AU2020104490A6 - Method and device for analyzing plants - Google Patents
Method and device for analyzing plants Download PDFInfo
- Publication number
- AU2020104490A6 AU2020104490A6 AU2020104490A AU2020104490A AU2020104490A6 AU 2020104490 A6 AU2020104490 A6 AU 2020104490A6 AU 2020104490 A AU2020104490 A AU 2020104490A AU 2020104490 A AU2020104490 A AU 2020104490A AU 2020104490 A6 AU2020104490 A6 AU 2020104490A6
- Authority
- AU
- Australia
- Prior art keywords
- plant
- training
- input data
- classifier
- data
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 81
- 241000196324 Embryophyta Species 0.000 claims abstract description 209
- 238000012549 training Methods 0.000 claims abstract description 156
- 238000005286 illumination Methods 0.000 claims abstract description 45
- 230000003595 spectral effect Effects 0.000 claims abstract description 30
- 238000001228 spectrum Methods 0.000 claims abstract description 29
- 238000000862 absorption spectrum Methods 0.000 claims abstract description 9
- 240000004308 marijuana Species 0.000 claims abstract 2
- 238000011156 evaluation Methods 0.000 claims description 20
- 230000005855 radiation Effects 0.000 claims description 13
- 230000002068 genetic effect Effects 0.000 claims description 10
- 230000002123 temporal effect Effects 0.000 claims description 7
- 230000008859 change Effects 0.000 claims description 6
- 238000007739 conversion coating Methods 0.000 claims description 3
- 244000198134 Agave sisalana Species 0.000 claims description 2
- 235000011624 Agave sisalana Nutrition 0.000 claims description 2
- 238000001179 sorption measurement Methods 0.000 claims description 2
- 238000000295 emission spectrum Methods 0.000 description 26
- 230000009102 absorption Effects 0.000 description 18
- 238000010521 absorption reaction Methods 0.000 description 18
- 230000008569 process Effects 0.000 description 13
- 238000001514 detection method Methods 0.000 description 11
- 241000218236 Cannabis Species 0.000 description 10
- 238000010586 diagram Methods 0.000 description 8
- 201000010099 disease Diseases 0.000 description 8
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 230000000875 corresponding effect Effects 0.000 description 6
- 230000008901 benefit Effects 0.000 description 5
- 230000036541 health Effects 0.000 description 5
- 238000013528 artificial neural network Methods 0.000 description 4
- 238000013527 convolutional neural network Methods 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 230000018109 developmental process Effects 0.000 description 4
- 230000007613 environmental effect Effects 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 108020004414 DNA Proteins 0.000 description 3
- 206010061217 Infestation Diseases 0.000 description 3
- 241000700605 Viruses Species 0.000 description 3
- 230000015654 memory Effects 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 241000238631 Hexapoda Species 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 108091028043 Nucleic acid sequence Proteins 0.000 description 2
- 229930003827 cannabinoid Natural products 0.000 description 2
- 239000003557 cannabinoid Substances 0.000 description 2
- 229910052729 chemical element Inorganic materials 0.000 description 2
- -1 hy drogen) Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 235000015097 nutrients Nutrition 0.000 description 2
- 244000052769 pathogen Species 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 150000003505 terpenes Chemical class 0.000 description 2
- 235000007586 terpenes Nutrition 0.000 description 2
- ZROLHBHDLIHEMS-HUUCEWRRSA-N (6ar,10ar)-6,6,9-trimethyl-3-propyl-6a,7,8,10a-tetrahydrobenzo[c]chromen-1-ol Chemical compound C1=C(C)CC[C@H]2C(C)(C)OC3=CC(CCC)=CC(O)=C3[C@@H]21 ZROLHBHDLIHEMS-HUUCEWRRSA-N 0.000 description 1
