AU2012227302A1 - Dominant gene suppression transgenes and methods of using same - Google Patents
Dominant gene suppression transgenes and methods of using same Download PDFInfo
- Publication number
- AU2012227302A1 AU2012227302A1 AU2012227302A AU2012227302A AU2012227302A1 AU 2012227302 A1 AU2012227302 A1 AU 2012227302A1 AU 2012227302 A AU2012227302 A AU 2012227302A AU 2012227302 A AU2012227302 A AU 2012227302A AU 2012227302 A1 AU2012227302 A1 AU 2012227302A1
- Authority
- AU
- Australia
- Prior art keywords
- plant
- promoter
- gene
- plants
- expression
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 156
- 108700019146 Transgenes Proteins 0.000 title abstract description 109
- 230000001629 suppression Effects 0.000 title abstract description 24
- 108700003861 Dominant Genes Proteins 0.000 title description 4
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 536
- 230000014509 gene expression Effects 0.000 claims abstract description 185
- 108091033319 polynucleotide Proteins 0.000 claims abstract description 49
- 102000040430 polynucleotide Human genes 0.000 claims abstract description 49
- 239000002157 polynucleotide Substances 0.000 claims abstract description 49
- 241000196324 Embryophyta Species 0.000 claims description 837
- 230000035558 fertility Effects 0.000 claims description 208
- 240000008042 Zea mays Species 0.000 claims description 123
- 235000002017 Zea mays subsp mays Nutrition 0.000 claims description 114
- 235000016383 Zea mays subsp huehuetenangensis Nutrition 0.000 claims description 103
- 235000009973 maize Nutrition 0.000 claims description 102
- 238000009395 breeding Methods 0.000 claims description 63
- 230000001488 breeding effect Effects 0.000 claims description 60
- 235000007164 Oryza sativa Nutrition 0.000 claims description 54
- 235000009566 rice Nutrition 0.000 claims description 50
- 239000003550 marker Substances 0.000 claims description 38
- 241000219194 Arabidopsis Species 0.000 claims description 27
- 230000035772 mutation Effects 0.000 claims description 27
- 230000008685 targeting Effects 0.000 claims description 13
- 230000030279 gene silencing Effects 0.000 claims description 5
- 230000001131 transforming effect Effects 0.000 claims description 5
- 230000000295 complement effect Effects 0.000 claims description 4
- 231100000518 lethal Toxicity 0.000 claims description 4
- 230000001665 lethal effect Effects 0.000 claims description 4
- 241000209094 Oryza Species 0.000 claims 8
- 230000001747 exhibiting effect Effects 0.000 claims 1
- 230000001105 regulatory effect Effects 0.000 abstract description 47
- 238000004519 manufacturing process Methods 0.000 abstract description 36
- 230000005540 biological transmission Effects 0.000 abstract description 10
- 238000012360 testing method Methods 0.000 abstract description 7
- 230000000754 repressing effect Effects 0.000 abstract 1
- 210000004027 cell Anatomy 0.000 description 196
- 125000003729 nucleotide group Chemical group 0.000 description 122
- 239000002773 nucleotide Substances 0.000 description 116
- 150000007523 nucleic acids Chemical class 0.000 description 100
- 102000039446 nucleic acids Human genes 0.000 description 97
- 108020004707 nucleic acids Proteins 0.000 description 97
- 230000009261 transgenic effect Effects 0.000 description 87
- 230000009466 transformation Effects 0.000 description 57
- 239000013598 vector Substances 0.000 description 54
- 230000001939 inductive effect Effects 0.000 description 50
- 210000001519 tissue Anatomy 0.000 description 49
- 240000007594 Oryza sativa Species 0.000 description 46
- 239000000047 product Substances 0.000 description 46
- 230000006870 function Effects 0.000 description 38
- 108700028369 Alleles Proteins 0.000 description 32
- 108090000848 Ubiquitin Proteins 0.000 description 32
- 102000044159 Ubiquitin Human genes 0.000 description 32
- 102000004169 proteins and genes Human genes 0.000 description 29
- 235000018102 proteins Nutrition 0.000 description 27
- 229920002477 rna polymer Polymers 0.000 description 27
- 108091026890 Coding region Proteins 0.000 description 26
- 239000004009 herbicide Substances 0.000 description 26
- 108020004414 DNA Proteins 0.000 description 25
- 230000002363 herbicidal effect Effects 0.000 description 25
- 230000001404 mediated effect Effects 0.000 description 25
- 108090000765 processed proteins & peptides Proteins 0.000 description 25
- 108091028043 Nucleic acid sequence Proteins 0.000 description 24
- 241000589158 Agrobacterium Species 0.000 description 23
- 230000015572 biosynthetic process Effects 0.000 description 23
- 230000000694 effects Effects 0.000 description 23
- 102000004196 processed proteins & peptides Human genes 0.000 description 22
- 206010021929 Infertility male Diseases 0.000 description 21
- 208000007466 Male Infertility Diseases 0.000 description 21
- 229920001184 polypeptide Polymers 0.000 description 21
- 230000002068 genetic effect Effects 0.000 description 19
- 238000013518 transcription Methods 0.000 description 19
- 230000001850 reproductive effect Effects 0.000 description 18
- 230000035897 transcription Effects 0.000 description 18
- 230000000875 corresponding effect Effects 0.000 description 17
- 244000068988 Glycine max Species 0.000 description 16
- 230000018109 developmental process Effects 0.000 description 16
- 235000010469 Glycine max Nutrition 0.000 description 15
- 238000011161 development Methods 0.000 description 15
- 238000012423 maintenance Methods 0.000 description 15
- 238000012546 transfer Methods 0.000 description 15
- 102000004190 Enzymes Human genes 0.000 description 14
- 108090000790 Enzymes Proteins 0.000 description 14
- 235000013339 cereals Nutrition 0.000 description 14
- 229940088598 enzyme Drugs 0.000 description 14
- 210000000056 organ Anatomy 0.000 description 14
- 230000008569 process Effects 0.000 description 14
- 240000006394 Sorghum bicolor Species 0.000 description 13
- 239000012634 fragment Substances 0.000 description 13
- 230000037361 pathway Effects 0.000 description 13
- 210000001938 protoplast Anatomy 0.000 description 13
- 241000218922 Magnoliophyta Species 0.000 description 12
- 241000209140 Triticum Species 0.000 description 12
- 235000021307 Triticum Nutrition 0.000 description 12
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 12
- 235000005822 corn Nutrition 0.000 description 12
- 235000003222 Helianthus annuus Nutrition 0.000 description 11
- 235000007340 Hordeum vulgare Nutrition 0.000 description 11
- 240000005979 Hordeum vulgare Species 0.000 description 11
- 101000708283 Oryza sativa subsp. indica Protein Rf1, mitochondrial Proteins 0.000 description 11
- 235000011684 Sorghum saccharatum Nutrition 0.000 description 11
- 108010055615 Zein Proteins 0.000 description 11
- 230000001965 increasing effect Effects 0.000 description 11
- 208000021267 infertility disease Diseases 0.000 description 11
- 238000003752 polymerase chain reaction Methods 0.000 description 11
- 241000894007 species Species 0.000 description 11
- 206010020649 Hyperkeratosis Diseases 0.000 description 10
- 108091027967 Small hairpin RNA Proteins 0.000 description 10
- 229920002472 Starch Polymers 0.000 description 10
- 238000004458 analytical method Methods 0.000 description 10
- 239000003795 chemical substances by application Substances 0.000 description 10
- 230000001472 cytotoxic effect Effects 0.000 description 10
- 238000012217 deletion Methods 0.000 description 10
- 230000037430 deletion Effects 0.000 description 10
- 208000000509 infertility Diseases 0.000 description 10
- 230000036512 infertility Effects 0.000 description 10
- 238000011069 regeneration method Methods 0.000 description 10
- 229920000742 Cotton Polymers 0.000 description 9
- 241000219146 Gossypium Species 0.000 description 9
- 241000208818 Helianthus Species 0.000 description 9
- 241000208125 Nicotiana Species 0.000 description 9
- 229920002494 Zein Polymers 0.000 description 9
- 230000001276 controlling effect Effects 0.000 description 9
- 231100000433 cytotoxic Toxicity 0.000 description 9
- 210000005069 ears Anatomy 0.000 description 9
- 235000013399 edible fruits Nutrition 0.000 description 9
- 230000012010 growth Effects 0.000 description 9
- 101150041247 p1 gene Proteins 0.000 description 9
- 230000008929 regeneration Effects 0.000 description 9
- 235000019698 starch Nutrition 0.000 description 9
- 239000008107 starch Substances 0.000 description 9
- 239000005019 zein Substances 0.000 description 9
- 229940093612 zein Drugs 0.000 description 9
- 235000007688 Lycopersicon esculentum Nutrition 0.000 description 8
- 241000219823 Medicago Species 0.000 description 8
- 235000017587 Medicago sativa ssp. sativa Nutrition 0.000 description 8
- 235000002637 Nicotiana tabacum Nutrition 0.000 description 8
- 235000007238 Secale cereale Nutrition 0.000 description 8
- 240000003768 Solanum lycopersicum Species 0.000 description 8
- 239000002253 acid Substances 0.000 description 8
- 230000008901 benefit Effects 0.000 description 8
- 230000008859 change Effects 0.000 description 8
- 238000004520 electroporation Methods 0.000 description 8
- 230000004927 fusion Effects 0.000 description 8
- 239000002245 particle Substances 0.000 description 8
- 239000013612 plasmid Substances 0.000 description 8
- 210000002706 plastid Anatomy 0.000 description 8
- 108010085238 Actins Proteins 0.000 description 7
- 102000007469 Actins Human genes 0.000 description 7
- 240000002791 Brassica napus Species 0.000 description 7
- 244000064895 Cucumis melo subsp melo Species 0.000 description 7
- 244000046052 Phaseolus vulgaris Species 0.000 description 7
- 235000010582 Pisum sativum Nutrition 0.000 description 7
- 240000004713 Pisum sativum Species 0.000 description 7
- 230000000692 anti-sense effect Effects 0.000 description 7
- 238000013459 approach Methods 0.000 description 7
- 238000009396 hybridization Methods 0.000 description 7
- 230000001976 improved effect Effects 0.000 description 7
- 108020004999 messenger RNA Proteins 0.000 description 7
- 239000003921 oil Substances 0.000 description 7
- 235000019198 oils Nutrition 0.000 description 7
- 230000000306 recurrent effect Effects 0.000 description 7
- 238000009877 rendering Methods 0.000 description 7
- 239000000523 sample Substances 0.000 description 7
- 230000002103 transcriptional effect Effects 0.000 description 7
- 241000589155 Agrobacterium tumefaciens Species 0.000 description 6
- 244000099147 Ananas comosus Species 0.000 description 6
- 235000007119 Ananas comosus Nutrition 0.000 description 6
- 244000105624 Arachis hypogaea Species 0.000 description 6
- 235000007319 Avena orientalis Nutrition 0.000 description 6
- 244000075850 Avena orientalis Species 0.000 description 6
- 235000004977 Brassica sinapistrum Nutrition 0.000 description 6
- 241000701489 Cauliflower mosaic virus Species 0.000 description 6
- 235000013162 Cocos nucifera Nutrition 0.000 description 6
- 244000060011 Cocos nucifera Species 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- 101710196810 Non-specific lipid-transfer protein 2 Proteins 0.000 description 6
- 238000000636 Northern blotting Methods 0.000 description 6
- 244000025272 Persea americana Species 0.000 description 6
- 235000008673 Persea americana Nutrition 0.000 description 6
- 235000010627 Phaseolus vulgaris Nutrition 0.000 description 6
- 241000209056 Secale Species 0.000 description 6
- 235000002595 Solanum tuberosum Nutrition 0.000 description 6
- 244000061456 Solanum tuberosum Species 0.000 description 6
- 108090000637 alpha-Amylases Proteins 0.000 description 6
- 230000010165 autogamy Effects 0.000 description 6
- 210000000349 chromosome Anatomy 0.000 description 6
- UQHKFADEQIVWID-UHFFFAOYSA-N cytokinin Natural products C1=NC=2C(NCC=C(CO)C)=NC=NC=2N1C1CC(O)C(CO)O1 UQHKFADEQIVWID-UHFFFAOYSA-N 0.000 description 6
- 239000004062 cytokinin Substances 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- 239000013604 expression vector Substances 0.000 description 6
- 230000002779 inactivation Effects 0.000 description 6
- -1 into the promoter Proteins 0.000 description 6
- 230000010076 replication Effects 0.000 description 6
- 238000012033 transcriptional gene silencing Methods 0.000 description 6
- 238000013519 translation Methods 0.000 description 6
- 230000003612 virological effect Effects 0.000 description 6
- 235000003255 Carthamus tinctorius Nutrition 0.000 description 5
- 244000020518 Carthamus tinctorius Species 0.000 description 5
- 235000011430 Malus pumila Nutrition 0.000 description 5
- 235000015103 Malus silvestris Nutrition 0.000 description 5
- 235000014826 Mangifera indica Nutrition 0.000 description 5
- 240000007228 Mangifera indica Species 0.000 description 5
- 241000234295 Musa Species 0.000 description 5
- 240000007817 Olea europaea Species 0.000 description 5
- 108020004511 Recombinant DNA Proteins 0.000 description 5
- 150000007513 acids Chemical class 0.000 description 5
- 238000007792 addition Methods 0.000 description 5
- 230000009418 agronomic effect Effects 0.000 description 5
- 239000000411 inducer Substances 0.000 description 5
- 210000001161 mammalian embryo Anatomy 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 238000003976 plant breeding Methods 0.000 description 5
- 230000004044 response Effects 0.000 description 5
- 238000012216 screening Methods 0.000 description 5
- 230000000007 visual effect Effects 0.000 description 5
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 4
- 108010000700 Acetolactate synthase Proteins 0.000 description 4
- GFFGJBXGBJISGV-UHFFFAOYSA-N Adenine Chemical compound NC1=NC=NC2=C1N=CN2 GFFGJBXGBJISGV-UHFFFAOYSA-N 0.000 description 4
- 235000010777 Arachis hypogaea Nutrition 0.000 description 4
- 241000219198 Brassica Species 0.000 description 4
- 235000009467 Carica papaya Nutrition 0.000 description 4
- 240000006432 Carica papaya Species 0.000 description 4
- 241000207199 Citrus Species 0.000 description 4
- 241000218631 Coniferophyta Species 0.000 description 4
- 229920002261 Corn starch Polymers 0.000 description 4
- 240000008067 Cucumis sativus Species 0.000 description 4
- 235000010799 Cucumis sativus var sativus Nutrition 0.000 description 4
- 208000035240 Disease Resistance Diseases 0.000 description 4
- 108700039691 Genetic Promoter Regions Proteins 0.000 description 4
- 241000238631 Hexapoda Species 0.000 description 4
- 235000003228 Lactuca sativa Nutrition 0.000 description 4
- 240000008415 Lactuca sativa Species 0.000 description 4
- 241000209510 Liliopsida Species 0.000 description 4
- 235000019759 Maize starch Nutrition 0.000 description 4
- 240000003183 Manihot esculenta Species 0.000 description 4
- 241001465754 Metazoa Species 0.000 description 4
- 101710089395 Oleosin Proteins 0.000 description 4
- 240000007377 Petunia x hybrida Species 0.000 description 4
- 235000010617 Phaseolus lunatus Nutrition 0.000 description 4
- 244000269722 Thea sinensis Species 0.000 description 4
- 244000299461 Theobroma cacao Species 0.000 description 4
- 235000009470 Theobroma cacao Nutrition 0.000 description 4
- 230000009471 action Effects 0.000 description 4
- 230000001580 bacterial effect Effects 0.000 description 4
- 235000020971 citrus fruits Nutrition 0.000 description 4
- 239000002299 complementary DNA Substances 0.000 description 4
- 244000038559 crop plants Species 0.000 description 4
- 238000005520 cutting process Methods 0.000 description 4
- OPTASPLRGRRNAP-UHFFFAOYSA-N cytosine Chemical compound NC=1C=CNC(=O)N=1 OPTASPLRGRRNAP-UHFFFAOYSA-N 0.000 description 4
- 230000001086 cytosolic effect Effects 0.000 description 4
- 235000013312 flour Nutrition 0.000 description 4
- UYTPUPDQBNUYGX-UHFFFAOYSA-N guanine Chemical compound O=C1NC(N)=NC2=C1N=CN2 UYTPUPDQBNUYGX-UHFFFAOYSA-N 0.000 description 4
- 238000002744 homologous recombination Methods 0.000 description 4
- 230000006801 homologous recombination Effects 0.000 description 4
- 238000003780 insertion Methods 0.000 description 4
- 230000037431 insertion Effects 0.000 description 4
- 239000002502 liposome Substances 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 238000010369 molecular cloning Methods 0.000 description 4
- 239000000123 paper Substances 0.000 description 4
- 235000020232 peanut Nutrition 0.000 description 4
- 230000010152 pollination Effects 0.000 description 4
- 239000005014 poly(hydroxyalkanoate) Substances 0.000 description 4
- 229920000903 polyhydroxyalkanoate Polymers 0.000 description 4
- 230000032361 posttranscriptional gene silencing Effects 0.000 description 4
- 230000022532 regulation of transcription, DNA-dependent Effects 0.000 description 4
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 238000006467 substitution reaction Methods 0.000 description 4
- 235000013311 vegetables Nutrition 0.000 description 4
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 3
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 3
- IAJOBQBIJHVGMQ-UHFFFAOYSA-N 2-amino-4-[hydroxy(methyl)phosphoryl]butanoic acid Chemical compound CP(O)(=O)CCC(N)C(O)=O IAJOBQBIJHVGMQ-UHFFFAOYSA-N 0.000 description 3
- 108020004491 Antisense DNA Proteins 0.000 description 3
- 241000219310 Beta vulgaris subsp. vulgaris Species 0.000 description 3
- 235000011331 Brassica Nutrition 0.000 description 3
- 235000014698 Brassica juncea var multisecta Nutrition 0.000 description 3
- 235000006008 Brassica napus var napus Nutrition 0.000 description 3
- 240000000385 Brassica napus var. napus Species 0.000 description 3
- 235000006618 Brassica rapa subsp oleifera Nutrition 0.000 description 3
- 235000004936 Bromus mango Nutrition 0.000 description 3
- 244000045232 Canavalia ensiformis Species 0.000 description 3
- 108010035563 Chloramphenicol O-acetyltransferase Proteins 0.000 description 3
- 241000723377 Coffea Species 0.000 description 3
- 235000015510 Cucumis melo subsp melo Nutrition 0.000 description 3
- 235000009847 Cucumis melo var cantalupensis Nutrition 0.000 description 3
- 108010031746 Dam methyltransferase Proteins 0.000 description 3
- 235000009355 Dianthus caryophyllus Nutrition 0.000 description 3
- 240000006497 Dianthus caryophyllus Species 0.000 description 3
- 235000016623 Fragaria vesca Nutrition 0.000 description 3
- 240000009088 Fragaria x ananassa Species 0.000 description 3
- 235000011363 Fragaria x ananassa Nutrition 0.000 description 3
- 101150061250 G9 gene Proteins 0.000 description 3
- 101710186901 Globulin 1 Proteins 0.000 description 3
- 239000005562 Glyphosate Substances 0.000 description 3
- 235000002678 Ipomoea batatas Nutrition 0.000 description 3
- 244000017020 Ipomoea batatas Species 0.000 description 3
- 108060001084 Luciferase Proteins 0.000 description 3
- 239000005089 Luciferase Substances 0.000 description 3
- 244000070406 Malus silvestris Species 0.000 description 3
- 241000124008 Mammalia Species 0.000 description 3
- 235000010624 Medicago sativa Nutrition 0.000 description 3
- 108091092878 Microsatellite Proteins 0.000 description 3
- 235000018290 Musa x paradisiaca Nutrition 0.000 description 3
- 206010028980 Neoplasm Diseases 0.000 description 3
- 241000219000 Populus Species 0.000 description 3
- 241001290151 Prunus avium subsp. avium Species 0.000 description 3
- 244000061458 Solanum melongena Species 0.000 description 3
- 235000009337 Spinacia oleracea Nutrition 0.000 description 3
- 244000300264 Spinacia oleracea Species 0.000 description 3
- 235000009184 Spondias indica Nutrition 0.000 description 3
- 235000021536 Sugar beet Nutrition 0.000 description 3
- 244000078534 Vaccinium myrtillus Species 0.000 description 3
- 235000009754 Vitis X bourquina Nutrition 0.000 description 3
- 235000012333 Vitis X labruscana Nutrition 0.000 description 3
- 240000006365 Vitis vinifera Species 0.000 description 3
- 235000014787 Vitis vinifera Nutrition 0.000 description 3
- 235000007244 Zea mays Nutrition 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 102000004139 alpha-Amylases Human genes 0.000 description 3
- 229940024171 alpha-amylase Drugs 0.000 description 3
- 235000001014 amino acid Nutrition 0.000 description 3
- 150000001413 amino acids Chemical class 0.000 description 3
- 239000003816 antisense DNA Substances 0.000 description 3
- 230000033228 biological regulation Effects 0.000 description 3
- 230000022131 cell cycle Effects 0.000 description 3
- 210000002421 cell wall Anatomy 0.000 description 3
- 235000019693 cherries Nutrition 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 201000010099 disease Diseases 0.000 description 3
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 3
- 238000009837 dry grinding Methods 0.000 description 3
- 238000001962 electrophoresis Methods 0.000 description 3
- 239000003623 enhancer Substances 0.000 description 3
- 241001233957 eudicotyledons Species 0.000 description 3
- 230000004720 fertilization Effects 0.000 description 3
- 235000013305 food Nutrition 0.000 description 3
- XDDAORKBJWWYJS-UHFFFAOYSA-N glyphosate Chemical compound OC(=O)CNCP(O)(O)=O XDDAORKBJWWYJS-UHFFFAOYSA-N 0.000 description 3
- 229940097068 glyphosate Drugs 0.000 description 3
- 239000005090 green fluorescent protein Substances 0.000 description 3
- 239000003102 growth factor Substances 0.000 description 3
- 229940088597 hormone Drugs 0.000 description 3
- 239000010903 husk Substances 0.000 description 3
- 230000000415 inactivating effect Effects 0.000 description 3
- 230000006698 induction Effects 0.000 description 3
- 230000002401 inhibitory effect Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000008774 maternal effect Effects 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 238000000520 microinjection Methods 0.000 description 3
- 238000009401 outcrossing Methods 0.000 description 3
- 210000001672 ovary Anatomy 0.000 description 3
- 101150113864 pat gene Proteins 0.000 description 3
- 230000008121 plant development Effects 0.000 description 3
- 230000000644 propagated effect Effects 0.000 description 3
- 108020003175 receptors Proteins 0.000 description 3
- 102000005962 receptors Human genes 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 230000005070 ripening Effects 0.000 description 3
- 238000005204 segregation Methods 0.000 description 3
- 230000010153 self-pollination Effects 0.000 description 3
- 239000002689 soil Substances 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- 230000035899 viability Effects 0.000 description 3
- 238000001238 wet grinding Methods 0.000 description 3
- 101150098072 20 gene Proteins 0.000 description 2
- WFPZSXYXPSUOPY-ROYWQJLOSA-N ADP alpha-D-glucoside Chemical compound C([C@H]1O[C@H]([C@@H]([C@@H]1O)O)N1C=2N=CN=C(C=2N=C1)N)OP(O)(=O)OP(O)(=O)O[C@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O WFPZSXYXPSUOPY-ROYWQJLOSA-N 0.000 description 2
- 229930024421 Adenine Natural products 0.000 description 2
- 102100020925 Adenosylhomocysteinase Human genes 0.000 description 2
- 108020002202 Adenosylhomocysteinase Proteins 0.000 description 2
- 241000589156 Agrobacterium rhizogenes Species 0.000 description 2
- 108010021809 Alcohol dehydrogenase Proteins 0.000 description 2
- 241000234282 Allium Species 0.000 description 2
- 235000002732 Allium cepa var. cepa Nutrition 0.000 description 2
- 244000144725 Amygdalus communis Species 0.000 description 2
- 235000011437 Amygdalus communis Nutrition 0.000 description 2
- 244000144730 Amygdalus persica Species 0.000 description 2
- 244000226021 Anacardium occidentale Species 0.000 description 2
- 108010037870 Anthranilate Synthase Proteins 0.000 description 2
- 240000007087 Apium graveolens Species 0.000 description 2
- 235000015849 Apium graveolens Dulce Group Nutrition 0.000 description 2
- 235000010591 Appio Nutrition 0.000 description 2
- 241000219195 Arabidopsis thaliana Species 0.000 description 2
- 235000017060 Arachis glabrata Nutrition 0.000 description 2
- 235000018262 Arachis monticola Nutrition 0.000 description 2
- 244000003416 Asparagus officinalis Species 0.000 description 2
- 235000005340 Asparagus officinalis Nutrition 0.000 description 2
- 235000007558 Avena sp Nutrition 0.000 description 2
- 241000271566 Aves Species 0.000 description 2
- 241000193388 Bacillus thuringiensis Species 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 2
- 241000283690 Bos taurus Species 0.000 description 2
- 235000011293 Brassica napus Nutrition 0.000 description 2
- 235000011299 Brassica oleracea var botrytis Nutrition 0.000 description 2
- 240000003259 Brassica oleracea var. botrytis Species 0.000 description 2
- 240000008100 Brassica rapa Species 0.000 description 2
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 102000014914 Carrier Proteins Human genes 0.000 description 2
- 235000007516 Chrysanthemum Nutrition 0.000 description 2
- 244000189548 Chrysanthemum x morifolium Species 0.000 description 2
- 235000010523 Cicer arietinum Nutrition 0.000 description 2
- 244000045195 Cicer arietinum Species 0.000 description 2
- 235000009854 Cucurbita moschata Nutrition 0.000 description 2
- 240000001980 Cucurbita pepo Species 0.000 description 2
- 108010066133 D-octopine dehydrogenase Proteins 0.000 description 2
- YAHZABJORDUQGO-NQXXGFSBSA-N D-ribulose 1,5-bisphosphate Chemical compound OP(=O)(O)OC[C@@H](O)[C@@H](O)C(=O)COP(O)(O)=O YAHZABJORDUQGO-NQXXGFSBSA-N 0.000 description 2
- 102000053602 DNA Human genes 0.000 description 2
- 230000004544 DNA amplification Effects 0.000 description 2
- 101710096830 DNA-3-methyladenine glycosylase Proteins 0.000 description 2
- 102100039128 DNA-3-methyladenine glycosylase Human genes 0.000 description 2
- 235000002767 Daucus carota Nutrition 0.000 description 2
- 244000000626 Daucus carota Species 0.000 description 2
- 101800000585 Diphtheria toxin fragment A Proteins 0.000 description 2
- UPEZCKBFRMILAV-JNEQICEOSA-N Ecdysone Natural products O=C1[C@H]2[C@@](C)([C@@H]3C([C@@]4(O)[C@@](C)([C@H]([C@H]([C@@H](O)CCC(O)(C)C)C)CC4)CC3)=C1)C[C@H](O)[C@H](O)C2 UPEZCKBFRMILAV-JNEQICEOSA-N 0.000 description 2
- 244000078127 Eleusine coracana Species 0.000 description 2
- 241000588724 Escherichia coli Species 0.000 description 2
- 240000002395 Euphorbia pulcherrima Species 0.000 description 2
- 241000220485 Fabaceae Species 0.000 description 2
- 241000218218 Ficus <angiosperm> Species 0.000 description 2
- 208000034951 Genetic Translocation Diseases 0.000 description 2
- 244000299507 Gossypium hirsutum Species 0.000 description 2
- 235000009432 Gossypium hirsutum Nutrition 0.000 description 2
- 241000231392 Gymnosiphon Species 0.000 description 2
- 108010004889 Heat-Shock Proteins Proteins 0.000 description 2
- 102000002812 Heat-Shock Proteins Human genes 0.000 description 2
- 244000020551 Helianthus annuus Species 0.000 description 2
- 235000005206 Hibiscus Nutrition 0.000 description 2
- 235000007185 Hibiscus lunariifolius Nutrition 0.000 description 2
- 244000284380 Hibiscus rosa sinensis Species 0.000 description 2
- 244000267823 Hydrangea macrophylla Species 0.000 description 2
- 235000014486 Hydrangea macrophylla Nutrition 0.000 description 2
- SIKJAQJRHWYJAI-UHFFFAOYSA-N Indole Chemical compound C1=CC=C2NC=CC2=C1 SIKJAQJRHWYJAI-UHFFFAOYSA-N 0.000 description 2
- 235000021506 Ipomoea Nutrition 0.000 description 2
- 241000207783 Ipomoea Species 0.000 description 2
- 240000007049 Juglans regia Species 0.000 description 2
- 235000009496 Juglans regia Nutrition 0.000 description 2
- 235000014647 Lens culinaris subsp culinaris Nutrition 0.000 description 2
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 2
- 239000004472 Lysine Substances 0.000 description 2
- 101150035573 MS2 gene Proteins 0.000 description 2
- 241000710118 Maize chlorotic mottle virus Species 0.000 description 2
- 241000723994 Maize dwarf mosaic virus Species 0.000 description 2
- 244000081841 Malus domestica Species 0.000 description 2
- 235000004456 Manihot esculenta Nutrition 0.000 description 2
- 235000016735 Manihot esculenta subsp esculenta Nutrition 0.000 description 2
- 240000004658 Medicago sativa Species 0.000 description 2
- 241000234479 Narcissus Species 0.000 description 2
- 229930193140 Neomycin Natural products 0.000 description 2
- 244000061176 Nicotiana tabacum Species 0.000 description 2
- 108091092724 Noncoding DNA Proteins 0.000 description 2
- 235000002725 Olea europaea Nutrition 0.000 description 2
- 241000233855 Orchidaceae Species 0.000 description 2
- 235000007199 Panicum miliaceum Nutrition 0.000 description 2
- 235000007195 Pennisetum typhoides Nutrition 0.000 description 2
- 108091000041 Phosphoenolpyruvate Carboxylase Proteins 0.000 description 2
- 108091000080 Phosphotransferase Proteins 0.000 description 2
- 229920000331 Polyhydroxybutyrate Polymers 0.000 description 2
- 241000183024 Populus tremula Species 0.000 description 2
- 108010076504 Protein Sorting Signals Proteins 0.000 description 2
- 235000006040 Prunus persica var persica Nutrition 0.000 description 2
- 241000508269 Psidium Species 0.000 description 2
- 240000001679 Psidium guajava Species 0.000 description 2
- 235000013929 Psidium pyriferum Nutrition 0.000 description 2
- 240000001987 Pyrus communis Species 0.000 description 2
- 235000014443 Pyrus communis Nutrition 0.000 description 2
- LOUPRKONTZGTKE-WZBLMQSHSA-N Quinine Chemical compound C([C@H]([C@H](C1)C=C)C2)C[N@@]1[C@@H]2[C@H](O)C1=CC=NC2=CC=C(OC)C=C21 LOUPRKONTZGTKE-WZBLMQSHSA-N 0.000 description 2
- 101710086015 RNA ligase Proteins 0.000 description 2
- 239000013614 RNA sample Substances 0.000 description 2
- 108700005079 Recessive Genes Proteins 0.000 description 2
- 102000052708 Recessive Genes Human genes 0.000 description 2
- 241000208422 Rhododendron Species 0.000 description 2
- 108091028664 Ribonucleotide Proteins 0.000 description 2
- 101710192640 Ribulose bisphosphate carboxylase/oxygenase activase Proteins 0.000 description 2
- 101710153769 Ribulose bisphosphate carboxylase/oxygenase activase, chloroplastic Proteins 0.000 description 2
- 108010003581 Ribulose-bisphosphate carboxylase Proteins 0.000 description 2
- 235000004789 Rosa xanthina Nutrition 0.000 description 2
- 241000109329 Rosa xanthina Species 0.000 description 2
- 235000017848 Rubus fruticosus Nutrition 0.000 description 2
- 240000007651 Rubus glaucus Species 0.000 description 2
- 235000011034 Rubus glaucus Nutrition 0.000 description 2
- 235000009122 Rubus idaeus Nutrition 0.000 description 2
- 240000000111 Saccharum officinarum Species 0.000 description 2
- 235000007201 Saccharum officinarum Nutrition 0.000 description 2
- 244000082988 Secale cereale Species 0.000 description 2
- 240000005498 Setaria italica Species 0.000 description 2
- 235000002597 Solanum melongena Nutrition 0.000 description 2
- 235000007230 Sorghum bicolor Nutrition 0.000 description 2
- 244000062793 Sorghum vulgare Species 0.000 description 2
- 238000002105 Southern blotting Methods 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- 239000004098 Tetracycline Substances 0.000 description 2
- 235000006468 Thea sinensis Nutrition 0.000 description 2
- 241000723792 Tobacco etch virus Species 0.000 description 2
- 241000723873 Tobacco mosaic virus Species 0.000 description 2
- 108700009124 Transcription Initiation Site Proteins 0.000 description 2
- 108091023040 Transcription factor Proteins 0.000 description 2
- 102000040945 Transcription factor Human genes 0.000 description 2
- 241000219793 Trifolium Species 0.000 description 2
- 244000098338 Triticum aestivum Species 0.000 description 2
- 241000722921 Tulipa gesneriana Species 0.000 description 2
- ISAKRJDGNUQOIC-UHFFFAOYSA-N Uracil Chemical compound O=C1C=CNC(=O)N1 ISAKRJDGNUQOIC-UHFFFAOYSA-N 0.000 description 2
- 235000010749 Vicia faba Nutrition 0.000 description 2
- 240000006677 Vicia faba Species 0.000 description 2
- 235000002098 Vicia faba var. major Nutrition 0.000 description 2
- 241000219977 Vigna Species 0.000 description 2
- 235000010726 Vigna sinensis Nutrition 0.000 description 2
- 241000700605 Viruses Species 0.000 description 2
- 241000607479 Yersinia pestis Species 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 108091000039 acetoacetyl-CoA reductase Proteins 0.000 description 2
- 229960000643 adenine Drugs 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 101150025475 agl8 gene Proteins 0.000 description 2
- UPEZCKBFRMILAV-UHFFFAOYSA-N alpha-Ecdysone Natural products C1C(O)C(O)CC2(C)C(CCC3(C(C(C(O)CCC(C)(C)O)C)CCC33O)C)C3=CC(=O)C21 UPEZCKBFRMILAV-UHFFFAOYSA-N 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 230000007152 anther development Effects 0.000 description 2
- 239000003242 anti bacterial agent Substances 0.000 description 2
- 230000000680 avirulence Effects 0.000 description 2
- 229940097012 bacillus thuringiensis Drugs 0.000 description 2
- 101150103518 bar gene Proteins 0.000 description 2
- 108010019077 beta-Amylase Proteins 0.000 description 2
- 108091008324 binding proteins Proteins 0.000 description 2
- 230000003115 biocidal effect Effects 0.000 description 2
- 229920000704 biodegradable plastic Polymers 0.000 description 2
- 235000021029 blackberry Nutrition 0.000 description 2
- 244000022203 blackseeded proso millet Species 0.000 description 2
- 239000001110 calcium chloride Substances 0.000 description 2
- 229910001628 calcium chloride Inorganic materials 0.000 description 2
- 239000001506 calcium phosphate Substances 0.000 description 2
- 229910000389 calcium phosphate Inorganic materials 0.000 description 2
- 235000011010 calcium phosphates Nutrition 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 210000000170 cell membrane Anatomy 0.000 description 2
- 210000003763 chloroplast Anatomy 0.000 description 2
- 238000003200 chromosome mapping Methods 0.000 description 2
- 238000010367 cloning Methods 0.000 description 2
- 238000000975 co-precipitation Methods 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 238000003169 complementation method Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000012790 confirmation Methods 0.000 description 2
- 230000010154 cross-pollination Effects 0.000 description 2
- 229940104302 cytosine Drugs 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 239000005547 deoxyribonucleotide Substances 0.000 description 2
- 125000002637 deoxyribonucleotide group Chemical group 0.000 description 2
- 238000001784 detoxification Methods 0.000 description 2
- 244000013123 dwarf bean Species 0.000 description 2
- UPEZCKBFRMILAV-JMZLNJERSA-N ecdysone Chemical compound C1[C@@H](O)[C@@H](O)C[C@]2(C)[C@@H](CC[C@@]3([C@@H]([C@@H]([C@H](O)CCC(C)(C)O)C)CC[C@]33O)C)C3=CC(=O)[C@@H]21 UPEZCKBFRMILAV-JMZLNJERSA-N 0.000 description 2
- VLCYCQAOQCDTCN-UHFFFAOYSA-N eflornithine Chemical compound NCCCC(N)(C(F)F)C(O)=O VLCYCQAOQCDTCN-UHFFFAOYSA-N 0.000 description 2
- 210000002257 embryonic structure Anatomy 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 230000006353 environmental stress Effects 0.000 description 2
- 210000003527 eukaryotic cell Anatomy 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 108010052305 exodeoxyribonuclease III Proteins 0.000 description 2
- 239000002360 explosive Substances 0.000 description 2
- 244000037666 field crops Species 0.000 description 2
- 108010060641 flavanone synthetase Proteins 0.000 description 2
- 229930003935 flavonoid Natural products 0.000 description 2
- 235000017173 flavonoids Nutrition 0.000 description 2
- 239000003008 fumonisin Substances 0.000 description 2
- 108020001507 fusion proteins Proteins 0.000 description 2
- 102000037865 fusion proteins Human genes 0.000 description 2
- 230000004077 genetic alteration Effects 0.000 description 2
- 231100000118 genetic alteration Toxicity 0.000 description 2
- 230000035784 germination Effects 0.000 description 2
- IAJOBQBIJHVGMQ-BYPYZUCNSA-N glufosinate-P Chemical compound CP(O)(=O)CC[C@H](N)C(O)=O IAJOBQBIJHVGMQ-BYPYZUCNSA-N 0.000 description 2
- RWSXRVCMGQZWBV-WDSKDSINSA-N glutathione Chemical compound OC(=O)[C@@H](N)CCC(=O)N[C@@H](CS)C(=O)NCC(O)=O RWSXRVCMGQZWBV-WDSKDSINSA-N 0.000 description 2
- 239000011121 hardwood Substances 0.000 description 2
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 2
- 239000005556 hormone Substances 0.000 description 2
- 230000003116 impacting effect Effects 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 235000021374 legumes Nutrition 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- MYWUZJCMWCOHBA-VIFPVBQESA-N methamphetamine Chemical compound CN[C@@H](C)CC1=CC=CC=C1 MYWUZJCMWCOHBA-VIFPVBQESA-N 0.000 description 2
- 230000023409 microsporogenesis Effects 0.000 description 2
- 235000019713 millet Nutrition 0.000 description 2
- 229960004927 neomycin Drugs 0.000 description 2
- 108010058731 nopaline synthase Proteins 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 235000015097 nutrients Nutrition 0.000 description 2
- 230000003204 osmotic effect Effects 0.000 description 2
- 230000001717 pathogenic effect Effects 0.000 description 2
- 108010087558 pectate lyase Proteins 0.000 description 2
- 230000009120 phenotypic response Effects 0.000 description 2
- 102000020233 phosphotransferase Human genes 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- 239000005015 poly(hydroxybutyrate) Substances 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- 238000005215 recombination Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 108091008146 restriction endonucleases Proteins 0.000 description 2
- 238000007894 restriction fragment length polymorphism technique Methods 0.000 description 2
- 238000003757 reverse transcription PCR Methods 0.000 description 2
- 238000012552 review Methods 0.000 description 2
- 239000002336 ribonucleotide Substances 0.000 description 2
- 125000002652 ribonucleotide group Chemical group 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000006152 selective media Substances 0.000 description 2
- 230000001568 sexual effect Effects 0.000 description 2
- 229960000268 spectinomycin Drugs 0.000 description 2
- UNFWWIHTNXNPBV-WXKVUWSESA-N spectinomycin Chemical compound O([C@@H]1[C@@H](NC)[C@@H](O)[C@H]([C@@H]([C@H]1O1)O)NC)[C@]2(O)[C@H]1O[C@H](C)CC2=O UNFWWIHTNXNPBV-WXKVUWSESA-N 0.000 description 2
- ATHGHQPFGPMSJY-UHFFFAOYSA-N spermidine Chemical compound NCCCCNCCCN ATHGHQPFGPMSJY-UHFFFAOYSA-N 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 210000000130 stem cell Anatomy 0.000 description 2
- 229960005322 streptomycin Drugs 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 230000002123 temporal effect Effects 0.000 description 2
- 229960002180 tetracycline Drugs 0.000 description 2
- 229930101283 tetracycline Natural products 0.000 description 2
- 235000019364 tetracycline Nutrition 0.000 description 2
- 150000003522 tetracyclines Chemical class 0.000 description 2
- 239000004753 textile Substances 0.000 description 2
- RWQNBRDOKXIBIV-UHFFFAOYSA-N thymine Chemical compound CC1=CNC(=O)NC1=O RWQNBRDOKXIBIV-UHFFFAOYSA-N 0.000 description 2
