AU2013201283B2 - Method and Apparatus to Deliver Public Warning Messages - Google Patents

Method and Apparatus to Deliver Public Warning Messages Download PDF

Info

Publication number
AU2013201283B2
AU2013201283B2 AU2013201283A AU2013201283A AU2013201283B2 AU 2013201283 B2 AU2013201283 B2 AU 2013201283B2 AU 2013201283 A AU2013201283 A AU 2013201283A AU 2013201283 A AU2013201283 A AU 2013201283A AU 2013201283 B2 AU2013201283 B2 AU 2013201283B2
Authority
AU
Australia
Prior art keywords
emergency
wtru
sib
lte
receive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
AU2013201283A
Other versions
AU2013201283A1 (en
Inventor
Rajat P. Mukherjee
Ulises Olvera-Hernandez
Mohammed Sammour
Shankar Somasundaram
Juan Carlos Zuniga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
InterDigital Patent Holdings Inc
Original Assignee
InterDigital Patent Holdings Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US61/036,893 priority Critical
Priority to AU2009223307A priority patent/AU2009223307B2/en
Application filed by InterDigital Patent Holdings Inc filed Critical InterDigital Patent Holdings Inc
Priority to AU2013201283A priority patent/AU2013201283B2/en
Publication of AU2013201283A1 publication Critical patent/AU2013201283A1/en
Application granted granted Critical
Publication of AU2013201283B2 publication Critical patent/AU2013201283B2/en
Application status is Active legal-status Critical
Anticipated expiration legal-status Critical

Links

Abstract

A method and apparatus for a wireless transmit receive unit (WTRU) to receive an emergency situation notification. The method and apparatus include the WTRU receiving a paging message with an emergency situation notification, and the WTRU receiving scheduling information in a system information block. MESSAGE 802 MESSAGE 802 TE 810 APP 1 APP 2 814 APP 3 812 RESELECT 902 PRIORITIZE 906