- SYRBOMODLUADBZ-RNIAWFEPSA-N 1-[(E)-[(E)-(2-hydroxynaphthalen-1-yl)methylidenehydrazinylidene]methyl]naphthalen-2-ol Chemical compound N(\N=C\C1=C(C=CC2=CC=CC=C12)O)=C/C1=C(C=CC2=CC=CC=C12)O SYRBOMODLUADBZ-RNIAWFEPSA-N 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- REOZWEGFPHTFEI-JKSUJKDBSA-N Cannabidivarin Chemical compound OC1=CC(CCC)=CC(O)=C1[C@H]1[C@H](C(C)=C)CCC(C)=C1 REOZWEGFPHTFEI-JKSUJKDBSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 241001471082 Colocasia bobone disease-associated cytorhabdovirus Species 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- ZROLHBHDLIHEMS-UHFFFAOYSA-N Delta9 tetrahydrocannabivarin Natural products C1=C(C)CCC2C(C)(C)OC3=CC(CCC)=CC(O)=C3C21 ZROLHBHDLIHEMS-UHFFFAOYSA-N 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- POXFJRQAAPDUAC-IRWJKHRASA-N [(8r,9s,10r,13s,14s,17s)-10,13-dimethyl-3-oxo-1,2,6,7,8,9,11,12,14,15,16,17-dodecahydrocyclopenta[a]phenanthren-17-yl] 3-hexylcyclobutane-1-carboxylate Chemical compound C1C(CCCCCC)CC1C(=O)O[C@@H]1[C@@]2(C)CC[C@@H]3[C@@]4(C)CCC(=O)C=C4CC[C@H]3[C@@H]2CC1 POXFJRQAAPDUAC-IRWJKHRASA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000002730 additional effect Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000004790 biotic stress Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- ZTGXAWYVTLUPDT-UHFFFAOYSA-N cannabidiol Natural products OC1=CC(CCCCC)=CC(O)=C1C1C(C(C)=C)CC=C(C)C1 ZTGXAWYVTLUPDT-UHFFFAOYSA-N 0.000 description 1
- REOZWEGFPHTFEI-UHFFFAOYSA-N cannabidivarine Natural products OC1=CC(CCC)=CC(O)=C1C1C(C(C)=C)CCC(C)=C1 REOZWEGFPHTFEI-UHFFFAOYSA-N 0.000 description 1
- QXACEHWTBCFNSA-SFQUDFHCSA-N cannabigerol Chemical compound CCCCCC1=CC(O)=C(C\C=C(/C)CCC=C(C)C)C(O)=C1 QXACEHWTBCFNSA-SFQUDFHCSA-N 0.000 description 1
- QXACEHWTBCFNSA-UHFFFAOYSA-N cannabigerol Natural products CCCCCC1=CC(O)=C(CC=C(C)CCC=C(C)C)C(O)=C1 QXACEHWTBCFNSA-UHFFFAOYSA-N 0.000 description 1
- 229940065144 cannabinoids Drugs 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 230000003050 macronutrient Effects 0.000 description 1
- 235000021073 macronutrients Nutrition 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011785 micronutrient Substances 0.000 description 1
- 235000013369 micronutrients Nutrition 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 235000021049 nutrient content Nutrition 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 238000004393 prognosis Methods 0.000 description 1
- 230000000306 recurrent effect Effects 0.000 description 1
- 230000006403 short-term memory Effects 0.000 description 1
- 238000010183 spectrum analysis Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 238000001931 thermography Methods 0.000 description 1
- 239000011573 trace mineral Substances 0.000 description 1
- 235000013619 trace mineral Nutrition 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
- G06V10/58—Extraction of image or video features relating to hyperspectral data
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/0098—Plants or trees
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/10—Image acquisition
- G06V10/12—Details of acquisition arrangements; Constructional details thereof
- G06V10/14—Optical characteristics of the device performing the acquisition or on the illumination arrangements
- G06V10/141—Control of illumination
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/10—Image acquisition
- G06V10/12—Details of acquisition arrangements; Constructional details thereof
- G06V10/14—Optical characteristics of the device performing the acquisition or on the illumination arrangements
- G06V10/147—Details of sensors, e.g. sensor lenses
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/10—Terrestrial scenes
- G06V20/188—Vegetation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N2021/8466—Investigation of vegetal material, e.g. leaves, plants, fruits
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2201/00—Features of devices classified in G01N21/00
- G01N2201/12—Circuits of general importance; Signal processing
- G01N2201/129—Using chemometrical methods
- G01N2201/1296—Using chemometrical methods using neural networks