- 231100000331 toxic Toxicity 0.000 description 2
- 230000002588 toxic effect Effects 0.000 description 2
- 230000005026 transcription initiation Effects 0.000 description 2
- 238000011426 transformation method Methods 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 210000003934 vacuole Anatomy 0.000 description 2
- 230000009105 vegetative growth Effects 0.000 description 2
- 230000001018 virulence Effects 0.000 description 2
- 235000020234 walnut Nutrition 0.000 description 2
- DIGQNXIGRZPYDK-WKSCXVIASA-N (2R)-6-amino-2-[[2-[[(2S)-2-[[2-[[(2R)-2-[[(2S)-2-[[(2R,3S)-2-[[2-[[(2S)-2-[[2-[[(2S)-2-[[(2S)-2-[[(2R)-2-[[(2S,3S)-2-[[(2R)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[2-[[(2S)-2-[[(2R)-2-[[2-[[2-[[2-[(2-amino-1-hydroxyethylidene)amino]-3-carboxy-1-hydroxypropylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1-hydroxyethylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxyethylidene]amino]-1-hydroxypropylidene]amino]-1,3-dihydroxypropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxybutylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1-hydroxypropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxyethylidene]amino]-1,5-dihydroxy-5-iminopentylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxybutylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxyethylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1-hydroxyethylidene]amino]hexanoic acid Chemical compound C[C@@H]([C@@H](C(=N[C@@H](CS)C(=N[C@@H](C)C(=N[C@@H](CO)C(=NCC(=N[C@@H](CCC(=N)O)C(=NC(CS)C(=N[C@H]([C@H](C)O)C(=N[C@H](CS)C(=N[C@H](CO)C(=NCC(=N[C@H](CS)C(=NCC(=N[C@H](CCCCN)C(=O)O)O)O)O)O)O)O)O)O)O)O)O)O)O)N=C([C@H](CS)N=C([C@H](CO)N=C([C@H](CO)N=C([C@H](C)N=C(CN=C([C@H](CO)N=C([C@H](CS)N=C(CN=C(C(CS)N=C(C(CC(=O)O)N=C(CN)O)O)O)O)O)O)O)O)O)O)O)O DIGQNXIGRZPYDK-WKSCXVIASA-N 0.000 description 1
- CXNPLSGKWMLZPZ-GIFSMMMISA-N (2r,3r,6s)-3-[[(3s)-3-amino-5-[carbamimidoyl(methyl)amino]pentanoyl]amino]-6-(4-amino-2-oxopyrimidin-1-yl)-3,6-dihydro-2h-pyran-2-carboxylic acid Chemical compound O1[C@@H](C(O)=O)[C@H](NC(=O)C[C@@H](N)CCN(C)C(N)=N)C=C[C@H]1N1C(=O)N=C(N)C=C1 CXNPLSGKWMLZPZ-GIFSMMMISA-N 0.000 description 1
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- 101150084750 1 gene Proteins 0.000 description 1
- 108090000344 1,4-alpha-Glucan Branching Enzyme Proteins 0.000 description 1
- 102000003925 1,4-alpha-Glucan Branching Enzyme Human genes 0.000 description 1
- 101150029062 15 gene Proteins 0.000 description 1
- 108020004465 16S ribosomal RNA Proteins 0.000 description 1
- ZBMRKNMTMPPMMK-UHFFFAOYSA-N 2-amino-4-[hydroxy(methyl)phosphoryl]butanoic acid;azane Chemical compound [NH4+].CP(O)(=O)CCC(N)C([O-])=O ZBMRKNMTMPPMMK-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- 101150055869 25 gene Proteins 0.000 description 1
- 101710168820 2S seed storage albumin protein Proteins 0.000 description 1
- UPMXNNIRAGDFEH-UHFFFAOYSA-N 3,5-dibromo-4-hydroxybenzonitrile Chemical compound OC1=C(Br)C=C(C#N)C=C1Br UPMXNNIRAGDFEH-UHFFFAOYSA-N 0.000 description 1
- CAAMSDWKXXPUJR-UHFFFAOYSA-N 3,5-dihydro-4H-imidazol-4-one Chemical compound O=C1CNC=N1 CAAMSDWKXXPUJR-UHFFFAOYSA-N 0.000 description 1
- 108010019608 3-Oxoacyl-(Acyl-Carrier-Protein) Synthase Proteins 0.000 description 1
- 102100026105 3-ketoacyl-CoA thiolase, mitochondrial Human genes 0.000 description 1
- 102100037149 3-oxoacyl-[acyl-carrier-protein] synthase, mitochondrial Human genes 0.000 description 1
- 108010020183 3-phosphoshikimate 1-carboxyvinyltransferase Proteins 0.000 description 1
- 108091000044 4-hydroxy-tetrahydrodipicolinate synthase Proteins 0.000 description 1
- 101150096316 5 gene Proteins 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- 108091006112 ATPases Proteins 0.000 description 1
- 241000208140 Acer Species 0.000 description 1
- 240000004731 Acer pseudoplatanus Species 0.000 description 1
- 235000002754 Acer pseudoplatanus Nutrition 0.000 description 1
- 108010003902 Acetyl-CoA C-acyltransferase Proteins 0.000 description 1
- 101000787132 Acidithiobacillus ferridurans Uncharacterized 8.2 kDa protein in mobL 3'region Proteins 0.000 description 1
- 101000827262 Acidithiobacillus ferrooxidans Uncharacterized 18.9 kDa protein in mobE 3'region Proteins 0.000 description 1
- 241001133760 Acoelorraphe Species 0.000 description 1
- 101710197633 Actin-1 Proteins 0.000 description 1
- 101710197637 Actin-3 Proteins 0.000 description 1
- 101710197650 Actin-7 Proteins 0.000 description 1
- 108090000104 Actin-related protein 3 Proteins 0.000 description 1
- 101710146995 Acyl carrier protein Proteins 0.000 description 1
- 102000057290 Adenosine Triphosphatases Human genes 0.000 description 1
- 102000007698 Alcohol dehydrogenase Human genes 0.000 description 1
- 241000724328 Alfalfa mosaic virus Species 0.000 description 1
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 1
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 1
- 240000002234 Allium sativum Species 0.000 description 1
- 235000001274 Anacardium occidentale Nutrition 0.000 description 1
- 240000001436 Antirrhinum majus Species 0.000 description 1
- 108020005544 Antisense RNA Proteins 0.000 description 1
- 101000811747 Antithamnion sp. UPF0051 protein in atpA 3'region Proteins 0.000 description 1
- 108700030472 Arabidopsis MS1 Proteins 0.000 description 1
- 101100269449 Arabidopsis thaliana AHK4 gene Proteins 0.000 description 1
- 101100456957 Arabidopsis thaliana MEX1 gene Proteins 0.000 description 1
- 235000011330 Armoracia rusticana Nutrition 0.000 description 1
- 240000003291 Armoracia rusticana Species 0.000 description 1
- 108010024957 Ascorbate Oxidase Proteins 0.000 description 1
- 241001465318 Aspergillus terreus Species 0.000 description 1
- 241001106067 Atropa Species 0.000 description 1
- 229930192334 Auxin Natural products 0.000 description 1
- 235000000832 Ayote Nutrition 0.000 description 1
- 240000005343 Azadirachta indica Species 0.000 description 1
- 101000827607 Bacillus phage SPP1 Uncharacterized 8.5 kDa protein in GP2-GP6 intergenic region Proteins 0.000 description 1
- 101000961975 Bacillus thuringiensis Uncharacterized 13.4 kDa protein Proteins 0.000 description 1
- KHBQMWCZKVMBLN-UHFFFAOYSA-N Benzenesulfonamide Chemical compound NS(=O)(=O)C1=CC=CC=C1 KHBQMWCZKVMBLN-UHFFFAOYSA-N 0.000 description 1
- 235000021533 Beta vulgaris Nutrition 0.000 description 1
- 241000335053 Beta vulgaris Species 0.000 description 1
- 235000018185 Betula X alpestris Nutrition 0.000 description 1
- 235000018212 Betula X uliginosa Nutrition 0.000 description 1
- 241000219495 Betulaceae Species 0.000 description 1
- 108010029692 Bisphosphoglycerate mutase Proteins 0.000 description 1
- 108010006654 Bleomycin Proteins 0.000 description 1
- 235000003351 Brassica cretica Nutrition 0.000 description 1
- 244000178993 Brassica juncea Species 0.000 description 1
- 240000007124 Brassica oleracea Species 0.000 description 1
- 235000003899 Brassica oleracea var acephala Nutrition 0.000 description 1
- 235000011301 Brassica oleracea var capitata Nutrition 0.000 description 1
- 235000017647 Brassica oleracea var italica Nutrition 0.000 description 1
- 235000001169 Brassica oleracea var oleracea Nutrition 0.000 description 1
- 235000011292 Brassica rapa Nutrition 0.000 description 1
- 235000000540 Brassica rapa subsp rapa Nutrition 0.000 description 1
- 235000003343 Brassica rupestris Nutrition 0.000 description 1
- 241000220243 Brassica sp. Species 0.000 description 1
- 239000005489 Bromoxynil Substances 0.000 description 1
- 101100394003 Butyrivibrio fibrisolvens end1 gene Proteins 0.000 description 1
- 101150012716 CDK1 gene Proteins 0.000 description 1
- 101000964407 Caldicellulosiruptor saccharolyticus Uncharacterized 10.7 kDa protein in xynB 3'region Proteins 0.000 description 1
- 240000001548 Camellia japonica Species 0.000 description 1
- 244000025254 Cannabis sativa Species 0.000 description 1
- 235000012766 Cannabis sativa ssp. sativa var. sativa Nutrition 0.000 description 1
- 235000012765 Cannabis sativa ssp. sativa var. spontanea Nutrition 0.000 description 1
- 235000002566 Capsicum Nutrition 0.000 description 1
- 101710132601 Capsid protein Proteins 0.000 description 1
- 241000723418 Carya Species 0.000 description 1
- 240000001829 Catharanthus roseus Species 0.000 description 1
- 235000013912 Ceratonia siliqua Nutrition 0.000 description 1
- 240000008886 Ceratonia siliqua Species 0.000 description 1
- 108091060290 Chromatid Proteins 0.000 description 1
- 229940122644 Chymotrypsin inhibitor Drugs 0.000 description 1
- 101710137926 Chymotrypsin inhibitor Proteins 0.000 description 1
- 235000007542 Cichorium intybus Nutrition 0.000 description 1
- 244000298479 Cichorium intybus Species 0.000 description 1
- 235000001258 Cinchona calisaya Nutrition 0.000 description 1
- 235000005979 Citrus limon Nutrition 0.000 description 1
- 244000131522 Citrus pyriformis Species 0.000 description 1
- 240000000560 Citrus x paradisi Species 0.000 description 1
- 101710094648 Coat protein Proteins 0.000 description 1
- 108091027551 Cointegrate Proteins 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 241000938605 Crocodylia Species 0.000 description 1
- 101710190853 Cruciferin Proteins 0.000 description 1
- 235000004035 Cryptotaenia japonica Nutrition 0.000 description 1
- 241000219112 Cucumis Species 0.000 description 1
- 235000010071 Cucumis prophetarum Nutrition 0.000 description 1
- 235000009852 Cucurbita pepo Nutrition 0.000 description 1
- 235000009804 Cucurbita pepo subsp pepo Nutrition 0.000 description 1
- 241000219130 Cucurbita pepo subsp. pepo Species 0.000 description 1
- 235000003954 Cucurbita pepo var melopepo Nutrition 0.000 description 1
- 244000007835 Cyamopsis tetragonoloba Species 0.000 description 1
- 108050006400 Cyclin Proteins 0.000 description 1
- 102000016736 Cyclin Human genes 0.000 description 1
- 235000017788 Cydonia oblonga Nutrition 0.000 description 1
- 241001071944 Cyta Species 0.000 description 1
- 101710112752 Cytotoxin Proteins 0.000 description 1
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 description 1
- HMFHBZSHGGEWLO-SOOFDHNKSA-N D-ribofuranose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@@H]1O HMFHBZSHGGEWLO-SOOFDHNKSA-N 0.000 description 1
- 240000004585 Dactylis glomerata Species 0.000 description 1
- 241000289763 Dasygaster padockina Species 0.000 description 1
- 208000005156 Dehydration Diseases 0.000 description 1
- 241000702421 Dependoparvovirus Species 0.000 description 1
- 235000011511 Diospyros Nutrition 0.000 description 1
- 244000236655 Diospyros kaki Species 0.000 description 1
- 241001057636 Dracaena deremensis Species 0.000 description 1
- 101100136092 Drosophila melanogaster peng gene Proteins 0.000 description 1
- 101100457919 Drosophila melanogaster stg gene Proteins 0.000 description 1
- 101150111720 EPSPS gene Proteins 0.000 description 1
- 235000007349 Eleusine coracana Nutrition 0.000 description 1
- 235000013499 Eleusine coracana subsp coracana Nutrition 0.000 description 1
- 101100059559 Emericella nidulans (strain FGSC A4 / ATCC 38163 / CBS 112.46 / NRRL 194 / M139) nimX gene Proteins 0.000 description 1
- 241000710188 Encephalomyocarditis virus Species 0.000 description 1
- YQYJSBFKSSDGFO-UHFFFAOYSA-N Epihygromycin Natural products OC1C(O)C(C(=O)C)OC1OC(C(=C1)O)=CC=C1C=C(C)C(=O)NC1C(O)C(O)C2OCOC2C1O YQYJSBFKSSDGFO-UHFFFAOYSA-N 0.000 description 1
- 244000039154 Erica Species 0.000 description 1
- 241000588698 Erwinia Species 0.000 description 1
- 244000004281 Eucalyptus maculata Species 0.000 description 1
- 241000206602 Eukaryota Species 0.000 description 1
- 108060002716 Exonuclease Proteins 0.000 description 1
- 240000000731 Fagus sylvatica Species 0.000 description 1
- 235000010099 Fagus sylvatica Nutrition 0.000 description 1
- 108010087894 Fatty acid desaturases Proteins 0.000 description 1
- 241000701484 Figwort mosaic virus Species 0.000 description 1
- 102100034013 Gamma-glutamyl phosphate reductase Human genes 0.000 description 1
- 101710198928 Gamma-glutamyl phosphate reductase Proteins 0.000 description 1
- 108700007698 Genetic Terminator Regions Proteins 0.000 description 1
- 101710186898 Globulin 2 Proteins 0.000 description 1
- 108010044091 Globulins Proteins 0.000 description 1
- 102000006395 Globulins Human genes 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 102000005731 Glucose-6-phosphate isomerase Human genes 0.000 description 1
- 108010070600 Glucose-6-phosphate isomerase Proteins 0.000 description 1
- 239000005561 Glufosinate Substances 0.000 description 1
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 1
- 108010024636 Glutathione Proteins 0.000 description 1
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 1
- 108700023372 Glycosyltransferases Proteins 0.000 description 1
- 102100021181 Golgi phosphoprotein 3 Human genes 0.000 description 1
- 240000000047 Gossypium barbadense Species 0.000 description 1
- 235000009429 Gossypium barbadense Nutrition 0.000 description 1
- 108010043121 Green Fluorescent Proteins Proteins 0.000 description 1
- 102000004144 Green Fluorescent Proteins Human genes 0.000 description 1
- 101000768777 Haloferax lucentense (strain DSM 14919 / JCM 9276 / NCIMB 13854 / Aa 2.2) Uncharacterized 50.6 kDa protein in the 5'region of gyrA and gyrB Proteins 0.000 description 1
- 101710142776 Histo-blood group ABO system transferase Proteins 0.000 description 1
- 102100035833 Histo-blood group ABO system transferase Human genes 0.000 description 1
- 102100033558 Histone H1.8 Human genes 0.000 description 1
- 102100034535 Histone H3.1 Human genes 0.000 description 1
- 108010033040 Histones Proteins 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 101000899240 Homo sapiens Endoplasmic reticulum chaperone BiP Proteins 0.000 description 1
- 101100123312 Homo sapiens H1-8 gene Proteins 0.000 description 1
- 101001067844 Homo sapiens Histone H3.1 Proteins 0.000 description 1
- 101000833492 Homo sapiens Jouberin Proteins 0.000 description 1
- 101000651236 Homo sapiens NCK-interacting protein with SH3 domain Proteins 0.000 description 1
- 101100247206 Homo sapiens RAB24 gene Proteins 0.000 description 1
- 108700032155 Hordeum vulgare hordothionin Proteins 0.000 description 1
- 235000008694 Humulus lupulus Nutrition 0.000 description 1
- 101000607404 Infectious laryngotracheitis virus (strain Thorne V882) Protein UL24 homolog Proteins 0.000 description 1
- 108020004684 Internal Ribosome Entry Sites Proteins 0.000 description 1
- 108091092195 Intron Proteins 0.000 description 1
- 240000001549 Ipomoea eriocarpa Species 0.000 description 1
- 235000005146 Ipomoea eriocarpa Nutrition 0.000 description 1
- 108010044467 Isoenzymes Proteins 0.000 description 1
- 102100024407 Jouberin Human genes 0.000 description 1
- 108010025815 Kanamycin Kinase Proteins 0.000 description 1
- 101000735632 Klebsiella pneumoniae Uncharacterized 8.8 kDa protein in aacA4 3'region Proteins 0.000 description 1
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 1
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 1
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 1
- 241000219729 Lathyrus Species 0.000 description 1
- 108090001090 Lectins Proteins 0.000 description 1
- 102000004856 Lectins Human genes 0.000 description 1
- 240000004322 Lens culinaris Species 0.000 description 1
- 244000043158 Lens esculenta Species 0.000 description 1
- 101100254587 Lentinula edodes RPS1 gene Proteins 0.000 description 1
- 108700005090 Lethal Genes Proteins 0.000 description 1
- 241000234280 Liliaceae Species 0.000 description 1
- 241000234435 Lilium Species 0.000 description 1
- 235000004431 Linum usitatissimum Nutrition 0.000 description 1
- 240000006240 Linum usitatissimum Species 0.000 description 1
- 108090001060 Lipase Proteins 0.000 description 1
- 102000004882 Lipase Human genes 0.000 description 1
- 239000004367 Lipase Substances 0.000 description 1
- 241000215452 Lotus corniculatus Species 0.000 description 1
- 241000208467 Macadamia Species 0.000 description 1
- 235000018330 Macadamia integrifolia Nutrition 0.000 description 1
- 240000007575 Macadamia integrifolia Species 0.000 description 1
- 101710125418 Major capsid protein Proteins 0.000 description 1
- 241000219071 Malvaceae Species 0.000 description 1
- 108091022912 Mannose-6-Phosphate Isomerase Proteins 0.000 description 1
- 102000048193 Mannose-6-phosphate isomerases Human genes 0.000 description 1
- 240000007298 Megathyrsus maximus Species 0.000 description 1
- 235000013500 Melia azadirachta Nutrition 0.000 description 1
- 101100409013 Mesembryanthemum crystallinum PPD gene Proteins 0.000 description 1
- 102000003792 Metallothionein Human genes 0.000 description 1
- 108090000157 Metallothionein Proteins 0.000 description 1
- 101100261636 Methanothermobacter marburgensis (strain ATCC BAA-927 / DSM 2133 / JCM 14651 / NBRC 100331 / OCM 82 / Marburg) trpB2 gene Proteins 0.000 description 1
- 229920000881 Modified starch Polymers 0.000 description 1
- 241000218231 Moraceae Species 0.000 description 1
- 241001529936 Murinae Species 0.000 description 1
- 102000018463 Myo-Inositol-1-Phosphate Synthase Human genes 0.000 description 1
- 108091000020 Myo-Inositol-1-Phosphate Synthase Proteins 0.000 description 1
- GXCLVBGFBYZDAG-UHFFFAOYSA-N N-[2-(1H-indol-3-yl)ethyl]-N-methylprop-2-en-1-amine Chemical compound CN(CCC1=CNC2=C1C=CC=C2)CC=C GXCLVBGFBYZDAG-UHFFFAOYSA-N 0.000 description 1
- 108091061960 Naked DNA Proteins 0.000 description 1
- 101710202365 Napin Proteins 0.000 description 1
- 108010025915 Nitrite Reductases Proteins 0.000 description 1
- 101710141454 Nucleoprotein Proteins 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 241000219830 Onobrychis Species 0.000 description 1
- 229940122060 Ornithine decarboxylase inhibitor Drugs 0.000 description 1
- 102000052812 Ornithine decarboxylases Human genes 0.000 description 1
- 108700005126 Ornithine decarboxylases Proteins 0.000 description 1
- 101100454022 Oryza sativa subsp. japonica OSH1 gene Proteins 0.000 description 1
- 101710149663 Osmotin Proteins 0.000 description 1
- 241001147398 Ostrinia nubilalis Species 0.000 description 1
- 108090000417 Oxygenases Proteins 0.000 description 1
- 102000004020 Oxygenases Human genes 0.000 description 1
- 238000010222 PCR analysis Methods 0.000 description 1
- 244000038248 Pennisetum spicatum Species 0.000 description 1
- 244000115721 Pennisetum typhoides Species 0.000 description 1
- 239000006002 Pepper Substances 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 102000035195 Peptidases Human genes 0.000 description 1
- 244000062780 Petroselinum sativum Species 0.000 description 1
- 244000100170 Phaseolus lunatus Species 0.000 description 1
- 108700023158 Phenylalanine ammonia-lyases Proteins 0.000 description 1
- 229920000473 Phlobaphene Polymers 0.000 description 1
- 102000011025 Phosphoglycerate Mutase Human genes 0.000 description 1
- 101100124346 Photorhabdus laumondii subsp. laumondii (strain DSM 15139 / CIP 105565 / TT01) hisCD gene Proteins 0.000 description 1
- 101100523938 Phytophthora infestans (strain T30-4) PexRD21 gene Proteins 0.000 description 1
- 241000709664 Picornaviridae Species 0.000 description 1
- 235000005205 Pinus Nutrition 0.000 description 1
- 241000218602 Pinus <genus> Species 0.000 description 1
- 235000016761 Piper aduncum Nutrition 0.000 description 1
- 240000003889 Piper guineense Species 0.000 description 1
- 235000017804 Piper guineense Nutrition 0.000 description 1
- 235000008184 Piper nigrum Nutrition 0.000 description 1
- 108020005120 Plant DNA Proteins 0.000 description 1
- 108700001094 Plant Genes Proteins 0.000 description 1
- 108010064851 Plant Proteins Proteins 0.000 description 1
- 108020005089 Plant RNA Proteins 0.000 description 1
- 235000006485 Platanus occidentalis Nutrition 0.000 description 1
- 241000209504 Poaceae Species 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 108010059820 Polygalacturonase Proteins 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 241000710078 Potyvirus Species 0.000 description 1
- 101710083689 Probable capsid protein Proteins 0.000 description 1
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 102000001253 Protein Kinase Human genes 0.000 description 1
- 108020001991 Protoporphyrinogen Oxidase Proteins 0.000 description 1
- 102000005135 Protoporphyrinogen oxidase Human genes 0.000 description 1
- 244000018633 Prunus armeniaca Species 0.000 description 1
- 235000009827 Prunus armeniaca Nutrition 0.000 description 1
- 235000006029 Prunus persica var nucipersica Nutrition 0.000 description 1
- 244000017714 Prunus persica var. nucipersica Species 0.000 description 1
- 241000219492 Quercus Species 0.000 description 1
- 102000001183 RAG-1 Human genes 0.000 description 1
- 108060006897 RAG1 Proteins 0.000 description 1
- 101150041925 RBCS gene Proteins 0.000 description 1
- 108020005067 RNA Splice Sites Proteins 0.000 description 1
- 108091030071 RNAI Proteins 0.000 description 1
- 101150092144 RTS2 gene Proteins 0.000 description 1
- 244000088415 Raphanus sativus Species 0.000 description 1
- 235000006140 Raphanus sativus var sativus Nutrition 0.000 description 1
- 108091081062 Repeated sequence (DNA) Proteins 0.000 description 1
- 108700008625 Reporter Genes Proteins 0.000 description 1
- 240000001890 Ribes hudsonianum Species 0.000 description 1
- 235000016954 Ribes hudsonianum Nutrition 0.000 description 1
- 235000001466 Ribes nigrum Nutrition 0.000 description 1
- 102000006382 Ribonucleases Human genes 0.000 description 1
- 108010083644 Ribonucleases Proteins 0.000 description 1
- PYMYPHUHKUWMLA-LMVFSUKVSA-N Ribose Natural products OC[C@@H](O)[C@@H](O)[C@@H](O)C=O PYMYPHUHKUWMLA-LMVFSUKVSA-N 0.000 description 1
- 241000220317 Rosa Species 0.000 description 1
- 235000011449 Rosa Nutrition 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 101100174722 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) GAA1 gene Proteins 0.000 description 1
- 101100478266 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) SPT10 gene Proteins 0.000 description 1
- 101100242307 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) SWH1 gene Proteins 0.000 description 1
- 241000209051 Saccharum Species 0.000 description 1
- 241000124033 Salix Species 0.000 description 1
- 108010016634 Seed Storage Proteins Proteins 0.000 description 1
- 238000012300 Sequence Analysis Methods 0.000 description 1
- 241001116459 Sequoia Species 0.000 description 1
- 235000008515 Setaria glauca Nutrition 0.000 description 1
- 235000007226 Setaria italica Nutrition 0.000 description 1
- 208000020221 Short stature Diseases 0.000 description 1
- 101100020617 Solanum lycopersicum LAT52 gene Proteins 0.000 description 1
- 101000818100 Spirochaeta aurantia Uncharacterized 12.7 kDa protein in trpE 5'region Proteins 0.000 description 1
- 108010039811 Starch synthase Proteins 0.000 description 1
- 101001037658 Streptomyces coelicolor (strain ATCC BAA-471 / A3(2) / M145) Glucokinase Proteins 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 108010043934 Sucrose synthase Proteins 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- 229940100389 Sulfonylurea Drugs 0.000 description 1
- 102000019197 Superoxide Dismutase Human genes 0.000 description 1
- 108010012715 Superoxide dismutase Proteins 0.000 description 1
- 101100355951 Synechocystis sp. (strain PCC 6803 / Kazusa) rcp1 gene Proteins 0.000 description 1
- 108700026226 TATA Box Proteins 0.000 description 1
- 244000204900 Talipariti tiliaceum Species 0.000 description 1
- 108010022394 Threonine synthase Proteins 0.000 description 1
- 240000007313 Tilia cordata Species 0.000 description 1
- 102000007641 Trefoil Factors Human genes 0.000 description 1
- 235000015724 Trifolium pratense Nutrition 0.000 description 1
- 244000042324 Trifolium repens Species 0.000 description 1
- 235000013540 Trifolium repens var repens Nutrition 0.000 description 1
- 235000001484 Trigonella foenum graecum Nutrition 0.000 description 1
- 244000250129 Trigonella foenum graecum Species 0.000 description 1
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 1
- 241000722923 Tulipa Species 0.000 description 1
- 108091026828 U2 spliceosomal RNA Proteins 0.000 description 1
- 108091026837 U5 spliceosomal RNA Proteins 0.000 description 1
- 241001106462 Ulmus Species 0.000 description 1
- 241000700618 Vaccinia virus Species 0.000 description 1
- 235000003095 Vaccinium corymbosum Nutrition 0.000 description 1
- 235000017537 Vaccinium myrtillus Nutrition 0.000 description 1
- 102000011731 Vacuolar Proton-Translocating ATPases Human genes 0.000 description 1
- 108010037026 Vacuolar Proton-Translocating ATPases Proteins 0.000 description 1
- 235000010725 Vigna aconitifolia Nutrition 0.000 description 1
- 244000042325 Vigna aconitifolia Species 0.000 description 1
- 240000004922 Vigna radiata Species 0.000 description 1
- 235000010721 Vigna radiata var radiata Nutrition 0.000 description 1
- 235000011469 Vigna radiata var sublobata Nutrition 0.000 description 1
- JXLYSJRDGCGARV-WWYNWVTFSA-N Vinblastine Natural products O=C(O[C@H]1[C@](O)(C(=O)OC)[C@@H]2N(C)c3c(cc(c(OC)c3)[C@]3(C(=O)OC)c4[nH]c5c(c4CCN4C[C@](O)(CC)C[C@H](C3)C4)cccc5)[C@@]32[C@H]2[C@@]1(CC)C=CCN2CC3)C JXLYSJRDGCGARV-WWYNWVTFSA-N 0.000 description 1
- 241001429320 Wheat streak mosaic virus Species 0.000 description 1
- 108010027570 Xanthine phosphoribosyltransferase Proteins 0.000 description 1
- 101100273808 Xenopus laevis cdk1-b gene Proteins 0.000 description 1
- 244000083398 Zea diploperennis Species 0.000 description 1
- 235000007241 Zea diploperennis Nutrition 0.000 description 1
- 101001036768 Zea mays Glucose-1-phosphate adenylyltransferase large subunit 1, chloroplastic/amyloplastic Proteins 0.000 description 1
- 101001040871 Zea mays Glutelin-2 Proteins 0.000 description 1
- 101000662549 Zea mays Sucrose synthase 1 Proteins 0.000 description 1
- 235000017556 Zea mays subsp parviglumis Nutrition 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- FJJCIZWZNKZHII-UHFFFAOYSA-N [4,6-bis(cyanoamino)-1,3,5-triazin-2-yl]cyanamide Chemical compound N#CNC1=NC(NC#N)=NC(NC#N)=N1 FJJCIZWZNKZHII-UHFFFAOYSA-N 0.000 description 1
- 101150067314 aadA gene Proteins 0.000 description 1
- 238000002679 ablation Methods 0.000 description 1
- 230000006578 abscission Effects 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- JUGOREOARAHOCO-UHFFFAOYSA-M acetylcholine chloride Chemical compound [Cl-].CC(=O)OCC[N+](C)(C)C JUGOREOARAHOCO-UHFFFAOYSA-M 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 108010050516 adenylate isopentenyltransferase Proteins 0.000 description 1
- 108010050181 aleurone Proteins 0.000 description 1
- 235000020224 almond Nutrition 0.000 description 1
- HMFHBZSHGGEWLO-UHFFFAOYSA-N alpha-D-Furanose-Ribose Natural products OCC1OC(O)C(O)C1O HMFHBZSHGGEWLO-UHFFFAOYSA-N 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 229940126575 aminoglycoside Drugs 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 230000000340 anti-metabolite Effects 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 229940100197 antimetabolite Drugs 0.000 description 1
- 239000002256 antimetabolite Substances 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- MXWJVTOOROXGIU-UHFFFAOYSA-N atrazine Chemical compound CCNC1=NC(Cl)=NC(NC(C)C)=N1 MXWJVTOOROXGIU-UHFFFAOYSA-N 0.000 description 1
- 239000002363 auxin Substances 0.000 description 1
- 108091010938 auxin binding proteins Proteins 0.000 description 1
- 235000015278 beef Nutrition 0.000 description 1
- GINJFDRNADDBIN-FXQIFTODSA-N bilanafos Chemical compound OC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@@H](N)CCP(C)(O)=O GINJFDRNADDBIN-FXQIFTODSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000003851 biochemical process Effects 0.000 description 1
- 230000001851 biosynthetic effect Effects 0.000 description 1
- QKSKPIVNLNLAAV-UHFFFAOYSA-N bis(2-chloroethyl) sulfide Chemical compound ClCCSCCCl QKSKPIVNLNLAAV-UHFFFAOYSA-N 0.000 description 1
- CXNPLSGKWMLZPZ-UHFFFAOYSA-N blasticidin-S Natural products O1C(C(O)=O)C(NC(=O)CC(N)CCN(C)C(N)=N)C=CC1N1C(=O)N=C(N)C=C1 CXNPLSGKWMLZPZ-UHFFFAOYSA-N 0.000 description 1
- 229960001561 bleomycin Drugs 0.000 description 1
- OYVAGSVQBOHSSS-UAPAGMARSA-O bleomycin A2 Chemical compound N([C@H](C(=O)N[C@H](C)[C@@H](O)[C@H](C)C(=O)N[C@@H]([C@H](O)C)C(=O)NCCC=1SC=C(N=1)C=1SC=C(N=1)C(=O)NCCC[S+](C)C)[C@@H](O[C@H]1[C@H]([C@@H](O)[C@H](O)[C@H](CO)O1)O[C@@H]1[C@H]([C@@H](OC(N)=O)[C@H](O)[C@@H](CO)O1)O)C=1N=CNC=1)C(=O)C1=NC([C@H](CC(N)=O)NC[C@H](N)C(N)=O)=NC(N)=C1C OYVAGSVQBOHSSS-UAPAGMARSA-O 0.000 description 1
- 235000021014 blueberries Nutrition 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 235000009120 camo Nutrition 0.000 description 1
- 235000021256 carbohydrate metabolism Nutrition 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 235000020226 cashew nut Nutrition 0.000 description 1
- 230000001925 catabolic effect Effects 0.000 description 1
- 101150069072 cdc25 gene Proteins 0.000 description 1
- 230000036978 cell physiology Effects 0.000 description 1
- 230000010307 cell transformation Effects 0.000 description 1
- 230000003833 cell viability Effects 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 235000005607 chanvre indien Nutrition 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000013043 chemical agent Substances 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229960005091 chloramphenicol Drugs 0.000 description 1
- WIIZWVCIJKGZOK-RKDXNWHRSA-N chloramphenicol Chemical compound ClC(Cl)C(=O)N[C@H](CO)[C@H](O)C1=CC=C([N+]([O-])=O)C=C1 WIIZWVCIJKGZOK-RKDXNWHRSA-N 0.000 description 1
- 230000019113 chromatin silencing Effects 0.000 description 1
- 230000002759 chromosomal effect Effects 0.000 description 1
- 239000003541 chymotrypsin inhibitor Substances 0.000 description 1
- LOUPRKONTZGTKE-UHFFFAOYSA-N cinchonine Natural products C1C(C(C2)C=C)CCN2C1C(O)C1=CC=NC2=CC=C(OC)C=C21 LOUPRKONTZGTKE-UHFFFAOYSA-N 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 235000018597 common camellia Nutrition 0.000 description 1
- 239000003184 complementary RNA Substances 0.000 description 1
- 235000009508 confectionery Nutrition 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 235000005687 corn oil Nutrition 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 235000012343 cottonseed oil Nutrition 0.000 description 1
- 238000009402 cross-breeding Methods 0.000 description 1
- 238000012136 culture method Methods 0.000 description 1
- 210000004748 cultured cell Anatomy 0.000 description 1
- 101150064332 cyc07 gene Proteins 0.000 description 1
- 108010088245 cytokinin oxidase Proteins 0.000 description 1
- 210000000805 cytoplasm Anatomy 0.000 description 1
- 230000003013 cytotoxicity Effects 0.000 description 1
- 231100000135 cytotoxicity Toxicity 0.000 description 1
- 235000013365 dairy product Nutrition 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000023753 dehiscence Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- 102000004419 dihydrofolate reductase Human genes 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000024346 drought recovery Effects 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 241001493065 dsRNA viruses Species 0.000 description 1
- 235000005489 dwarf bean Nutrition 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 230000000408 embryogenic effect Effects 0.000 description 1
- 210000002472 endoplasmic reticulum Anatomy 0.000 description 1
- 239000002158 endotoxin Substances 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 238000006911 enzymatic reaction Methods 0.000 description 1
- 239000003797 essential amino acid Substances 0.000 description 1
- 235000020776 essential amino acid Nutrition 0.000 description 1
- 102000013165 exonuclease Human genes 0.000 description 1
- 238000013401 experimental design Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 150000005836 flavan-4-ols Chemical class 0.000 description 1
- 229930003944 flavone Natural products 0.000 description 1
- 235000011949 flavones Nutrition 0.000 description 1
- 150000002215 flavonoids Chemical class 0.000 description 1
- 108091006047 fluorescent proteins Proteins 0.000 description 1
- 102000034287 fluorescent proteins Human genes 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 235000004611 garlic Nutrition 0.000 description 1
- 230000009368 gene silencing by RNA Effects 0.000 description 1
- 238000010363 gene targeting Methods 0.000 description 1
- 238000001415 gene therapy Methods 0.000 description 1
- 108091006104 gene-regulatory proteins Proteins 0.000 description 1
- 102000034356 gene-regulatory proteins Human genes 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 239000003862 glucocorticoid Substances 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- 229960003180 glutathione Drugs 0.000 description 1
- 102000006602 glyceraldehyde-3-phosphate dehydrogenase Human genes 0.000 description 1
- 108020004445 glyceraldehyde-3-phosphate dehydrogenase Proteins 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 235000021331 green beans Nutrition 0.000 description 1
- 239000000122 growth hormone Substances 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 239000003630 growth substance Substances 0.000 description 1
- 230000010200 gynoecium development Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000011487 hemp Substances 0.000 description 1
- 235000008216 herbs Nutrition 0.000 description 1
- 101150113423 hisD gene Proteins 0.000 description 1
- 238000003119 immunoblot Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000009399 inbreeding Methods 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- PZOUSPYUWWUPPK-UHFFFAOYSA-N indole Natural products CC1=CC=CC2=C1C=CN2 PZOUSPYUWWUPPK-UHFFFAOYSA-N 0.000 description 1
- RKJUIXBNRJVNHR-UHFFFAOYSA-N indolenine Natural products C1=CC=C2CC=NC2=C1 RKJUIXBNRJVNHR-UHFFFAOYSA-N 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 229960000318 kanamycin Drugs 0.000 description 1
- 229930027917 kanamycin Natural products 0.000 description 1
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 1
- 229930182823 kanamycin A Natural products 0.000 description 1
- 230000002147 killing effect Effects 0.000 description 1
- 239000002523 lectin Substances 0.000 description 1
- 235000019421 lipase Nutrition 0.000 description 1
- 244000144972 livestock Species 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 101150084157 lrp-1 gene Proteins 0.000 description 1
- 125000003588 lysine group Chemical group [H]N([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 description 1
- 230000008219 male gametogenesis Effects 0.000 description 1
- 235000012054 meals Nutrition 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 230000034217 membrane fusion Effects 0.000 description 1
- 230000000442 meristematic effect Effects 0.000 description 1
- 230000037353 metabolic pathway Effects 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 229960000485 methotrexate Drugs 0.000 description 1
- 230000011987 methylation Effects 0.000 description 1
- 238000007069 methylation reaction Methods 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 230000002438 mitochondrial effect Effects 0.000 description 1
- 235000019426 modified starch Nutrition 0.000 description 1
- 239000003147 molecular marker Substances 0.000 description 1
- 235000010460 mustard Nutrition 0.000 description 1
- 238000002703 mutagenesis Methods 0.000 description 1
- 231100000350 mutagenesis Toxicity 0.000 description 1
- 230000000869 mutational effect Effects 0.000 description 1
- 238000007899 nucleic acid hybridization Methods 0.000 description 1
- 230000001293 nucleolytic effect Effects 0.000 description 1
- 235000021062 nutrient metabolism Nutrition 0.000 description 1
- 239000003129 oil well Substances 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 210000003463 organelle Anatomy 0.000 description 1
- 239000002818 ornithine decarboxylase inhibitor Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 235000002252 panizo Nutrition 0.000 description 1
- 230000008775 paternal effect Effects 0.000 description 1
- 244000052769 pathogen Species 0.000 description 1
- 108020004410 pectinesterase Proteins 0.000 description 1
- 235000011197 perejil Nutrition 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 108010082527 phosphinothricin N-acetyltransferase Proteins 0.000 description 1
- 230000000243 photosynthetic effect Effects 0.000 description 1
- 230000009894 physiological stress Effects 0.000 description 1
- 230000008635 plant growth Effects 0.000 description 1
- 239000003375 plant hormone Substances 0.000 description 1
- 230000037039 plant physiology Effects 0.000 description 1
- 238000004161 plant tissue culture Methods 0.000 description 1
- 235000021118 plant-derived protein Nutrition 0.000 description 1
- 230000008119 pollen development Effects 0.000 description 1
- 230000008488 polyadenylation Effects 0.000 description 1
- 230000003234 polygenic effect Effects 0.000 description 1
- 102000054765 polymorphisms of proteins Human genes 0.000 description 1
- 108010055896 polyornithine Proteins 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 244000144977 poultry Species 0.000 description 1
- 101150063097 ppdK gene Proteins 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 210000001236 prokaryotic cell Anatomy 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 235000019624 protein content Nutrition 0.000 description 1
- 108060006633 protein kinase Proteins 0.000 description 1
- 230000009145 protein modification Effects 0.000 description 1
- 101150075980 psbA gene Proteins 0.000 description 1
- 235000015136 pumpkin Nutrition 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 108010032725 pyrophosphate-fructose 6-phosphate 1-phosphotransferase Proteins 0.000 description 1
- 229960000948 quinine Drugs 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000010188 recombinant method Methods 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 230000022983 regulation of cell cycle Effects 0.000 description 1
- 230000023276 regulation of development, heterochronic Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 230000003362 replicative effect Effects 0.000 description 1
- 210000005132 reproductive cell Anatomy 0.000 description 1
- 230000027272 reproductive process Effects 0.000 description 1
- 108091008020 response regulators Proteins 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 108090000907 ribosomal protein L9 Proteins 0.000 description 1
- 102000004346 ribosomal protein L9 Human genes 0.000 description 1
- 101150021296 rip2 gene Proteins 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 230000003248 secreting effect Effects 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 230000008117 seed development Effects 0.000 description 1