Description

[0001] METHOD AND APPARATUS TO DELIVER PUBLIC WARNING MESSAGES [0002] FIELD OF INVENTION [0003] This application is related to wireless communications. [0004] BACKGROUND [0005] The Third Generation Partnership Project (3GPP) has initiated the Long Term Evolution (LTE) program to bring new technology, new network architecture, new configurations and new applications and services to wireless networks in order to provide improved spectral efficiency and faster user experiences. [0006] There are many man-made and natural emergencies that may cause considerable damage over a wide-spread area. Hurricanes, typhoons, tornados, floods, chemical spills and explosions, for example, may cause significant loss of life and property. While certain governments and commercial agencies currently provide warnings via siren, radio and/or television, a public warning system incorporated in a wireless transmit receive unit (WTRU) in an LTE network may increase the probability that a large number of people can be forewarned of these dangers. [0007] Figure 1 shows an LTE control-plane protocol stack 100 in accordance with the prior art. The protocol stack 100 may be located in a WTRU 102 and an eNode B (eNB) 120. The stack includes the radio resource control (RRC) 104, 124, the packet data control protocol (PDCP) 106,126, the radio link control (RLC) 108, 128, the medium access control (MAC) 110,130 and the physical layer (PRY) 112,132. The non-access stratum (NAS) 114,144 may also reside in the WTRU 102 and a mobility management entity (MME) 140. [0008] Figure 2 shows an LTE user-plane protocol stack 200 in accordance with the prior art. The user-plane protocol stack 200 may reside in a WTRU 202 -1and an eNB 222. The user-plane protocol stack 200 may include the PDCP 204, 224, the RLC 206, 226, the MAC 208, 218 and the physical layer 210, 230. [0009] In an LTE communication system, a WTRU and eNB may share operating parameters in order to communicate properly. One way for the eNB to inform the WTRU about operating parameters is for the eNB to transmit system information to the WTRU. System information is public information about how a WTRU communicates with a cell, such as transmission bandwidth, channel configurations, cell loading and power control parameters, for example. [0010] There may be a relatively large amount of system information transmitted by an eNB in a cell. Therefore, in order to organize the transmission of the system information, the information may be divided into a number of system information blocks (SIBs). The types of the system information carried in a particular SIB is constant, but the value of the information carried in each SIB is subject to change. [0011] Some SIBs may have the same scheduling requirements, such as periodicity. There may be more than one system information (SI) message transmitted with the same periodicity. Each SIB may contain a set of related SI parameters. Several SIBs have been defined in the prior art, including, for example, a Master Information Block (MIB). The MIB may include a limited number of frequently transmitted parameters. Another defined SIB is SIB type 1. SIB type-1 may contain scheduling information and may include indicators as to when SI messages are transmitted. System information master (SI-M) and system information 1 (SI-1) are special versions of an SI message only carrying a single SIB, namely the MIB and SIB type 1, respectively. The SI-M message is carried on a Broadcast Channel (BCH) while all other SI messages are carried on a downlink synchronization channel (DL-SCH). The system information carried on BCH is contained in the MIB. All other system information is carried on a DL SCH. [0012] A paging message may be used to inform a WTRU in RRC_IDLE state about a change in system information. A WTRU in RRC_CONNECTED state may monitor a physical downlink control channel (PDCCH) on a periodic basis and at a time specifically defined for this purpose. If a WTRU detects the system information change RNTI (Radio Network Temporary Identifier) on the PDCCH, the WTRU may determine that a system information change will occur at a next modification period boundary. [0013] The SI-1 message includes a value tag that may indicate if a change has occurred in the system information other than the SI-M and SI-1. A WTRU may use this value tag upon returning from out of coverage to verify if the previously acquired system information is still valid. A WTRU may consider system information to be valid for at most 6 hours from the moment it was received. [0014] Figure 3 shows a functional model for a WTRU 300 in accordance with the prior art. The interface between a WTRU 300 and a network is the radio interface. A WTRU 300 can be divided into a number of domains, the domains being separated by reference points. Some defined domains are the universal subscriber identity module (USIM) domain 302 and mobile equipment (ME) domain 304. The ME domain 304 can be further divided into several components showing the connectivity between multiple functional groups. These groups can be implemented in one or more hardware devices. An example of such connectivity is the terminal equipment (TE) 306 to mobile termination (MT) 308 interface. [0015] Figure 4 is a block diagram of physical components 400 mapped to the functional diagram 300 of Figure 3. The universal integrated circuit card (UICC) 402 may be a physical implementation of the USIM 302 of Figure 3. The remainder of the WTRU 404 may physically represent the MT 308 of Figure 3, and a personal computer 406 may physical embody the TE 306 of Figure 3. [0016] "Attention" (AT) commands may be used for controlling MT functions and GSMfUniversal Mobile Telecommunication System (UMTS) network services from a terminal equipment (TE) through a terminal adaptor (TA). The use of AT commands assumes an abstract architecture. Figure 5 shows a block diagram of an abstract architecture 500 that may incorporate AT commands. The architecture 500 includes a TE 502, an MT 506 and a TA 504 -3- 4 used as an interface between the TE 502 and the MT 506. The TE 502 may be a computer, for example. The MT 506 may send MT status messages 508 to the TA 504 and receive MT control messages 510 from the TA 504. The TE 502 may send AT commands 512 to the TA 504 and receive responses 514 from the TA 5 504. As shown in Figure 5, the TA 504, the MT 506 and the TE 502 are separate entities. However, the TA 504 may be integrated under the MT 506 while the TE 502 is implemented as a separate entity (configuration not shown). Also, the TA 504 may be integrated under the TE 502, with the MT 506 implemented as a separate entity (configuration not shown). Lastly, the TA 504 and the MT 506 may 10 both be integrated under the TE 502 as a single entity (configuration not shown). SUMMARY A method and apparatus are disclosed for a WTRU to receive an emergency situation notification. The method and apparatus may include the WTRU receiving a paging message with an emergency situation notification and 15 the WTRU receiving scheduling information in a system information block. The WTRU may also receive emergency situation information in another system information block. In one aspect the present invention provides an integrated circuit (IC) including: 20 circuitry configured to receive an long term evolution (LTE) paging message that includes an emergency indicator that indicates that scheduling information for an emergency warning will be present in an LTE system information block - type 1 (SIB 1); circuitry configured to receive and process the LTE SIB 1 including 25 scheduling information for a second systern information block that contains the emergency warning; circuitry configured to receive the second SIB using the scheduling information in the LTE SIB 1, wherein the second SIB includes the emergency warning; and 30 circuitry configured to process the second SIB and send the emergency warning to higher layers. In another aspect the present invention provides an integrated circuit (IC) including: 4a circuitry configured to receive an emergency warning from a network; circuitry configured to send a long term evolution (LTE) paging message that includes an emergency indicator that indicates that scheduling information for an emergency warning will be present in an LTE system information block - type 5 1 (SIB 1); wherein the LTE SIB 1 includes scheduling information for a second system information block that contains the emergency warning; and circuitry configured to send the second SIB using the scheduling information in the LTE SIB 1, wherein the second SIB includes the emergency warning. 