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Multimedia (AREA)
- Chemical & Material Sciences (AREA)
- Pathology (AREA)
- Immunology (AREA)
- Biochemistry (AREA)
- Analytical Chemistry (AREA)
- Evolutionary Computation (AREA)
- Computational Linguistics (AREA)
- Software Systems (AREA)
- Mathematical Physics (AREA)
- General Engineering & Computer Science (AREA)
- Vascular Medicine (AREA)
- Artificial Intelligence (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Computing Systems (AREA)
- Data Mining & Analysis (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Molecular Biology (AREA)
- Botany (AREA)
- Medicinal Chemistry (AREA)
- Food Science & Technology (AREA)
- Wood Science & Technology (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19155791.7 | 2019-02-06 | ||
EP19155791.7A EP3693735A1 (de) | 2019-02-06 | 2019-02-06 | Verfahren und vorrichtung zur analyse von pflanzen |
Publications (3)
Publication Number | Publication Date |
---|---|
AU2020104490A5 AU2020104490A5 (US06815460-20041109-C00097.png) | 2020-08-13 |
AU2020104490A6 true AU2020104490A6 (en) | 2023-06-22 |
AU2020104490A4 AU2020104490A4 (en) | 2024-07-11 |
Family
ID=65351951
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU2020104490A Active AU2020104490A4 (en) | 2019-02-06 | 2020-02-05 | Method and device for analyzing plants |
AU2020218829A Pending AU2020218829A1 (en) | 2019-02-06 | 2020-02-05 | Method and device for analyzing plants |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU2020218829A Pending AU2020218829A1 (en) | 2019-02-06 | 2020-02-05 | Method and device for analyzing plants |
Country Status (5)
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2582547B (en) | 2019-03-18 | 2022-08-10 | Vivent Sa | Apparatus and method for assessing a characteristic of a plant |
US11763553B2 (en) * | 2019-04-17 | 2023-09-19 | The Regents Of The University Of California | Artificial intelligence advance imaging—processing conditioned light photography and videography to reveal features detectable by other advanced imaging and functional testing technologies |
US11889175B2 (en) * | 2020-04-24 | 2024-01-30 | Spectrum Optix Inc. | Neural network supported camera image or video processing pipelines |
EP3968113B1 (en) * | 2020-09-11 | 2024-01-24 | Vivent SA | Apparatus and method for assessing a characteristic of a plant |
DE102021113510A1 (de) * | 2021-05-26 | 2022-12-01 | RoBoTec PTC GmbH | Verfahren und Vorrichtung zur automatisierten Bonitur von Pflanzen und Nährböden |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007041755A1 (en) * | 2005-10-07 | 2007-04-19 | The Australian Wine Research Institute | Hyperspectral imaging of contaminants in products and processes of agriculture |
DE102006043117B3 (de) * | 2006-09-08 | 2008-04-10 | Yara International Asa | Verfahren und Vorrichtung zum bedarfsgerechten Versorgen von Kulturpflanzen mit Wasser und/oder Nährstoffen in Gartenbauanlagen |
EP2095017A1 (en) * | 2006-12-20 | 2009-09-02 | Philips Intellectual Property & Standards GmbH | Illuminating device |
DE102009055626A1 (de) * | 2009-11-25 | 2011-05-26 | Ralph Klose | Optische Messeinrichtung und Verfahren zur optischen Vermessung eines Messobjekts |
DE102010027144A1 (de) * | 2010-07-09 | 2012-01-12 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Trainingsverfahren für einen adaptiven Auswertealgorithmus, ein hyperspektrales Messgerät, sowie eine Vorrichtung zum Ausbringen eines Betriebsmittels |
EP2887053A1 (en) * | 2013-12-18 | 2015-06-24 | Basf Se | Determination of a fungal infection of a plant by chlorophyll fluorescence induced by different excitation wavelengths |
US10241097B2 (en) * | 2015-07-30 | 2019-03-26 | Ecoation Innovative Solutions Inc. | Multi-sensor platform for crop health monitoring |
US10458908B2 (en) * | 2016-02-04 | 2019-10-29 | Gemmacert Ltd. | System and method for qualifying plant material |
CN113228055B (zh) * | 2018-10-19 | 2024-04-12 | 克莱米特有限责任公司 | 配置和利用卷积神经网络以识别植物病害的方法和介质 |