- 230000007226 seed germination Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000013605 shuttle vector Substances 0.000 description 1
- 238000002741 site-directed mutagenesis Methods 0.000 description 1
- 244000000000 soil microbiome Species 0.000 description 1
- 238000000527 sonication Methods 0.000 description 1
- 108010048090 soybean lectin Proteins 0.000 description 1
- 229940063673 spermidine Drugs 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 235000020354 squash Nutrition 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 150000003431 steroids Chemical class 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 229940124530 sulfonamide Drugs 0.000 description 1
- 150000003456 sulfonamides Chemical class 0.000 description 1
- YROXIXLRRCOBKF-UHFFFAOYSA-N sulfonylurea Chemical class OC(=N)N=S(=O)=O YROXIXLRRCOBKF-UHFFFAOYSA-N 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 239000006188 syrup Substances 0.000 description 1
- 235000020357 syrup Nutrition 0.000 description 1
- 108700020534 tetracycline resistance-encoding transposon repressor Proteins 0.000 description 1
- 229940113082 thymine Drugs 0.000 description 1
- 239000003104 tissue culture media Substances 0.000 description 1
- 230000006032 tissue transformation Effects 0.000 description 1
- 231100000701 toxic element Toxicity 0.000 description 1
- 108700012359 toxins Proteins 0.000 description 1
- 108091006106 transcriptional activators Proteins 0.000 description 1
- 238000010361 transduction Methods 0.000 description 1
- 230000026683 transduction Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
- 230000014621 translational initiation Effects 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- 235000001019 trigonella foenum-graecum Nutrition 0.000 description 1
- 101150081616 trpB gene Proteins 0.000 description 1
- 101150111232 trpB-1 gene Proteins 0.000 description 1
- 231100000588 tumorigenic Toxicity 0.000 description 1
- 230000000381 tumorigenic effect Effects 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000010396 two-hybrid screening Methods 0.000 description 1
- 241000701161 unidentified adenovirus Species 0.000 description 1
- 241001529453 unidentified herpesvirus Species 0.000 description 1
- 241001430294 unidentified retrovirus Species 0.000 description 1
- 229940035893 uracil Drugs 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 230000017260 vegetative to reproductive phase transition of meristem Effects 0.000 description 1
- 108700026220 vif Genes Proteins 0.000 description 1
- 229960003048 vinblastine Drugs 0.000 description 1
- JXLYSJRDGCGARV-XQKSVPLYSA-N vincaleukoblastine Chemical compound C([C@@H](C[C@]1(C(=O)OC)C=2C(=CC3=C([C@]45[C@H]([C@@]([C@H](OC(C)=O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(=O)OC)N3C)C=2)OC)C[C@@](C2)(O)CC)N2CCC2=C1NC1=CC=CC=C21 JXLYSJRDGCGARV-XQKSVPLYSA-N 0.000 description 1
- 239000013603 viral vector Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Landscapes
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
Abstract
Pairs of plants are provided in which complementing constructs result in suppression of a parental phenotype in the progeny. Methods to generate and maintain such plants, and methods of use of said plants, are provided, including use of parental plants to produce sterile plants for hybrid seed production. Also provided are regulatory elements for pollen-preferred expression of linked polynucleotides. Also provided are methods for identifying gene function, methods for testing allelic variants, and methods for repressing transmission of transgenes.
Description
P/00/011 Regulation 3.2 AUSTRALIA Patents Act 1990 COMPLETE SPECIFICATION FOR A DIVISIONAL PATENT ORIGINAL Name of Applicant: PIONEER HI-BRED INTERNATIONAL, INC. Actual Inventors: Andrew M. CIGAN Timothy W. FOX Howard P. HERSHEY Erica UNGER Yongzhong WU Address for Service: Houlihan 2 , Level 1, 70 Doncaster Road, Balwyn North, Victoria 3104, Australia Invention Title: DOMINANT GENE SUPPRESSION TRANSGENES AND METHODS OF USING SAME The following statement is a full description of this invention, including the best method of performing it known to the Applicant: 1 DOMINANT GENE SUPPRESSION TRANSGENES AND METHODS OF USING SAME The present application is a divisional application from Australian patent 5 application number 2008224912. The entire disclosures of Australian patent application number 2008224912, and its corresponding International application PCT/US2008/056989, are incorporated herein by reference. FIELD OF THE INVENTION 10 The invention relates generally to compositions and methods for dominant gene suppression. Certain embodiments provide methods for preventing transmission of transgenes in gametes. Certain embodiments comprise pairs of plants in which the phenotype of the parents is suppressed in the progeny. Certain embodiments provide constructs and methods useful for generating fertile 15 parental plants that, when crossed, generate sterile progeny plants, and methods of making, maintaining, and using such transgenes and plants, as well as products of such plants. Certain embodiments provide a system for evaluating expression of allelic variants of a gene. Certain embodiments provide a system for simultaneously disrupting expression of an endogenous gene and complementing 20 its expression. Certain embodiments employ orthologous promoters and constructs comprising inverted repeats thereof. BACKGROUND INFORMATION Plant breeding provides a means to combine desirable traits in a single 25 plant variety or hybrid, including for example, disease resistance, insect resistance, drought tolerance, improved yield, and better agronomic quality. Field crops generally are bred by pollination, including by self-pollination (selfing; selfed), in which pollen from one flower is transferred to the same or another flower of the same plant, or to a genetically identical plant, and cross-pollination 30 (crossing; crossed), in which pollen from one plant is transferred to a flower of a genetically different plant. Plants that are selfed and selected for type over many generations become homozygous at almost all gene loci and produce a uniform population of true 2 breeding progeny. A cross between two different homozygous lines produces a uniform population of hybrid plants that can be heterozygous at many gene loci. A cross of two plants, each of which is heterozygous at a number of gene loci, generates hybrid plants, which differ genetically and are not uniform. 5 Many crop plants, including, for example, maize (corn), can be bred using self-pollination or cross-pollination techniques. Maize has separate male and female flowers on the same plant, located on the tassel and the ear, respectively. Natural pollination occurs in maize when wind blows pollen from the tassels to the silks that protrude from the tops of the ears. Many crop plants, including maize, 10 are grown as hybrids, which generally exhibit greater vigor than the parental plants from which they are derived. As such, it is desirable to prevent random pollination when generating hybrid plants. Hybrid plants (Fl) are generated by crossing two different inbred male (P1) and female (P2) parental plants. Hybrid plants are valued because they can 15 display improved yield and vigor as compared to the parental plants from which the hybrids are derived. In addition, hybrid (Fl) plants generally have more desirable properties than progeny (F2) plants derived from the hybrid plants. As such, hybrid plants are commercially important, and include many agricultural crops, including, for example, wheat, corn, rice, tomatoes, and melons. 20 Hybridization of maize has received particular focus since the 1930s. The production of hybrid maize involves the development of homozygous inbred male and female lines, the crossing of these lines, and the evaluation of the crosses for improved agronomic performance. Pedigree breeding and recurrent selection are two of the breeding methods used to develop inbred lines from populations. 25 Breeding programs combine desirable traits from two or more inbred lines, or various broad-based sources, into breeding pools from which new inbred lines are developed by selfing and selecting for desired phenotypes. These new inbreds are crossed with other inbred lines and the resultant new hybrids are evaluated to determine which have improved performance or other desirable traits, thus 30 increasing commercial value. The first generation hybrid progeny, designated F 1 , is more vigorous than its inbred parents. This hybrid vigor, or heterosis, can be manifested in many ways, including increased vegetative growth and increased seed yield. 3 Production of hybrid seed requires maintenance of the parental seed stocks because self-crossing of hybrid plants produces progeny (F2) that, like P1 and P2, generally exhibit less desirable characteristics than the F1 hybrid plant. Because the parental plants generally have less commercial value than the hybrids (F1), 5 efforts have been made to prevent parental plants in a field from self-crossing ("selfing"), since such crosses would reduce the yield of hybrid seed. Accordingly, methods have been developed to selfing of a parental plant. One method for controlling pollination is to use a parental population of plants that are male sterile, thus providing the female parent. Several methods 10 have been used for controlling male fertility, including, for example, manual or mechanical emasculation (detasseling), cytoplasmic male sterility, genetic male sterility, and the use of gametocides. For example, parental selfing in a field can be prevented by removing the anthers or detasseling plants of the female parental (P2) population, thus removing the source of P2 pollen from the field. P2 female 15 plants then can be pollinated with P1 pollen by hand or using mechanical means. Hybrid maize seed generally is produced by a male sterility system incorporating manual or mechanical detasseling. Alternate strips of two maize inbreds are planted in a field, and the pollen-bearing tassels are removed from one of the inbreds (P2 female). Provided that the field is sufficiently isolated from sources of 20 foreign maize pollen, the ears of the detasseled inbred are fertilized only by pollen from the other inbred (P1 male); resulting seed is hybrid and forms hybrid plants. Unfortunately, this method is time- and labor-intensive. In addition, environmental variation in plant development can result in plants producing tassels after manual detasseling of the female parent is completed. Therefore detasseling might not 25 ensure complete male sterility of a female inbred plant. In this case, the resultant fertile female plants will successfully shed pollen and some female plants will be self-pollinated. This will result in seed of the female inbred being harvested along with the desired hybrid seed. Female inbred seed is not as productive as F 1 seed. In addition, the presence of female inbred seed can represent a germplasm 30 security risk for the company producing the hybrid. The female inbred can also be mechanically detasseled. Mechanical detasseling is approximately as reliable as hand detasseling, but is faster and less costly. However, most detasseling machines produce more damage to the plants than hand detasseling, which 4 reduces F 1 seed yields. Thus neither form of detasseling is presently entirely satisfactory, and a need continues to exist for alternative hybrid production methods that reduce production costs, increase production safety, and eliminate self-pollination of the female parent during the production of hybrid seed. 5 Another method of preventing parental plant selfing is to utilize parental plants that are male sterile or female sterile. Male fertility genes have been identified in a number of plants and include dominant and recessive male fertility genes. Plants that are homozygous for a recessive male fertility gene do not produce viable pollen and are useful as female parental plants. However, a result 10 of the female plants being homozygous recessive for a male fertility gene is that they are not capable of selfing and, therefore, a means must be provided for obtaining pollen in order to maintain the parental P2 plant line. Generally, a maintainer cell line, which is heterozygous for the male fertility gene, is generated by crossing a homozygous dominant male fertile plant with the homozygous 15 recessive female sterile plant. The heterozygous maintainer plants then are crossed with the homozygous recessive male sterile plants to produce a population in which 50% of the progeny are male sterile. The male sterile plants are then selected for use in generating hybrids. As such, the method requires additional breeding and selection steps to obtain the male sterile plants, thus 20 adding to the time and cost required to produce the hybrid plants. To overcome the requirement of having to select male sterile from male fertile plants generated by crossing a maintainer plant line with a female (male sterile) plant line, methods have been developed to obtain male sterile plants by expressing a cytotoxic molecule in cells of the male reproductive organs of a plant. 25 For example, a nucleic acid encoding the cytotoxic molecule can be linked to a tapetum-specific promoter and introduced into plant cells, such that, upon expression, the toxic molecule kills anther cells, rendering the plant male sterile. As above, however, such female parental plants cannot be selfed and, therefore, require the preparation and use of a maintainer plant line, which, when crossed 30 with the male sterile female parent restores fertility, for example, by providing a dominant male fertility gene, or by providing a means to inactivate or otherwise inhibit the activity of the cytotoxic gene product (see, U.S. Patent Number 5,977,433). 5 Additional methods of conferring genetic male sterility have been described including, for example, generating plants with multiple mutant genes at separate locations within the genome that confer male sterility (see, U.S. Patent Numbers 4,654,465 and 4,727,219) or with chromosomal translocations (see, U.S. Patent 5 Numbers 3,861,709 and 3,710,511). Another method of conferring genetic male sterility includes identifying a gene that is required for male fertility; silencing the endogenous gene, generating a transgene comprising an inducible promoter operably linked to the coding sequence of the male fertility gene, and inserting the transgene back into the plant, thus generating a plant that is male sterile in the 10 absence of the inducing agent, and can be restored to male fertile by exposing the plant to the inducing agent (see, U.S. Patent Number 5,432,068). While the previously described methods of obtaining and maintaining hybrid plant lines have been useful for plant breeding and agricultural purposes, they require numerous steps and/or additional lines for maintaining male sterile or 15 female sterile plant populations in order to obtain the hybrid plants. Such requirements contribute to increased costs for growing the hybrid plants and, consequently, increased costs to consumers. Thus, a need exists for convenient and effective methods of producing hybrid plants, and particularly for generating parental lines that can be crossed to obtain hybrid plants. 20 A reliable system of genetic male sterility would provide a number of advantages over other systems. The laborious detasseling process can be avoided in some genotypes by using cytoplasmic male-sterile (CMS) inbreds. In the absence of a fertility restorer gene, plants of a CMS inbred are male sterile as a result of cytoplasmic (non-nuclear) genome factors. Thus, this CMS 25 characteristic is inherited exclusively through the female parent in maize plants, since only the female provides cytoplasm to the fertilized seed. CMS plants are fertilized with pollen from another inbred that is not male-sterile. Pollen from the second inbred may or may not contribute genes that make the hybrid plants male fertile. Usually seed from detasseled normal maize and CMS-produced seed of 30 the same hybrid must be blended to insure that adequate pollen loads are available for fertilization when the hybrid plants are grown and to insure cytoplasmic diversity. 6 Another type of genetic sterility is disclosed in U.S. Patents 4,654,465 and 4,727,219 to Brar, et al. However, this form of genetic male sterility requires maintenance of multiple mutant genes at separate locations within the genome and requires a complex marker system to track the genes, making this system 5 inconvenient. Patterson described a genetic system of chromosomal translocations, which can be effective, but is also very complex. (See, U.S. patent numbers 3,861,709 and 3,710,511). Many other attempts have been made to address the drawbacks of existing sterility systems. For example, Fabijanski, et al., developed several methods of 10 causing male sterility in plants (see, EPO 89/3010153.8 publication no. 329,308 and PCT application PCT/CA90/00037 published as WO 90/08828). One method includes delivering into the plant a gene encoding a cytotoxic substance that is expressed using a male tissue specific promoter. Another involves an antisense system in which a gene critical to fertility is identified and an antisense construct to 15 the gene inserted in the plant. Mariani, et al., also shows several cytotoxic antisense systems. See, EP 89/401, 194. Still other systems use "repressor" genes that inhibit the expression of other genes critical to male fertility. See, WO 90/08829. A still further improvement of this system is one described at U.S. Patent 20 Number 5,478,369 in which a method of imparting controllable male sterility is achieved by silencing a gene native to the plant that is critical for male fertility and further introducing a functional copy of the male fertility gene under the control of an inducible promoter which controls expression of the gene. The plant is thus constitutively sterile, becoming fertile only when the promoter is induced, allowing 25 for expression of the male fertility gene. In a number of circumstances, a particular plant trait is expressed by maintenance of a homozygous recessive condition. Difficulties arise in maintaining the homozygous condition when a transgenic restoration gene must be used for maintenance. For example, the MS45 gene in maize (U.S. 5,478,369) 30 has been shown to be critical to male fertility. Plants heterozygous or hemizygous for the dominant MS45 allele are fully fertile due to the sporophytic nature of the MS45 fertility trait. A natural mutation in the MS45 gene, designated ms45, imparts a male sterility phenotype to plants when this mutant allele is in the 7 homozygous state. This sterility can be reversed (i.e., fertility restored) when the non-mutant form of the gene is introduced into the plant, either through normal crossing or transgenic complementation methods. However, restoration of fertility by crossing removes the desired homozygous recessive condition, and both 5 methods restore full male fertility and prevent maintenance of pure male sterile maternal lines. The same concerns arise when controlling female fertility of the plant, where a homozygous recessive female must be maintained by crossing with a plant containing a restoration gene. Therefore there is considerable value not only in controlling the expression of restoration genes in a genetic recessive line, 10 but also in controlling the transmission of the restoring genes to progeny during the hybrid production process. BRIEF DESCRIPTION OF THE FIGURES Figure 1 gives identifying information as to the MS45, MS26, 5126, and 15 BS7 genes and/or promoters of Zea mays, Oryza sativa, and Arabidopsis thaliana. Figure 2 represents maintenance of the homozygous recessive mutation in male-sterile plants for hybrid production. Figure 3 shows that the rice MS45 pIR is effective in suppressing the corresponding promoter from rice but not from maize. 20 Figure 4 is a schematic of a generic complementation/suppression vector. Figure 5 is a schematic of one example of an MS45 complementation/suppression vector. Figure 6 is a schematic showing vector design for maintenance of recessive lethal genes. 25 SUMMARY OF THE INVENTION The present invention is based on the determination that the genotype of an organism (e.g., a plant or mammal) can be modified to contain dominant suppressor alleles or transgene constructs that reduce, but not ablate, the activity 30 of a gene, wherein the phenotype of the organism is not substantially affected. For example, plants can contain dominant suppressor alleles and/or transgene constructs that suppress the activity of a plant male fertility gene, without rendering the plant male sterile, or can contain dominant suppressor alleles and/or 8 transgene constructs that suppress the activity of a gene required for viability, without killing the plant. Further, pairs of such plants having selected genotypes comprising the dominant suppressor alleles or transgene constructs can be crossed to produce progeny that exhibit the phenotypic change (e.g., male 5 sterility). Progeny of plants comprising suppressed male fertility genes, for example, can be useful as females in hybrid plant production. Accordingly, in one embodiment, the present invention relates to a breeding pair of plants, wherein the plants comprising the breeding pair are fertile (i.e., male fertile and female fertile), and wherein sterile progeny (e.g., male sterile progeny) 10 are produced by crossing the breeding pair of plants. A breeding pair of plants of the invention can include, for example, a first plant having an inactivated first endogenous fertility gene, wherein the first plant is fertile; and a second plant having an inactivated second endogenous fertility gene, wherein the second plant is fertile. Such a breeding pair is further characterized in that, if the first 15 endogenous fertility gene is a male fertility gene, then the second endogenous fertility gene also is a male fertility gene, and, similarly, if the first endogenous fertility gene is a female fertility gene, then the second endogenous fertility gene also is a female fertility gene. In a breeding pair of plants of the invention, the first endogenous fertility 20 gene and the second endogenous fertility gene can encode gene products that are present in a single pathway involved in determining fertility of a plant, or the first endogenous fertility gene and the second endogenous fertility gene can encode gene products that are in separate but convergent pathways. In either case, the presence of a single inactivated fertility gene in a plant does not substantially 25 affect fertility of the plant, or plants derived therefrom, except that when a first and second plant as defined herein are crossed, the inactivation of both a first and a second fertility gene in progeny plants results in the progeny plants being sterile (i.e., male sterile or female sterile). The inactivated fertility gene can be inactivated due, for example, to a 30 mutation (e.g., deletion, substitution, or insertion of one or more nucleotides in the coding or non-coding sequence that reduces or inhibits expression of the fertility gene), including, for example, knock out of the gene (e.g., by a homologous recombination event), preferably in both alleles of the fertility gene. The 9 inactivated fertility gene also can be inactivated due, for example, to expression of a gene product such as a transgene product (e.g., an RNA or an encoded polypeptide) in cells of the plant in which the gene normally is expressed, or in progenitor cells, wherein the gene product reduces or inhibits expression of the 5 endogenous fertility gene. Further, in a breeding pair of plants of the invention, the first endogenous fertility gene of the first plant and the second endogenous fertility gene of the second plant can be inactivated in the same or different ways. For example, the first endogenous fertility gene can be inactivated due to a mutation, and the second endogenous fertility gene can be inactivated due to 10 expression of a transgene product (e.g., a hairpin RNA comprising a nucleotide sequence of the promoter of the second fertility gene). The notation hpRNA as used herein refers to a promoter hairpin RNA molecule, and may be used interchangeably with the notation "pIR" for promoter inverted repeat. In various embodiments, the breeding pair can include a first plant, in which the first 15 endogenous fertility gene is inactivated by a mutation, and a second plant having a second endogenous fertility gene inactivated in a manner other than a mutation; or can include a first plant in which the first endogenous fertility gene is inactivated by a mutation, and a second plant in which the second endogenous fertility gene is inactivated by a mutation; or can include a first plant having a first endogenous 20 fertility gene inactivated in a manner other than a mutation, and a second plant in which the second endogenous fertility gene is inactivated in a manner other than by a mutation. In aspects of this embodiment, the first or second endogenous fertility gene of the first or second plant is inactivated by knockout of the first or second fertility gene, respectively; or the first or second endogenous fertility gene 25 of the first or second plant is inactivated by mutation of the promoter of the first or second fertility gene, respectively. In further aspects, the first and second endogenous fertility genes of the first and second plants are inactivated by knockout of the first and second fertility genes, respectively; or the first and second endogenous fertility genes of the first and second plants are inactivated by 30 mutation of the promoter of the first and second fertility genes, respectively. In other embodiments, in a breeding pair of plants of the invention, the first endogenous fertility gene is inactivated due to expression in the first plant of a first exogenous nucleic acid molecule comprising a promoter operably linked to a 10 nucleotide sequence encoding a first hairpin (hp) ribonucleic acid (RNA) molecule (hpRNA), wherein the first hpRNA comprises a nucleotide sequence of the first endogenous fertility gene promoter, and wherein, upon expression, the first hpRNA suppresses expression of the first endogenous fertility gene; or the second 5 endogenous fertility gene is inactivated due to expression in the second plant of a second exogenous nucleic acid molecule comprising a promoter operably linked to a nucleotide sequence encoding a second hpRNA, wherein the second hpRNA comprises a nucleotide sequence of the second endogenous fertility gene promoter, and wherein, upon expression, the second hpRNA suppresses 10 expression of the second endogenous fertility gene; or both the first endogenous fertility gene and second endogenous fertility gene are inactivated due to expression in the first plant and second plant of a first hpRNA and a second hpRNA, respectively, having the above-described characteristics. In aspects of this embodiment, the first exogenous nucleic acid molecule, when present, is 15 stably integrated in the genome of cells of the first plant; or the second exogenous nucleic acid molecule, when present is stably integrated in the genome of cells of the second plant; or both the first exogenous nucleic acid molecule, when present, and the second exogenous nucleic acid molecule, when present, are stably integrated in the genome of cells of the first plant and second plant, respectively. 20 Where a first and/or second endogenous fertility gene is inactivated due to expression in a first and/or second plant, respectively, of an exogenous nucleic acid molecule comprising a promoter operably linked to a nucleotide sequence encoding an hpRNA, the promoter can be any promoter that is active in plant cells, for example, a constitutively active promoter, (e.g., an ubiquitin promoter), a tissue 25 specific promoter, particularly a reproductive tissue promoter (e.g., an anther specific promoter such as a tapetum specific promoter), an inducible promoter, or a developmental or stage specific promoter. The fertility gene that is inactivated can be a male fertility gene or a female fertility gene, provided that, if a male fertility gene is inactivated in a first plant of a breeding pair (i.e., a first endogenous 30 male fertility gene), the second plant of the breeding pair has an inactivated male fertility gene that is different from the first endogenous male fertility gene; and, conversely, if a female fertility gene is inactivated in a first plant of a breeding pair (i.e., a first endogenous female fertility gene), the second plant of the breeding pair 11 has an inactivated female fertility gene that is different from the first endogenous female fertility gene. Further, the inactivation of a first or second endogenous fertility gene, alone, does not render a plant sterile, whereas a cross of a first plant having the first inactivated fertility gene and a second plant having the second 5 inactivated fertility gene generates progeny that are sterile. In another embodiment, the present invention relates to a breeding pair of transgenic plants, which includes a first fertile transgenic plant having integrated in its genome a first exogenous nucleic acid molecule comprising a promoter operably linked to a nucleotide sequence encoding a first hpRNA, wherein the first 10 hpRNA comprises a nucleotide sequence from a first endogenous fertility gene promoter, and wherein, upon expression, the first hpRNA suppresses expression of the first endogenous fertility gene; and a second fertile transgenic plant having integrated in its genome a second exogenous nucleic acid molecule comprising a promoter operably linked to a nucleotide sequence encoding a second hpRNA, 15 wherein the second hpRNA comprises a nucleotide sequence from a second endogenous fertility gene promoter, wherein the second endogenous fertility gene is different from the first endogenous fertility gene, and wherein, upon expression, the second hpRNA suppresses expression of the second endogenous fertility gene. As disclosed herein, the first endogenous gene is different from the second 20 endogenous gene and, further if, in a breeding pair of plants, the first endogenous fertility gene of the first plant is a male fertility gene, then the second endogenous fertility gene of the second plant of the breeding pair also is a male fertility gene; whereas if the first endogenous fertility gene of the first plant is a female fertility gene, then the second endogenous fertility gene of the second plant also is a 25 female fertility gene. In certain embodiments, in an exogenous nucleic acid molecule contained in a first or second transgenic plant of a breeding pair of plants of the invention, the nucleotide sequence encoding the first or second hpRNA, respectively, is such that it includes the sequence of the promoter of the fertility gene that is to be 30 inactivated, particularly an inverted repeat of the promoter sequence such that, upon expression, self-hybridization of the RNA results in formation of the hpRNA. As such, the nucleotide sequence, when expressed in a cell, forms a hairpin RNA 12 molecule (i.e., an hpRNA), which suppresses (i.e., reduces or inhibits) expression of the endogenous fertility gene from its endogenous promoter. The promoter, which is operably linked to the nucleotide sequence encoding the hpRNA in an exogenous nucleic acid molecule contained in a first or 5 second transgenic plant of a breeding pair, can be any promoter that is active in plant cells, particularly a promoter that is active (or can be activated) in reproductive tissues of a plant (e.g., stamens or ovaries). As such, the promoter can be, for example, a constitutively active promoter, an inducible promoter, a tissue-specific promoter, or a developmental stage specific promoter. Also, the 10 promoter of the first exogenous nucleic acid molecule can be the same as or different from the promoter of the second exogenous nucleic acid molecule. In general, a promoter is selected based, for example, on whether endogenous fertility genes to be inhibited are male fertility genes or female fertility genes. Thus, where the endogenous genes to be inhibited are male fertility genes 15 (e.g., a BS7 gene and an SB200 gene), the promoter can be a stamen specific and/or pollen specific promoter such as an MS45 gene promoter (U.S. Patent 6,037,523), a 5126 gene promoter (U.S. Patent 5,837,851), a BS7 gene promoter (WO 02/063021), an SB200 gene promoter (WO 02/26789), a TA29 gene promoter (Nature 347:737 (1990)), a PG47 gene promoter (US 5,412,085; US 20 5,545,546; Plant J 3(2):261-271 (1993)), an SGB6 gene promoter (U.S. Patent 5,470,359) a G9 gene promoter (U.S. Patent 5,837,850; 5,589,610), or the like, such that the hpRNA is expressed in anther and/or pollen or in tissues that give rise to anther cells and/or pollen, thereby reducing or inhibiting expression of the endogenous male fertility genes (i.e., inactivating the endogenous male fertility 25 genes). In comparison, where the endogenous genes to be inhibited are female fertility genes, the promoter can be an ovary specific promoter, for example. However, as disclosed herein, any promoter can be used that directs expression of the hpRNA in the reproductive tissue of interest, including, for example, a constitutively active promoter such as an ubiquitin promoter, which generally 30 effects transcription in most or all plant cells. The present invention also provides cells of a first plant or of a second plant or of both a first plant and a second plant of a breeding pair of plants of the 13 invention. In addition, seeds of the first plant and/or second plant are provided, as are cuttings of the first and/or second plant. The present invention further relates to a transgenic non-human organism that is homozygous recessive for a recessive genotype, wherein the transgenic 5 organism contains an expressible first exogenous nucleic acid molecule comprising a first promoter operably linked to a polynucleotide encoding a restorer gene, the expression of which restores the phenotype that is otherwise absent due to the homozygous recessive genotype, and a second exogenous nucleic acid molecule encoding an hpRNA. The transgenic non-human organism can be any 10 non-human organism that has a diploid (or greater) genome, including, for example, mammals, birds, reptiles, amphibians, or plants. In one embodiment, the second expressible exogenous nucleic acid molecule of a transgenic plant of the invention encodes an hpRNA specific for the first promoter, which drives expression of the restorer gene. In one aspect of this 15 embodiment, the second expressible exogenous nucleic acid molecule further comprises a second promoter operably linked to the nucleotide sequence encoding the hpRNA. The second promoter generally is different from the first promoter (of the first expressible exogenous nucleic acid molecule), and can be, for example, a constitutive promoter, an inducible promoter, a tissue specific 20 promoter, or a developmental stage specific promoter, such that the hpRNA can be expressed in the transgenic organism in a constitutive manner, an inducible manner, a tissue specific manner, or at a particular stage of development. In another embodiment, the second expressible exogenous nucleic acid molecule of a transgenic plant of the invention encodes an hpRNA specific for a promoter 25 other than the first promoter which drives expression of the restorer gene of the first expressible exogenous nucleic acid molecule. A transgenic non-human organism of the invention is exemplified herein by a transgenic plant that is homozygous recessive for a recessive sterile genotype (e.g., homozygous recessive for the ms45 gene, which is a male fertility gene), 30 and that contains (a) a first expressible transgene comprising a first promoter operably linked to a nucleotide sequence encoding a restorer gene, which, upon expression, restores fertility to the transgenic plant (e.g., transgene comprising an MS45 coding sequence), and (b) a second expressible transgene encoding an 14 hpRNA, which, upon expression, suppresses expression by a second promoter, which is different from the first promoter. In one embodiment, the first promoter is a constitutive or developmentally regulated promoter, wherein the fertility restorer gene is expressed in the transgenic plant, and the transgenic plant is fertile. In 5 another embodiment, the first promoter is an inducible promoter, wherein, upon contact of the transgenic plant with an appropriate inducing agent, expression of the fertility restorer gene is induced, rendering the transgenic plant fertile. In another embodiment, the present invention also relates to a breeding pair of transgenic non-human organisms, including a first transgenic organism and 10 second transgenic organism each of which is homozygous recessive for the same recessive genotype. The breeding pair is further characterized in that the first transgenic organism contains an expressible first exogenous nucleic acid molecule comprising a first promoter operably linked to a nucleotide sequence encoding a restorer gene, the expression of which restores the phenotype that is 15 otherwise absent due to the homozygous recessive genotype, and a second expressible exogenous nucleic acid molecule that encodes an hpRNA specific for a second promoter, which is different from the first promoter. The second transgenic organism contains an expressible third exogenous nucleic acid molecule comprising the second promoter operably linked to a nucleotide 20 sequence encoding a restorer gene, the expression of which restores the phenotype that is otherwise absent due to the homozygous recessive genotype, and a fourth expressible exogenous nucleic acid molecule that encodes an hpRNA specific for the first promoter. The first and second transgenic non-human organism are further characterized in that, when bred with each other, progeny are 25 produced in which the second hpRNA inhibits expression of the restorer gene of the first transgene and the first hpRNA inhibits expression of the restorer gene of the third transgene, such that the progeny exhibit the recessive phenotype of the homozygous recessive genotype. A breeding pair of transgenic non-human organisms of the invention is 30 exemplified by a breeding pair of transgenic plants, as follows. The first plant of the