10 In a further aspect the present invention provides a wireless transmit receive unit (WTRU) including: a receiver configured to: receive the LTE paging message while operating in a radio resource control (RRC) idle or connected mode, the LTE paging message including an 15 emergency indicator, receive an LTE system information block - type 1 (SIB 1) on condition that the LTE paging message includes the emergency indicator, wherein the LTE SIB 1 includes scheduling information for a second system information block (SIB) used for delivering an emergency warning, and 20 receive the second SIB in accordance with the scheduling information indicated in the LTE SIB 1, wherein the second SIB includes the emergency warning; and a processor configured to process the second SIB and forward the emergency warning to higher layers. 25 BRIEF DESCRIPTION OF THE DRAWINGS A more detailed understanding may be had from the following description, given by way of example in conjunction with the accompanying drawings wherein: Figure 1 shows an LTE control-plane protocol stack in accordance with the prior art; 30 Figure 2 shows an LTE user-plane protocol stack in accordance with the prior art: Figure 3 shows a functional model for a WTRU in accordance with the prior art; [0024] Figure 4 is a block diagram of physical components mapped to the functional diagram of Figure 3; [0025] Figure 5 shows a block diagram of an abstract architecture incorporating AT commands in accordance with the prior art; [0026] Figure 6 shows a wireless communication system in accordance with one embodiment; [0027] Figure 7 is a functional block diagram of a WTRU and the eNB of the wireless communication system of Figure 6; [0028] Figure 8 is a block diagram of WTRU emergency procedures in accordance with one embodiment; and [0029] Figure 9 is a block diagram of WTRU emergency procedure in accordance with one embodiment. [0030] DETAILED DESCRIPTION [0031] When referred to hereafter, the terminology "wireless transmit/receive unit (WTRU)" includes but is not limited to a user equipment (UE), a mobile station, a fixed or mobile subscriber unit, a pager, a cellular telephone, a personal digital assistant (PDA), a computer, or any other type of user device capable of operating in a wireless environment. When referred to hereafter, the terminology "base station" includes but is not limited to a Node-B, a site controller, an access point (AP), or any other type of interfacing device capable of operating in a wireless environment. [0032] Figure 6 shows a wireless communication system 600 including a plurality of WTRUs 610 and an eNB 620. As shown in Figure 6, the WTRUs 610 are in communication with the eNB 620. Although three WTRUs 610 and one eNB 620 are shown in Figure 6, it should be noted that any combination of wireless and wired devices may be included in the wireless communication system 600. [0033] Figure 7 is a functional block diagram 700 of the WTRU 610 and the eNB 620 of the wireless communication system 600 of Figure 6. As shown in Figure 6, the WTRU 610 is in communication with the eNB 620. The WTRU 610 -5is configured to receive system information and system information change notification from the eNB 620. The WTRU 610 is also configured to transmit and receive RRC messages and information elements. The eNB 620 may be configured to transmit, and the WTRU 610 may be configured to receive and monitor signals on the broadcast control channel (BCCH). The WTRU 610 may be configured to receive paging messages and other downlink signaling. [0034] In addition to the components that may be found in a typical WTRU, the WTRU 610 includes a processor 715, a receiver 716, a transmitter 717, and an antenna 718. The WTRU 610 may also include a user interface 721, which may include, but is not limited to, an LCD or LED screen, a touch screen, a keyboard, a stylus, or any other typical input/output device. The WTRU 610 may also include memory 719, both volatile and non-volatile as well as interfaces 720 to other devices, such as universal serial bus (USB) ports, serial ports and the like. The receiver 716 and the transmitter 717 are in communication with the processor 715. The antenna 718 is in communication with both the receiver 716 and the transmitter 717 to facilitate the transmission and reception of wireless data. [0035] In addition to the components that may be found in a typical eNB, the eNB 620 includes a processor 725, a receiver 726, a transmitter 727, and an antenna 728. The receiver 726 and the transmitter 727 are in communication with the processor 725. The antenna 728 is in communication with both the receiver 726 and the transmitter 727 to facilitate the transmission and reception of wireless data. [0036] RRC system information can be utilized to inform WTRUs of emergency situations. The warning may be distributed to all eNBs in a network. The RRC layer may place a warning in one or more SIB, or the MIB. The SIB or MIB may include: a. notification of an emergency; b. a code or value that is mapped to a particular situation; c. a text message describing the emergency and recommended action to take; -6d. a call back phone number for more information; e. an internet address for more information; f. location information of the WTRU or the user; g. information regarding the nearest emergency services provider, such as hospitals, police stations and the like; h. time; and i. an indicator that a system information update that includes the emergency information, or a change in emergency information, is available. [0037] The information may be contained in more than one SIB. For example, information that an emergency exists may be carried in a frequently repeated scheduling unit (SU) such as SU-1. Detailed information may be carried in other SUs. [0038] Alternatively, a fast changing or frequently repeated SIB can be used to carry all the information required for emergency purposes. A WTRU may monitor a downlink channel, such as a broadcast channel (BCH) or a downlink shared channel (DL-SCH) at predefined intervals so that the WTRU may act on the emergency information when the fast changing SIB is received. Additionally, the WTRU may monitor an MIB and/or scheduling information to discover when the SIB for emergency situations will be sent. The RRC in the WTRU may acquire the system information related to the emergency situation. The RRC may then communicate with the NAS and pass the information contained in the emergency situation SIB to the NAS for processing. [0039] At an occurrence of an emergency situation, a WTRU may receive a page to indicate that system information has changed and that emergency information is following. The WTRU may read the updated system information to discover what information