-
2019
- 2019-02-06 EP EP19155791.7A patent/EP3693735A1/de not_active Withdrawn
-
2020
- 2020-02-05 AU AU2020104490A patent/AU2020104490A4/en active Active
- 2020-02-05 WO PCT/EP2020/052840 patent/WO2020161176A1/de unknown
- 2020-02-05 AU AU2020218829A patent/AU2020218829A1/en active Pending
- 2020-02-05 EP EP20703234.3A patent/EP3921633A1/de active Pending
- 2020-02-05 US US17/426,427 patent/US12087031B2/en active Active
- 2020-02-05 CA CA3126752A patent/CA3126752A1/en active Pending
Also Published As
Publication number | Publication date |
---|---|
EP3693735A1 (de) | 2020-08-12 |
AU2020104490A4 (en) | 2024-07-11 |
WO2020161176A1 (de) | 2020-08-13 |
CA3126752A1 (en) | 2020-08-13 |
AU2020104490A5 (US06815460-20041109-C00097.png) | 2020-08-13 |
US20220108543A1 (en) | 2022-04-07 |
US12087031B2 (en) | 2024-09-10 |
EP3921633A1 (de) | 2021-12-15 |
AU2020218829A1 (en) | 2021-08-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2020104490A6 (en) | Method and device for analyzing plants | |
Kolhar et al. | Plant trait estimation and classification studies in plant phenotyping using machine vision–A review | |
Zhang et al. | High throughput analysis of leaf chlorophyll content in sorghum using RGB, hyperspectral, and fluorescence imaging and sensor fusion | |
CN105548113B (zh) | 一种基于叶绿素荧光和多光谱图像的植物生理监测方法 | |
Junttila et al. | The potential of dual-wavelength terrestrial lidar in early detection of Ips typographus (L.) infestation–Leaf water content as a proxy | |
Bendel et al. | Evaluating the suitability of hyper-and multispectral imaging to detect foliar symptoms of the grapevine trunk disease Esca in vineyards | |
CN112634212A (zh) | 基于高光谱无人机的病害潜伏树检测方法及系统 | |
CN115136207A (zh) | 用于自动植物图像标记的方法和系统 | |
US20180018537A1 (en) | Non-spectroscopic imaging of plants | |
US20230196560A1 (en) | Systems and methods for automatically grading cannabis plants and adjusting control parameters | |
Ganthaler et al. | Using image analysis for quantitative assessment of needle bladder rust disease of Norway spruce | |
WO2021165479A1 (en) | Method and apparatus for determining an index of insect biodiversity, an insect sensor and a system of insect sensors | |
CN109827957A (zh) | 一种基于计算机视觉的水稻叶片spad值估测方法及系统 | |
Yuan et al. | Performance comparison of RGB and multispectral vegetation indices based on machine learning for estimating Hopea hainanensis SPAD values under different shade conditions | |
Patane et al. | Chlorophyll and nitrogen estimation techniques: A Review | |
Yao et al. | Design and testing of an active light source apparatus for crop growth monitoring and diagnosis | |
Panigada et al. | Chlorophyll concentration mapping with MIVIS data to assess crown discoloration in the Ticino Park oak forest | |
Swanson et al. | Pollen classification using a single particle fluorescence spectroscopy technique | |
CN102387631A (zh) | 一种免疫层析判读记录仪中光照度的自动判断和调整方法 | |
Chen et al. | Preliminary research on total nitrogen content prediction of sandalwood using the error-in-variable models based on digital image processing | |
Ali et al. | Prospect inversion for indirect estimation of leaf dry matter content and specific leaf area | |
Fernando Sánchez-Sastre et al. | Assessment of RGB Vegetation Indices to Estimate Chlorophyll Content in Sugar Beet Leaves in the Final Cultivation Stage. | |
JP2021001777A (ja) | 植物の生育状態評価方法および評価装置 | |
US11768152B2 (en) | Information processing system and spectroscopic measuring instrument | |
Dmitriev et al. | Maple species identification based on leaf hyperspectral imaging data |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FGI | Letters patent sealed or granted (innovation patent) | ||
DA2 | Applications for amendment section 104 |
Free format text: THE NATURE OF THE AMENDMENT IS AS SHOWN IN THE STATEMENT(S) FILED 10 MAR 2023 |
|
DA3 | Amendments made section 104 |
Free format text: THE NATURE OF THE AMENDMENT IS AS SHOWN IN THE STATEMENT(S) FILED 10 MAR 2023 |