pair is a fertile transgenic plant having a homozygous recessive sterile genotype, having integrated in its genome a first exogenous nucleic acid molecule comprising a nucleotide sequence encoding a fertility 15 restorer gene operably linked to a heterologous first promoter, wherein expression of the restorer gene restores fertility to the first transgenic plant; and a second exogenous nucleic acid molecule comprising a first hpRNA, wherein the first hpRNA comprises a nucleotide sequence of a second promoter, and wherein, 5 upon expression, the first hpRNA suppresses expression from the second promoter, which is different from the first promoter. The second transgenic plant of the pair has the same homozygous recessive sterile genotype as the first transgenic plant, and has integrated in its genome a third exogenous nucleic acid molecule, which comprises a nucleotide 10 sequence encoding the fertility restorer gene operably linked to the second promoter, which is heterologous to the fertility restorer gene, wherein expression of the restorer gene restores fertility to the second transgenic plant; and a fourth exogenous nucleic acid molecule comprising a second hpRNA, wherein the second hpRNA comprises a nucleotide sequence of the heterologous first 15 promoter, and wherein, upon expression, the second hpRNA suppresses expression of the first exogenous nucleic acid molecule comprising the heterologous first promoter. As disclosed herein, in progeny of a cross of the first and second transgenic plants, the second hpRNA suppresses expression of the first exogenous nucleic 20 acid molecule, including the fertility restorer gene contained therein, and the first hpRNA suppresses expression of the third exogenous nucleic acid molecule, including the fertility restorer gene contained therein. As such, the progeny are sterile, for example, female sterile. A breeding pair of transgenic plants of the invention can be homozygous recessive for male fertility genes (i.e., male sterile, 25 except upon expression of the fertility restorer gene), or can be homozygous recessive for female fertility genes (i.e., female sterile, except upon expression of the fertility restorer gene). In one aspect, a breeding pair of transgenic plants of the invention includes a first transgenic plant, which is homozygous recessive for ms45, wherein the first 30 exogenous nucleic acid molecule comprises a nucleotide sequence encoding MS45 operably linked to a 5126 gene promoter, and the second exogenous nucleic acid molecule comprises a first hpRNA comprising an inverted repeat of a BS7 gene promoter. Said breeding pair further includes a second transgenic 16 plant, which is homozygous recessive for ms45, wherein the third exogenous nucleic acid molecule comprises a nucleotide sequence encoding MS45 operably linked to the BS7 gene promoter, and the fourth exogenous nucleic acid molecule comprises a second hpRNA comprising an inverted repeat of the 5126 gene 5 promoter. Upon crossing such first and second transgenic plants, male sterile progeny plants are obtained. The present invention also relates to methods of producing a sterile plant. Such a method can be performed by crossing a breeding pair of plants as disclosed herein. In one embodiment, the first plant of the breeding pair contains 10 a mutation inactivating a first endogenous gene of a pathway involved in male fertility, and the second plant contains a second endogenous gene of the same or a different but convergent pathway also involved in the male sterility, wherein the progeny plants are double mutants and have a male sterile phenotype. In another embodiment, the method is performed using first and second transgenic plants, 15 each containing a transgene encoding an hpRNA that inactivates the respective endogenous fertility gene in the second and first transgenic plants, wherein progeny plants produced by crossing the parental plants exhibit the sterile phenotype. The present invention also relates to a method of producing a transgenic 20 non-human organism that exhibits a recessive phenotype, by breeding parental transgenic organisms that do not exhibit the recessive phenotype. For example, the invention provides methods of producing a sterile progeny plant by crossing first and second transgenic plants, each of which is homozygous recessive for the same fertility gene, wherein, in the first transgenic plant, a fertility restorer gene is 25 expressed from a first promoter and an hpRNA is expressed that suppresses expression from a second promoter, and in the second transgenic plant, the fertility restorer gene is expressed from the second promoter, and a second hpRNA is expressed that suppresses expression of the first promoter. The sterile progeny plants can be female sterile or male sterile plants. For example, in a 30 cross of a first transgenic plant containing a first exogenous nucleic acid molecule comprising a nucleotide sequence encoding MS45 operably linked to a 5126 gene promoter, and a second exogenous nucleic acid molecule comprising a first hpRNA including a nucleotide sequence of a BS7 gene promoter; and a second 17 transgenic plant containing a third exogenous nucleic acid molecule comprising a nucleotide sequence encoding MS45 operably linked to the BS7 gene promoter, and a fourth exogenous nucleic acid molecule comprising a second hpRNA including a nucleotide sequence of the 5126 gene promoter, male sterile progeny 5 are produced. Accordingly, the invention provides a plant produced by a method as disclosed herein, for example, a male sterile plant. The present invention further relates to a method of producing hybrid plant seed. Such a method can be performed, for example, by pollinating (e.g., naturally, mechanically, or by hand) a male sterile plant produced as disclosed 10 herein with pollen of a male fertile plant that contains at least one dominant allele corresponding to the homozygous recessive sterile genotype of the male sterile plant, whereby pollinated male sterile plants produce hybrid seed. As such, the invention also provides hybrid seed produced by such a method. The present invention relates to a method of obtaining a hybrid plant by growing such hybrid 15 seed and, further, provides hybrid plants produced by growing such hybrid seed. The present invention further relates to a method of identifying a function of a gene expressed in a cell. The gene expressed in the cell can be any gene containing a promoter, including an endogenous gene, which contains an endogenous promoter. A method of identifying a gene function can be performed, 20 for example, by introducing into a cell in which the gene is expressed, a first exogenous nucleic acid molecule comprising a nucleotide sequence encoding a hpRNA operably linked to a first heterologous promoter, wherein the hpRNA comprises a nucleotide sequence of an endogenous promoter of the gene whose function is being examined, and wherein, upon expression, the hpRNA 25 suppresses expression of the gene; and detecting a change in a phenotype of the cell upon expression of the hpRNA as compared to a wild type phenotype in the absence of expression of the hpRNA, whereby the change in phenotype identifies the function of the gene. In one aspect, the method further includes introducing into the cell a second exogenous nucleic acid molecule comprising a nucleotide 30 sequence encoding a polypeptide encoded by the gene operably linked to a second heterologous promoter, wherein, upon expression of the polypeptide encoded by the gene from the second heterologous promoter, the wild type phenotype is restored. 18 A method of the invention can be practiced using single cells containing the gene of interest, or can be practiced using an organism containing the cell. The organism can be any organism of interest in which the gene of interest is expressed. In one embodiment, the cell is a plant cell, which can be a plant cell in 5 vitro or can be one or more cells of a plant in situ. In one embodiment, the organism is a transgenic plant, which contains the first exogenous nucleic acid molecule stably integrated in its genome. In an aspect of this embodiment, the transgenic plant further contains, integrated in its genome, a second exogenous nucleic acid molecule (comprising a nucleotide sequence encoding a polypeptide 10 encoded by the gene of interest) operably linked to a second heterologous promoter, wherein, upon expression of the second exogenous nucleic acid molecule from the second heterologous promoter, the wild type phenotype is restored. In some embodiments, the present invention addresses the difficulty in 15 propagating a plant having a homozygous recessive reproductive trait without losing the homozygous recessive condition in the resulting progeny. This may be accomplished by introducing into a plant at least one restoring transgene construct, operably linking (1) a first nucleotide sequence comprising a functional copy of a gene that complements the mutant phenotypic trait produced by the 20 homozygous recessive condition with (2) a second functional nucleotide sequence which interferes with the formation, function, or dispersal of the male gametes of the plant and is operably linked to a male-gamete-tissue-preferred promoter. This construct is maintained in the hemizygous state and a plant containing such a construct is referred to herein as a maintainer. When the maintainer plant 25 containing such a linked construct is used as a pollen donor to fertilize the homozygous recessive plant, the only viable male gametes provided to the homozygous recessive plant are those which contain the recessive allele, and do not contain any component of the transgene construct. None of the pollen grains which contain the restoring transgene construct are viable, due to the action of the 30 linked second gene that prevents the formation of viable pollen. Therefore, the progeny resulting from such a sexual cross are non transgenic with respect to this transgene construct. 19 While no viable pollen produced by the maintainer contains the restoring transgene construct, 50% of the ovules (the female gamete) of the maintainer will contain the restoring transgene construct. Therefore, the maintainer can be propagated by self-fertilization, with the restoring transgene construct segregating 5 such that it will be contained in 50% of the seed of the ear of a self fertilized maintainer. By linking the restoring transgene construct with a selectable marker, the 50% of the seed containing the transgene can be isolated to propagate the maintainer population, which remains homozygous for the recessive gene and hemizygous for the restoring transgene construct. 10 In a further embodiment, if the female gamete is prohibited from being formed or functional, it will be desirable to link the gene capable of complementing this mutant phenotype with an inducible promoter to aid in maintenance of the maintainer plant. Such a plant, when exposed to the inducing condition, will have female fertility restored, and the plant may then be self fertilized to produce 15 progeny having the both the desired recessive mutant trait and the restoring transgene construct. While the invention is exemplified in plants, a person of skill in the art would recognize its applicability to other non-human organisms, including mammals. For example, the invention encompasses a method of suppressing a phenotype in 20 progeny of a parental pair of non-human organisms, wherein (a) said phenotype is expressed in each of said parents; (b) the genome of each parent is manipulated so as to inactivate a gene affecting the phenotype of interest; and (c) the gene inactivated in the first parent encodes a different gene product than the gene inactivated in the second parent. 25 DETAILED DESCRIPTION OF THE INVENTION Embodiments of the invention reflect the determination that the genotype of an organism can be modified to contain dominant suppressor alleles or transgene constructs that suppress (i.e., reduce, but not ablate) the activity of a gene, 30 wherein the phenotype of the organism is not substantially affected. In some embodiments, the present invention is exemplified with respect to plant fertility, and more particularly with respect to plant male fertility. For example, plants may be genetically modified to contain a transgene construct 20 encoding hairpin RNA (hpRNA) molecules that suppress the expression of an endogenous male fertility gene without rendering the plant male sterile. In one example, Gene A and Gene B modulate sequential (though not necessarily consecutive) steps in a pathway leading to a product. In a first plant, 5 Gene A is suppressed so as to reduce, but not ablate, Gene A activity. The pathway is not substantially inhibited, and thus the phenotype of said first plant is not affected. In a second plant, Gene B is suppressed so as to reduce, but not ablate, Gene B activity. The pathway is not substantially inhibited, and thus the phenotype of said second plant is not affected. In progeny of a cross of said first 10 and second plants, the combination of suppression of Gene A and Gene B leads to loss of the product of the pathway and a change in phenotype. Suppression of Gene A and/or Gene B could be accomplished by use of hairpin constructs (hpRNA) as described elsewhere herein. In another example, Gene A and Gene B modulate steps of convergent 15 pathways prior to the point of convergence, and the converged pathway leads to a product. In a first plant, Gene A is suppressed so as to reduce, but not ablate, Gene A activity, and the phenotype of said first plant is not affected. In a second plant, Gene B is suppressed so as to reduce, but not ablate, Gene B activity, and the phenotype of said second plant is not affected. In progeny of a cross of said 20 first and second plants, the combination of suppression of Gene A and Gene B leads to loss of the product of the convergent pathways. Suppression of Gene A and/or Gene B could be accomplished by use of hairpin constructs (hpRNA) as described elsewhere herein. In certain embodiments, Gene A and Gene B modulate steps of pathways 25 involved in plant fertility. In this way, for example, crosses of phenotypically fertile plants expressing targeted hpRNA molecules can generate male sterile plants. For example, parental plants having a homozygous recessive male sterile genotype can be transformed such that each expresses a restorer male fertility gene from different heterologous promoters and hpRNAs that suppress 30 expression of the restorer gene in the other parental plant. Such parental plants, which are fertile, can be crossed with each other to generate male sterile plants. This is exemplified by a pair of male-fertile plants, A and B. Each has a homozygous recessive male sterile genotype, ms45ms45. Plant A is transformed 21 with, in single or multiple constructs, a 5126 promoter operably linked to a restorer MS45 gene, and an hpRNA specific for the BS7 promoter. Plant B is transformed with, in single or multiple constructs, a BS7 promoter operably linked to a restorer MS45 gene, and an hpRNA specific for the 5126 promoter. Plant A and Plant B 5 are each male-fertile due to the presence of the MS45 restorer. In a cross of Plant A and Plant B, restoration of fertility is reversed due to the action of the complementing hairpin constructs targeted to the respective promoters driving the restorer gene, and the progeny of said cross are male-sterile. Such progeny are useful as females in hybrid production. Wild-type pollen can restore fertility in the 10 hybrid due to the recessive nature of the ms45 allele. Certain embodiments of the invention comprise a transgenic non-human organism having a homozygous recessive genotype that results in absence of a particular phenotype of interest, said organism further comprising (a) a first exogenous nucleic acid molecule comprising a restorer gene for the particular 15 phenotype, operably linked to a first promoter; and (b) a second exogenous nucleic acid molecule comprising a second promoter operably linked to a nucleotide sequence encoding a first hairpin ribonucleic acid molecule (hpRNA), wherein the first hpRNA comprises a nucleotide sequence of the first promoter or a nucleotide sequence of a third promoter, wherein said transgenic non-human 20 organism exhibits the phenotype of interest. The agriculture industry produces crops that are used to feed humans and animals, and that are further used in other industries to prepare products as diverse as adhesives and explosives. Maize (corn), for example, is used as human food, livestock feed (e.g., beef cattle, dairy cattle, hogs, and poultry feed), 25 and a raw material in industry. Food uses of maize include consumption of maize kernels as well as products of dry-milling and wet-milling industries (e.g., grits, meal, flour, maize starch, maize syrups, and dextrose). Maize oil is recovered from maize germ, which is a by-product of the dry-milling and wet-milling industries. Industrial uses of maize include production of ethanol, maize starch in 30 the wet-milling industry and maize flour in the dry-milling industry. The industrial applications of maize starch and flour are based on their functional properties, including, for example, viscosity, film formation, adhesive properties, and ability to suspend particles. Maize starch and flour have application in the paper and textile 22 industries, and also are used in adhesives, building materials, foundry binders, laundry starches, explosives, oil-well muds, and other mining applications. Many crop plants, including rice, wheat, maize, tomatoes, and melons are grown as hybrids, which exhibit greater vigor and improved qualities as compared 5 to the parental plants. The development of hybrids in a plant breeding program requires, in general, the development of homozygous inbred lines, the crossing of these lines, and the evaluation of the crosses. Pedigree breeding and recurrent selection breeding methods are used to develop inbred lines from breeding populations. For example, maize plant breeding programs combine the genetic 10 backgrounds from two or more inbred lines (or various other germplasm sources) into breeding pools, from which new inbred lines are developed by self-pollinating (selfing) and selection of desired phenotypes. The selected inbreds then are crossed with other inbred lines and the hybrids from these crosses are evaluated to determine which of those have commercial potential. As such, plant breeding 15 and hybrid development are expensive and time-consuming processes. Pedigree breeding starts with the crossing of two genotypes, each of which may have one or more desirable characteristics that is lacking in the other or which complements the other. If the two original parents do not provide all the desired characteristics, other sources can be included in the breeding population. 20 Using this method, superior plants are selected and selfed in successive generations until homogeneous plant lines are obtained. Recurrent selection breeding such as backcrossing can be used to improve an inbred line and a hybrid can be made using the inbreds. Backcrossing can be used to transfer a specific desirable trait from one inbred or source to a second inbred that lacks that trait, for 25 example, by first crossing a superior inbred (recurrent parent) to a donor inbred (non-recurrent parent) that carries the appropriate gene (or genes) for the trait in question, crossing the progeny of the first cross back to the superior recurrent parent, and selecting in the resultant progeny for the desired trait to be transferred from the non-recurrent parent. After five or more backcross generations with 30 selection for the desired trait, the progeny are homozygous for loci controlling the characteristic being transferred, and are like the superior parent for essentially all other genes. The last backcross generation is selfed to give pure breeding progeny for the gene being transferred. 23 A single cross hybrid (F1) results from the cross of two inbred lines (P1 and P2), each of which has a genotype that complements the genotype of the other. In the development of commercial hybrids in a maize plant breeding program, for example, only F1 hybrid plants are sought, as they are more vigorous than their 5 inbred parents. This hybrid vigor (heterosis) can be manifested in many polygenic traits such as increased vegetative growth and increased yield. The development of a hybrid in a maize plant breeding program, for example, involves the selection of plants from various germplasm pools for initial breeding crosses; the selfing of the selected plants from the breeding crosses for several generations to produce a 10 series of inbred lines, which, although different from each other, breed true and are highly uniform; and crossing the selected inbred lines with different inbred lines to produce the hybrid F1 progeny. During the inbreeding process in maize, the vigor of the lines decreases, but is restored when two different inbred lines are crossed to produce the hybrid plants. An important consequence of the 15 homozygosity and homogeneity of the inbred lines is that the F1 hybrid between a defined pair of inbred parental plants always is the same. As such, once the inbreds that provide a superior hybrid are identified, the hybrid seed can be reproduced indefinitely as long as the inbred parents are maintained. Hybrid seed production requires elimination or inactivation of pollen 20 produced by the female parent. Incomplete removal or inactivation of the pollen provides the potential for selfing, raising the risk that inadvertently self-pollinated seed will unintentionally be harvested and packaged with hybrid seed. Once the seed is planted, the selfed plants can be identified and selected; the selfed plants are genetically equivalent to the female inbred line used to produce the hybrid. 25 Typically, the selfed plants are identified and selected based on their decreased vigor. For example, female selfed plants of maize are identified by their less vigorous appearance for vegetative and/or reproductive characteristics, including shorter plant height, small ear size, ear and kernel shape, cob color, or other characteristics. Selfed lines also can be identified using molecular marker 30 analyses (see, e.g., Smith and Wych, (1995) Seed Sci. Technol. 14:1-8). Using such methods, the homozygosity of the self-pollinated line can be verified by analyzing allelic composition at various loci in the genome. 24 Because hybrid plants are important and valuable field crops, plant breeders are continually working to develop high-yielding hybrids that are agronomically sound based on stable inbred lines. The availability of such hybrids allows a maximum amount of crop to be produced with the inputs used, while 5 minimizing susceptibility to pests and environmental stresses. To accomplish this goal, the plant breeder must develop superior inbred parental lines for producing hybrids by identifying and selecting genetically unique individuals that occur in a segregating population. The present invention contributes to this goal, for example by providing plants that, when crossed, generate male sterile progeny, 10 which can be used as female parental plants for generating hybrid plants. A large number of genes have been identified as being tassel preferred in their expression pattern using traditional methods and more recent high throughput methods. The correlation of function of these genes with important biochemical or developmental processes that ultimately lead to fertile pollen is 15 arduous when approaches are limited to classical forward or reverse genetic mutational analysis. As disclosed herein, suppression approaches in maize provide an alternative rapid means to identify genes that are directly related to pollen development in maize. The well-characterized maize male fertility gene, MS45, and several anther-preferred genes of unknown function were used to 20 evaluate the efficacy of generating male sterility using post-transcriptional gene silencing (PTGS; see, for example, Kooter, et al., (1999) Trends Plant Sci. 4:340 346) or transcriptional gene silencing (TGS; see, for example, Mette, et al., (2000) EMBO J 19:5194-5201) approaches. To examine PTGS, hairpin-containing RNAi constructs that have stem 25 structures composed of inverted repeats of the anther-expressed cDNA sequences, and a loop containing either a non-homologous coding sequence or a splicable intron from maize, were introduced into maize. To examine TGS as an approach to knock out anther gene function, a second set of constructs was generated in which the promoters of the anther 30 specific gene sequences formed the stem and a non-homologous sequence formed the loop. The constructs were expressed using constitutive promoters and anther-preferred promoters. 25 Contrasting fertility phenotypes were observed, depending on the type of hairpin construct expressed. Plants expressing the PTGS constructs were male fertile. In contrast, plants expressing the TGS constructs were male sterile, and lacked MS45 mRNA and protein. Further, the sterility phenotype of the plants 5 containing the hpRNA specific for the MS45 promoter (i.e., the TGS constructs) was reversed when MS45 was expressed from heterologous promoters in these plants. These results demonstrate that TGS provides a tool for rapidly correlating gene expression with function of unknown genes such as anther-expressed monocot genes. 10 Accordingly, the invention provides breeding pairs of plants, wherein the plants comprising the breeding pair are fertile (i.e., male fertile and female fertile), and wherein progeny produced by crossing the breeding pair of plants are sterile (e.g., male sterile). As disclosed herein, a breeding pair of plants of the invention can include, for example, a first plant having an inactivated first endogenous 15 fertility gene, wherein the first plant is fertile; and a second plant having an inactivated second endogenous fertility gene, wherein the second plant is fertile. Such a breeding pair is characterized, in part, in that if the first endogenous fertility gene is a male fertility gene, then the second endogenous fertility gene also is a male fertility gene; whereas if the first endogenous fertility gene is a female fertility 20 gene, then the second endogenous fertility gene also is a female fertility gene. The methods of the invention may be embodied to impact male fertility, female fertility, or other traits as listed elsewhere herein, including photosynthetic efficiency and plant architecture. As used herein, the term "endogenous", when used in reference to a gene, 25 means a gene that is normally present in the genome of cells of a specified organism, and is present in its normal state in the cells (i.e., present in the genome in the state in which it normally is present in nature). The term "exogenous" is used herein to refer to any material that is introduced into a cell. The term "exogenous nucleic acid molecule" or "transgene" refers to any nucleic acid 30 molecule that either is not normally present in a cell genome or is introduced into a cell. Such exogenous nucleic acid molecules generally are recombinant nucleic acid molecules, which are generated using recombinant DNA methods as disclosed herein or otherwise known in the art. In various embodiments, a 26 transgenic non-human organism as disclosed herein, can contain, for example, a first transgene and a second transgene. Such first and second transgenes can be introduced into a cell, for example, a progenitor cell of a transgenic organism, either as individual nucleic acid molecules or as a single unit (e.g., contained in 5 different vectors or contained in a single vector, respectively). In either case, confirmation may be made that a cell from which the transgenic organism is to be derived contains both of the transgenes using routine and well-known methods such as expression of marker genes or nucleic acid hybridization or PCR analysis. Alternatively, or additionally, confirmation of the presence of transgenes may 10 occur later, for example, after regeneration of a plant from a putatively transformed cell. An endogenous fertility gene of a plant of a breeding pair of the invention can be inactivated due, for example, (1) to a mutation of the endogenous gene such that the function of a product encoded by the gene is suppressed (e.g., the 15 gene product is not expressed or is expressed at a level that is insufficient to mediate its full effect in the plant or plant cell); or (2) to expression of an exogenous nucleic acid molecule that reduces or inhibits expression of the gene product encoded by the endogenous gene. As such, the term "inactivated" is used broadly herein to refer to any manipulation of an endogenous gene, or a cell 20 containing the gene, such that the function mediated by a product encoded by the gene is suppressed. It should further be recognized that, regardless of whether the inactivated endogenous gene has reduced activity or is completely inactive, the desired relevant phenotype is maintained. As such, reference to an inactivated male fertility gene in a parental plant defined as having a male fertile 25 phenotype can include, for example, a male fertility gene that is expressed at a level that is lower than normal, but sufficient to maintain fertility of the parental plant, or a male fertility gene that is completely inactive, and wherein fertility of the parental plant is maintained due to expression of a second gene product. Mutation of an endogenous gene that results in suppression of the gene 30 function can be effected, for example, by deleting or inserting one or a few nucleotides into the nucleotide sequence of the gene (e.g., into the promoter, coding sequence, or intron), by substituting one or a few nucleotides in the gene with other different nucleotides, or by knocking out the gene (e.g., by homologous 27 recombination using an appropriate targeting vector). Plants having such mutations in both alleles can be obtained, for example, using crossing methods as disclosed herein or otherwise known in the art. Inactivation of an endogenous gene that results in suppression of the gene function also can be effected by 5 introduction into cells of the plant of a transgene that suppresses expression of the endogenous gene or a product expressed from the endogenous gene (e.g., an encoded polypeptide), or a transgene that encodes a product (e.g., an RNA) that suppresses expression of the endogenous gene or a product encoded by the endogenous gene in cells of the plant in which the gene normally is expressed. 10 By way of example, inactivation of endogenous fertility genes can be effected by expressing hairpin RNA molecules (hpRNA) in cells of the reproductive organs of a plant (e.g., stamen cells where the endogenous fertility genes to be inactivated are male fertility genes). The stamen, which comprises the male reproductive organ of plants, includes various cell types, including, for example, 15 the filament, anther, tapetum, and pollen. The hpRNAs useful for purposes of the present invention are designed to include inverted repeats of a promoter of the endogenous gene to be inactivated; hpRNAs having the ability to suppress expression of a gene have been described (see, e.g., Matzke, et al., (2001) Curr. Opin. Genet. Devel. 11:221-227; Scheid, et al., (2002) Proc. Natl. Acad. Sci., USA 20 99:13659-13662; Waterhouse and Helliwell (2003) Nature Reviews Genetics 4:29 38; Aufsaftz, et al., (2002) Proc. Nat'. Acad. Sci. 99(4):16499-16506; Sijen, et al., (2001) Curr. Biol. 11:436-440). As disclosed herein, the use of stamen-specific or stamen-preferred promoters, including anther-specific promoters, pollen-specific promoters, tapetum-specific promoters, and the like, allows for expression of 25 hpRNAs in plants (particularly in male reproductive cells of the plant), wherein the hpRNA suppresses expression of an endogenous fertility gene, thereby inactivating expression of the endogenous fertility gene. As such, suppression using an hpRNA specific for a promoter that directs expression of a fertility gene provides a means to inactivate an endogenous fertility gene. 30 In one embodiment, a breeding pair of plants of the invention can include a first plant, which contains a first exogenous nucleic acid molecule comprising a promoter operably linked to a nucleotide sequence encoding a first hpRNA, wherein the first hpRNA comprises a nucleotide sequence comprising an inverted 28 repeat of the first endogenous fertility gene promoter, and wherein, upon expression, the first hpRNA suppresses expression of the first endogenous fertility gene; and a second plant, which contains a second exogenous nucleic acid molecule comprising a promoter operably linked to a nucleotide sequence 5 encoding a second hpRNA, wherein the second hpRNA comprises a nucleotide sequence comprising an inverted repeat of the second endogenous fertility gene promoter, and wherein, upon expression, the second hpRNA suppresses expression of the second endogenous fertility gene. According to the present invention, the first and/or second exogenous nucleic acid can, but need not, be 10 stably integrated in the genome of cells of the first and/or second plant, respectively. Such first and second plants of the breeding pair are characterized, in part, in that each is fertile, and is further characterized in that, when crossed, the progeny of such cross is sterile (e.g., male sterile). The terms "first", "second", "third", and "fourth" are used herein only to 15 clarify relationships of various cells and molecules or to distinguish different types of a molecule, and, unless specifically indicated otherwise, are not intended to indicate any particular order, importance, or quantitative feature. For example, and unless specifically indicated otherwise, reference to a "first" plant containing a "first endogenous gene" is intended to indicate only that the specified gene is 20 present in the specified plant. By way of a second example, and unless specifically indicated otherwise, reference to a "first plant containing a first transgene and a second transgene" is intended to indicate only that said plant contains two exogenous nucleic acid molecules that are different from each other. As used herein, the term "nucleic acid molecule" or "polynucleotide" or 25 "nucleotide sequence" refers broadly to a sequence of two or more deoxyribonucleotides or ribonucleotides that are linked together by a phosphodiester bond. As such, the terms include RNA and DNA, which can be a gene or a portion thereof, a cDNA, a synthetic polydeoxyribonucleic acid sequence, or the like, and can be single-stranded or double-stranded, as well as a 30 DNA/RNA hybrid. Furthermore, the terms are used herein to include naturally occurring nucleic acid molecules, which can be isolated from a cell, as well as synthetic molecules, which can be prepared, for example, by methods of chemical synthesis or by enzymatic methods such as by the polymerase chain reaction 29 (PCR). The term "recombinant" is used herein to refer to a nucleic acid molecule that is manipulated outside of a cell, including two or more linked heterologous nucleotide sequences. The term "heterologous" is used herein to refer to nucleotide sequence that are not normally linked in nature or, if linked, are linked 5 in a different manner than that disclosed. For example, reference to a transgene comprising a coding sequence operably linked to a heterologous promoter means that the promoter is one that does not normally direct expression of the nucleotide sequence in a specified cell in nature. In general, the nucleotides comprising an exogenous nucleic acid molecule 10 (transgene) are naturally occurring deoxyribonucleotides, such as adenine, cytosine, guanine or thymine linked to 2'-deoxyribose, or ribonucleotides such as adenine, cytosine, guanine or uracil linked to ribose. However, a nucleic acid molecule or nucleotide sequence also can contain nucleotide analogs, including non-naturally-occurring synthetic nucleotides or modified naturally-occurring 15 nucleotides. Such nucleotide analogs are well known in the art and commercially available, as are polynucleotides containing such nucleotide analogs (Lin, et al., Nucl. Acids Res. 22:5220-5234, 1994; Jellinek, et al., (1995) Biochemistry 34:11363-11372; Pagratis, et al., (1997) Nature Biotechnol. 15:68-73). Similarly, the covalent bond linking the nucleotides of a nucleotide sequence generally is a 20 phosphodiester bond, but also can be, for example, a thiodiester bond, a phosphorothioate bond, a peptide-like bond or any other bond known to those in the art as useful for linking nucleotides to produce synthetic polynucleotides (see, for example, Tam, et al., (1994) Nucl. Acids Res. 22:977-986; Ecker and Crooke, (1995) BioTechnology 13:351360). The incorporation of non-naturally occurring 25 nucleotide analogs or bonds linking the nucleotides or analogs can be particularly useful where the nucleic acid molecule is to be exposed to an environment that can contain a nucleolytic activity, including, for example, a plant tissue culture medium or in a plant cell, since the modified molecules can be less susceptible to degradation. 