is new or changed. [0040] In another embodiment, a 'paging cause' may be added to a paging message/record to indicate that a change in system information change is due to an emergency situation. The WTRU may analyze the paging cause. If it finds that system information has changed, the WTRU may read the SIBs containing -7the emergency situation information and notify the relevant layers and applications. [0041] Alternatively, a WTRU may receive a page that indicates that there has been an emergency. The paging cause may include an indication that an emergency exists. Upon receiving the page, the WTRU may read the appropriate SIBs, for example. WTRUs that are camped on cells used for emergency-access only may also listen to paging channels for notification of public emergencies. [0042] Alternatively, the WTRU may receive a value, for example, N that is included in the MIB. When the system frame number (SFN) mod N = 0 (or every Nth frame) the WTRU may read the DL-SCH to discover any information about a warning being transmitted. The location of the warning SIB may be static when it is transmitted. Alternatively, the location of the warning SIB may be predefined so that the WTRU could appropriately define its reception window. This periodic reading of the SIB could also be performed on occasions when a high risk situation is perceived. [0043] System information resources may be scarce or insufficient to carry extensive text messages that completely describe details of an emergency situation. The amount of information that is carried over the air during the emergency may be reduced, however. [0044] A WTRU may be preloaded or preconfigured with text messages that correspond to particular emergency situations. Examples of the text messages are shown in TABLE 1. Emergency Code Emergency Description 1 Tsunami 2 Earthquake 3 Chemical Spill TABLE 1 -8- [0045] As shown in TABLE 1, each emergency code may correspond to a particular emergency description. An emergency code "1" may correspond to a tsunami warning, a code "2" may correspond to an earthquake warning, and a code "3" may correspond to a chemical spill warning. [0046] Additionally, other forms of preloaded or preconfigured messages, such as multimedia messages, for example, may be utilized. The preconfigured messages may reside on the USIM/ Universal Integrated Circuit Card (UICC) of the WTRU or in other non-volatile memory, for example. The WTRU may receive and process preconfigured messages, such as Open Mobile Alliance (OMA) messages, for example. Alternatively, RRC or NAS messages may be used to preconfigure the WTRU with emergency codes and their corresponding textual descriptions. [0047] During an emergency situation, the WTRU may be notified of the emergency situation code via the RRC system information. The WTRU may then perform a lookup using prestored information to determine the text message that corresponds to the emergency situation. The WTRU may then display the text message to the user. The WTRU may also display a multimedia message after look-up. This could be user or operator configured. This may reduce the size of text message information that needs to be transmitted over the air. [0048] The WTRU may receive messages that depend on the specific location of the WTRU. For instance, a tsunami alert can have a different message for a WTRU that is close to the shore, versus a WTRU that is one kilometer from the shore, versus another WTRU that is five kilometers from the shore or on high ground. Differentiated message behavior for the same warning may be controlled by a network entity that would manage the different messages delivery to the eNBs, depending on the eNB location. [0049] RRC messages may be enhanced by using information elements to inform WTRUs of emergency situations and to convey public warning messages. A WTRU may receive an emergency situation notification from an eNB that serves the areas that might be affected by the emergency situation. The RRC layer of the eNB will include the notification of the emergency situation in an -9- RRC message that includes an information element (IE). The IE may include the emergency information set forth above. [0050] Additional RRC messages can be used that include deterministic ASN.1 definitions which may allow the WTRU to parse through the RRC messages faster. The IEs that include emergency information may be designated by the RRC as a high priority and may over-ride the priority of any other RRC message. [0051] NAS messages may be enhanced by using information elements to inform WTRUs of emergency situations and to convey public warning messages. A WTRU may receive an emergency situation notification from an eNB that serves the areas that might be affected by the emergency situation. The NAS layer of the eNB may include the notification of the emergency situation in an NAS message that includes an information element (IE). The IE may include the emergency information set forth above. When the RRC layer receives an NAS emergency message, it may be informed that the message is of an emergent nature and trigger the RRC to treat the message with highest priority. [0052] The emergency message may also be an NAS SMS message or a multimedia messaging services (MMS) message. For example, an MMS service could be provided with a prerecorded message including instructions on what the user should do. The MMS or SMS may be delivered with multi broadcast/multimedia services (MBMS), for example, on a repeated basis to ensure that users are reached. [0053] The paging mechanism may be used to notify WTRUs of emergency situations. Paging may be used to notify WTRUs of terminating, high-priority signaling, with RRC or NAS messages and/or IEs conveying the public warning information. Optionally, paging may be used to notify WTRUs of emergency notification signaling at regular priority, with data radio bearers conveying the public warning information. The paging message itself conveys the emergency information. [0054] Once a WTRU reads and analyzes a paging cause, subsequent actions may depend on the RRC state and if the WTRU received the page on a -10suitable cell. A WTRU in an RRCIDLE state may first establish an RRC connection by performing a random access procedure on the random access channel (RACH). However, if the WTRU is in RRCCONNECTED, it may not need to perform the random access procedure on the RACH. After the random access procedure is completed, a WTRU may monitor the physical downlink control channel (PDCCH) for downlink resource assignment. [0055] In the downlink, the WTRU may receive an emergency notification on a signaling radio bearer (SRB) as an NAS message or an RRC messages. The WTRU may also receive the emergency notification on a data radio bearer (DRB) as a user data application. [0056] If the emergency notification is received as an RRC message, it may be carried on an SRB designed for high priority messages, for example, SRB2. Other SRBs may be used as well. If the emergency notification is sent as NAS messages, an SRB designed to carry NAS messages, such as SRB1, for example, may be used. The use of other SRBs, such as SRB2 or SRB0 is also possible. [0057] If the emergency notification is sent on a DRB as data, the highest priority DRB may be used so that the highest priority DRB may be scheduled before all other DRBs with no bit-rate constraint. The WTRU may receive the downlink transmissions on the allocated resources and forward the emergency notification message to the relevant upper layer. [0058] There may be times when a WTRU may not be allowed to register in a particular system. However, for an emergency situation, a system may accept registration for the emergency