AU2009296732A1 - Contactless and minimal-contact monitoring of quality of life parameters for assessment and intervention - Google Patents

Contactless and minimal-contact monitoring of quality of life parameters for assessment and intervention Download PDF

Info

Publication number
AU2009296732A1
AU2009296732A1 AU2009296732A AU2009296732A AU2009296732A1 AU 2009296732 A1 AU2009296732 A1 AU 2009296732A1 AU 2009296732 A AU2009296732 A AU 2009296732A AU 2009296732 A AU2009296732 A AU 2009296732A AU 2009296732 A1 AU2009296732 A1 AU 2009296732A1
Authority
AU
Australia
Prior art keywords
quality
sleep
life
subject
subjective
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
AU2009296732A
Inventor
Philip De Chazal
Niall Fox
Conor Hanley
Conor Heneghan
Alberto Zaffaroni
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resmed Sensor Technologies Ltd
Original Assignee
Resmed Sensor Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US9979208P priority Critical
Priority to US61/099,792 priority
Application filed by Resmed Sensor Technologies Ltd filed Critical Resmed Sensor Technologies Ltd
Priority to PCT/US2009/058020 priority patent/WO2010036700A1/en
Publication of AU2009296732A1 publication Critical patent/AU2009296732A1/en
Assigned to RESMED SENSOR TECHNOLOGIES LIMITED reassignment RESMED SENSOR TECHNOLOGIES LIMITED Amend patent request/document other than specification (104) Assignors: BIANCAMED LIMITED
Abandoned legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/40ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the management of medical equipment or devices, e.g. scheduling maintenance or upgrades
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H10/00ICT specially adapted for the handling or processing of patient-related medical or healthcare data
    • G16H10/20ICT specially adapted for the handling or processing of patient-related medical or healthcare data for electronic clinical trials or questionnaires
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4806Sleep evaluation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4806Sleep evaluation
    • A61B5/4815Sleep quality
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H10/00ICT specially adapted for the handling or processing of patient-related medical or healthcare data
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H20/00ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
    • G16H20/10ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to drugs or medications, e.g. for ensuring correct administration to patients
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/60ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
    • G16H40/63ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for local operation
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/60ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
    • G16H40/67ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for remote operation
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/30ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment

Description

WO 2010/036700 PCT/US2009/058020 CONTACTLESS AND MINIMAL-CONTACT MONITORING OF QUALITY OF LIFE PARAMETERS FOR ASSESSMENT AND INTERVENTION BACKGROUND [0001] This disclosure relates to the measurement, aggregation and analysis of data collected using non-contact or minimal-contact sensors together with a means for capturing subjective responses to provide quality of life parameters for individual subjects, particularly in the context of a controlled trial of interventions on human subjects (e.g., a clinical trial of a drug, or an evaluation of a consumer item such as a fragrance). [0002] Monitoring of quality-of-life (QOL) parameters can be of importance when developing interventions aimed at improving a person's QOL. Quality-of-life parameters are measurements of general well-being which are generally accepted as being meaningful to an individual's perception of their life. In general QOL markers have a combination of an underlying objectively measurable elements, and a subjectively related element. Specific non limiting examples include: * Sleep quality - an individual can subjectively report whether they are sleeping well or badly, and this has an impact on their perceived QOL. For a sleep quality QOL parameter, an objective measurement could be sleep duration, and a subjective input could be "how restful" the sleep was. * Stress - an individual can report on whether they find their current life circumstances to be stressful. For a stress QOL parameter, an objective measurement could be heart rate or cortisol levels; a subjective element could be a stress level questionnaire * Relaxation - an individual can report the subjective sensation of being relaxed, which can also be objectively related to autonomic nervous system activity. * Pain - an individual can subjectively record levels of pain using a Pain Index [such as the Visual Analog Scale]. More objective measurements of pain can be obtained using a dolorimeter 1 WO 2010/036700 PCT/US2009/058020 * Body temperature - subjects can often report feelings of overheating or coolness which are not directly related to objective measurement of body core temperature. * Vigilance/drowsiness - vigilance, or attentiveness can also be measured objectively (e.g., using the psychomotor vigilance test) or through subjective questionnaires. [0003] For clarification, a non-contact (or contactless) sensor is one which senses a parameter of a subject's physiology or behavior without any direct physical contact with a subject. Non-limiting examples include a movement detector based on radio-wave reflections, a microphone placed remotely from a subject, an infrared camera recording the surface temperature, or a faucet-monitor which records turning on of a faucet to wash hands. A minimal contact sensor may be considered to be one in which