30 A nucleotide sequence containing naturally-occurring nucleotides and phosphodiester bonds can be chemically synthesized or can be produced using recombinant DNA methods, using an appropriate polynucleotide as a template. In comparison, a nucleotide sequence containing nucleotide analogs or covalent 30 bonds other than phosphodiester bonds generally is chemically synthesized, although an enzyme such as T7 polymerase can incorporate certain types of nucleotide analogs into a polynucleotide and, therefore, can be used to produce such a polynucleotide recombinantly from an appropriate template (Jellinek, et al., 5 supra, 1995). An exogenous nucleic acid molecule can comprise operably linked nucleotide sequences such as a promoter operably linked to a nucleotide sequence encoding an hpRNA, or a promoter linked to a nucleotide sequence encoding a male fertility gene product. The term "operably linked" is used herein 10 to refer to two or more molecules that, when joined together, generate a molecule that shares features characteristic of each of the individual molecules. For example, when used in reference to a promoter (or other regulatory element) and a second nucleotide sequence encoding a gene product, the term "operably linked" means that the regulatory element is positioned with respect to the second 15 nucleotide sequence such that transcription or translation of the isolated nucleotide sequence is under the influence of the regulatory element. When used in reference to a fusion protein comprising a first polypeptide and one or more additional polypeptides, the term "operably linked" means that each polypeptide component of the fusion (chimeric) protein exhibits some or all of a function that is 20 characteristic of the polypeptide component (e.g., a cell compartment localization domain and a enzymatic activity). In another example, two operably linked nucleotide sequences, each of which encodes a polypeptide, can be such that the coding sequences are in frame and, therefore, upon transcription and translation, result in production of two polypeptides, which can be two separate polypeptides 25 or a fusion protein. Where an exogenous nucleic acid molecule includes a promoter operably linked to a nucleotide sequence encoding an RNA or polypeptide of interest, the exogenous nucleic acid molecule can be referred to as an expressible exogenous nucleic acid molecule (or transgene). The term "expressible" is used herein 30 because, while such a nucleotide sequence can be expressed from the promoter, it need not necessarily actually be expressed at a particular point in time. For example, where a promoter of an expressible transgene is an inducible promoter lacking basal activity, an operably linked nucleotide sequence encoding an RNA or 31 polypeptide of interest is expressed only following exposure to an appropriate inducing agent. Transcriptional promoters generally act in a position- and orientation dependent manner, and usually are positioned at or within about five nucleotides 5 to about fifty nucleotides 5' (upstream) of the start site of transcription of a gene in nature. In comparison, enhancers can act in a relatively position- or orientation independent manner, and can be positioned several hundred or thousand nucleotides upstream or downstream from a transcription start site, or in an intron within the coding region of a gene, yet still be operably linked to the coding region 10 so as to enhance transcription. The relative positions and orientations of various regulatory elements in addition to a promoter, including the positioning of a transcribed regulatory sequence such as an internal ribosome entry site, or a translated regulatory element such as a cell compartmentalization domain in an appropriate reading frame, are well known, and methods for operably linking such 15 elements are routine in the art (see, for example, Sambrook, et al., "Molecular Cloning: A laboratory manual" (Cold Spring Harbor Laboratory Press 1989); Ausubel, et al., "Current Protocols in Molecular Biology" (John Wiley and Sons, Baltimore MD 1987, and supplements through 1995)). Promoters useful for expressing a nucleic acid molecule of interest can be 20 any of a range of naturally-occurring promoters known to be operative in plants or animals, as desired. Promoters that direct expression in cells of male or female reproductive organs of a plant are useful for generating a transgenic plant or breeding pair of plants of the invention. The promoters useful in the present invention can include constitutive promoters, which generally are active in most or 25 all tissues of a plant; inducible promoters, which generally are inactive or exhibit a low basal level of expression, and can be induced to a relatively high activity upon contact of cells with an appropriate inducing agent; tissue-specific (or tissue preferred) promoters, which generally are expressed in only one or a few particular cell types (e.g., plant anther cells); and developmental- or stage-specific 30 promoters, which are active only during a defined period during the growth or development of a plant. Often promoters can be modified, if necessary, to vary the expression level. Certain embodiments comprise promoters exogenous to the species being manipulated. For example, the Ms45 gene introduced into 32 ms45ms45 maize germplasm may be driven by a promoter isolated from another plant species; a hairpin construct may then be designed to target the exogenous plant promoter, reducing the possibility of hairpin interaction with non-target, endogenous maize promoters. 5 Exemplary constitutive promoters include the 35S cauliflower mosaic virus (CaMV) promoter promoter (Odell, et al., (1985) Nature 313:810-812), the maize ubiquitin promoter (Christensen, et al., (1989) Plant Mol. Biol. 12:619-632 and Christensen, et al., (1992) Plant Mol. Biol. 18:675-689); the core promoter of the Rsyn7 promoter and other constitutive promoters disclosed in WO 99/43838 and 10 U.S. Patent No. 6,072,050; rice actin (McElroy, et al., (1990) Plant Cell 2:163 171); pEMU (Last, et al., (1991) Theor. Apple. Genet. 81:581-588); MAS (Velten, et al., (1984) EMBO J. 3:2723-2730); ALS promoter (U.S. Patent No. 5,659,026); rice actin promoter (U.S. Pat. No. 5,641,876; WO 00/70067), maize histone promoter (Brignon, et al., (1993) Plant Mol Bio 22(6):1007-1015; Rasco-Gaunt, et al., (2003) 15 Plant Cell Rep. 21(6):569-576) and the like. Other constitutive promoters include, for example, those described in U.S. Patent Numbers 5,608,144 and 6,177,611, and PCT publication WO 03/102198. Tissue-specific, tissue-preferred, or stage-specific regulatory elements further include, for example, the AGL8/FRUITFULL regulatory element, which is 20 activated upon floral induction (Hempel, et al., (1997) Development 124:3845 3853); root-specific regulatory elements such as the regulatory elements from the RCP1 gene and the LRP1 gene (Tsugeki and Fedoroff, (1999) Proc. Natl. Acad., USA 96:12941-12946, Smith and Fedoroff, (1995) Plant Cell 7:735-745); flower specific regulatory elements such as the regulatory elements from the LEAFY 25 gene and the APETALA 1 gene (Blazquez, et al., (1997) Development 124:3835 3844; Hempel, et al., supra, 1997); seed-specific regulatory elements such as the regulatory element from the oleosin gene (Plant, et al., (1994) Plant Mol. Biol. 25:193-205), and dehiscence zone specific regulatory element. Additional tissue specific or stage-specific regulatory elements include the Zn13 promoter, which is 30 a pollen-specific promoter (Hamilton, et al., (1992) Plant Mol. Biol. 18:211-218); the UNUSUAL FLORAL ORGANS (UFO) promoter, which is active in apical shoot meristem; the promoter active in shoot meristems (Atanassova, et al., (1992) Plant J. 2:291), the cdc2 promoter and cyc07 promoter (see, for example, Ito, et al., 33 (1994) Plant Mol. Biol. 24:863-878; Martinez, et al., (1992) Proc. Natl. Acad. Sci., USA 89:7360); the meristematic-preferred meri-5 and H3 promoters (Medford, et al., (1991) Plant Cell 3:359; Terada, et al., (1993) Plant J. 3:241,); meristematic and phloem-preferred promoters of Myb-related genes in barley (Wissenbach, et 5 al., (1993) Plant J. 4:411); Arabidopsis cyc3aAt and cyc1 At (Shaul, et al., (1996) Proc. Natl. Acad. Sci. 93:4868-4872); C. roseus cyclins CYS and CYM (Ito, et al., (1997) Plant J. 11:983-992); and Nicotiana CyclinB1 (Trehin, et al., (1997) Plant Mol. Biol. 35:667-672); the promoter of the APETALA3 gene, which is active in floral meristems (Jack, et al., (1994) Cell 76:703; Hempel, et al., supra, 1997); a 10 promoter of an agamous-like (AGL) family member, for example, AGL8, which is active in shoot meristem upon the transition to flowering (Hempel, et al., supra, 1997); floral abscission zone promoters; L1-specific promoters; the ripening enhanced tomato polygalacturonase promoter (Nicholass, et al., (1995) Plant Mol. Biol. 28:423-435), the E8 promoter (Deikman, et al., (1992) Plant Physiol. 15 100:2013-2017), and the fruit-specific 2A1 promoter, U2 and U5 snRNA promoters from maize, the Z4 promoter from a gene encoding the Z4 22 kD zein protein, the Z10 promoter from a gene encoding a 10 kD zein protein, a Z27 promoter from a gene encoding a 27 kD zein protein, the A20 promoter from the gene encoding a 19 kD zein protein, and the like. Additional tissue-specific promoters can be 20 isolated using well known methods (see, e.g., U.S. Patent Number 5,589,379). Shoot-preferred promoters include shoot meristem-preferred promoters such as promoters disclosed in Weigel, et al., (1992) Cell 69:843-859 (Accession No. M91208); Accession No. AJ131822; Accession No. Z71981; Accession No. AF049870 and shoot-preferred promoters disclosed in McAvoy, et al., (2003) Acta 25 Hort. (ISHS) 625:379-385. Inflorescence-preferred promoters include the promoter of chalcone synthase (Van der Meer, et al., (1992) Plant J. 2(4):525 535), anther-specific LAT52 (Twell, et al., (1989) Mol. Gen. Genet. 217:240-245), pollen-specific Bp4 (Albani, et al., (1990) Plant Mol Biol. 15:605, maize pollen specific gene Zml 3 (Hamilton, et al., (1992) Plant Mol. Biol. 18:211-218; Guerrero, 30 et al., (1993) Mol. Gen. Genet. 224:161-168), microspore-specific promoters such as the apg gene promoter (Twell, et al., (1993) Sex. Plant Reprod. 6:217-224), and tapetum-specific promoters such as the TA29 gene promoter (Mariani, et al., (1990) Nature 347:737; U.S. Patent Number 6,372,967), and other stamen 34 specific promoters such as the MS45 gene promoter, 5126 gene promoter, BS7 gene promoter, PG47 gene promoter (US 5,412,085; US 5,545,546; Plant J 3(2):261-271 (1993)), SGB6 gene promoter (US 5,470,359), G9 gene promoter (5,8937,850; 5,589,610), SB200 gene promoter (WO 02/26789), or the like (see, 5 Example 1). Tissue-preferred promoters of interest further include a sunflower pollen-expressed gene SF3 (Baltz, et al., (1992) The Plant Journal 2:713-721), B. napus pollen specific genes (Arnoldo, et al., (1992) J. Cell. Biochem, Abstract No. Y1 01204). Tissue-preferred promoters further include those reported by Yamamoto, et al., (1997) Plant J. 12(2):255-265 (psaDb); Kawamata, et al., (1997) 10 Plant Cell Physiol. 38(7):792-803 (PsPAL1); Hansen, et al., (1997) Mol. Gen Genet. 254(3):337-343 (ORF1 3); Russell, et al., (1997) Transgenic Res. 6(2):157 168 (waxy or ZmGBS; 27kDa zein, ZmZ27; osAGP; osGT1) ; Rinehart, et al., (1996) Plant Physiol. 112(3):1331-1341 (Fbl2A from cotton); Van Camp, et al., (1996) Plant Physiol. 112(2):525-535 (Nicotiana SodAl and SodA2); Canevascini, 15 et al., (1996) Plant Physiol. 112(2):513-524 (Nicotiana Itpl); Yamamoto, et al., (1994) Plant Cell Physiol. 35(5):773-778 (Pinus cab-6 promoter); Lam (1994) Results Probl. Cell Differ. 20:181-196; Orozco, et al., (1993) Plant Mol Biol. 23(6):1129-1138 (spinach rubisco activase (Rca)); Matsuoka, et al., (1993) Proc Natl. Acad. Sci. USA 90(20):9586-9590 (PPDK promoter); and Guevara-Garcia, et 20 al., (1993) Plant J. 4(3):495-505 (Agrobacterium pmas promoter). A tissue specific promoter that is active in cells of male or female reproductive organs can be particularly useful in certain aspects of the present invention. "Seed-preferred" promoters include both "seed-specific" promoters (those promoters active during seed development such as promoters of seed storage 25 proteins) as well as "seed-germinating" promoters (those promoters active during seed germination). See, Thompson, et al., (1989) BioEssays 10:108. Such seed preferred promoters include, but are not limited to, Cim1 (cytokinin-induced message), cZ19B1 (maize 19 kDa zein), miips (myo-inositol-1-phosphate synthase); see WO 00/11177 and U.S. Patent Number 6,225,529. Gamma-zein is 30 an endosperm-specific promoter. Globulin-1 (Glob-1) is a representative embryo specific promoter. For dicots, seed-specific promoters include, but are not limited to, bean p-phaseolin, napin, p-conglycinin, soybean lectin, cruciferin, and the like. For monocots, seed-specific promoters include, but are not limited to, maize 15 35 kDa zein, 22 kDa zein, 27 kDa zein, gamma-zein, waxy, shrunken 1, shrunken 2, globulin 1, etc. See also, WO 00/12733 and US Patent 6,528,704, where seed preferred promoters from end1 and end2 genes are disclosed. Additional embryo specific promoters are disclosed in Sato, et al., (1996) Proc. Natl. Acad. Sci. 5 93:8117-8122 (rice homeobox, OSH1); and Postma-Haarsma, et al., (1999) Plant Mol. Biol. 39:257-71 (rice KNOX genes). Additional endosperm specific promoters are disclosed in Albani, et al., (1984) EMBO 3:1405-15; Albani, et al., (1999) Theor. App. Gen. 98:1253-62; Albani, et al., (1993) Plant J. 4:343-55; Mena, et al., (1998) The Plant Journal 116:53-62 (barley DOF); Opsahl-Ferstad, et al., 10 (1997) Plant J 12:235-46 (maize Esr); and Wu, et al., (1998) Plant Cell Physiology 39:885-889 (rice GluA-3, GluB-1, NRP33, RAG-1). An inducible regulatory element is one that is capable of directly or indirectly activating transcription of one or more DNA sequences or genes in response to an inducer. The inducer can be a chemical agent such as a protein, 15 metabolite, growth regulator, herbicide or phenolic compound; or a physiological stress, such as that imposed directly by heat, cold, salt, or toxic elements, or indirectly through the action of a pathogen or disease agent such as a virus; or other biological or physical agent or environmental condition. A plant cell containing an inducible regulatory element may be exposed to an inducer by 20 externally applying the inducer to the cell or plant such as by spraying, watering, heating or similar methods. An inducing agent useful for inducing expression from an inducible promoter is selected based on the particular inducible regulatory element. In response to exposure to an inducing agent, transcription from the inducible regulatory element generally is initiated de novo or is increased above a 25 basal or constitutive level of expression. Typically the protein factor that binds specifically to an inducible regulatory element to activate transcription is present in an inactive form which is then directly or indirectly converted to the active form by the inducer. Any inducible promoter can be used in the instant invention (See, Ward, et al., (1993) Plant Mol. Biol. 22: 361-366). 30 Examples of inducible regulatory elements include a metallothionein regulatory element, a copper-inducible regulatory element, or a tetracycline inducible regulatory element, the transcription from which can be effected in response to divalent metal ions, copper or tetracycline, respectively (Furst, et al., 36 (1988) Cell 55:705-717; Mett, et al.,(1993) Proc. Natl. Acad. Sci., USA 90:4567 4571; Gatz, et al., (1992) Plant J. 2:397-404; Roder, et al., (1994) Mol. Gen. Genet. 243:32-38). Inducible regulatory elements also include an ecdysone regulatory element or a glucocorticoid regulatory element, the transcription from 5 which can be effected in response to ecdysone or other steroid (Christopherson, et al., (1992) Proc. Natl. Acad. Sci., USA 89:6314-6318; Schena, et al., (1991) Proc. Natl. Acad. Sci., USA 88:10421-10425; U.S. Patent Number 6,504,082); a cold responsive regulatory element or a heat shock regulatory element, the transcription of which can be effected in response to exposure to cold or heat, 10 respectively (Takahashi, et al., (1992) Plant Physiol. 99:383-390); the promoter of the alcohol dehydrogenase gene (Gerlach, et al., (1982) PNAS USA 79:2981 2985; Walker, et al., (1987) PNAS 84(19):6624-6628), inducible by anaerobic conditions; and the light-inducible promoter derived from the pea rbcS gene or pea psaDb gene (Yamamoto, et al., (1997) Plant J. 12(2):255-265); a light-inducible 15 regulatory element (Feinbaum, et al., (1991) Mol. Gen. Genet. 226:449; Lam and Chua, (1990) Science 248:471; Matsuoka, et al., (1993) Proc. Natl. Acad. Sci. USA 90(20):9586-9590; Orozco, et al., (1993) Plant Mol. Bio. 23(6):1129-1138), a plant hormone inducible regulatory element (Yamaguchi-Shinozaki, et al., (1990) Plant Mol. Biol. 15:905; Kares, et al., (1990) Plant Mol. Biol. 15:225), and the like. 20 An inducible regulatory element also can be the promoter of the maize In2-1 or In2-2 gene, which responds to benzenesulfonamide herbicide safeners (Hershey, et al., (1991) Mol. Gen. Gene. 227:229-237; Gatz, et al., (1994) Mol. Gen. Genet. 243:32-38), and the Tet repressor of transposon Tn10 (Gatz, et al., (1991) Mol. Gen. Genet. 227:229-237). Stress inducible promoters include salt/water stress 25 inducible promoters such as P5CS (Zang, et al., (1997) Plant Sciences 129:81 89); cold-inducible promoters, such as, cor 5a (Hajela, et al., (1990) Plant Physiol. 93:1246-1252), corl5b (Wlihelm, et al., (1993) Plant Mol Biol 23:1073-1077), wscl 20 (Ouellet, et al., (1998) FEBS Lett. 423:324-328), ci7 (Kirch, et al., (1997) Plant Mol Biol. 33:897-909), ci21A (Schneider, et al., (1997) Plant Physiol. 30 113:335-45); drought-inducible promoters, such as, Trg-31 (Chaudhary, et al., (1996) Plant Mol. Biol. 30:1247-57), rd29 (Kasuga, et al., (1999) Nature Biotechnology 18:287-291); osmotic inducible promoters, such as Rab17 (Vilardell, et al., (1991) Plant Mol. Biol. 17:985-93) and osmotin (Raghothama, et 37 al., (1993) Plant Mol Biol 23:1117-28); and heat inducible promoters, such as heat shock proteins (Barros, et al., (1992) Plant Mol. 19:665-75; Marrs, et al., (1993) Dev. Genet. 14:27-41), smHSP (Waters, et al., (1996) J. Experimental Botany 47:325-338), and the heat-shock inducible element from the parsley ubiquitin 5 promoter (WO 03/102198). Other stress-inducible promoters include rip2 (U.S. Patent No. 5,332,808 and U.S. Publication No. 2003/0217393) and rd29a (Yamaguchi-Shinozaki, et al., (1993) Mol. Gen. Genetics 236:331-340). Certain promoters are inducible by wounding, including the Agrobacterium pmas promoter (Guevara-Garcia, et al., (1993) Plant J. 4(3):495-505) and the 10 Agrobacterium ORF 3 promoter (Hansen, et al., (1997) Mol. Gen. Genet. 254(3):337-343). Additional regulatory elements active in plant cells and useful in the methods or compositions of the invention include, for example, the spinach nitrite reductase gene regulatory element (Back, et al., Plant Mol. Biol. 17:9, 1991); a 15 gamma zein promoter, an oleosin olel 6 promoter, a globulin I promoter, an actin I promoter, an actin cl promoter, a sucrose synthetase promoter, an INOPS promoter, an EXM5 promoter, a globulin2 promoter, a b-32, ADPG pyrophosphorylase promoter, an Ltpl promoter, an Ltp2 promoter, an oleosin ole17 promoter, an oleosin ole18 promoter, an actin 2 promoter, a pollen-specific 20 protein promoter, a pollen-specific pectate lyase gene promoter or PG47 gene promoter, an anther specific RTS2 gene promoter, SGB6 gene promoter, or G9 gene promoter, a tapetum specific RAB24 gene promoter, an anthranilate synthase alpha subunit promoter, an alpha zein promoter, an anthranilate synthase beta subunit promoter, a dihydrodipicolinate synthase promoter, a Thi I 25 promoter, an alcohol dehydrogenase promoter, a cab binding protein promoter, an H3C4 promoter, a RUBISCO SS starch branching enzyme promoter, an actin3 promoter, an actin7 promoter, a regulatory protein GF14-12 promoter, a ribosomal protein L9 promoter, a cellulose biosynthetic enzyme promoter, an S-adenosyl L-homocysteine hydrolase promoter, a superoxide dismutase promoter, a C 30 kinase receptor promoter, a phosphoglycerate mutase promoter, a root-specific RCc3 mRNA promoter, a glucose-6 phosphate isomerase promoter, a pyrophosphate-fructose 6-phosphate-1-phosphotransferase promoter, a beta ketoacyl-ACP synthase promoter, a 33 kDa photosystem 11 promoter, an oxygen 38 evolving protein promoter, a 69 kDa vacuolar ATPase subunit promoter, a glyceraldehyde-3-phosphate dehydrogenase promoter, an ABA- and ripening inducible-like protein promoter, a phenylalanine ammonia lyase promoter, an adenosine triphosphatase S-adenosyl-L-homocysteine hydrolase promoter, a 5 chalcone synthase promoter, a zein promoter, a globulin-1 promoter, an auxin binding protein promoter, a UDP glucose flavonoid glycosyl-transferase gene promoter, an NTI promoter, an actin promoter, and an opaque 2 promoter. An exogenous nucleic acid molecule can be introduced into a cell as a naked DNA molecule, can be incorporated in a matrix such as a liposome or a 10 particle such as a viral particle, or can be incorporated into a vector. Incorporation of the polynucleotide into a vector can facilitate manipulation of the polynucleotide, or introduction of the polynucleotide into a plant cell. Accordingly, the vector can be derived from a plasmid or can be a viral vector such as a T-DNA vector (Horsch, et al., (1985) Science 227:1229-1231). If desired, the vector can include 15 components of a plant transposable element, for example, a Ds transposon (Bancroft and Dean, (1993) Genetics 134:1221-1229) or an Spm transposon (Aarts, et al., (1995) Mol. Gen. Genet. 247:555-564). In addition to containing the transgene of interest, the vector also can contain various nucleotide sequences that facilitate, for example, rescue of the vector from a transformed plant cell; 20 passage of the vector in a host cell, which can be a plant, animal, bacterial, or insect host cell; or expression of an encoding nucleotide sequence in the vector, including all or a portion of a rescued coding region. As such, a vector can contain any of a number of additional transcription and translation elements, including constitutive and inducible promoters, enhancers, and the like (see, for example, 25 Bitter, et al., (1987) Meth. Enzymol. 153:516-544). For example, a vector can contain elements useful for passage, growth or expression in a bacterial system, including a bacterial origin of replication; a promoter, which can be an inducible promoter; and the like. A vector also can contain one or more restriction endonuclease recognition and cleavage sites, including, for example, a polylinker 30 sequence, to facilitate insertion or removal of a transgene. In addition to, or alternatively to, a nucleotide sequence relevant to a fertility gene (e.g., an hpRNA comprising an inverted repeat of a fertility gene promoter, or a coding sequence of a fertility gene, alone or operably linked to a heterologous 39 promoter), an exogenous nucleic acid molecule, or a vector containing such a transgene, can contain one or more other expressible nucleotide sequences encoding an RNA or a polypeptide of interest. For example, the additional nucleotide sequence can encode an antisense nucleic acid molecule; an enzyme 5 such as p-galactosidase, p-glucuronidase, luciferase, alkaline phosphatase, glutathione a-transferase, chloramphenicol acetyltransferase, guanine xanthine phosphoribosyltransferase, and neomycin phosphotransferase; a viral polypeptide or a peptide portion thereof; or a plant growth factor or hormone. In certain embodiments, the expression vector contains a gene encoding a 10 selection marker which is functionally linked to a promoter that controls transcription initiation. For a general description of plant expression vectors and reporter genes, see, Gruber, et al., "Vectors for Plant Transformation" in Methods of Plant Molecular Biology and Biotechnology 89-119 (CRC Press, 1993). In using the term, it is meant to include all types of selection markers, whether they be 15 scorable or selective. Expression of such a nucleotide sequence can provide a means for selecting for a cell containing the construct, for example, by conferring a desirable phenotype to a plant cell containing the nucleotide sequence. For example, the additional nucleotide sequence can be, or encode, a selectable marker, which, when present or expressed in a plant cell, provides a means to 20 identify the plant cell containing the marker. A selectable marker provides a means for screening a population of organisms or cells of an organism (e.g., plants or plant cells) to identify those having the marker and, therefore, the transgene of interest. A selectable marker generally confers a selective advantage to the cell, or to an organism (e.g., a 25 plant) containing the cell, for example, the ability to grow in the presence of a negative selective agent such as an antibiotic or, for a plant, an herbicide. A selective advantage also can be due, for example, to an enhanced or novel capacity to utilize an added compound as a nutrient, growth factor or energy source. A selective advantage can be conferred by a single polynucleotide, or its 30 expression product, or by a combination of polynucleotides whose expression in a plant cell gives the cell a positive selective advantage, a negative selective advantage, or both. It should be recognized that expression of the transgene of interest (e.g., encoding a hpRNA) also provides a means to select cells containing 40 the encoding nucleotide sequence. However, the use of an additional selectable marker, which, for example, allows a plant cell to survive under otherwise toxic conditions, provides a means to enrich for transformed plant cells containing the desired transgene. Examples of suitable scorable or selection genes known in the 5 art can be found in, for example, Jefferson, et al., (1991) in Plant Molecular Biology Manual, ed. Gelvin, et al., (Kluwer Academic Publishers), pp. 1-33; DeWet, et al., (1987) Mol. Cell. Biol. 7:725-737; Goff, et al., (1990) EMBO J. 9:2517-2522; Kain, et al., (1995) Bio Techniques 19:650-655; and Chiu, et al., (1996) Curr. Biol. 6:325-330. 10 Examples of selectable markers include those that confer resistance to antimetabolites such as herbicides or antibiotics, for example, dihydrofolate reductase, which confers resistance to methotrexate (Reiss, Plant Physiol. (Life Sci. Adv.) 13:143-149, 1994; see also, Herrera Estrella, et al., (1983) Nature 303:209-213; Meijer, et al., (1991) Plant Mol. Biol. 16:807-820); neomycin 15 phosphotransferase, which confers resistance to the aminoglycosides neomycin, kanamycin and paromycin (Herrera-Estrella, (1983) EMBO J. 2:987-995) and hygro, which confers resistance to hygromycin (Marsh, (1984) Gene 32:481-485; see also, Waldron, et al., (1985) Plant Mol. Biol. 5:103-108; Zhijian, et al., (1995) Plant Science 108:219-227); trpB, which allows cells to utilize indole in place of 20 tryptophan; hisD, which allows cells to utilize histinol in place of histidine (Hartman, (1988) Proc. Natl. Acad. Sci., USA 85:8047); mannose-6-phosphate isomerase which allows cells to utilize mannose (WO 94/20627); ornithine decarboxylase, which confers resistance to the ornithine decarboxylase inhibitor, 2-(difluoromethyl)-DL-ornithine (DFMO; McConlogue, 1987, In: Current 25 Communications in Molecular Biology, Cold Spring Harbor Laboratory ed.); and deaminase from Aspergillus terreus, which confers resistance to Blasticidin S (Tamura, (1995) Biosci. Biotechnol. Biochem. 59:2336-2338). Additional selectable markers include, for example, a mutant EPSPV-synthase, which confers glyphosate resistance (Hinchee, et al., (1998) BioTechnology 91:915-922), 30 a mutant acetolactate synthase, which confers imidazolinone or sulfonylurea resistance (Lee, et al., (1988) EMBO J. 7:1241-1248), a mutant psbA, which confers resistance to atrazine (Smeda, et al., (1993) Plant Physiol. 103:911-917), or a mutant protoporphyrinogen oxidase (see, U.S. Patent Number 5,767,373), or 41 other markers conferring resistance to an herbicide such as glufosinate. Examples of suitable selectable marker genes include, but are not limited to, genes encoding resistance to chloramphenicol (Herrera Estrella, et al., (1983) EMBO J. 2:987-992); streptomycin (Jones, et al., (1987) Mol. Gen. Genet. 210:86 5 91); spectinomycin (Bretagne-Sagnard, et al., (1996) Transgenic Res. 5:131-137); bleomycin (Hille, et al., (1990) Plant Mol. Biol. 7:171-176); sulfonamide (Guerineau, et al., (1990) Plant Mol. Biol. 15:127-136); bromoxynil (Stalker, et al., (1988) Science 242:419-423); glyphosate (Shaw, et al., (1986) Science 233:478 481); phosphinothricin (DeBlock, et al., EMBO J. (1987) 6:2513-2518), and the 10 like. One option for use of a selective gene is a glufosinate-resistance encoding DNA and in one embodiment can be the phosphinothricin acetyl transferase ("PAT"), maize optimized PAT gene or bar gene under the control of the CaMV 35S or ubiquitin promoters. The genes confer resistance to bialaphos. See, Gordon-Kamm, et al., Plant Cell (1990) 2:603; Uchimiya, et al., (1993) 15 BioTechnology 11:835; White, et al., (1990) Nucl. Acids Res. 18:1062; Spencer, et al., (1990) Theor. App. Genet. 79:625-631; and Anzai, et al., (1989) Mol. Gen. Gen. 219:492). A version of the PAT gene is the maize optimized PAT gene, described at U.S. Patent Number 6,096,947. In addition, markers that facilitate identification of a plant cell containing the 20 polynucleotide encoding the marker include, for example, luciferase (Giacomin, (1996) Plant Sci. 116:59-72; Scikantha, (1996) J. Bacteriol. 178:121), green fluorescent protein (Gerdes, (1996) FEBS Lett. 389:44-47; Chalfie, et al., (1994) Science 263:802), and other fluorescent protein variants, or B-glucuronidase (Jefferson, (1987) Plant Mol. Biol. Rep. 5:387; Jefferson, et al., (1987) EMBO J. 25 6:3901-3907; Jefferson, (1989) Nature 342(6251):837-838); the maize genes regulating pigment production (Ludwig, et al., (1990) Science 247:449; Grotewold, et al., (1991) PNAS 88:4587-4591; Cocciolone, et al., (2001) Plant J 27(5):467 478; Grotewold, et al., (1998) Plant Cell 10:721-740); B-galactosidase (Teeri, et al., (1989) EMBO J. 8:343-350); luciferase (Ow, et al., (11986) Science 234:856 30 859); chloramphenicol acetyltransferase (CAT) (Lindsey and Jones, (1987) Plant Mol. Biol. 10:43-52); and numerous others as disclosed herein or otherwise known in the art. Such markers also can be used as reporter molecules. Many variations 42 on promoters, selectable markers and other components of the construct are available to one skilled in the art. The term "plant" is used broadly herein to include any plant at any stage of development, or to part of a plant, including a plant cutting, a plant cell, a plant cell 5 culture, a plant organ, a plant seed, and a plantlet. A plant cell is the structural and physiological unit of the plant, comprising a protoplast and a cell wall. A plant cell can be in the form of an isolated single cell or aggregate of cells such as a friable callus, or a cultured cell, or can be part of a higher organized unit, for example, a plant tissue, plant organ, or plant. Thus, a plant cell can be a 10 protoplast, a gamete producing cell, or a cell or collection of cells that can regenerate into a whole plant. As such, a seed, which comprises multiple plant cells and is capable of regenerating into a whole plant, is considered a plant cell for purposes of this disclosure. A plant tissue or plant organ can be a seed, protoplast, callus, or any other groups of plant cells that is organized into a 15 structural or functional unit. Particularly useful parts of a plant include harvestable parts and parts useful for propagation of progeny plants. A harvestable part of a plant can be any useful part of a plant, for example, flowers, pollen, seedlings, tubers, leaves, stems, fruit, seeds, roots, and the like. A part of a plant useful for propagation includes, for example, seeds, fruits, cuttings, seedlings, tubers, 20 rootstocks, and the like. A transgenic plant can be regenerated from a genetically modified plant cell, i.e., a whole plant can be regenerated from a plant cell; a group of plant cells; a protoplast; a seed; or a piece of a plant such as a leaf, a cotyledon or a cutting. Regeneration from protoplasts varies among species of plants. For example, a 25 suspension of protoplasts can be made and, in certain species, embryo formation can be induced from the protoplast suspension, to the stage of ripening and germination. The culture media generally contain various components necessary for growth and regeneration, including, for example, hormones such as auxins and cytokinins; and amino acids such as glutamic acid and proline, depending on the 30 particular plant species. Efficient regeneration will depend, in part, on the medium, the genotype, and the history of the culture, and is reproducible if these variables are controlled. 43 Regeneration can occur from plant callus, explants, organs or plant parts. Transformation can be performed in the context of organ or plant part regeneration. (see, Meth. Enzymol. Vol. 118; Klee, et al., (1987) Ann. Rev. Plant Physiol. 38:467). Utilizing the leaf disk-transformation-regeneration method, for 5 example, disks are cultured on selective media, followed by shoot formation in about two to four weeks (see, Horsch, et al., supra, 1985). Shoots that develop are excised from calli and transplanted to appropriate root-inducing selective medium. Rooted plantlets are transplanted to soil as soon as possible after roots appear. The plantlets can be repotted as required, until reaching maturity. This is 10 the TO generation. In seed-propagated crops, mature TO plants can be self-pollinated. The resulting seeds can be grown and the progeny plants tested for presence of the transgene, often by screening for the expression of a linked marker gene. These transgenic plants represent the T1 generation. Multiple generations (T2, T3, etc.) 15 may be produced to ensure that expression of the desired phenotypic characteristic is stably maintained and inherited, and seeds can be harvested. In this manner, the present invention provides a transformed seed (also referred to as a "transgenic seed") having a polynucleotide of the invention, for example, an expression cassette of the invention, stably incorporated into its genome. 20 Methods for further selfing, selection, and cross breeding of plants having desirable characteristics or other characteristics of interest include those disclosed herein and others well known to plant breeders. Progeny, variants, and mutants of the regenerated plants are also included within the scope of the invention, provided that they comprise the introduced polynucleotides. 25 In various aspects of the present invention, one or more transgenes is introduced into cells. When used in reference to a transgene, the term "introducing" means transferring the exogenous nucleic acid molecule into a cell. A nucleic acid molecule can be introduced into a plant cell by a variety of methods. For example, the transgene can be contained in a vector, can be introduced into a 30 plant cell using a direct gene transfer method such as electroporation or microprojectile mediated transformation, or using Agrobacterium mediated transformation. As used herein, the term "transformed" refers to a plant cell containing an exogenously introduced nucleic acid molecule. 44 One or more exogenous nucleic acid molecules can be introduced into plant cells using any of numerous well-known and routine methods for plant transformation, including biological and physical plant transformation protocols (see, e.g., Miki, et al., "Procedures for Introducing Foreign DNA into Plants"; In 5 Methods in Plant Molecular Biology and Biotechnology, Glick and Thompson, Eds. (CRC Press, Inc., Boca Raton, 1993) pages 67-88). In addition, expression vectors and in vitro culture methods for plant cell or tissue transformation and regeneration of plants are routine and well-known (see, e.g., Gruber, et al., "Vectors for Plant Transformation"; Id. at pages 89-119). 10 Suitable methods of transforming plant cells include microinjection, Crossway, et al., (1986) Biotechniques 4:320-334; electroporation, Riggs, et al., (1986) Proc. Natl. Acad. Sci. USA 83:5602-5606; Agrobacterium-mediated transformation, see for example, Townsend, et al., U.S. Patent Number 5,563,055; direct gene transfer, Paszkowski, et al., (1984) EMBO J. 3:2717-2722; and ballistic 15 particle acceleration, see for example, Sanford, et al., U.S. Patent Number 4,945,050; Tomes, et al., (1995) in Plant Cell, Tissue, and Organ Culture: Fundamental Methods, ed. Gamborg and Phillips (Springer-Verlag, Berlin); and McCabe, et al., (1988) Biotechnology 6:923-926. Also see, Weissinger, et al., (1988) Annual Rev. Genet. 22:421-477; Sanford, et al., (1987) Particulate Science 20 and Technology 5:27-37 (onion); Christou, et al., (1988) Plant Physiol. 87:671-674 (soybean); McCabe, et al., (1988) Bio/Technology 6:923-926 (soybean); Datta, et al., (1990) Biotechnology 8:736-740 (rice); Klein, et al., (1988) Proc. Natl. Acad. Sci. USA 85:4305-4309 (maize); Klein, et al., (1988) Biotechnology 6:559-563 (maize); Klein, et al., (1988) Plant Physiol. 91:440-444 (maize); Fromm, et al., 25 (1990) Biotechnology 8:833-839; Hooydaas-Van Slogteren, et al., (1984) Nature (London) 311:763-764; Bytebier, et al., (1987) Proc. Natl. Acad. Sci. USA 84:5345-5349 (Liliaceae); De Wet, et al., (1985) in The Experimental Manipulation of Ovule Tissues, ed. G. P. Chapman, et al., (Longman, New York), pp. 197-209 (pollen); Kaeppler, et al., (1990) Plant Cell Reports 9:415-418; and Kaeppler, et 30 al., (1992) Theor. Apple. Genet. 84:560-566 (whisker-mediated transformation); D.Halluin, et al., (1992) Plant Cell 4:1495-1505 (electroporation); Li, et al., (1993) Plant Cell Reports 12:250-255 and Christou, et al., (1995) Annals of Botany 45 75:407-413 (rice); Osjoda, et al., (1996) Nature Biotechnology 14:745-750 (maize via Agrobacterium tumefaciens); all of which are herein incorporated by reference. Agrobacterium-mediated transformation provides a useful method for introducing a transgene into plants (Horsch, et al., (1985) Science 227:1229). A. 5 tumefaciens and A. rhizogenes are plant pathogenic soil bacteria that genetically transform plant cells. The Ti and Ri plasmids of A. tumefaciens and A. rhizogenes, respectively, carry genes responsible for genetic transformation of the plant (see, e.g., Kado, (1991) Crit. Rev. Plant Sci.1 0:1; see, also, Moloney, et al., (1989) Plant Cell Reports 8:238; U.S. Patent Number 5,591,616; WO 99/47552; 10 Weissbach and Weissbach, "Methods for Plant Molecular Biology" (Academic Press, NY 1988), section VIII, pages 421-463; Grierson and Corey, "Plant Molecular Biology" 2d Ed. (Blackie, London 1988), Chapters 7-9; see, also, Horsch, et al., supra, 1985). With respect to A. tumefaciens, the wild type form contains a Ti plasmid, 15 which directs production of tumorigenic crown gall growth on host plants. Transfer of the tumor-inducing T-DNA region of the Ti plasmid to a plant genome requires the Ti plasmid-encoded virulence genes as well as T-DNA borders, which are a set of direct DNA repeats that delineate the region to be transferred. An Agrobacterium based vector is a modified form of a Ti plasmid, in which the tumor 20 inducing functions are replaced by a nucleotide sequence of interest that is to be introduced into the plant host. Methods of using Agrobacterium mediated transformation include cocultivation of Agrobacterium with cultured isolated protoplasts; transformation of plant cells or tissues with Agrobacterium; and transformation of seeds, apices or meristems with Agrobacterium. In addition, in 25 planta transformation by Agrobacterium can be performed using vacuum infiltration of a suspension of Agrobacterium cells (Bechtold, et al., (1993) C.R. Acad. Sci. Paris 316:1194). Agrobacterium-mediated transformation can employ cointegrate vectors or binary vector systems, in which the components of the Ti plasmid are divided 30 between a helper vector, which resides permanently in the Agrobacterium host and carries the virulence genes, and a shuttle vector, which contains the gene of interest bounded by T-DNA sequences. Binary vectors are well known in the art (see, for example, De Framond, (1983) BioTechnology 1:262; Hoekema, et al., 46 (1983) Nature 303:179) and are commercially available (Clontech; Palo Alto CA). For transformation, Agrobacterium can be cocultured, for example, with plant cells or wounded tissue such as leaf tissue, root explants, hypocotyls, cotyledons, stem pieces or tubers (see, for example, Glick and Thompson, "Methods in Plant 5 Molecular Biology and Biotechnology" (Boca Raton FL, CRC Press 1993)). Wounded cells within the plant tissue that have been infected by Agrobacterium can develop organs de novo when cultured under the appropriate conditions; the resulting transgenic shoots eventually give rise to transgenic plants which contain the introduced polynucleotide. 