notification only. This may occur during an "emergency period". During the emergency period the WTRU may remain registered so that the WTRU may be paged. This may require the use of the Mobility Management Entity (MME). If, under normal circumstances a WTRU is not allowed to register, it may perform registration or attachment to the network whereby the registration/attachment message indicates that the reason is to be able to receive emergency notification messages. [0059] The allowance of a normally barred WTRU to register can be indicated on the system information of the network. The WTRU may receive, for -11example, an indicator, that may be as small as one bit, to inform the WTRU whether it is allowed to register to receive an emergency notification. The WTRUs may register based on the indicator in the system information. Therefore, for example, a WTRU that has not yet performed registration/attachment may perform one or more of the procedures related registration/attachment based on the WTRU reading system information indicating that an emergency notification may be communicated. [0060] Once the WTRU is notified of a public warning message, the WTRU may prepare an emergency number to dial and may prompt the user. Such enhanced functionality can help the user avoid panic. Figure 8 is a block diagram of WTRU emergency procedure 800 in accordance with one embodiment. An emergency message 802 is received at the WTRU 804. The WTRU MT 806 receives the emergency notification message. The message may include a phone number or an Internet address to contact. The WTRU MT 806 conveys the message 802 to the WTRU TE 808 via primitives or AT commands, such as an 'MT status' and 'response' primitive or AT command, for example. The primitive or AT command may indicate that an emergency has occurred and that a warning is required. The primitive or AT command may also provide details on the emergency, with a phone number or an Internet address to contact for further information. [0061] Upon receiving the primitive or AT command, a first application 810 may run on the TE 808 and warns the user by playing a special sound, ring or beep that indicates to the user that an emergency message has been received. The warning sound may be at a very high volume. [0062] A second application 812 that runs on the TE 808 may look up an appropriate emergency phone number to be dialed, such as a number received with the warning message or a preconfigured phone number such as 911, for example. The second application 812 may prompt the user to dial the number For example, the application could display a message on the display screen of the WTRU that prompts a user to dial 911. If the user confirms the dial request, the -12second application 812 will instruct the WTRU MT 806, using an AT command, to dial 911. [0063] Furthermore, once the emergency notification 802 is received, the WTRU 804 may run a third application 814 that prepares a message that contains the WTRUs position information. The message can be populated using a GPS, cell/tracking area info or any other positioning application. Once the WTRU MT 806 conveys the emergency message 802 to the WTRU TE 808, the third application 814 that may run on the TE 808, creates a message that contains the WTRU's position information, such as coordinates, for example. The position information can be obtained from a GPS device, cell/tracking area info or any other positioning application. The third application 814 may prompt the user for instruction. The third application 814 may use AT commands to instruct the WTRU MT 806 to send a message containing the WTRU's position information. The message can be sent over an SRB as an RRC or NAS message, for example, or over a DRB. The WTRU may also use an assisted GPS, based in the control plane or secure user plane (SUPL). [0064] Once the emergency notification is received by the WTRU, the WTRU may generate and sends a tracking area update (TAU) message to an eNB. This operation can be done within the WTRU MT 806. The TAU message may include, as a 'cause', an indication that the WTRU transmitted the TAU in response to am emergency situation message. The network can utilize the TAU to determine which cells or areas the WTRU is located in, and to determine the WTRU's position. The network may then send more specific or follow-up messages in addition to the original warning message targeting specific WTRUs in specific cells. [0065] A WTRU may utilize a higher access priority, such as higher RACH priority or higher access class (AC), for example, when performing an access procedure in any of the situations associated with receiving the emergency situation notification, including, for example, preparing a number to dial, sending position information, sending a TAU, or other actions related to receiving the -13emergency notification. This will allow the prioritization of those actions by the WTRU. [0066] Figure 9 is a block diagram of WTRU emergency procedure 900 in accordance with one embodiment of the present invention. After receiving the emergency situation notification, the WTRU may reselect 902 to a different cell or different radio access technology (RAT). The WTRU may autonomously reselect to a cell offering circuit switched (CS) services. The WTRU may also suspend procedures 904. The WTRU may suspend all procedures, or may suspend a subset of all procedures. The WTRU may then prioritize the access class 906 of the next or any new RRC connection requests initiated by the user. The user may be given the option of prioritizing a connection as an emergency call. This may allow the user to communicate with destinations other than emergency destinations. This option may only be available to the user when the terminal is aware of an ongoing emergency and may limit the user to a certain number of non-emergency contacts. [0067] During a public emergency, the network may wish to conserve radio resources by reserving usage of bandwidth to emergency calls, internet access and the like. To achieve this, the network may interrupt ongoing connections deemed to be of a lower priority, such as a high speed video download, for example. The network may interrupt the ongoing service by sending an NAS/RRC message dedicated to service interruption in an emergency situation. Optionally, the network may send an IE in an NAS/RRC message. The message may indicate to the terminal that the cause for the connection to be dropped is an ongoing emergency. The message may provide further information about the emergency. This procedure may be utilized by the network to reject any new RRC CONNECTION REQUEST/NAS SERVICE REQUEST that requests QoS for a service that is incompatible with those needed for an emergency call or some other basic service, such as internet access, for example. The network may also interrupt the ongoing service by suspending, tearing down or releasing radio bearers that are deemed to be low priority due to the emergency situation. -14- [0068] In the event of an ongoing emergency situation, it may be desirable to restrict the number of connection requests to only those for emergency services or other service classes meeting the access restrictions. When a user requests a service that is not an emergency call the TE, with assistance from the MT, may remind the user that a public emergency is ongoing. The TE may inform the user that the session may not be setup and/or may be rejected. This may be done using an application. MT primitives and AT commands may achieve this. The TE may request that the user confirm his/her intention to proceed with the connection request. The TE may choose not to perform the connection request. [0069] EMBODIMENTS [0070] 