositions containing opioid agonist and antagonist
AU2005201142B2 (en) Orally Administrable Opioid Formulations Having Extended Duration of Effect

Legal Events

Date Code Title Description
MK5 Application lapsed section 142(2)(e) - patent request and compl. specification not accepted