10 Agrobacterium-mediated transformation has been used to produce a variety of transgenic plants, including, for example, transgenic cruciferous plants such as Arabidopsis, mustard, rapeseed and flax; transgenic leguminous plants such as alfalfa, pea, soybean, trefoil and white clover; and transgenic solanaceous plants such as eggplant, petunia, potato, tobacco and tomato (see, for example, Wang, 15 et al., "Transformation of Plants and Soil Microorganisms" (Cambridge, University Press 1995)). In addition, Agrobacterium mediated transformation can be used to introduce an exogenous nucleic acid molecule into apple, aspen, belladonna, black currant, carrot, celery, cotton, cucumber, grape, horseradish, lettuce, morning glory, muskmelon, neem, poplar, strawberry, sugar beet, sunflower, 20 walnut, asparagus, rice, wheat, sorghum, barley, maize, and other plants (see, for example, Glick and Thompson, supra, 1993; Hiei, et al., (1994) Plant J. 6:271-282; Shimamoto, (1995) Science 270:1772-1773). Suitable strains of A. tumefaciens and vectors as well as transformation of Agrobacteria and appropriate growth and selection media are well known in the art 25 (GV3101, pMK90RK), Koncz, (1986) Mol. Gen. Genet. 204:383-396; (C58C1, pGV3850kan), Deblaere, (1985) Nucl. Acid Res. 13:4777; Bevan, (1984) Nucleic Acid Res. 12:8711; Koncz, (1986) Proc. Natl. Acad. Sci. USA 86:8467-8471; Koncz, (1992) Plant Mol. Biol. 20:963-976; Koncz, Specialized vectors for gene tagging and expression studies. In: Plant Molecular Biology Manual Vol. 2, Gelvin 30 and Schilperoort (Eds.), Dordrecht, The Netherlands: Kluwer Academic Publ. (1994), 1-22; European Patent A-1 20 516; Hoekema: The Binary Plant Vector System, Offsetdrukkerij Kanters B.V., Alblasserdam (1985), Chapter V; Fraley, Crit. Rev. Plant. Sci., 4:1-46; An, (1985) EMBO J. 4:277-287). 47 As noted herein, the present invention provides vectors capable of expressing genes of interest under the control of the regulatory elements. In general, the vectors should be functional in plant cells. At times, it may be preferable to have vectors that are functional in E. coli (e.g., production of protein 5 for raising antibodies, DNA sequence analysis, construction of inserts, obtaining quantities of nucleic acids). Vectors and procedures for cloning and expression in E. coli are discussed in Sambrook, et al. (supra). The transformation vector, comprising the promoter of the present invention operably linked to an isolated nucleotide sequence in an expression cassette, can 10 also contain at least one additional nucleotide sequence for a gene to be co transformed into the organism. Alternatively, the additional sequence(s) can be provided on another transformation vector. Where the exogenous nucleic acid molecule is contained in a vector, the vector can contain functional elements, for example "left border" and "right border" 15 sequences of the T-DNA of Agrobacterium, which allow for stable integration into a plant genome. Furthermore, methods and vectors that permit the generation of marker-free transgenic plants, for example, where a selectable marker gene is lost at a certain stage of plant development or plant breeding, are known, and include, for example, methods of co-transformation (Lyznik, (1989) Plant Mol. Biol. 13:151 20 161; Peng, (1995) Plant Mol. Biol. 27:91-104), or methods that utilize enzymes capable of promoting homologous recombination in plants (see, e.g., W097/08331; Bayley, (1992) Plant Mol. Biol. 18:353-361; Lloyd, (1994) Mol. Gen. Genet. 242:653-657; Maeser, (1991) Mol. Gen. Genet. 230:170-176; Onouchi, (1991) Nucl. Acids Res. 19:6373-6378; see, also, Sambrook, et al., supra, 1989). 25 Direct gene transfer methods also can be used to introduce the desired transgene (or transgenes) into cells, including plant cells that are refractory to Agrobacterium-mediated transformation (see, e.g., Hiei, et al., (1994) Plant J. 6:271-282; U.S. Patent Number 5,591,616). Such methods include direct gene transfer (see, European Patent A 164 575), injection, electroporation, biolistic 30 methods such as particle bombardment, pollen-mediated transformation, plant RNA virus-mediated transformation, liposome-mediated transformation, transformation using wounded or enzyme-degraded immature embryos, or wounded or enzyme-degraded embryogenic callus, and the like. Direct gene 48 transfer methods include microprojectile-mediated (biolistic) transformation methods, wherein the transgene is carried on the surface of microprojectiles measuring 1 to 4 mm. A vector, particularly an expression vector containing the transgene(s) of interest, is introduced into plant tissues with a biolistic device that 5 accelerates the microprojectiles to speeds of 300 to 600 m/s, sufficient to penetrate plant cell walls and membranes (see, e.g., Sanford, et al., (1987) Part. Sci. Technol. 5:27; Sanford, (1988) Trends Biotech. 6:299, Klein, et al., (1988) BioTechnology 6:559-563; Klein, et al., (1992) BioTechnology 10:268). In maize, for example, several target tissues can be bombarded with DNA-coated 10 microprojectiles in order to produce transgenic plants, including, for example, callus (Type I or Type II), immature embryos, and meristem tissue. Other methods for physical delivery of a transgene into plants utilize sonication of the target cells (Zhang, et al., (1991) BioTechnology 9:996); liposomes or spheroplast fusion (Deshayes, et al., (1985) EMBO J. 4:2731; 15 Christou, et al., (1987) Proc Natl. Acad. Sci., USA 84:3962); CaCl 2 precipitation or incubation with polyvinyl alcohol or poly-L-ornithine (Hain, et al., (1985) Mol. Gen. Genet.199:61; Draper, et al., (1982) Plant Cell Physiol. 23:451); and electroporation of protoplasts and whole cells and tissues (Donn, et al., (1990) In "Abstracts of VIIth International Congress on Plant Cell and Tissue Culture" 20 IAPTC, A2-38, pg. 53; D'Halluin, et al., (1992) Plant Cell 4:1495-1505; Spencer, et al., (1994) Plant Mol. Biol. 24:51-61). A direct gene transfer method such as electroporation can be particularly useful for introducing exogenous nucleic acid molecules into a cell such as a plant cell. For example, plant protoplasts can be electroporated in the presence of a 25 recombinant nucleic acid molecule, which can be in a vector (Fromm, et al., (1985) Proc. Natl. Acad. Sci., USA 82:5824). Electrical impulses of high field strength reversibly permeabilize membranes allowing the introduction of the nucleic acid. Electroporated plant protoplasts reform the cell wall, divide and form a plant callus. Microinjection can be performed as described in Potrykus and Spangenberg 30 (eds.), Gene Transfer To Plants. Springer Verlag, Berlin, NY (1995). A transformed plant cell containing the introduced recombinant nucleic acid molecule can be identified due to the presence of a selectable marker included in the construct. 49 As mentioned above, microprojectile mediated transformation also provides a useful method for introducing exogenous nucleic acid molecules into a plant cell (Klein, et al., (1987) Nature 327:70-73). This method utilizes microprojectiles such as gold or tungsten, which are coated with the desired nucleic acid molecule by 5 precipitation with calcium chloride, spermidine or polyethylene glycol. The microprojectile particles are accelerated at high speed into a plant tissue using a device such as the BIOLISTIC PD-1000 particle gun (BioRad; Hercules CA). Microprojectile mediated delivery ("particle bombardment") is especially useful to transform plant cells that are difficult to transform or regenerate using other 10 methods. Methods for the transformation using biolistic methods are well known (Wan, (1984) Plant Physiol. 104:37-48; Vasil, (1993) BioTechnology 11:1553 1558; Christou, (1996) Trends in Plant Science 1:423-431). Microprojectile mediated transformation has been used, for example, to generate a variety of transgenic plant species, including cotton, tobacco, corn, wheat, oat, barley, 15 sorghum, rice, hybrid poplar and papaya (see, Glick and Thompson, supra, 1993; Duan, et al., (1996) Nature Biotech. 14:494-498; Shimamoto, (1994) Curr. Opin. Biotech. 5:158-162). A rapid transformation regeneration system for the production of transgenic plants such as a system that produces transgenic wheat in two to three months 20 (see, European Patent Number EP 0709462A2) also can be useful for producing a transgenic plant according to a method of the invention, thus allowing more rapid identification of gene functions. The transformation of most dicotyledonous plants is possible with the methods described above. Transformation of monocotyledonous plants also can be transformed using, for example, biolistic 25 methods as described above, protoplast transformation, electroporation of partially permeabilized cells, introduction of DNA using glass fibers, Agrobacterium mediated transformation, and the like. Plastid transformation also can be used to introduce a nucleic acid molecule into a plant cell (U.S. Patent Numbers 5,451,513, 5,545,817, and 30 5,545,818; WO 95/16783; McBride, et al., (1994) Proc. Natl. Acad. Sci., USA 91:7301-7305). Chloroplast transformation involves introducing regions of cloned plastid DNA flanking a desired nucleotide sequence, for example, a selectable marker together with polynucleotide of interest, into a suitable target tissue, using, 50 for example, a biolistic or protoplast transformation method (e.g., calcium chloride or PEG mediated transformation). One to 1.5 kb flanking regions ("targeting sequences") facilitate homologous recombination with the plastid genome, and allow the replacement or modification of specific regions of the plastome. Using 5 this method, point mutations in the chloroplast 16S rRNA and rpsl2 genes, which confer resistance to spectinomycin and streptomycin and can be utilized as selectable markers for transformation (Svab, et al., (1990) Proc. Natl. Acad. Sci., USA 87:8526-8530; Staub and Maliga, (1992) Plant Cell 4:39-45), resulted in stable homopiasmic transformants, at a frequency of approximately one per 100 10 bombardments of target leaves. The presence of cloning sites between these markers allowed creation of a plastid targeting vector for introduction of foreign genes (Staub and Maliga, (1993) EMBO J. 12:601-606). Substantial increases in transformation frequency are obtained by replacement of the recessive rRNA or r protein antibiotic resistance genes with a dominant selectable marker, the 15 bacterial aadA gene encoding the spectinomycin-detoxifying enzyme aminoglycoside-3'-adenyltransferase (Svab and Maliga, (1993) Proc. Natl. Acad. Sci., USA 90:913-917). Approximately 15 to 20 cell division cycles following transformation are generally required to reach a homoplastidic state. Plastid expression, in which genes are inserted by homologous recombination into all of 20 the several thousand copies of the circular plastid genome present in each plant cell, takes advantage of the enormous copy number advantage over nuclear expressed genes to permit expression levels that can readily exceed 10% of the total soluble plant protein. The cells that have been transformed can be grown into plants in 25 accordance with conventional ways. See, for example, McCormick, et al., (1986) Plant Cell Reports 5:81-84. These plants can then be grown and pollinated with the same transformed strain or different strains, and resulting plants having expression of the desired phenotypic characteristic can then be identified. Two or more generations can be grown to ensure that expression of the desired 30 phenotypic characteristic is stably maintained and inherited. A "subject plant" or "subject plant cell" is one in which genetic alteration, such as transformation, has been effected as to a gene of interest, or is a plant or plant cell which is descended from a plant or plant cell so altered and which 51 comprises the alteration. A "control" or "control plant" or "control plant cell" provides a reference point for measuring changes in the subject plant or plant cell. A control plant or control plant cell may comprise, for example: (a) a wild type plant or plant cell, i.e., of the same genotype as the starting material for the 5 genetic alteration which resulted in the subject plant or subject plant cell; (b) a plant or plant cell of the same genotype as the starting material but which has been transformed with a null construct (i.e. with a construct which has no known effect on the trait of interest, such as a construct comprising a marker gene); (c) a plant or plant cell which is a non-transformed segregant among progeny of a 10 subject plant or subject plant cell; (d) a plant or plant cell genetically identical to the subject plant or subject plant cell but which is not exposed to conditions or stimuli that would induce expression of the gene of interest; or (e) the subject plant or subject plant cell itself, under conditions in which the gene of interest is not expressed. 15 In certain species, such as maize, the control and reference plants may represent two hybrids, where the first hybrid is produced from two parent inbred lines, and the second hybrid is produced from the same two parental inbred lines except that one of the parent inbred lines contains a recombinant DNA construct. Performance of the second hybrid would typically be measured relative to the first 20 hybrid. Further, where a plant comprising a recombinant DNA construct is assessed or measured relative to a control plant not comprising the recombinant DNA but otherwise having a comparable genetic background to the plant, the control and reference plant may share at least 90%, 91%, 92%, 93%, 94%, 95%, 25 96%, 97%, 98%, 99% or 100% sequence identity of nuclear genetic material. There are many laboratory-based techniques available for the analysis, comparison and characterization of plant genetic backgrounds; among these are isozyme electrophoresis, Restriction Fragment Length Polymorphisms (RFLPs), Randomly Amplified Polymorphic DNAs (RAPDs), Arbitrarily Primed Polymerase 30 Chain Reaction (AP-PCR), DNA Amplification Fingerprinting (DAF), Sequence Characterized Amplified Regions (SCARs), Amplified Fragment Length Polymorphisms (AFLPs), and Simple Sequence Repeats (SSRs) which are also referred to as microsatellites. 52 Plants suitable for purposes of the present invention can be monocots or dicots and include, but are not limited to, maize, wheat, barley, rye, sweet potato, bean, pea, chicory, lettuce, cabbage, cauliflower, broccoli, turnip, radish, spinach, asparagus, onion, garlic, pepper, celery, squash, pumpkin, hemp, zucchini, apple, 5 pear, quince, melon, plum, cherry, peach, nectarine, apricot, strawberry, grape, raspberry, blackberry, pineapple, avocado, papaya, mango, banana, soybean, tomato, sorghum, sugarcane, sugar beet, sunflower, rapeseed, clover, tobacco, carrot, cotton, alfalfa, rice, potato, eggplant, cucumber, Arabidopsis thaliana, and woody plants such as coniferous and deciduous trees. Thus, a transgenic plant or 10 genetically modified plant cell of the invention can be an angiosperm or gymnosperm. Angiosperms are divided into two broad classes based on the number of cotyledons, which are seed leaves that generally store or absorb food; a monocotyledonous angiosperm has a single cotyledon, and a dicotyledonous 15 angiosperm has two cotyledons. Angiosperms produce a variety of useful products including materials such as lumber, rubber, and paper; fibers such as cotton and linen; herbs and medicines such as quinine and vinblastine; ornamental flowers such as roses and, where included within the scope of the present invention, orchids; and foodstuffs such as grains, oils, fruits and 20 vegetables. Angiosperms encompass a variety of flowering plants, including, for example, cereal plants, leguminous plants, oilseed plants, hardwood trees, fruit-bearing plants and ornamental flowers, which general classes are not necessarily exclusive. Cereal plants, which produce an edible grain, include, for example, corn, rice, wheat, barley, oat, rye, orchardgrass, guinea grass, and 25 sorghum. Leguminous plants include members of the pea family (Fabaceae) and produce a characteristic fruit known as a legume. Examples of leguminous plants include, for example, soybean, pea, chickpea, moth bean, broad bean, kidney bean, lima bean, lentil, cowpea, dry bean, and peanut, as well as alfalfa, birdsfoot trefoil, clover and sainfoin. Oilseed plants, which have seeds that are useful as a 30 source of oil, include soybean, sunflower, rapeseed (canola) and cottonseed. Angiosperms also include hardwood trees, which are perennial woody plants that generally have a single stem (trunk). Examples of such trees include alder, ash, aspen, basswood (linden), beech, birch, cherry, cottonwood, elm, eucalyptus, 53 hickory, locust, maple, oak, persimmon, poplar, sycamore, walnut, sequoia, and willow. Trees are useful, for example, as a source of pulp, paper, structural material and fuel. Angiosperms produce seeds enclosed within a mature, ripened ovary. An 5 angiosperm fruit can be suitable for human or animal consumption or for collection of seeds to propagate the species. For example, hops are a member of the mulberry family that are prized for their flavoring in malt liquor. Fruit-bearing angiosperms also include grape, orange, lemon, grapefruit, avocado, date, peach, cherry, olive, plum, coconut, apple and pear trees and blackberry, blueberry, 10 raspberry, strawberry, pineapple, tomato, cucumber and eggplant plants. An ornamental flower is an angiosperm cultivated for its decorative flower. Examples of commercially important ornamental flowers include rose, lily, tulip and chrysanthemum, snapdragon, camellia, carnation and petunia plants, and can include orchids. It will be recognized that the present invention also can be 15 practiced using gymnosperms, which do not produce seeds in a fruit. Certain embodiments of this invention overcome the problem of maintenance of homozygous recessive reproductive traits when using a transgenic restoration approach, while decreasing the number of plants, plantings and steps needed for maintenance of plants with such traits. 20 Homozygosity is a genetic condition existing when identical alleles reside at corresponding loci on homologous chromosomes. Heterozygosity is a genetic condition existing when different alleles reside at corresponding loci on homologous chromosomes. Hemizygosity is a genetic condition existing when there is only one copy of a gene (or set of genes) with no allelic counterpart on the 25 sister chromosome. Maintenance of the homozygous recessive condition for male sterility is achieved by introducing into a plant a restoration transgene construct that is linked to a sequence which interferes with the formation, function, or dispersal of male gametes of the plant, to create a "maintainer" or "donor" plant. The restoring 30 transgene, upon introduction into a plant that is homozygous recessive for the male sterility genetic trait, restores the genetic function of that trait. Due to the linked gene driven by a male-gamete-specific-promoter, all pollen containing the restoration transgene is rendered nonviable. All viable pollen produced contains a 54 copy of the recessive allele but does not contain the restoration transgene. The transgene is kept in the hemizygous state in the maintainer plant. The pollen from the maintainer can be used to fertilize plants that are homozygous for the recessive trait, and the progeny will therefore retain their 5 homozygous recessive condition. The maintainer plant containing the restoring transgene construct is propagated by self-fertilization, with half of the resulting seed used to produce further plants that are homozygous recessive for the gene of interest and hemizygous for the restoring transgene construct. The maintainer plant serves as a pollen donor to the plant having the 10 homozygous recessive trait. The maintainer is optimally produced from a plant having the homozygous recessive trait and which also has nucleotide sequences introduced therein which would restore the trait created by the homozygous recessive alleles. Further, the restoration sequence is linked to nucleotide sequences that interfere with the function, formation, or dispersal of male 15 gametes. The gene can operate to prevent formation of male gametes or prevent function of the male gametes by any of a variety of well-known modalities and is not limited to a particular methodology. By way of example but not limitation, this can include use of one or more genes which express a product cytotoxic to male gametes (See for example, U.S. Patent Numbers 5,792,853; and 5,689,049; 20 PCT/EP89/00495); inhibit product formation of another gene important to male gamete formation, function, or dispersal (See, U.S. Patent Numbers 5,859,341 and 6,297,426); combine with another gene product to produce a substance preventing gamete formation, function, or dispersal (See, U.S. Patent Numbers 6,162,964; 6,013,859; 6,281,348; 6,399,856; 6,248,935; 6,750,868; and 25 5,792,853) are antisense to or cause co-suppression of a gene critical to male gamete formation, function, or dispersal (See, U.S. Patent Numbers 6,184,439; 5,728,926; 6,191,343; 5,728,558; and 5,741,684), or the like. Ordinarily, to produce more plants having the recessive condition, one might cross the recessive plant with another recessive plant, or self pollinate a 30 recessive plant. This may not be desirable for some recessive traits and may be impossible for recessive traits affecting reproductive development. Alternatively, one could cross the homozygous plant with a second plant having the restoration gene, but this requires further crossing to segregate away the restoring gene to 55 once again reach the recessive phenotypic state. Instead, in one embodiment the invention provides a process in which the homozygous recessive condition can be maintained, while crossing it with the maintainer plant. This method can be used with any situation in which it is desired to continue the recessive condition. This 5 results in a relatively simple, cost-effective system for maintaining a population of homozygous recessive plants. When the homozygous recessive condition is one that produces male sterility, the maintainer plant, of necessity, must contain a functional restoring transgene construct capable of complementing the mutation and rendering the 10 homozygous recessive plant able to produce viable pollen. Linking this male fertility restoration gene with a second functional nucleotide sequence which interferes with the formation, function, or dispersal of the male gametes of the plant results in a maintainer plant that produces pollen containing only the recessive allele of the restored gene at its native locus due to the pollen-specific 15 cytotoxic action of the second nucleotide sequence. This viable pollen fraction is non-transgenic with regard to the restoring transgene construct. For example, it is desirable to produce male sterile female plants for use in the hybrid production process which are sterile as a result of being homozygous for a mutation in the MS45 gene, a gene which is essential for male fertility. Such 20 a mutant MS45 allele is designated as ms45. A plant that is homozygous for ms45 (represented by the notation ms45/ms45) displays the homozygous recessive male sterility phenotype and produces no functional pollen. See, U.S. Patent Numbers 5,478,369; 5,850,014; 6,265,640; and 5,824,524. In both the inbred and hybrid production processes, it is highly desired to maintain this 25 homozygous recessive condition. When sequences encoding the MS45 gene are introduced into a plant having the homozygous condition, sporophytic restoration of male fertility results. (Cigan, et al., (2001) Sex. Plant Repro. 14:135-142). By the method of the invention, a plant which is ms45/ms45 homozygous recessive may have introduced into it a functional MS45 gene, and thus male fertility is 30 restored. This gene can be linked to a second gene which operates to render pollen nonfunctional or which prevents its formation, or which produces a lethal product in pollen, and which is linked to a promoter directing its expression in the 56 male gametes. This results in a plant which produces viable pollen containing ms45 without the restoring transgene construct. An example is a construct that includes the MS45 gene operably linked to the 5126 promoter, a male tissue-preferred promoter (See, U.S. Patent Number 5 5,837,851) and further linked to the cytotoxic DAM methylase gene under control of the PG47 promoter (See, U.S. Patent Number 5,792,853; 5,689,049). The resulting plant produces pollen, but the only viable pollen contains the ms45 gene. It can therefore be used as a pollinator to fertilize the homozygous recessive plant (ms45/ms45), and 100% of the progeny produced will continue to be male sterile 10 as a result of maintaining homozygosity for ms45. The progeny will not contain the introduced restoring transgene construct. Clearly, many variations on this method are available as it relates to male sterility. Any other gene critical to male fertility may be used in this system. For example and without limitation, such genes can include the SBMu200 gene (also 15 known as SB200 or MS26) described at WO 02/26789; the BS92-7 gene (also known as BS7) described at WO 02/063021; MS2 gene described at Albertsen and Phillips, "Developmental Cytology of 13 Genetic Male Sterile Loci in Maize" Canadian Journal of Genetics & Cytology 23:195-208 (Jan. 1981); or the Arabadopsis MS2 gene described at Aarts, et al., "Transposon Tagging of a Male 20 Sterility Gene in Arabidopsis", Nature, 363:715-717 (Jun. 24, 1993); and the Arabidopsis gene MS1 described at Wilson, et al., "The Arabidopsis MALE STERILITY1 (MS1) gene is a transcriptional regulator of male gametogenesis, with homology to the PHD-finger family of transcription factors", Plant J., 1:27-39 (Oct. 28, 2001). 25 A desirable result of the process of the invention is that the plant having the restorer nucleotide sequence may be self-fertilized; that is, pollen from the plant transferred to the flower of the same plant to achieve the propagation of restorer plants. (Note that "self fertilization" includes both the situation where the plant producing the pollen is fertilized with that same pollen, and the situation where 30 pollen from a plant, or from a group of genetically identical plants, pollinates a plant which is a genetically identical individual, or a group of such genetically identical plants.) The restoring transgene construct will not be present in the pollen, but it will be contained in 50% of the ovules (the female gamete). The 57 seed resulting from the self-fertilization can be planted, and selection made for the seed having the restoring transgene construct. The selection process can occur by any one or more of many known processes, the most common being where the restoration nucleotide sequence is linked to a marker gene. The marker can be 5 scorable or selectable, and allows identification of the seed comprising the restoration sequence, and/or of those plants produced from the seed having the restoration sequence. In an embodiment of the invention, it is possible to provide that the promoter driving the restoration gene is inducible. Additional control is thus 10 allowed in the process, where so desired, by providing that the plant having the restoration nucleotide sequences is constitutively male sterile. This type of male sterility is set forth the in U.S. Patent Number 5,859,341. In order for the plant to become fertile, the inducing substance must be provided, and the plant will become fertile. Again, when combined with the process of the invention as 15 described supra, the only pollen produced will not contain the restoration nucleotide sequences. In yet another embodiment of the invention, the gamete controlling the transmission of the restoration nucleotide sequences can be the female gamete, instead of the male gamete. The process is the same as that described above, 20 with the exception in those instances where one also desires to maintain the plant having the restoration nucleotide sequences by self fertilization. In that case, it will be useful to provide that the promoter driving the restoration gene is inducible, so that female fertility may be triggered by exposure to the inducing substance, and seed can be formed. Control of female fertility in such a manner is described at 25 U.S. Patent Number 6,297,426. Examples of genes impacting female fertility include the teosinte branched (Tb1) gene, which increases apical dominance, resulting in multiple tassels and repression of female tissue. Hubbard, et al., (2002) Genetics 162:1927-1935; Doebley, et al., (1997) Nature 386:485-488. Another example is the so-called "barren 3" or "ba3". This mutant was isolated 30 from a mutant maize plant infected with wheat-streak mosaic virus and is described at Pan and Peterson, (1992) J. Genet. And Breed. 46:291-294. The plants develop normal tassels but do not have any ear shoots along the stalks. Barren-stalk fastigiate is described at Coe and Beckett, (1987) Maize Genet. 58 Coop. Newslett. 61:46-47. Other examples include the barren stalks gene (Gallavotti, et al., (2004) Nature 432:630-635); lethal ovule mutant (Vollbrecht, (1994) Maize Genetics Cooperation Newsletter 68:2-3); and defective pistil mutant (Miku and Mustyatsa, (1978) Genetika 14(2):365-368). 5 Any plant-compatible promoter elements can be employed to control expression of the regions of the restoring transgene construct that encode specific proteins and functions. Those can be plant gene promoters, such as, for example, the ubiquitin promoter, the promoter for the small subunit of ribulose-1, 5-bis phosphate carboxylase, or promoters from the tumor-inducing plasmids from 10 Agrobacterium tumefaciens, such as the nopaline synthase and octopine synthase promoters, or viral promoters such as the cauliflower mosaic virus (CaMV) 19S and 35S promoters or the figwort mosaic virus 35S promoter. See, Kay, et al., (1987) Science 236:1299 and European patent application No. 0 342 926. See, international application WO 91/19806 for a review of illustrative plant promoters 15 suitably employed in the present invention. The range of available plant compatible promoters includes tissue-specific and inducible promoters. The invention contemplates the use of promoters providing tissue-preferred expression, including promoters which preferentially express to the gamete tissue, male or female, of the plant. The invention does not require that any particular 20 gamete tissue-preferred promoter be used in the process, and any of the many such promoters known to one skilled in the art may be employed. By way of example, but not limitation, one such promoter is the 5126 promoter, which preferentially directs expression of the gene to which it is linked to male tissue of the plants, as described in U.S. Patent Numbers 5,837,851 and 5,689,051. Other 25 examples include the MS45 promoter described at U.S. Patent Number 6,037,523; SF3 promoter described at U.S. Patent Number 6,452,069; the BS92-7 or BS7 promoter described at WO 02/063021; the SBMu200 promoter described at WO 02/26789; a SGB6 regulatory element described at U.S. Patent Number 5,470,359, and TA39 (Koltunow, et al., (1990) "Different temporal and spatial gene 30 expression patterns occur during anther development." Plant Cell 2:1201-1224; Goldberg, et al., (1993) Anther development: basic principles and practical applications. Plant Cell 5:1217-1229; and US Patent Number 6,399,856. See 59 also, Nadeau, et al., (1996) Plant Cell 8(2):213-39; and Lu, et al., (1996) Plant Cell 8(12):2155-68. The methods and constructs of the present invention may be used for transformation of any plant species, including, but not limited to, monocots and 5 dicots. Examples of plant species of interest include, but are not limited to, corn (Zea mays), Brassica sp. (e.g., B. napus, B. rapa, B. juncea), particularly those Brassica species useful as sources of seed oil, alfalfa (Medicago sativa), rice (Oryza sativa), rye (Secale cereale), sorghum (Sorghum bicolor, Sorghum vulgare), millet (e.g., pearl millet (Pennisetum glaucum), proso millet (Panicum miliaceum), foxtail millet 10 (Setaria italica), finger millet (Eleusine coracana)), sunflower (Helianthus annuus), safflower (Carthamus tinctorius), wheat (Triticum aestivum), soybean (Glycine max), tobacco (Nicotiana tabacum), potato (Solanum tuberosum), peanuts (Arachis hypogaea), cotton (Gossypium barbadense, Gossypium hirsutum), sweet potato (Ipomoea batatus), cassava (Manihot esculenta), coffee (Coffea spp.), coconut 15 (Cocos nucifera), pineapple (Ananas comosus), citrus trees (Citrus spp.), cocoa (Theobroma cacao), tea (Camellia sinensis), banana (Musa spp.), avocado (Persea americana), fig (Ficus casica), guava (Psidium guajava), mango (Mangifera indica), olive (Olea europaea), papaya (Carica papaya), cashew (Anacardium occidentale), macadamia (Macadamia integrifolia), almond (Prunus amygdalus), sugar beets 20 (Beta vulgaris), sugarcane (Saccharum spp.), oats, barley, vegetables, ornamentals, grasses and conifers. Vegetables include tomatoes (Lycopersicon esculentum), lettuce (e.g., Lactuca sativa), green beans (Phaseolus vulgaris), lima beans (Phaseolus limensis), peas (Lathyrus spp.), and members of the genus Cucumis such as cucumber (C. 25 sativus), cantaloupe (C. cantalupensis), and musk melon (C. melo). Ornamentals include azalea (Rhododendron spp.), hydrangea (Macrophylla hydrangea), hibiscus (Hibiscus rosasanensis), roses (Rosa spp.), tulips (Tulipa spp.), daffodils (Narcissus spp.), petunias (Petunia hybrida), carnation (Dianthus caryophyllus), poinsettia (Euphorbia pulcherrima), and chrysanthemum. 30 In specific embodiments, plants of the present invention are crop plants (for example, corn (maize), alfalfa, sunflower, Brassica, soybean, cotton, safflower, peanut, sorghum, wheat, millet, tobacco, etc.). In certain embodiments, corn and soybean plants are optimal, and in certain embodiments corn plants are optimal. 60 Other plants of interest include grain plants that provide seeds of interest, oil-seed plants, and leguminous plants. Seeds of interest include grain seeds, such as corn, wheat, barley, rice, sorghum, rye, etc. Oil-seed plants include cotton, soybean, safflower, sunflower, Brassica, maize, alfalfa, palm, coconut, etc. 5 Leguminous plants include beans and peas. Beans include guar, locust bean, fenugreek, soybean, garden beans, cowpea, mungbean, lima bean, fava bean, lentils, chickpea, etc. The P67 promoter set forth in SEQ ID NO: 1 is 1112 nucleotides in length. This promoter was isolated from a genomic clone corresponding to a maize EST 10 sequence. The sequence showed limited homology to putative pectin methylesterase. The pollen specificity of expression of P67 has been confirmed by RT-PCR and Northern blot analyses of RNA samples from different tissues including leaf, root, anther/mature pollen grains, tassel at vacuole stage, spikelet, cob, husk, silk 15 and embryo. The results indicate a high level of specificity for expression in developing pollen, particularly at the mid-uninucleate stage. Southern blot analysis has shown that the clone represents single- or low copy genes in the corn genome. Chromosome mapping using the oat chromosome substitution line revealed that the sequence is located at 20 Chromosome 1 of maize. The clone was used to screen a maize BAC library. Positive BAC clones have been found and subcloned into pBluescript KS. Subclones corresponding to the cDNA sequences have been identified and sequenced. The transcriptional start site has been determined using a RNA ligase-mediated rapid amplification of 25 5' end approach. The promoter region was named P67. The P95 promoter set forth in SEQ ID NO: 2 is 1092 nucleotides in length. This promoter was isolated from a genomic clone corresponding to a maize EST sequence. The sequence showed limited homology to putative L-ascorbate oxidase. 