there is some physical contact with a sensor, but this is limited to short durations. Examples include a weight scale, a blood pressure monitor, a breath analyzer, or a hand-held surface ECG monitor. These minimal contact sensors can be distinguished from contact sensors typically used in clinical trials such as ECG patches, oximeters, EEG electrodes, etc, where there typically is adhesion to the body, and typically the sensor is intended for use over prolonged periods of time (e.g. > 1 hour). [0004] A key unifying factor in defining QOL parameters is the need to combine objective data from sensors, and subjective data from the monitored subject to assess the overall QOL. A particular challenge then arises when one wishes to measure the impact of an intervention on changes in QOL. For example, a company who has developed a drug to counteract sleep disruption will be interested to see if its drug has had any direct impact on a person's sleep which has resulted in either objectively or subjectively improved QOL. Similarly if a company has developed a product such as a skin emollient to reduce itchiness due to dry skin, they may wish to see if there has been an improved QOL (i.e., reduced scratching, lower level of discomfort) etc. [0005] One commonly accepted means for answering such questions is to conduct a clinical or consumer trial which poses a statistical hypothesis which can be verified or rejected with a certain level of confidence. For example, in drug trials a double-blinded random controlled trial is a well accepted methodology for ascertaining the effect of drugs. However, measurement of QOL is difficult to conduct for a number of reasons, which various aspects of this disclosure can overcome: (a) it can be difficult to define a suitable measure for a QOL outcome, (b) by wearing a measurement device to measure QOL, one may directly impact on the exact quality-of-life 2 WO 2010/036700 PCT/US2009/058020 parameter you wish to study, (c) there are logistical and financial challenges of measuring parameters in a natural "home" setting rather than in a formal laboratory setting. There are a variety of conventional techniques to measure some aspects of QOL which will now be discussed, together with their limitations. [0006] Monitoring of a quality-of-life parameter can be motivated by a desire to integrate it into an intervention program. As an example, a person may undertake cognitive behavioral therapy (CBT) to reduce their stress-related quality of life. An important component of a CBT program is the ongoing assessment of the stress quality of life index, whose measurement will itself form part of the behavioral intervention. As a second example of an embodiment of the disclosure, we will describe a system for improving sleep quality through use of objective and subjective measurements of sleep quality-of-life indices. [0007] As specific examples of the limitations of the current state of the art, consider the problem of measuring sleep quality in response to an anti-insomnia drug. Firstly, defining "sleep quality" as it relates to quality of life can be difficult, as this will often be a combination of objective and subjective measurements. Secondly, the current method favored for measuring sleep is to use a so-called polysomnogram which measures multiple physiological parameters (EEG, ECG, EOG, respiratory effort, oxygen level etc.). While the resulting physiological measurements are very rich, their measurement fundamentally alters the sleeping state of the subject (e.g., it is harder for them to turn over in bed), and cannot represent a true QOL sleep measurement. Finally, the current cost of the polysomnogram test (approximately $1500 in 2008) makes it an impractical tool for measurement of sleep quality in large numbers of subjects over long periods of time. Accordingly, there is a need for a system which can provide robust measurements of sleep quality-of-life in a highly non-invasive fashion. In an embodiment of our system, we describe one method for objectively measuring sleep quality using a totally non invasive biomotion sensor. This can be combined with a number of subjective tools for measuring sleep quality, such as the Pittsburgh Sleep Quality Index and the Insomnia Severity Index (these consist of questionnaires on sleep habits such as time-to-bed, estimated time-to fall-asleep etc. [0008] Another QOL parameter of interest is stress level or, conversely, relaxation. Current techniques for objective measurement of stress include measurement of heart rate variability or cortisol levels. However, measurement of heart rate variability typically requires the subject to wear electrodes on the chest, which is often impractical for situations of daily living. Likewise, 3 WO 2010/036700 PCT/US2009/058020 collection of cortisol samples to assess stress requires frequent collection of saliva samples, and is difficult to integrate into a daily living routine. There are also a number of widely used subjective measurements of stress or anxiety (e.g., Spielberger's State-Trait Anxiety Inventory). Accordingly, a method, system or apparatus which can reliably gather information about stress related QOL parameters would have utility in a variety of settings. [0009] Finally, measurement of the quality-of-life implications of chronic pain (such as chronic lower back pain) would have utility for assessing the benefit of therapies, or for providing cognitive feedback on pain management. Current subjective measurement tools such as the Oswestry Disability Index and the 36-Item Short-Form Health Survey are used to assess subjective quality of life in subjects with chronic pain conditions. Objective measurements of pain are not well defined, but there is some evidence that heart rate is correlated with pain intensity. [0010] Accordingly, there is a clearly established need for systems and methods