1. A method for a wireless transmit receive unit (WTRU) to receive an emergency situation notification, the method comprising the WTRU receiving a paging message with an emergency situation notification; and the WTRU receiving scheduling information in a system information block. [0071] 2. The method as in embodiment 1 further comprising the WTRU processing a system information block including a plurality of emergency situation information in a high priority fashion. [0072] 3. The method as in embodiment 1 or 2 further comprising the WTRU receiving an emergency code that corresponds to an emergency situation. [0073] 4. The method as in embodiment 3 further comprising the WTRU notifying a user of an emergency situation notification. [0074] 5. The method as in any preceding embodiment further comprising the WTRU receiving the emergency situation notification based on a geographic location of the WTRU. [0075] 6. The method as in any preceding embodiment wherein the paging message is unique to the WTRU. [0076] 7. The method as in any preceding embodiment wherein the WTRU receives a first system information block including scheduling information and a second system information block including emergency detailed information. -15- [0077] 8. The method as in any preceding embodiment further comprising the WTRU utilizing a higher access class to perform an access procedure after receiving an emergency situation notification. [0078] 9. A method for a wireless transmit receive unit (WTRU) to receive an emergency situation notification, the method comprising the WTRU receiving a paging message with an emergency situation notification; the WTRU receiving scheduling information in a system information block, wherein the system information block includes a plurality of emergency situation information; the WTRU setting a priority of the system information block to high; the WTRU processing the system information block including the plurality of emergency situation information based on the priority; the WTRU receiving an emergency code that corresponds to an emergency situation; and the WTRU notifying a user of an emergency situation notification. [0079] 10. The method as in embodiment 9 further comprising the WTRU receiving the emergency situation notification based on a geographic location of the WTRU. [0080] 11. The method as in embodiment 9 or 10 wherein the paging message is unique to the WTRU. [0081] 12. The method as in any one of embodiments 9-11 wherein the WTRU receives a first system information block including scheduling information and a second information block including emergency detailed information. [0082] 13. A wireless transmit receive unit (WTRU) configured to to receive an emergency situation notification, the WTRU comprising a receiver configured to receive a paging message with an emergency situation notification scheduling information in a system information block; and a processor configured to set a priority of the system information block to high and process the system information block including a plurality of emergency situation information based on the priority. [0083] 14. The WTRU as in embodiment 13 wherein the receiver is further configured to receive an emergency code that corresponds to an emergency situation. -16- [0084] 15. The WTRU as in embodiment 13 or 14 wherein the WTRU further comprises a user interface configured to notify a user of an emergency situation notification. [0085] 16. The WTRU as in any one of embodiments 13-15 wherein the receiver is further configured to receive the emergency situation notification based on a geographic location of the WTRU. [0086] 17. The WTRU as in any one of embodiments 13-16 wherein the paging message is unique to the WTRU. [0087] 18. The WTRU as in any one of embodiments 13-17 wherein the receiver is further configured to receive a first system information block including scheduling information and a second system information block including emergency detailed information. [0088] 19. A wireless transmit receive unit (WTRU) configured to receive an emergency situation notification, the WTRU comprising a receiver configured to receive a paging message with the emergency situation notification, scheduling information in a system information block, and an emergency code that corresponds to an emergency situation; and wherein the system information block includes a plurality of emergency situation information; a processor configured to set a priority of the system information block to high and process the system information block including the plurality of emergency situation information based on the priority of the system information block; and a user interface configured to notify a user of an emergency situation notification. [0089] 20. The WTRU as in embodiment 19 wherein the receiver is further configured to receive the emergency situation notification based on a geographic location of the WTRU. [0090] 21. The WTRU as in embodiment 19 or 20 wherein the paging message is unique to the WTRU. [0091] 22. The WTRU as in any one of embodiments 19-2 1 wherein the receiver is further configured to receive a first system information block including scheduling information and a second system information block including emergency detailed information. -17- AQD [0092] 23. A method for a wireless transmit receive unit (WTRU) to receive an emergency situation notification, the method comprising the WTRU receiving an emergency situation notification; and the WTRU autonomously prioritizing an access class of a radio resource control (RRC) connection request initiated by a user. [0093] Although features and elements are described above in particular combinations, each feature or element can be used alone without the other features and elements or in various combinations with or without other features and elements. The methods or flow charts provided herein may be implemented in a computer program, software, or firmware incorporated in a computer readable storage medium for execution by a general purpose computer or a processor. Examples of computer-readable storage mediums include a read only memory (ROM), a random access memory (RAM), a register, cache memory, semiconductor memory devices, magnetic media such as internal hard disks and removable disks, magneto-optical media, and optical media such as CD-ROM disks, and digital versatile disks (DVDs). [0094] Suitable processors include, by way of example, a general purpose processor, a special purpose processor, a conventional processor, a digital signal processor (DSP), a plurality of microprocessors, one or more microprocessors in association with a DSP core, a controller, a microcontroller, Application Specific Integrated Circuits (ASICs), Field Programmable Gate Arrays (FPGAs) circuits, any other type of integrated circuit (IC), and/or a state machine. [0095] A processor in association with software may be used to implement a radio frequency transceiver for use in a wireless transmit receive unit (WTRU), user equipment (UE), terminal, base station, radio network controller (RNC), or any host computer. The WTRU may be used in conjunction with modules, implemented in hardware and/or software, such as a camera, a video camera module, a videophone, a speakerphone, a vibration device, a speaker, a microphone, a television transceiver, a hands free headset, a keyboard, a Bluetooth@ module, a frequency modulated (FM) radio unit, a liquid crystal display (LCD) display unit, an organic light-emitting diode (OLED) display unit, -18a digital music player, a media player, a video game player module, an Internet browser, and/or any wireless local area network (WLAN) or Ultra Wide Band (UWB) module. -19-