30 The pollen specificity of expression of P95 has been confirmed by RT-PCR and Northern blot analyses of RNA samples from different tissues including leaf, root, anther/mature pollen grains, tassel at vacuole stage, spikelet, cob, husk, silk 61 and embryo. The results indicate a high level of specificity for expression in developing pollen, particularly at the mid-uninucleate stage. Southern blot analysis has shown that the clone represents single- or low copy genes in the corn genome. Chromosome mapping using the oat 5 chromosome substitution line revealed that the sequence is located at Chromosomes 6 and 8 of maize. The clone was used to screen a maize BAC library. Positive BAC clones have been found and subcloned into pBluescript KS. Subclones corresponding to the cDNA sequences have been identified and sequenced. The transcriptional 10 start site has been determined using a RNA ligase-mediated rapid amplification of 5' end approach. The promoter region was named P95. Using well-known techniques, additional promoter sequences may be isolated based on their sequence homology to SEQ ID NO: 1 or SEQ ID NO: 2. In these techniques, all or part of a known promoter sequence is used as a probe 15 which selectively hybridizes to other sequences present in a population of cloned genomic DNA fragments (i.e. genomic libraries) from a chosen organism. Methods that are readily available in the art for the hybridization of nucleic acid sequences may be used to obtain sequences which correspond to these promoter sequences in species including, but not limited to, maize (corn; Zea mays), canola 20 (Brassica napus, Brassica rapa ssp.), alfalfa (Medicago sativa), rice (Oryza sativa), rye (Secale cereale), sorghum (Sorghum bicolor, Sorghum vulgare), sunflower (Helianthus annuus), wheat (Triticum aestivum), soybean (Glycine max), tobacco (Nicotiana tabacum), potato (Solanum tuberosum), peanuts (Arachis hypogaea), cotton (Gossypium hirsutum), sweet potato (Ipomoea 25 batatus), cassava (Manihot esculenta), coffee (Cofea spp.), coconut (Cocos nucifera), pineapple (Ananas comosus), citrus trees (Citrus spp.), cocoa (Theobroma cacao), tea (Camellia sinensis), banana (Musa spp.), avocado (Persea americana), fig (Ficus casica), guava (Psidium guajava), mango (Mangifera indica), olive (Olea europaea), oats, barley, vegetables, ornamentals, 30 and conifers. Preferably, plants include maize, soybean, sunflower, safflower, canola, wheat, barley, rye, alfalfa, and sorghum. The entire promoter sequence or portions thereof can be used as a probe capable of specifically hybridizing to corresponding promoter sequences. To 62 achieve specific hybridization under a variety of conditions, such probes include sequences that are unique and are preferably at least about 10 nucleotides in length, and most preferably at least about 20 nucleotides in length. Such probes can be used to amplify corresponding promoter sequences from a chosen 5 organism by the well-known process of polymerase chain reaction (PCR). This technique can be used to isolate additional promoter sequences from a desired organism or as a diagnostic assay to determine the presence of the promoter sequence in an organism. Examples include hybridization screening of plated DNA libraries (either plaques or colonies; see e.g., Innis, et al., (1990) PCR 10 Protocols, A Guide to Methods and Applications, eds., Academic Press). In general, sequences that correspond to a promoter sequence of the present invention and hybridize to a promoter sequence disclosed herein will be at least 50% homologous, 55% homologous, 60% homologous, 65% homologous, 70% homologous, 75% homologous, 80% homologous, 85% homologous, 90% 15 homologous, 95% homologous and even 98% homologous or more with the disclosed sequence. Fragments of a particular promoter sequence disclosed herein may operate to promote the pollen-preferred expression of an operably-linked isolated nucleotide sequence. These fragments will comprise at least about 20 contiguous 20 nucleotides, preferably at least about 50 contiguous nucleotides, more preferably at least about 75 contiguous nucleotides, even more preferably at least about 100 contiguous nucleotides of the particular promoter nucleotide sequences disclosed herein. The nucleotides of such fragments will usually comprise the TATA recognition sequence of the particular promoter sequence. Such fragments can 25 be obtained by use of restriction enzymes to cleave the naturally-occurring promoter sequences disclosed herein; by synthesizing a nucleotide sequence from the naturally-occurring DNA sequence; or through the use of PCR technology. See particularly, Mullis, et al., (1987) Methods Enzymol. 155:335-350, and Erlich, ed. (1989) PCR Technology (Stockton Press, New York). Again, 30 variants of these fragments, such as those resulting from site-directed mutagenesis, are encompassed by the compositions of the present invention. Thus, nucleotide sequences comprising at least about 20 contiguous nucleotides of the sequence set forth in SEQ ID NO: 1 or SEQ ID NO: 2 are 63 encompassed. These sequences can be isolated by hybridization, PCR, and the like. Such sequences encompass fragments capable of driving pollen-preferred expression, fragments useful as probes to identify similar sequences, as well as elements responsible for temporal or tissue specificity. 5 Biologically active variants of the promoter sequence are also encompassed by the compositions of the present invention. A regulatory "variant" is a modified form of a promoter wherein one or more bases have been modified, removed or added. For example, a routine way to remove part of a DNA sequence is to use an exonuclease in combination with DNA amplification to 10 produce unidirectional nested deletions of double-stranded DNA clones. A commercial kit for this purpose is sold under the trade name Exo-SizeTM (New England Biolabs, Beverly, Mass.). Briefly, this procedure entails incubating exonuclease III with DNA to progressively remove nucleotides in the 3' to 5' direction at 5' overhangs, blunt ends or nicks in the DNA template. However, 15 exonuclease III is unable to remove nucleotides at 3', 4-base overhangs. Timed digests of a clone with this enzyme produce unidirectional nested deletions. One example of a regulatory sequence variant is a promoter formed by causing one or more deletions in a larger promoter. Deletion of the 5' portion of a promoter up to the TATA box near the transcription start site may be 20 accomplished without abolishing promoter activity, as described by Zhu, et al., (1995) The Plant Cell 7:1681-89 (1995). Such variants should retain promoter activity, particularly the ability to drive expression in specific tissues. Biologically active variants include, for example, the native regulatory sequences of the invention having one or more nucleotide substitutions, deletions or insertions. 25 Activity can be measured by Northern blot analysis, reporter activity measurements when using transcriptional fusions, and the like. See, for example, Sambrook, et al., (1989) Molecular Cloning: A Laboratory Manual (2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.), herein incorporated by reference. 30 The nucleotide sequences for the pollen-preferred promoters disclosed in the present invention, as well as variants and fragments thereof, are useful in the genetic manipulation of any plant when operably linked with an isolated nucleotide 64 sequence whose expression is to be controlled to achieve a desired phenotypic response. The nucleotide sequence operably linked to the regulatory elements disclosed herein can be an antisense sequence for a targeted gene. By 5 "antisense DNA nucleotide sequence" is intended a sequence that is in inverse orientation to the 5'-to-3' normal orientation of that nucleotide sequence. When delivered into a plant cell, expression of the antisense DNA sequence prevents normal expression of the DNA nucleotide sequence for the targeted gene. The antisense nucleotide sequence encodes an RNA transcript that is complementary 10 to and capable of hybridizing with the endogenous messenger RNA (mRNA) produced by transcription of the DNA nucleotide sequence for the targeted gene. In this case, production of the native protein encoded by the targeted gene is inhibited to achieve a desired phenotypic response. Thus the regulatory sequences claimed herein can be operably linked to antisense DNA sequences to 15 reduce or inhibit expression of a native or exogenous protein in the plant. Many nucleotide sequences are known which inhibit pollen formation or function or dispersal, and any sequences which accomplish this inhibition will suffice. A discussion of genes which can impact proper development or function is included at U.S. Patent Number 6,399,856 and includes dominant negative genes 20 such as cytotoxin genes, methylase genes, and growth-inhibiting genes. Dominant negative genes include diphtheria toxin A-chain gene (Czako and An (1991) Plant Physiol. 95:687-692); cell cycle division mutants such as CDC in maize (Colasanti, et al., (1991) Proc. Natl. Acad. Sci. USA 88:3377-3381); the WT gene (Farmer, et al., (1994) Hum. Mol. Genet. 3:723-728); and P68 (Chen, et al., 25 (1991) Proc. Natl. Acad. Sci. USA 88, 315-319). A suitable gene may also encode a protein involved in inhibiting pistil development, pollen stigma interactions, pollen tube growth or fertilization, or a combination thereof. In addition, genes that either interfere with the normal accumulation of starch in pollen or affect osmotic balance within pollen may also be suitable. These may include, for example, the maize 30 alpha-amylase gene, maize beta-amylase gene, debranching enzymes such as Sugaryl and pullulanase, glucanase, and SacB. In an illustrative embodiment, the DAM-methylase gene, the expression product of which catalyzes methylation of adenine residues in the DNA of the 65 plant, is used. Methylated adenines will not affect cell viability and will be found only in the tissues in which the DAM-methylase gene is expressed, because such methylated residues are not found endogenously in plant DNA. Examples of so called "cytotoxic" genes are discussed supra and can include, but are not limited 5 to pectate lyase gene pelE, from Erwinia chrysanthermi (Kenn, et al., (1986) J. Bacteriol 168:595); diphtheria toxin A-chain gene (Greenfield, et al., (1983) Proc. Natl. Acad. Sci. USA 80:6853, Palmiter, et al., (1987) Cell 50:435); T-urf13 gene from cms-T maize mitochondrial genomes (Braun, et al., (1990) Plant Cell 2:153; Dewey, et al., (1987) Proc. Natl. Acad. Sci. USA 84:5374); CytA toxin gene from 10 Bacillus thuringiensis Israeliensis that causes cell membrane disruption (McLean, et al., (1987) J. Bacteriol 169:1017, U.S. Patent Number 4,918,006); DNAses, RNAses, (U.S. Patent Number 5,633,441); proteases, or genes expressing anti sense RNA. Further, the methods of the invention are useful in retaining the 15 homozygous recessive condition of traits other than those impacting plant fertility. The gene of interest which restores the condition would be introduced into a plant linked to a nucleotide sequence which inhibits the formation, function, or dispersal of pollen and which may be further linked to a male gamete tissue-preferred promoter and a gene encoding a marker, for example a seed-specific marker. 20 Viable pollen produced by the plant into which the construct is introduced contains only the recessive allele of the gene of interest and none of the restoring transgene sequences. Half of the female gametes of the hemizygous transgenic plant contain the transgene and can be self-pollinated, or pollinated by a plant comprising the recessive alleles. Half of the seeds produced will carry the 25 transgene and can be identified by means of the linked marker. The hemizygous condition can be maintained by selfing the hemizygous plant; half of the offspring will contain the transgene and thus the trait of interest. Genes of interest are reflective of the commercial markets and interests of those involved in the development of the crop. Crops and markets of interest 30 change, and as developing nations open up world markets, new crops and technologies will emerge also. In addition, as our understanding of agronomic traits and characteristics such as yield and heterosis increases, the choice of genes for transformation will change accordingly. 66 Regulation of male fertility is necessarily measured in terms of its effect on individual cells. For example, suppression in 99.99% of pollen grains is required to achieve reliable sterility for commercial use. However, successful suppression or restoration of expression of other traits may be accomplished with lower 5 stringency. Within a particular tissue, for example, expression in 98%, 95%, 90%, 80% or fewer cells may result in the desired phenotype. This invention has utility for a variety of genes, not limited to those where affecting reproductive capacity. General categories of genes of interest include, for example, those genes involved in information, such as zinc fingers, those 10 involved in communication, such as kinases, and those involved in housekeeping, such as heat shock proteins. More specific categories of transgenes, for example, include genes encoding important traits for agronomics, plant architecture, developmental timing and initiation of reproductive growth, insect resistance, disease resistance, herbicide resistance, sterility, grain characteristics, and 15 commercial products. Genes of interest include, generally, those involved in oil, starch, carbohydrate, or nutrient metabolism as well as those affecting kernel size, sucrose loading, and the like. Agronomically important traits such as oil, starch, and protein content can be genetically altered in addition to using traditional breeding methods. Modifications include increasing content of oleic acid, 20 saturated and unsaturated oils, increasing levels of lysine and sulfur, providing essential amino acids, and also modification of starch. Hordothionin protein modifications are described in U.S. Patent Numbers 5,703,049, 5,885,801, 5,885,802, and 5,990,389. Another example is lysine and/or sulfur rich seed protein encoded by the soybean 2S albumin described in U.S. Patent Number 25 5,850,016, and the chymotrypsin inhibitor from barley, described in Williamson, et al., (1987) Eur. J. Biochem. 165:99-106. Other important genes encode growth factors and transcription factors. Agronomic traits can be improved by altering expression of genes that: affect growth and development, especially during environmental stress. These 30 include, for example, genes encoding cytokinin biosynthesis enzymes, such as isopentenyl transferase; genes encoding cytokinin catabolic enzymes, such as cytokinin oxidase; genes encoding polypeptides involved in regulation of the cell cycle, such as CyclinD or cdc25; genes encoding cytokinin receptors or sensors, 67 such as CRE1, CK11, and CK12, histidine phospho-transmitters, or cytokinin response regulators. Further examples include disease or herbicide resistance (e.g., fumonisin detoxification genes (U.S. Patent No. 5,792,931); avirulence and disease 5 resistance genes (Jones et al. (1994) Science 266:789; Martin et al. (1993) Science 262:1432; Mindrinos et al. (1994) Cell 78:1089); acetolactate synthase (ALS) mutants that lead to herbicide resistance such as the S4 and/or Hra mutations; inhibitors of glutamine synthase such as phosphinothricin or basta (e.g., bar gene); and glyphosate resistance (EPSPS gene)); carbon fixation, such 10 as phosphoenolpyruvate carboxylase (PepC) or ribulose-1 ,5-bisphosphate carboxylase/oxygenase (Rubisco activase, RCA); traits desirable for processing or process products such as high oil (e.g., U.S. Patent No. 6,232,529 ); modified oils (e.g., fatty acid desaturase genes (U.S. Patent No. 5,952,544; WO 94/11516)); modified starches (e.g., ADPG pyrophosphorylases (AGPase), starch synthases 15 (SS), starch branching enzymes (SBE), and starch debranching enzymes (SDBE)); and polymers or bioplastics (e.g., U.S. Patent No. 5.602,321; beta ketothiolase, polyhydroxybutyrate synthase, and acetoacetyl-CoA reductase (Schubert et al. (1988) J. Bacteriol. 170:5837-5847) facilitate expression of polyhydroxyalkanoates (PHAs)); the disclosures of which are herein incorporated 20 by reference. The methods of the present invention could also be combined with methods for transformation technology, such as cell cycle regulation or gene targeting (e.g., WO 99/61619, WO 00/17364, and WO 99/25821), the disclosures of which are herein incorporated by reference. Insect resistance genes may encode resistance to pests that have great 25 yield drag such as rootworm, cutworm, European Corn Borer, and the like. Such genes include, for example: Bacillus thuringiensis endotoxin genes, U.S. Patent Numbers 5,366,892; 5,747,450; 5,737,514; 5,723,756; 5,593,881; Geiser, et al., (1986) Gene 48:109; lectins, Van Damme, et al., (1994) Plant Mol. Biol. 24:825; and the like. 30 Genes encoding disease resistance traits include: detoxification genes, such as against fumonisin (WO 9606175 filed June 7, 1995); avirulence (avr) and disease resistance (R) genes, Jones, et al., (1994) Science 266:789; Martin, et al., (1993) Science 262:1432; Mindrinos, et al., (1994) Cell78:1089; and the like. 68 Commercial traits can also be encoded on a gene(s) which could alter or increase for example, starch for the production of paper, textiles and ethanol, or provide expression of proteins with other commercial uses. Another important commercial use of transformed plants is the production of polymers and 5 bioplastics such as described in U.S. Patent Number 5,602,321 issued February 11, 1997. Genes such as B-Ketothiolase, PHBase (polyhydroxybutyrate synthase) and acetoacetyl-CoA reductase (see, Schubert, et al., (1988) J. Bacteriol 170(12):5837-5847) facilitate expression of polyhydroxyalkanoates (PHAs). 10 Exogenous products include plant enzymes and products as well as those from other sources including prokaryotes and other eukaryotes. Such products include enzymes, cofactors, hormones, and the like. The level of seed proteins, particularly modified seed proteins having improved amino acid distribution to improve the nutrient value of the seed, can be increased. This is achieved by the 15 expression of such proteins having enhanced amino acid content. Expression cassettes of the invention, comprising a promoter and isolated nucleotide sequence of interest, may also include, at the 3' terminus of the isolated nucleotide sequence of interest, a transcriptional and translational termination region functional in plants. The termination region can be native with 20 the promoter nucleotide sequence of the cassette, can be native with the DNA sequence of interest, or can be derived from another source. Other convenient termination regions are available from the Ti-plasmid of A. tumefaciens, such as the octopine synthase and nopaline synthase termination regions. See also, Guerineau, et al., (1991) Mol. Gen. Genet. 262:141-144; 25 Proudfoot (1991) Cell 64:671-674; Sanfacon, et al., (1991) Genes Dev. 5:141-149; Mogen, et al., (1990) Plant Cell2:1261-1272; Munroe, et al., (1990) Gene 91:151 158; Ballas, et al., 1989) Nucleic Acids Res. 17:7891-7903; Joshi, et al., (1987) Nucleic Acid Res. 15:9627-9639. The expression cassettes can additionally contain 5' leader sequences. 30 Such leader sequences can act to enhance translation. Translation leaders are known in the art and include: picornavirus leaders, for example: EMCV leader (Encephalomyocarditis 5' noncoding region), Elroy-Stein, et al., (1989) Proc. Nat. Acad. Sci. USA 86:6126-6130; potyvirus leaders, for example, TEV leader 69 (Tobacco Etch Virus), Allison, et al., (1986); MDMV leader (Maize Dwarf Mosaic Virus), Virology 154:9-20; human immunoglobulin heavy-chain binding protein (BiP), Macejak, et al., (1991) Nature 353:90-94; untranslated leader from the coat protein mRNA of alfalfa mosaic virus (AMV RNA 4), Jobling, et al., (1987) Nature 5 325:622-625); tobacco mosaic virus leader (TMV), Gallie, et al., (1989) Molecular Biology of RNA, pages 237-256; and maize chlorotic mottle virus leader (MCMV) Lommel, et al., (1991) Virology 81:382-385. See also, Della-Cioppa, et al., (1987) Plant Physiology 84:965-968. The cassette can also contain sequences that enhance translation and/or mRNA stability such as introns. 10 In those instances where it is desirable to have the expressed product of the isolated nucleotide sequence directed to a particular organelle, particularly the plastid, amyloplast, or to the endoplasmic reticulum, or secreted at the cell's surface or extracellularly, the expression cassette can further comprise a coding sequence for a transit peptide. Such transit peptides are well known in the art and 15 include, but are not limited to: the transit peptide for the acyl carrier protein, the small subunit of RUBISCO, plant EPSP synthase, and the like. In preparing the expression cassette, the various DNA fragments can be manipulated, so as to provide for the DNA sequences in the proper orientation and, as appropriate, in the proper reading frame. Toward this end, adapters or 20 linkers can be employed to join the DNA fragments or other manipulations can be involved to provide for convenient restriction sites, removal of superfluous DNA, removal of restriction sites, or the like. For this purpose, in vitro mutagenesis, primer repair, restriction digests, annealing, and resubstitutions such as transitions and transversions, can be involved. 25 The following terms are used to describe the sequence relationships between two or more nucleic acids or polynucleotides: (a) "reference sequence", (b) "comparison window", (c) "percentage of sequence identity", and (d) "substantial identity". (a) As used herein, "reference sequence" is a defined sequence used 30 as a basis for sequence comparison. A reference sequence may be a subset or the entirety of a specified sequence; for example, a segment of a full-length promoter sequence, or the complete promoter sequence. 70 (b) As used herein, "comparison window" makes reference to a contiguous and specified segment of a polynucleotide sequence, wherein the polynucleotide sequence may be compared to a reference sequence and wherein the portion of the polynucleotide sequence in the comparison window may 5 comprise additions or deletions (i.e., gaps) compared to the reference sequence (which does not comprise additions or deletions) for optimal alignment of the two sequences. Generally, the comparison window is at least 20 contiguous nucleotides in length and optionally can be 30, 40, 50, 100 or more contiguous nucleotides in length. Those of skill in the art understand that to avoid a high 10 similarity to a reference sequence due to inclusion of gaps in the polynucleotide sequence, a gap penalty is typically introduced and is subtracted from the number of matches. (c) As used herein, "percentage of sequence identity" means the value determined by comparing two optimally aligned sequences over a comparison 15 window, wherein the portion of the polynucleotide sequence in the comparison window may comprise additions or deletions (i.e., gaps) as compared to the reference sequence (which does not comprise additions or deletions) for optimal alignment of the two sequences. The percentage is calculated by determining the number of positions at which the identical nucleic acid base occurs in both 20 sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the window of comparison and multiplying the result by 100 to yield the percentage of sequence identity. (d) The term "substantial identity" of polynucleotide sequences means that a polynucleotide comprises a sequence that has at least 70% sequence 25 identity, preferably at least 80%, more preferably at least 90% and most preferably at least 95%, compared to a reference sequence using one of the alignment programs described using standard parameters. Methods of aligning sequences for comparison are well known in the art. Gene comparisons can be determined by conducting BLAST (Basic Local 30 Alignment Search Tool; Altschul, S. F., et al., (1993) J. Mol. Biol. 215:403-410; see also, www.ncbi.nlm.nih.gov/BLAST/) searches under default parameters for identity to sequences contained in the BLAST "GENEMBL" database. A sequence can be analyzed for identity to all publicly available DNA sequences contained in 71 the GENEMBL database using the BLASTN algorithm under the default parameters. For purposes of defining the present invention, GAP (Global Alignment Program) is used. GAP uses the algorithm of Needleman and Wunsch (J. Mol. 5 Biol. 48:443-453, 1970) to find the alignment of two complete sequences that maximizes the number of matches and minimizes the number of gaps. Default gap creation penalty values and gap extension penalty values in Version 10 of the Wisconsin Package@ (Accelrys, Inc., San Diego, CA) for protein sequences are 8 and 2, respectively. For nucleotide sequences the default gap creation penalty is 10 50 while the default gap extension penalty is 3. Percent Similarity is the percent of the symbols that are similar. Symbols that are across from gaps are ignored. A similarity is scored when the scoring matrix value for a pair of symbols is greater than or equal to 0.50, the similarity threshold. The scoring matrix used in Version 10 of the Wisconsin Package@ (Accelrys, Inc., San Diego, CA) is BLOSUM62 15 (see, Henikoff and Henikoff, (1989) Proc. Natl. Acad. Sci. USA 89:10915). Large amounts of the nucleic acids of the present invention may be produced by replication in a suitable host cell. Natural or synthetic nucleic acid fragments coding for a desired fragment will be incorporated into recombinant nucleic acid constructs, usually DNA constructs, capable of introduction into and 20 replication in a prokaryotic or eukaryotic cell. Usually the nucleic acid constructs will be suitable for replication in a unicellular host, such as yeast or bacteria, but may also be intended for introduction to (with and without integration within the genome) cultured mammalian or plant or other eukaryotic cell lines. The purification of nucleic acids produced by the methods of the present invention is 25 described, for example, in Sambrook, et al., Molecular Cloning. A Laboratory Manual, 2nd Ed. (Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y. (1989) or Ausubel, et al., Current Protocols in Molecular Biology, J. Wiley and Sons, NY (1992). Nucleic acid constructs prepared for introduction into a prokaryotic or 30 eukaryotic host may comprise a replication system recognized by the host, including the intended nucleic acid fragment encoding the desired protein, and will preferably also include transcription and translational initiation regulatory sequences operably linked to the protein encoding segment. Expression vectors 72 may include, for example, an origin of replication or autonomously replicating sequence (ARS) and expression control sequences, a promoter, an enhancer and necessary processing information sites, such as ribosome-binding sites, RNA splice sites, polyadenylation sites, transcriptional terminator sequences, and 5 mRNA stabilizing sequences. Secretion signals may also be included where appropriate. Such vectors may be prepared by means of standard recombinant techniques well known in the art and discussed, for example, in Sambrook, et al., Molecular Cloning. A Laboratory Manual, 2nd Ed. (Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y. (1989) or Ausubel, et al., Current Protocols in Molecular 10 Biology, J. Wiley and Sons, NY (1992). Vectors for introduction of genes both for recombination and for extrachromosomal maintenance are known in the art, and any suitable vector may be used. Methods for introducing DNA into cells such as electroporation, calcium phosphate co-precipitation, and viral transduction are known in the art, and the 15 choice of method is within the competence of one skilled in the art (Robbins, Ed., Gene Therapy Protocols, Human Press, NJ (1997)). Gene transfer systems known in the art may be useful in the practice of the present invention. These include viral and non-viral transfer methods. A number of viruses have been used as gene transfer vectors, including polyoma, i.e., SV40 20 (Madzak, et al., (1992) J. Gen. Virol., 73:1533-1536), adenovirus (Berkner, (1992) Curr. Top. Microbiol. Immunol., 158:39-61; Berkner, et al., (1 988)Bio Techniques, 6:616-629; Gorziglia, et al., (1992) J. Virol., 66:4407-4412; Quantin, et al., (1992) Proc. Natl. Acad. Sci. USA, 89:2581-2584; Rosenfeld, et al., (1992) Cell, 68:143 155; Wilkinson, et al., (1992) Nucl. Acids Res. 20:2233-2239; Stratford 25 Perricaudet, et al., (1990) Hum. Gene Ther. 1:241-256), vaccinia virus (Mackett, et al., (1992) Biotechnology 24:495499), adeno-associated virus (Muzyczka, (1992) Curr. Top. Microbiol. Immunol. 158:91-123; Ohi, et al., (1990) Gene 89:279-282), herpes viruses including HSV and EBV (Margolskee, (1992) Curr. Top. Microbiol. Immunol. 158:67-90; Johnson, et al., (1992) J. Virol., 66:2952-2965; Fink, et al., 30 (1992) Hum. Gene Ther. 3:11-19; Breakfield, et al., (1987) Mol. Neurobiol. 1:337 371; Fresse, et al., (1990) Biochem. Pharmacol. 40:2189-2199), and retroviruses of avian (Brandyopadhyay, et al., (1984) Mol. Cell Biol. 4:749-754; Petropouplos, et al., (1992) J. Virol. 66:3391-3397), murine (Miller, (1992) Curr. Top. Microbiol. 73 Immunol. 158:1-24; Miller, et al., (1985) Mol. Cell Biol. 5:431-437; Sorge, et al., (1984) Mol. Cell Biol. 4:1730-1737; Mann, et al., (1985) J. Virol. 54:401-407), and human origin (Page, et al., (1990) J. Virol. 64:5370-5276; Buchschalcher, et al., (1992) J. Virol. 66:2731-2739). 5 Non-viral gene transfer methods known in the art include chemical techniques such as calcium phosphate coprecipitation (Graham, et al., (1973) Virology 52:456-467; Pellicer, et al., (1980) Science 209:1414-1422), mechanical techniques, for example microinjection (Anderson, et al., (1980) Proc. Natl. Acad. Sci. USA 77:5399-5403; Gordon, et al., (1980) Proc. Natl. Acad. Sci. USA 10 77:7380-7384; Brinster, et al., (1981) Cell 27:223-231; Constantini, et al., (1981) Nature 294:92-94), membrane fusion-mediated transfer via liposomes (Feigner, et al., (1987) Proc. Nat. Acad. Sci. USA 84:7413-7417; Wang, et al., (1989) Biochemistry, 28:9508-9514; Kaneda, et al., (1989) J. Biol. Chem. 264:12126 12129; Stewart, et al., (1992) Hum. Gene Ther. 3:267-275; Nabel, et al., (1990) 15 Science 249:1285-1288; Lim, et al., (1992) Circulation 83:2007-2011), and direct DNA uptake and receptor-mediated DNA transfer (Wolff, et al., (1990) Science 247:1465-1468; Wu, et al., (1991) BioTechniques 11:474-485; Zenke, et al., (1990) Proc. Natl. Acad. Sci. USA 87:3655-3659; Wu, et al., (1989) J. Biol. Chem. 264:16985-16987; Wolff, et al., (1991) BioTechniques 11:474485; Wagner, et al., 20 (1990); Wagner, et al., (1991) Proc. Natl. Acad. Sci. USA 88:42554259; Cotton, et al., (1990) Proc. Natl. Acad. Sci. USA 87:4033-4037; Curiel, et al., (1991) Proc. Natl. Acad. Sci. USA 88:8850-8854; Curiel, et al., (1991) Hum. Gene Ther. 3:147 154). One skilled in the art readily appreciates that the methods described herein 25 are applicable to other species not specifically exemplified, including both plants and other non-human organisms. The following examples are intended to illustrate but not limit the invention. EXAMPLE 1 30 PROMOTER HAIRPIN RNA EXPRESSION AFFECTS PLANT FERTILITY This example demonstrates that the fertility or fertility potential of plants can be altered by expression of hairpin RNA (hpRNA) molecules specific for the promoters of genes that encode proteins involved in male fertility pathways. 74 Promoter hpRNA constructs were generated by linking a ubiquitin promoter to an inverted repeat of the desired promoter, including a NOS promoter segment between the inverted repeat sequences. Expression of each construct generated a hpRNA specific for one of the following promoters: MS45, 5126, BS7, SB200, 5 and PG47. Nucleic acid molecules and methods for preparing the constructs and transforming maize were as previously described (Cigan, et al., (2001) Sex Plant Reprod. 14:135-142). Progeny (T1 generation) of transformed (TO) plants were analyzed. Of 32 transformation events comprising hpRNA specific for the MS45 gene 10 promoter, 29 produced TO plants that were male sterile. Of 32 transformation events comprising hpRNA specific for the 5126 gene promoter, 29 produced TO plants that were male sterile. Of 32 transformation events comprising hpRNA specific for the BS7 gene promoter, 23 produced TO plants that either produced a small amount of non 15 viable pollen ("breaker" phenotype) or were male fertile but produced only a small amount of viable pollen ("shedder" phenotype). Of 31 transformation events comprising hpRNA specific for the SB200 gene promoter, 13 produced TO plants of either the breaker or shedder phenotype. Of 24 transformation events comprising hpRNA specific for the PG47 gene 20 promoter linked to a construct for herbicide resistance, 15 revealed no transmission of herbicide resistance to the T1 seedling when using pollen from the primary transformants. This is consistent with expected post-meiotic expression of PG47. Anther RNA from plants expressing the various hpRNAs was analyzed by 25 northern blot. For each target, six independent events were analyzed in the T1 generation to determine whether hpRNA expression reduced steady state RNA levels of the targeted genes. Anthers were staged at tetrad release to early uninucleate stage of microspore development. Poly A+ RNA was isolated, separated by electrophoresis, transferred to membranes, and hybridized 30 sequentially with probes specific for MS45, 5126, BS7, SB200, NOS, and actin (RNA loading control). No MS45, 5126, or BS7 transcripts were detected in plants expressing hpRNA specific for these endogenous promoters. Only a slight reduction of SB200 RNA was observed in plants expressing SB200 hpRNA. 75 Protein immunoblot analysis of anther proteins also was performed essentially as described previously (Cigan, et al., (2001) Sex Plant Reprod. 14:135-142). For each target, six independent events were analyzed in the T1 generation to determine whether expression of the promoter hpRNA reduced 5 steady-state protein levels of the targeted genes. Anthers were staged as above, ground in Laemelli buffer, separated by electrophoresis, and reacted sequentially with antibodies specific for MS45, BS7, SB200 or 5126 protein. Similar to the northern blot results, no MS45, 5126, or BS7 proteins were detected in plants expressing hpRNA specific for these endogenous promoters, and only a slight 10 reduction of SB200 protein was observed for events comprising hpSB200. These results demonstrate that expression of promoter hpRNA can selectively suppress endogenous gene expression in plant cells. In addition, the results demonstrate that suppression of different genes involved in male sterility of plants can variously affect the plant phenotype, including the degree of male 15 fertility. EXAMPLE 2 EXPRESSION OF EXOGENOUS MS45 GENE PRODUCT RESTORES FERTILITY 20 This example demonstrates that plants rendered male-sterile by expression of an MS45 promoter hairpin construct can be restored to fertility by expression of an exogenous MS45 gene construct. Constructs were prepared containing the MS45 coding sequence operably linked to a heterologous ubiquitin (UBI), 5126, SB200 or BS7 promoter; these 25 constructs were introduced into ms45ms45 plant cells. Regenerated plants and their progeny were fertile, demonstrating that the native promoter of MS45 can be replaced with either a constitutive or anther-preferred promoter to confer a male fertile phenotype to mutant ms45 maize. (See also, Cigan, et al., (2001) Sex Plant Reprod. 14:135-142) 30 Further, plants containing the UBI:MS45 or 5126:MS45 construct were crossed to plants that were male sterile due to expression of an MS45 gene promoter hpRNA. Progeny were tested by PCR for presence of the hp construct 76 and either UBI:MS45 or 5126:MS45. RNA hybridization analysis was conducted and fertility phenotypes were scored. Northern blot analysis of RNA obtained from leaves of the progeny plants revealed that MS45 was expressed from the ubiquitin promoter in 7 of 12 hp 5 containing progeny obtained from the UBI:MS45 cross. Further, expression of MS45 from the UBI promoter correlated with observed fertility in the progeny plants. These results indicate that MS45 is expressed from the constitutive ubiquitin promoter, and that constitutive expression of the MS45 gene product confers male fertility in the progeny plants. 10 Further, anther RNA from these MS45hp maize plants containing 5126:MS45, BS7:MS45, or UBI:MS45 was analyzed. Anthers were staged at tetrad release to early uninucleate stage of microspore development, and poly A+ RNA was collected, electrophoresed and hybridized sequentially with probes for MS45, SB200, and BS7. MS45 was expressed in anthers of the male-fertile 15 progeny plants whether driven by the constitutive UBI promoter or by the anther specific 5126 or BS7 promoters, with timing of anther collection likely affecting strength of the signal. No MS45 RNA was observed in the male-sterile hairpin only containing plants. These results demonstrate that suppression of MS45 expression due to the MS45 hpRNA can be overcome by expressing MS45 from a 20 heterologous promoter that drives expression at least in anther cells. The promoter expressing the MS45 gene can be derived from a source other than maize, and can be, for example, any plant promoter capable of transcribing MS45 such that expression of the transcription unit renders plants male fertile. For example, the rice and Arabidopsis homologs of the maize MS45, 25 5126, BS7 and MS26 genes have been isolated and identified. See Figure 1 for chromosomal coordinates providing sequence information for MS45, MS26, and 5126 in rice and Arabidopsis, and BS7 in Arabidopsis. For BS7 in rice, see SEQ ID NO: 3. Overall there is significant coding sequence similarity between the species, with conservation of the intronic regions. Importantly, the corresponding 30 promoters of rice and maize are approximately 50 to 60% identical overall, with regions up to 85% identical, suggesting that these promoters may function sufficiently in maize tapetum to transcribe the MS45 gene. 77 To test this, each of the rice MS45, rice 5126, rice BS7, rice MS26 and Arabidopsis MS45, Arabidopsis 5126 and Arabidopsis BS7 promoters was fused to the maize MS45 coding region and tested for ability of the construct to confer fertility when transformed into ms45ms45 mutants. Using this test system, a high 5 frequency of male fertile plants was observed for all four constructs. In certain respects, it is advantageous to use non-maize promoters to express the MS45 gene. For example, where promoter hpRNAs from the same species reduce target gene function such that the plant is non-viable or non reproductive, a promoter from a different species can be used to transcriptionally 10 express the complementing gene function (e.g., MS45), thus circumventing this potential problem. Moreover, an hpRNA construct can be generated to target the non-maize promoter used in the MS45 expression cassette, to suppress MS45 gene expression as a means to reduce or abolish function and render the plant male sterile. For example, an ms45 homozygous recessive plant may be 15 transformed with an MS45 rice promoter homolog driving expression of the MS45 gene (MS45r::MS45), rendering the plant male fertile. To suppress expression of this MS45r::MS45 cassette, a second maize plant can be generated which is heterozygous for the maize MS45 mutation and expresses an MS45r promoter hpRNA. As there are no equivalent endogenous MS45 rice promoter target 20 sequences in this maize plant, this plant would be male fertile. This second plant can be crossed onto the homozygous ms45 plant containing the MS45r::MS45 construct, and ms45 homozygous recessive progeny screened for the MS45r::MS45 and the MS45r hpRNA constructs. In this situation, MS45r::MS45 gene function is suppressed by the presence and expression of the MS45r 25 hpRNA, resulting in a male-sterile plant. Use of such constructs is supported by the finding that expression of the rice 5126 promoter hp in maize does not result in male sterile plants. This is in contrast to the results obtained using a maize 5126 promoter hp (see, Example 1) and suggests that expression of the rice 5126 promoter hairpin is incapable of 30 suppressing the endogenous maize 5126 gene. 78 EXAMPLE 3 PROMOTER SPECIFIC HAIRPIN RNA SUPPRESSES TRANSMISSION OF TRANSGENE MEDIATED HERBICIDE RESISTANCE This example demonstrates that pollen of plants hemizygous for a 5 UBI:PG47 hairpin construct is non-viable as determined by non-transmission of herbicide resistance to T1 outcrosses when a herbicide resistance gene is linked to the PG47 hairpin construct. An hpRNA specific for the PG47 gene promoter comprising an inverted repeat of the PG47 gene promoter driven by a ubiquitin promoter (UBI:PG47hp), 10 linked to a 35S:PAT construct, was introduced into plant cells. Pollen from plants expressing the transgene, representing 24 low- or single-copy transformation events, was carried to ears of wild-type maize plants. Seed set on the ears was very good, and comparable to that observed when wild-type pollen was used. For each event, 32 seeds were planted in soil, and seedlings were sprayed 5 days 15 post-germination with 2X LIBERTYTM herbicide to detect transmission of UBI:PG47hp linked to 35S:PAT. It was expected that if PG47-specific hpRNA functioned at the post-meiotic division of microspores, then viability would be normal, and 50% of the pollen would carry the transgene, providing herbicide resistance in 50% of the progeny. 