which measure quality-of-life outcomes in ambulatory/home settings, and which have minimal impact on the daily routine of the person whose QOL is being monitored. This is a particular need in clinical trials for non-contact or minimal contact sensors where the effects of interventions such as drugs, ointments, physiotherapy, nutriceuticals, behavior changes etc. are being evaluated. SUMMARY [0011] This disclosure provides various embodiments of an apparatus, system, and method for monitoring of quality-of-life parameters of a subject, using contact-free or minimal-contact sensors, in a convenient and low-cost fashion. The typical user of the system is a remote observer who wishes to monitor the QOL of the monitored subject in as non-invasive fashion as possible. The system typically includes: (a) one or more contactless or minimal-contact sensor units suitable for being placed close to where the subject is present (e.g., on a bedside table), (b) an input device for electronically capturing subjective responses such as a cell-phone, PDA etc., (c) a device for aggregating data together and transmitting to a remote location, (d) a display unit for showing information to the local user, and (e) a data archiving and analysis system for display and analysis of the quality-of-life parameters. The component (e) can also be used as a feedback device for interventional programs. For convenience, the sensor unit, input unit , data aggregation/transmission unit, and the display/monitoring unit can be incorporated into a single stand-alone unit, if desired (for example, all of these functions could be integrated on a cell 4 WO 2010/036700 PCT/US2009/058020 phone platform). The sensor units may include one or more of a non-contact measurement sensor (for detection of parameters such as sound, general bodily movement, respiration, heart rate, position, temperature), and one or more minimal contact sensors (e.g. weighing scales, thermometer). In one or more aspects of this disclosure, a system may incorporate a processing capability (which can be either at the local or remote sites) to generate quality-of-life parameters based on the objective and subjective measurements from a user. As a specific example, an overall sleep quality-of-life could be generated by combining the subjective response of the user to the Insomnia Severity Index together with an objective measurement of sleep duration. [0012] In one or more embodiments, the disclosed approaches (pharmaceutical, device-based or behavioral) are useful in improving the quality-of-life parameters for these subjects. In particular, non-contact or minimal-contact measurement of quality-of-life parameters such as sleep, stress, relaxation, drowsiness, temperature and emotional state of humans is disclosed, together with means for automated sampling, storage, and transmission to a remote data analysis center. In one or more embodiments, one aspect of the system measures objective data with as little disruption as possible to the normal behavior of the subject. In one particular embodiment, a quality-of-life monitoring system for human subjects, includes a plurality of multi-parameter physiological and environmental sensors configured to detect a plurality of physiological and environmental parameters related to a quality of life assessment, wherein each of said plurality of sensors either have no contact or minimal contact with a monitored subject; a timer that controls sampling of the detected parameters and allows a chronological reconstruction of recorded signals relating thereto; an input device which captures subjective responses from the monitored subject; a data storage device configured to record sampled signals; a data transmission capability so that data collected from a subject can be transmitted to a remote data monitoring center, and messages can be transmitted to the monitoring sensors; and a data monitoring and analysis capability so that overall quality-of-life parameters can be calculated based on the measured signals. In another embodiment, a method for assessing a quality of life index includes measuring multi-parameter physiological and environmental parameters which are related to a quality of life assessment of a monitored subject with no contact or minimal contact with the monitored subject; collecting subjective responses from the monitored subject about their quality-of-life; analyzing objective and subjective measurements to generate a quantitative quality-of-life index; 5 WO 2010/036700 PCT/US2009/058020 and generating suggested interventions to affect the measured quality of life index of the monitored subject. BRIEF DESCRIPTION OF THE DRAWINGS [0013] Embodiments of the disclosure will now be described with reference to the accompanying drawings in which: [0014] FIG. 1 is a diagram illustrating an overall schematic of an embodiment; [0015] FIG. 2 is a specific example of an embodiment in which a contactless sensor is used to monitor the sleeping state of a subject, by placement in a nearby location (bedside locker); [0016] FIG. 3 is an example of an input device embodiment that could be used to capture subjective responses from individuals; [0017] FIG. 4 is an alternative example of an embodiment in which a web-site could be used to capture the subjective responses from an individual; [0018] FIG. 5 is an example of an embodiment in which some of the raw data captured by a specific contactless sensor used in a sleep trial; [0019] FIG. 6 shows example results of the system in measuring sleep apnea in a clinical trial; and [0020] FIGS. 7A and 7B shows schematic representations of behavioral interventions based on one or more embodiments of this disclosure. DETAILED DESCRIPTION [0021] FIG. 1 is a diagram illustrating an overall schematic of an embodiment of this disclosure. Monitored subject 101 may be observed by a plurality of