Claims (15)

1. An integrated circuit (IC) including: circuitry configured to receive an long term evolution (LTE) paging message that includes an emergency indicator that indicates that scheduling 5 information for an emergency warning will be present in an LTE system information block - type 1 (SIB 1); circuitry configured to receive and process the LTE SIB 1 including scheduling information for a second system information block that contains the emergency warning; 10 circuitry configured to receive the second SIB using the scheduling information in the LTE SIB 1, wherein the second SIB includes the emergency warning; and circuitry configured to process the second SIB and send the emergency warning to higher layers. 15
2. The IC of claim 1 wherein the emergency warning includes a code that indicates an emergency type.
3. The IC of claim 1 wherein the second SIB includes a plurality of emergency warning information.
4. The IC as in claim 1 wherein the circuitry is further configured to receive 20 the emergency warning information based on a geographic location of the WTRU.
5. The IC of claim 1 wherein the circuitry is further configured to operate in a radio resource control (RRC) idle mode when receiving the LTE paging message.
6. An integrated circuit (IC) including: circuitry configured to receive an emergency warning from a network; 25 circuitry configured to send a long term evolution (LTE) paging message that includes an emergency indicator that indicates that scheduling information for an emergency warning will be present in an LTE system information block - type 21 1 (SIB 1); wherein the LTE SIB 1 includes scheduling information for a second system information block that contains the emergency warning; and circuitry configured to send the second SIB using the scheduling information in the LTE SIB 1, wherein the second SIB includes the emergency 5 warning.
7. The IC of claim 6 wherein the emergency warning includes a code that indicates an emergency type.
8. The iC of claim 6 wherein the second SIB includes a plurality of emergency warning information. 10
9. The IC as in claim 6 wherein the circuitry is further configured to send the emergency warning information based on a geographic location of the WTRU.
10. The IC of claim 6 wherein the IC is further configured to send the LTE paging message to the WTRUs operating in an radio resource control (RRC) idle mode. 15
11. A wireless transmit receive unit (WTRU) including: a receiver configured to: receive the LTE paging message while operating in a radio resource control (RRC) idle or connected mode, the LTE paging message including an emergency indicator, 20 receive an LTE system information block - type 1 (SIB 1) on condition that the LTE paging message includes the emergency indicator, wherein the LTE SIB 1 includes scheduling information for a second system information block (SIB) used for delivering an emergency warning, and receive the second SIB in accordance with the scheduling information 25 indicated in the LTE SIB 1, wherein the second SIB includes the emergency warning; and a processor configured to process the second SIB and forward the emergency warning to higher layers. 22
12. The WTRU of claim 11 wherein the emergency warning includes a code that indicates an emergency type.
13. The WTRU of claim 12 wherein emergency types include tsunami and earthquake. 5
14. The WTRU of claim 13 wherein the tsunami emergency type has a code value of 1.
15. The WTRU of claim 11 further including a speaker configured to output a sound in response to receiving of the emergency warning. 10 INTERDIGITAL PATENT HOLDINGS, INC WATERMARK PATENT & TRADE MARK ATTORNEYS P3371 IAUO1
AU2013201283A 2008-03-14 2013-03-05 Method and Apparatus to Deliver Public Warning Messages Active AU2013201283B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US61/036,893 2008-03-14
AU2009223307A AU2009223307B2 (en) 2008-03-14 2009-03-16 Method and apparatus to deliver public warning messages
AU2013201283A AU2013201283B2 (en) 2008-03-14 2013-03-05 Method and Apparatus to Deliver Public Warning Messages