20 However, if PG47 function is required for pollen viability, and the hairpin construct can suppress expression of the PG47 gene product, then 50% of the pollen grains would be non-viable; all viable pollen would lack the transgene and be incapable of transmitting herbicide resistance. Non-functioning UBI:PG47hp constructs would be detectable by the presence of herbicide resistant plants. 25 Fifteen of 24 events tested were herbicide sensitive. This result demonstrates that the UBI:PG47hp constructs suppress PG47 gene expression in pollen, rendering 50% of the pollen non-viable and preventing transmission of herbicide resistance operably linked to the suppression construct. 79 EXAMPLE 4 PLANTS CONTAINING MULTIPLE PROMOTER-SPECIFIC HAIRPIN RNAS SUPPRESS MULTIPLE TARGET PROMOTERS Plants containing 5126HP (i.e., a transgene encoding a 5126 promoter 5 hpRNA) are used as pollen recipients for pollen from BS7HP-expressing plants. In plants containing both 5126HP and BS7HP, endogenous expression of 5126 and BS7 is suppressed, leading to a stronger sterility phenotype than observed with either construct alone. Plants are selected to contain either the 5126HP or BS7HP or both and advanced to maturity, and the fertility phenotypes of these 10 resultant plants are determined. Alternatively or in addition to crossing as a means to combine hairpin constructs, one of said constructs, for example the 5126HP, can be placed under the transcriptional control of an inducible promoter. In the absence of induction, these BS7HP-containing plants are capable of producing enough pollen to self. 15 However, upon induction of the 5126HP, these plants are male sterile, and can be used as females during hybrid production. This process depends upon the combined expression of the hairpin constructs (HPs) to render a plant infertile, while expression of only one of the HPs does not impart sterility. In certain embodiments, expression of both hpRNAs can be placed under 20 the transcriptional control of a single promoter. For example, the 5126 promoter region can be juxtaposed to the BS7 promoter region and both are placed under the transcriptional control of a single ubiquitin promoter or other constitutive, developmental or tissue preferred promoter, resulting in the expression of an RNA containing a 5126 and BS7 hybrid hairpin that directs the suppression of both 25 5126 and BS7 endogenous genes. Any combination and number of various promoters that target multiple and different promoters can be used in the scheme. For example, a promoter that regulates plant height genes and a promoter important to a reproductive process can be combined, resulting in sterile plants having short stature. 30 80 EXAMPLE 5 INBRED MAINTENANCE AND HYBRID PRODUCTION OF PLANTS CONTAINING PROMOTER-SPECIFIC HAIRPIN RNAS SUPPRESSING TARGET PROMOTERS AND COMPLEMENTATION CONSTRUCTS 5 This example demonstrates how an inbred plant containing two constructs, a dominant hairpin RNA (hpRNA) construct specific for a promoter and an MS45 gene expressed from a promoter, such as a tissue-specific or constitutive promoter, can be maintained and used in the production of male-sterile females for hybrid production. 10 Inbred plants Al and A2 are both homozygous recessive ms45ms45. Fertility is restored to inbred Al plants by introduction of a transgene expressing the MS45 coding region operably linked to the 5126 promoter. The Al inbred plants also contain a BS7HP-expressing construct. These plants can be selfed and the Al line, homozygous for the transgene inserts, is maintained 15 independently of inbred A2. In inbred A2 plants, fertility is restored by expressing the MS45 coding region operably linked to the BS7 promoter. The A2 inbred plants also contain a 5126HP-expressing construct. These plants can be selfed and the A2 line, homozygous for the transgene inserts, is maintained independently of inbred Al plants. 20 In some embodiments comprised by this example, promoters from the rice (Oryza sativa) orthologs of maize genes 5126, BS7, and/or MS45 are used. See Table 1 for examples. If no species is indicated, maize is assumed. Table 1. Plant Al (ms45ms45) Plant A2 (ms45ms45) Restoration construct rice5126::MS45 riceBS7::MS45 Hairpin construct UBI::riceBS7plR UBI::rice5126plR OR Restoration construct rice5126::MS45 riceMS45::MS45 Hairpin construct UBI::riceMS45plR UBI::rice5126plR 25 To generate seed for female inbreds for hybrid production, inbred Al (containing homozygous transgene inserts) is detasseled and fertilized with pollen 81 from inbred A2 (containing homozygous transgene inserts). The seed resulting from this cross is planted; all of the progeny plants are male sterile due to the presence of the homozygous ms45 alleles and the pIRs which suppress the corresponding MS45 construct (e.g., riceMS45plR suppresses riceMS45::MS45, 5 and the rice5126plR suppresses rice5126::MS45). See Figure 2. These plants are used as females in hybrid production and pollinated with plants homozygous for the wild-type MS45 gene, resulting in hybrid F1 seed. All plants derived from this seed are heterozygous for the MS45 gene and are therefore male fertile. This example demonstrates that plants containing both dominant 10 suppression and restoring constructs can be maintained and used in a hybrid seed production strategy to generate sterile female inbreds and fertile hybrid plants. EXAMPLE 6 UTILITY OF PLANTS CONTAINING PROMOTER-SPECIFIC HAIRPIN RNAS 15 SUPPRESSING TARGET POLLEN-SPECIFIC PROMOTERS AND MS45 COMPLEMENTATION CONSTRUCTS FOR HYBRID PRODUCTION AND INBRED MAINTENANCE This example demonstrates how a method comprising the use of two constructs, a dominant hairpin RNA (hpRNA) construct specific for a pollen 20 specific promoter and a restoring transgene, allows for the propagation of a plant having a homozygous recessive reproductive trait without losing the homozygous recessive condition in the resulting progeny, for use in the production of sterile plants for hybrid production. This is accomplished by introducing into a plant at least one restoring transgene construct, operably linking a first nucleotide 25 sequence comprising a functional copy of a gene that complements the mutant phenotypic trait produced by the homozygous recessive condition with a second functional nucleotide sequence which interferes with the formation, function, or dispersal of the male gametes of the plant. This construct is maintained in the hemizygous state and a plant containing such a construct is referred to as a 30 maintainer. Interference with the formation, function, or dispersal of the male gamete may be accomplished by linking the sequences interfering with formation, function, or dispersal of the male gamete with a gamete-tissue-preferred promoter. Since the transgene is in the hemizygous state, only half of the pollen grains 82 produced contain the restoring transgene construct and none of these are viable due to the action of the linked second gene that prevents the formation of viable pollen. Therefore, when the maintainer plant containing such a linked construct is used as a pollen donor to fertilize the homozygous recessive plant, the only viable 5 male gametes provided to the homozygous recessive plant are those which contain the recessive allele, but do not contain any component of the transgene construct. The progeny resulting from such a sexual cross are non transgenic with respect to this transgene construct. While no viable pollen produced by the maintainer contains the restoring 10 transgene construct, 50% of the ovules (the female gamete) will contain the restoring transgene construct. Therefore, the maintainer can be propagated by self-fertilization, with the restoring transgene construct segregating such that it will be contained in 50% of the seed of a self fertilized maintainer. By linking the restoring transgene construct with a selectable marker, the 50% of the seed 15 containing the transgene can be isolated to propagate the maintainer population, which remains homozygous for the recessive gene and hemizygous for the restoring transgene construct. In this scenario, a single inbred can be maintained. Inbred Al is homozygous recessive for the fertility gene ms45. Inbred Al plants contain a construct in which male fertility is restored by expressing the 20 MS45 coding region using a tissue specific promoter, for example the native MS45 promoter. Inbred Al plants also contain a hairpin construct targeted to suppress a pollen expressed promoter, in this example, a PG47HP expressing construct operably linked to the MS45 restoring construct; and a selectable or screenable marker, for example, a marker that confers herbicide resistance and/or a construct 25 that serves as a visual or detectable marker for plant and/or seed screening. These plants are fertile and can be selfed and maintained. The seed on these plants will segregate 50:50 for the transgene because only non-transgenic pollen is viable and capable of effecting fertilization of an ovule, 50% of which contain the construct. 30 To generate seed for female inbreds for hybrid production, in one row, only non-transgenic plants from inbred Al are maintained; these plants are homozygous recessive ms45 and male sterile. In an adjacent row, both transgenic and non-transgenic plants from inbred Al are grown. Fertility in this 83 row segregates one to one (fertile to sterile); fertile plants are used to pollinate the sterile plants in the adjacent row. The seed from this cross is non-transgenic for the operably linked restorer, the hpRNA and the screenable marker constructs, and all of the progeny are male sterile due to the presence of the homozygous 5 ms45 allele. These plants are used as females in hybrid production and pollinated with plants homozygous for the wild-type MS45 gene resulting in hybrid F1 seed. All plants derived from this seed are heterozygous for the MS45 gene and, therefore, male fertile. This example demonstrates that plants containing a dominant pollen 10 suppression hairpin construct and a fertility restoring construct can be maintained as inbreds and used in a hybrid seed production strategy to generate sterile female inbreds and fertile hybrid plants. EXAMPLE 7 15 COMBINATIONS Two or more construct components described herein may be combined in various ways to create systems for controlling gene expression. Such combinations may be made by linking said components within a single vector, by using multiple vectors in simultaneous or sequential transformations, and/or by 20 breeding of plants comprising one or more components. Possible components are described below and in Table 2. Table 3 provides representations of illustrative, but not exhaustive, combinations useful in controlling male fertility. For example, the components may include promoters or coding regions other than those listed, and the order of the components within the constructs may 25 be different than those shown. Further, a construct could comprise individual promoter/coding sequence combinations, or one promoter driving transcription of multiple coding sequence components. As an example of the latter, a construct could comprise a constitutive promoter driving transcription of an MS45 coding sequence as well as a polynucleotide encoding a gene product involved in 30 producing or regulating a screenable marker (for example, pigment) to create a fusion product. This would allow screening for transformants using any tissue of the plant, while expression of the MS45 coding sequence results in male fertility. 84 Within any of the constructs, one or more promoter hairpin components could be included, for example within an intron of any of the encoded genes, or within a 5' or 3' non-coding region, or as an initial or terminal extension. A hairpin may target a single promoter, or two or more promoters, within a single 5 transcribed RNA. Pollen-promoter hairpin configurations, and/or polynucleotides encoding pollen-disrupting polypeptides, can serve to prevent transgene transmission through the male gametes. Pollen-preferred or pollen-specific promoters ("Poll-P") include, for example, PG47, P95 (onset between mid- and late-uninucleate stages; see, SEQ ID NO: 2), 10 and P67 (profile similar to P95, more highly expressed at mid-uninucleate stage; see, SEQ ID NO: 1). Tapetun-specific ("Tisp-P") or tapetum-preferred ("Tap-P") promoters include, for example, MS45 (U.S. Patent Number 6,037,523); 5126 (U.S. Patent Number 5,837,851); Bs7 (WO 02/063021); and SB200 (WO 02/26789). 15 Other tissue-specific or tissue-preferred promoters useful in the invention include, for example, Br2 (Science 302(5642):71-2, 2003), CesA8, and LTP2 (Plant J 6:849-860, 1994). Constitutive promoters ("ConstP") include, for example, the CaMV 35S promoter (WO 91/04036 and WO 84/02913); and the maize ubiquitin promoter. 20 Male fertility genes ("MF") useful in the invention include, for example, MS45 (Cigan, et al., (2001) Sex. Plant Repro. 14:135-142; U.S. Patent Number 5,478,369) and MS26 (U.S. patent publication 20030182689, issued December 19, 2006 as U.S. 7,151,205). Pollen ablation genes ("Cytotox") useful in the invention include DAM 25 (GenBank J01600, Nucleic Acids Res. 11:837-851 (1983); alpha-amylase (GenBank L25805, Plant Physiol. 105(2):759-760 (1994)); D8 (Physiol. Plant. 100(3):550-560 (1997)); SacB (Plant Physiol. 110(2):355-363 (1996)), lipases and ribonucleases. In this regard, a single polypeptide, or a fusion of two or more polypeptides to generate a fusion product, is contemplated. Selectable marker 30 systems useful in the practice of the invention include, for example, herbicide resistance conferred by PAT or MoPAT. Screenable marker systems useful in the practice of the invention, for example in identifying transgenic seed among progeny of a selfed maintainer line, 85 include GFP (Gerdes (1996) FEBS Lett. 389:44-47; Chalfie, et al., (1994) Science 263:802), RFP, DSred (Dietrich, et al., (2002) Biotechniques 2(2):286-293), KN1 (Smith, et al., (1995) Dev. Genetics 16(4):344-348), CRC, P, (Bruce, et al., (2000) Plant Cell 12(1):65-79, and Sugaryl (Rahman, et al., (1998) Plant Physiol. 5 117:425-435; James, et al., (1995) Plant Cell 7:417-429; U18908). Hairpin configurations may comprise, for example, PG47hp, P95hp, or P67 hp. A hairpin may target a single promoter or may target two or more promoters by means of a single transcribed RNA. The hairpin could be located in any appropriate position within the construct, such as within an intron of any of the 10 encoded genes or within 5' or 3' non-coding regions. Table 2 Symbol Description Example Poll-P Pollen Promoter PG47, P95, P67 Tisp-P Tissue Specific Promoter Br2, CesA8, LTP2 Tap-P Tapetum Promoter Ms45, 5126, Bs7, Sb200 ConstP Constitutive Promoter 35S, Ubi MF Fertility Gene Ms45, Ms26 Cytotox Cytotoxic Gene DAM, Alpha-Amylase, D8, SacB Herb R Herbicide Resistance PAT, MoPAT Screen Screenable Marker RFP, GFP, KN1, CRC, Sul HP Hairpin PG47hp, P95hp, P67hp 15 86 Table 3 Description Components Single cytotox + Selection Poll-P:Cytotox/Tap-P:MF/ConstP:Herb R Single cytotox + Selection + Screen Poll-P:Cytotox/Tap-P:MF/ConstP:Herb R/Tisp-P:Screen Double cytotox + Selection Poll-P:Cytotox/Poll-P:Cytotox/Tap-P:MF/ConstP:Herb R Single cytotox + Screen Poll-P:Cytotox/Tap-P:MF/Tisp-P:Screen Double cytotox + Screen Poll-P:Cytotox/Poll-P:Cytotox/Tap-P:MF/Tisp-P:Screen Hairpin + Single cytotox + Selection ConstP:HP/Poll-P:Cytotox/Tap-P:MF/ConstP:Herb R Hairpin + Single cytotox + Screen ConstP:HP/Poll-P:Cytotox/Tap-P:MF/Tisp-P:Screen Hairpin + Selection ConstP:HP/Tap-P:MF/ConstP:Herb R Hairpin + Screen ConstP:HP/Tap-P:MF/Tisp-P:Screen Hairpin/Male fertile fusion + Screen ConstP:HP + MF/Tisp-P:Screen Hairpin/Male fertile fusion + Selection ConstP:HP + MF/ConstP:Herb R Embedded Hairpin/Male fertile + ConstP:MF Embedded HP/ConstP:Herb R Selection Embedded Hairpin/Male fertile + ConstP:MF Embedded HP/Tisp-P:Screen Screen Embedded Hairpin/Screen Tap-P:MF/ConstP:Screen Embedded HIP Single Cytotox Embedded Poll-P:Cytotox/Tap-P:MF/ConstP:Screen Embedded HP Hairpin/Screen Constitutive Fertility/Screen with ConstP:(MF + Screen) Embedded HP Embedded Hairpin Tap-P:Cytotox/ConstP:(MF + Screen) Embedded HIP EXAMPLE 8 5 VISUAL MARKER-BASED SELECTION The experiments described below were designed to ask whether the maize p1 gene, when expressed from various non-p1 promoters, could be used as a visual marker for seed carrying a linked transgene. As part of the experimental design, coloration of seed from the transformed plant, as well as coloration of seed 10 generated by outcrossing pollen from the transformed plant, was tested to examine inheritance of maternal and paternal p1 gene expression. 87 The p1 gene of maize is a Myb-related transcriptional activator demonstrated to regulate the a1 and c2 genes to produce 3-deoxy flavonoids, such as C-glycosyl flavones, 3-deoxyanthocyanins, flavan-4-ols and phlobaphenes (Grotewold, et al., (1991) PNAS 88:4587-4591). Synthesis of these 5 and related compounds results in the coloration of floral organs including pericarp, cob, silks, husks and tassel glumes (Cocciolone, et al., (2001) Plant J 27(5):467 478). Typically, expression of this gene is maternal; that is, outcrossing of the p1 gene does not confer coloration to reproductive parts until the next generation is grown from seed. As the p1 gene has been shown to confer color to non 10 reproductive maize tissues by constitutive expression in BMS (Black Mexican Sweet) cells (Grotewold, et al., (1998) P/ Cell), expression of the p1 gene was investigated by placing the p1 gene under the transcriptional control of the maize seed-preferred promoters END2 and LTP2. Constitutive promoters rice Actin and maize Ubiquitin were also used to transcriptionally regulate the p1 gene. These 15 vectors would test whether expression of the p1 gene would confer color differences sufficient for use as a visual marker. The following vectors were introduced into maize by Agrobacterium transformation and tested for seed color of both the transformed plant and ears pollinated with pollen from the transformed plants. 20 23030 End2:P1 -UbimoPAT 23066 Actin:P1-UBImoPat 23069 LTP2:P1-UBImoPat 23528 End2:P1 -35SPAT 25 23535 LTP2:P1-35S:PAT 23537 UBI:P1-35S:PAT Transformation with PHP23030 and PHP23069 has produced plants demonstrating segregating colored seed both on ears of the primary transformed 30 plants and on ears pollinated by pollen from these transformed plants. For PHP23030, 12 of the 14 independent events used for outcrossing demonstrated brown colored kernels segregating among the yellow kernels at nearly a 1:1 segregation ratio. Ears on the primary transformants were pollinated with pollen 88 from non-transformed plants and the kernels on these ears also segregated brown:yellow kernels at nearly a 1:1 ratio. Identical results were observed with three of the four events generated with PHP23069. Brown and yellow seed from 5 single-copy PHP23030 events were sorted 5 and planted to test for germination of the brown seed and co-segregation of the linked herbicide resistance marker, 35SPAT, with the colored kernels. In this small test, the majority (>95%) of the brown seed produced herbicide resistant plants, whereas 39 of the 40 seedlings germinated from yellow seed were herbicide sensitive. 10 Close examination of the brown seed from PHP23030 revealed that the aleurone layer fluoresced green, while the endosperm of brown seed from PHP23069 showed strong green fluorescence when compared to yellow segregating seed derived from the same ear. This is consistent with the observation of green fluorescence observed in BMS cells bombarded with 35S:P1 15 (Grotewold, et al., (1998) Plant Cell 10(5):721-740). Moreover, examination of the transformed callus with PHP23528 (End2:P1-35SPAT) and PHP23535 (LTP2:P1 35S:PAT) revealed, in contrast to untransformed GS3 callus, both PHP23528- and PHP23535-containing callus fluoresced green. The observation of green fluorescence in these transformed callus and the co-segregation of brown kernels 20 with the herbicide selectable marker in transformed plants indicates that expression of p1 from at least seed-preferred promoters can be used as a visual marker to identify transformed maize tissues. EXAMPLE 9 25 ALTERNATIVES FOR POLLEN CYTOTOXICITY As shown in Tables 2 and 3, disruption of pollen function may be accomplished by any of numerous methods, including targeted degradation of starch in the pollen grain or interference with starch accumulation in developing pollen. For example, a construct comprising the alpha-amylase coding region is 30 operably linked to a pollen specific promoter. The native secretory signal peptide region may be present; may be removed; or may be replaced by an amyloplastid targeted signal peptide. In other embodiments, a construct may comprise a pollen-specific promoter operably linked to a coding region for beta-amylase; or for 89 a debranching enzyme such as Sugary1 (Rahman, et al., (1998) Plant Physiol. 117:425-435; James, et al., (1995) Plant Cell 7:417-429; U18908) or pullulanase (Dinges, et al., (2003) Plant Cell 15(3):666-680; Wu, et al., (2002) Archives Biochem. Biophys 406(1):21-32). 5 EXAMPLE 10 SUBSTITUTING ORTHOLOGOUS PROMOTERS Orthologous promoters from rice and Arabidopsis (see, Figure 1) were isolated and tested for (1) their ability to regulate transcription of the maize MS45 10 restorer gene, as described in Example 2; (2) the effect of an ortholog-based pIR on endogenous gene expression; and (3) whether a pIR for an orthologous promoter could effectively silence the MS45 transgene operably linked to said orthologous promoter. The isolated rice and Arabidopsis DNA sequences were modified by PCR 15 to accommodate construction of MS45 complementation and inverted repeat vectors. Typically, HindIl and Ncol restriction sites were introduced onto the 5' and 3' ends, respectively, for the complementation vectors. For the promoter inverted repeat vectors, Notl-Ncol ends and HindIII-EcoRI ends were generated by PCR and subcloned into expression vectors as described in Cigan, et. al., 20 (2005) Plant Journal 43, 929-940. (1) Ability to drive the maize MS45 restorer gene Expression cassettes were constructed, each comprising a promoter of the rice MS45, rice 5126, rice BS7, rice MS26, Arabidopsis MS45, Arabidopsis 5126, 25 or Arabidopsis BS7 gene, operably linked to the maize MS45 coding region. Cells of homozygous recessive ms45ms45 maize were transformed and plants were regenerated, according to methods known to those of skill in the art. Typically, single plants from six to ten single-copy TO transformants were evaluated for male fertility. In each case, a high-frequency (>90%) of plants from independent TDNA 30 insertions demonstrated restoration of fertility by the orthologous promoter driving MS45. Moreover, fertility restoration was maintained when plants from these fertile events were analyzed in subsequent generations, (T1, 3 plants per event and T2, 3 to 5 plants per event). 90 (2) Effect of an ortholog-based pIR on endogenous gene expression. Constructs were created comprising the Ubiquitin promoter operably linked to a pIR based on each of the rice MS45, rice 5126, rice BS7, Arabidopsis 5126, 5 and Arabidopsis BS7 promoters. Wild-type maize cells were transformed and plants regenerated. Typically, single plants from six to ten single-copy TO transformants were evaluated for defects in either plant development or male fertility. In each case, plants developed normally and defects in fertility were not observed, indicating that the orthologous pIR did not affect expression of the 10 endogenous target gene . (3) Effect of an ortholog-based pIR on expression of said orthologous promoter driving MS45. Male fertile, ms45 homozygous recessive plants containing constructs 15 described in (1) above were used to fertilize male fertile Ms45/ms45 heterozygous plants containing the corresponding promoter pIR described in (2) above. Progeny ms45-recessive plants containing both an orthologous promoter operably linked to MS45, and the corresponding pIR, were evaluated for male fertility. Each pIR silenced expression of its corresponding promoter driving MS45 and resulted 20 in male sterile plants due to the recessive nature of ms45 and the inability of the promotor operably linked to the transgenic copy of MS45 to direct transcription of this gene; for example, a pIR for riceMS45 silenced riceMS45::MS45. Similar results were obtained using the rice 5126 and the Arabidopsis 5126 and Arabidopsis BS7 promoters. See, Figure 3. 25 EXAMPLE 11 ALLELE TESTING AND UTILIZATION This example provides a method for evaluating functionality of variant alleles of a gene of interest. Using an appropriate pIR, the endogenous gene of 30 interest is suppressed. A variant allele of the gene of interest is expressed under the control of a non-target promoter. The complementation and suppression elements may be combined in a single vector. See Figure 4. In one embodiment of the method, the variant allele is produced by gene shuffling. Strategies for such 91 DNA shuffling are known in the art. See, for example, Stemmer (1994) Proc. Natl. Acad. Sci. USA 91:10747-10751; Stemmer (1994) Nature 370:389-391; Crameri, et al., (1997) Nature Biotech. 15:436-438; Moore, et al., (1997) J. Mol. Biol. 272:336-347; Zhang, et al., (1997) Proc. Natl. Acad. Sci. USA 94:4504-4509; 5 Crameri, et al., (1998) Nature 391:288-291; and U.S. Patent Numbers 5,605,793 and 5,837,458. In further embodiments, a plant cell is transformed with an expression cassette comprising a selected variant allele operably linked to an appropriate promoter, and a transformed plant is regenerated. The regenerated plant may 10 display a phenotypic change. In certain embodiments the phenotypic change is measurable only when the plant or cell comprising the variant allele or its gene product also comprises a second gene or gene product, such as a reporter molecule or cofactor. Figure 5 presents one embodiment of the method as applied to the MS45 15 male-fertility gene; however, the methods of the invention may be employed with respect to a gene of interest selected from a wide range of genes which encode a polypeptide involved in a metabolic pathway affecting any of a variety of phenotypic traits, including those listed elsewhere herein. In further embodiments, the methods of this example are used in combination with other 20 methods described herein. For example, silencing of an endogenous gene and transformation with a selected variant allele could be combined with a method described in Example 5, such that the selected variant allele is operably linked to a promoter in a first plant; and a second plant comprises a pIR targeted to said promoter, such that expression of the selected variant allele can be controlled 25 through crossing. EXAMPLE 12 MAINTENANCE OF RECESSIVE LETHALS In a further embodiment of the complementation methods incorporating 30 pIRs, an orthologous promoter is employed to complement expression of a mutant. In this way, plants comprising recessive lethal mutants may be selfed. Crossing of plants comprising corresponding transgene constructs (as shown in 92 Figure 6) results in silencing of the complementing promoter, thereby exposing the recessive mutation. Methods used herein, such as for construction of expression cassettes, 5 transformation, plant regeneration, nucleic acid isolation and analysis, and scoring of male fertility, are known to those of skill in the art; see, for example, Cigan, et al., (2005) Plant J 43:929-940, and the references cited therein, including Cigan, et al., (2001) Sex. Plant Repro. 14:135-142; and Unger, et al., (2001) Transgenic Res. 10:409-422. 10 Although the invention has been described with reference to the above example, it will be understood that modifications and variations are encompassed within the spirit and scope of the invention. Accordingly, the invention is limited only by the claims. All publications and patent herein referred to are hereby incorporated by 15 reference to the same extent as if each was individually so incorporated. Where the terms "comprise", "comprises", "comprised" or "comprising" are used in this specification, they are to be interpreted as specifying the presence of the stated features, integers, steps or components referred to, but not to preclude the presence or addition of one or more other feature, integer, step, component or 20 group thereof. Further, any prior art reference or statement provided in the specification is not to be taken as an admission that such art constitutes, or is to be understood as constituting, part of the common general knowledge in Australia. 93
Claims (24)
1. A method for controlling expression of an allelic variant of a gene of interest in 5 a plant or plant cell, comprising: (a) silencing said gene of interest using a pIR construct targeting the promoter driving expression of said gene of interest; and (b) expressing said allelic variant operably linked to a second promoter.
2. The method of Claim 1 comprising the plant of Claim 1 as a first plant and 10 further comprising a step (c), wherein a second plant is crossed with said first plant, and wherein said second plant comprises a pIR construct targeting the second promoter.
3. The method of Claim 1 or Claim 2 wherein said gene of interest is an endogenous gene. 15
4. A pair of plants wherein the first plant comprises: (a) a first promoter operably linked to a gene of interest; (b) a pIR construct targeting said first promoter; (c) a construct comprising a second promoter operably linked to an allelic variant of the gene of interest; and 20 the second plant comprises a pIR construct targeting the second promoter.
5. A method for controlling expression of a mutation in a first plant, comprising: 25 (a) transforming said first plant with a construct comprising a promoter operably linked to a polynucleotide, wherein expression of said polynucleotide will complement the mutation; (b) providing a second plant comprising a pIR construct targeting said promoter of part (a); and 30 (c) optionally, crossing said first and second plants.
6. The method of Claim 5, wherein the mutation is lethal to the plant.
7. A pair of plants, comprising: (a) a first plant comprising 94 (i) a mutation for a gene of interest and (ii) a construct comprising a promoter operably linked to a heterologous polynucleotide, wherein expression of said polynucleotide will complement the mutation; and 5 (b) a second plant comprising a pIR construct targeting said promoter of the first plant.
8. A breeding pair of plants comprising four polynucleotides, wherein: (a) the first plant of said pair comprises: 10 (i) a first polynucleotide which encodes a gene product and is operably linked to a promoter A, and (ii) a second polynucleotide which encodes a pIR polynucleotide targeting a promoter sequence B, wherein promoter B is not present in said first plant; 15 (b) The second plant of said pair comprises: (iii) a third polynucleotide which encodes a gene product and is operably linked to said promoter B, and (ii) a fourth polynucleotide which encodes a pIR polynucleotide targeting said promoter A, wherein promoter A is not present 20 in said second plant.
9. The breeding pair of plants of Claim 8, wherein one or more of said four polynucleotides is exogenous.
10. The breeding pair of plants of Claim 8, wherein said gene products affect the same phenotypic trait. 25
11 The breeding pair of plants of Claim 10, wherein said trait is male fertility.
12. The breeding pair of plants of Claim 10, wherein said trait is female fertility.
13. The breeding pair of plants of Claim 8, wherein: (a) said first polynucleotide is selected from the group consisting of polynucleotides encoding maize MS45, maize BS7, maize 5126, and 30 the corresponding orthologs from Arabidopsis and rice; (b) said second promoter is selected from the group consisting of rice MS45, rice BS7, rice 5126, Arabidopsis BS7, Arabidopsis 5126, and Arabidopsis MS45 promoters; 95 (c) said third polynucleotide is selected from the group consisting of polynucleotides encoding maize MS45, maize BS7, maize 5126, and the corresponding orthologs from Arabidopsis and rice; (d) said first promoter is selected from the group consisting of rice 5 MS45, rice BS7, rice 5126, Arabidopsis BS7, Arabidopsis 5126, and Arabidopsis MS45 promoters.
14. A method of generating plants lacking a particular phenotype from parents exhibiting said phenotype, comprising crossing the breeding pair of plants of Claim 10. 10
15. A cell of a plant of Claim 8.
16. Seed or progeny of a plant of Claim 8.
17. A method for selectively expressing a first polynucleotide of interest in progeny of a plant, comprising: (a) transforming said plant with a first construct comprising said 15 polynucleotide operably linked to a first exogenous promoter; (b) transforming a second plant with a pIR construct targeting said first exogenous promoter; (c) crossing said first and second plants; and (d) selecting progeny comprising said first and second constructs, where 20 expression is not desired; and (e) selecting progeny comprising said first construct but not said second construct, where expression is desired.
18. The method of Claim 17 wherein said second construct comprises, or is co transformed with, a selectable marker gene. 25
19. The method of Claim 17 wherein said first plant further comprises a third construct comprising a pIR targeting a second exogenous promoter, and said second plant further comprises a fourth construct comprising a second polynucleotide of interest operably linked to said second exogenous promoter. 30
20. The method of Claim 19 wherein said first and second polynucleotides of interest affect the same phenotypic trait.
21. The method of Claim 20 wherein said trait is male fertility.
22. The method of Claim 20 wherein said trait is female fertility. 96
23. The method of Claim 20 wherein said first and second polynucleotides encode the same gene product.
24. A male-sterile plant produced by the method of Claim 21. 97
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2012227302A AU2012227302A1 (en) | 2007-03-14 | 2012-09-25 | Dominant gene suppression transgenes and methods of using same |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/685,956 | 2007-03-14 | ||
AU2008224912A AU2008224912B2 (en) | 2007-03-14 | 2008-03-14 | Dominant gene suppression transgenes and methods of using same |
AU2012227302A AU2012227302A1 (en) | 2007-03-14 | 2012-09-25 | Dominant gene suppression transgenes and methods of using same |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU2008224912A Division AU2008224912B2 (en) | 2007-03-14 | 2008-03-14 | Dominant gene suppression transgenes and methods of using same |
Publications (1)
Publication Number | Publication Date |
---|---|
AU2012227302A1 true AU2012227302A1 (en) | 2012-10-11 |
Family
ID=46981223
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU2012227302A Abandoned AU2012227302A1 (en) | 2007-03-14 | 2012-09-25 | Dominant gene suppression transgenes and methods of using same |
Country Status (1)
Country | Link |
---|---|
AU (1) | AU2012227302A1 (en) |
-
2012
- 2012-09-25 AU AU2012227302A patent/AU2012227302A1/en not_active Abandoned
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2009251060B2 (en) | Dominant gene suppression transgenes and methods of using same | |
AU2008224912B2 (en) | Dominant gene suppression transgenes and methods of using same | |
AU2012227186B2 (en) | Dominant gene suppression transgenes and methods of using same | |
AU2011265403B2 (en) | Dominant gene suppression transgenes and methods of using same | |
AU2017202125A1 (en) | Dominant gene suppression transgenes and methods of using same | |
AU2012227302A1 (en) | Dominant gene suppression transgenes and methods of using same | |
ZA200604898B (en) | Dominant gene suppression transgenes and methods of using same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MK5 | Application lapsed section 142(2)(e) - patent request and compl. specification not accepted |