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
AU2013201283A AU2013201283B2 (en) 2008-03-14 2013-03-05 Method and Apparatus to Deliver Public Warning Messages

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
AU2009223307A Division AU2009223307B2 (en) 2008-03-14 2009-03-16 Method and apparatus to deliver public warning messages

Publications (2)

Publication Number Publication Date
AU2013201283A1 AU2013201283A1 (en) 2013-03-21
AU2013201283B2 true AU2013201283B2 (en) 2015-07-30

Family

ID=47891198

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2013201283A Active AU2013201283B2 (en) 2008-03-14 2013-03-05 Method and Apparatus to Deliver Public Warning Messages

Country Status (1)

Country Link
AU (1) AU2013201283B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9521514B2 (en) 2014-11-25 2016-12-13 Motorola Solutions, Inc. Method and apparatus for controlling network access in a wireless communication system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1209886A2 (en) * 2000-11-21 2002-05-29 Alcatel USA Sourcing, L.P. System, controller and method for alerting mobile subsribers about emergency situations

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1209886A2 (en) * 2000-11-21 2002-05-29 Alcatel USA Sourcing, L.P. System, controller and method for alerting mobile subsribers about emergency situations

Also Published As

Publication number Publication date
AU2013201283A1 (en) 2013-03-21

Similar Documents

Publication Publication Date Title
RU2402177C2 (en) Method and device for provision of multimedia service "point-to-multiple-points" in system of mobile communication
US6385461B1 (en) User group indication and status change in radiocommunications systems
CN104170281B (en) Small data communication within a wireless communication network
US7346353B2 (en) Apparatus and method for implementing detection of system information changes in universal mobile telecommunications systems
TWI435629B (en) Method and system for a multicast service initiation in a communication system
EP2415311B1 (en) Method and apparatus for providing non-packet switched service in a target radio access technology network
US20070238454A1 (en) Mobile device subject to a communication restriction responding to a priority call
EP1864536B1 (en) Method and apparatus providing a plurality of services via one channel in mobile communications system
US8948721B2 (en) Emergency notification system for a portable device
JP5860149B2 (en) Access authorization system, access restriction system and mobile station
US20060094478A1 (en) Mobile power handling method and apparatus
US8010164B1 (en) Determination of EAS delivery
US20140011505A1 (en) Method of group based mtc messaging through cell broadcast and apparatuses using the same
CN101151925B (en) Method and apparatus for reconfiguring a common channel
US20050164683A1 (en) Apparatus and method for implementing notification of system information changes in universal mobile telecommunications systems
US20090270092A1 (en) Method for Assisting a Wireless Device to Find Closed Subscriber Group Cells
US8948719B2 (en) Designation of cellular broadcast message identifiers for the commercial mobile alert system
JP2013509800A (en) Method for contacting a terminal group in a communication network, apparatus and terminal in a communication network
RU2369014C2 (en) Communication and acceptance of notification of control data for multipoint service in wireless communication system
CN105103621B (en) Method and apparatus for applicating category to be arranged on a user device during network congestion
US8538468B2 (en) Provision of text messages to emergency call takers
TWI411335B (en) Method of handling location service and related communication device
EP1590987B1 (en) Priority e911 call back during access class restrictions
US20060178128A1 (en) Method of operating a mobile communication device and mobile communication system during an emergency situation
CN201515498U (en) Wireless transmitting/receiving unit and base station

Legal Events

Date Code Title Description
FGA Letters patent sealed or granted (standard patent)