contactless 102 and minimal contact sensors 103. Subject 101 may also has access to input device 104 capable of obtaining subjective feedback from the subject through written text or recorded sound. Data aggregation and transmission device 105 collects the data from the sensors 102, 103 and 104, and may also control data sampling and input parameters used by the various sensors and devices. Optionally, display/feedback device 107 can be provided to the local user (e.g., this 6 WO 2010/036700 PCT/US2009/058020 might indicate whether a signal is being collected from them, or give feedback on the most recent set of QOL parameters measured). Data aggregation and transmission device 105 may be configured to communicate in a bilateral way with remote data archiving and analysis system 106. Data archiving and analysis system 106 may store data from a plurality of subjects, and can carry out analysis of the recorded signals and feedback. It may also communicate with data display device 107 which can show the results of the analysis to a user, or with an optional separate display device 108 which shows the QOL parameters to a remote user. [0022] FIG. 2 illustrates an embodiment of a contactless sensor that objectively monitors the sleeping state of a subject. In this embodiment, the sensor unit may contain one or more of a radio-frequency based biomotion sensor, a microphone (to pick up ambient sound), a temperature sensor (to pick up ambient temperature), a light sensor (to pick up ambient light levels), and an infrared detector for measuring the subject temperature. The contactless sensor may be placed on a bedside table, for example. [0023] FIG 3 illustrates an example of an embodiment of an input device for collecting user input. The input device would typically include alphanumeric keypad 301, display 302, microphone 303, and loudspeaker 304. This allows the generation of questions using either visual or audio means, and a person can then answer the questions using either text or audio input. [0024] FIG. 4 illustrates an embodiment using a personal computer with an internet browser to capture subjective perceptions of sleep. [0025] FIG. 5 provides an example of raw signals captured using a contactless sensor in a trial for measuring sleep quality-of-life. FIG. 4A shows the signal when a person is asleep and then turns over on their side. FIG. 4B shows the signal when the person is in deep sleep. [0026] FIG. 6 is an example of how the contactless system can estimate apnea-hypopnea index in a clinical trial with an accuracy similar to that of the current polysomnogram (PSG) estimates. [0027] FIG 7 is an example of a behavioral intervention based on use of the system to enhance sleep quality. FIG. 7(A) shows the components of a intervention based over several weeks, in which there is an initial session at which detailed information about sleep is provided, and the person is given the system for measurement of their sleep quality-of-life index (SQOLI). 7 WO 2010/036700 PCT/US2009/058020 [0028] FIG. 7(B) shows an example of a specific algorithm that could be used within the intervention, based on the feedback from the SQOLI monitoring. For example, if they achieve an SQOLI greater than target, they can increase their time in bed by 30 minutes. If they fail, they can reduce time in bed by 15 minutes. [0029] A typical embodiment of a system of this disclosure may include one or more non contact sensors or minimal-contact sensors that can include one or more of the following: (a) A biomotion sensor which measures movement, and which derives respiration, heart rate and movement parameters. An example of such a sensor is more fully described in the article written by P. de Chazal, E. O'Hare, N. Fox, C. Heneghan, "Assessment of Sleep/Wake Patterns Using a Non-Contact Biomotion Sensor", Proc. 30th IEEE EMBS Conference, Aug 2008, published by the IEEE, the entire contents of which are incorporated herein by reference. In one embodiment, the biomotion sensor may use a series of radio-frequency pulses at 5.8 GHz to generate echoes from a sleeping subject. The echoes may be mixed with the transmitted signals to generate a movement trace which includes movements due to breathing, heart rate, and positional changes. (b) An audio sensor which measures ambient sound. A specific example of a microphone appropriate for inclusion in the system would be the HK-Sound Omni, -27 dB microphone with part number S-OM9765C273S-C08. (c) A temperature sensor which measures environmental temperature (typically to +1C). A specific example of a temperature sensor appropriate for inclusion would be the National Semiconductor LM20, SC70 package. (d) A light level sensor would measure light level. A specific example of a light level sensor appropriate for inclusion is the Square D* Clipsal Light-Level Sensor. (e) A body-temperature measuring sensor. A specific example of a sensor that may be used in the system is the body thermometer Part No. 310 from the YuanYa Far Asia Company. [0030] The minimal contact sensors may include one or more of the following: (a) A weighing scales for measuring body weight. A specific example is the A&D UC-321PBT. (b) A blood pressure device, such as the A&F UA767PBT. (c) A continuous positive airway pressure device for treating sleep apnea, such as the ResMed Autoset Spirit S8. (d) A pedometer for measuring step-counts (such as the Omron Pocket Pedometer 8 WO 2010/036700 PCT/US2009/058020 with PC software, HJ-720ITC). (e) A body-worn accelerometer for measuring physical activity during the day (such as the ActivePAL device). (f) A body composition analyzer such as the Omron Body Composition Monitor with Scale, HBF-500, which calculates visceral fat and base metabolic rate. (g) Other contactless or minimally contacting devices could also be included. [0031] In one or more embodiments, the system may include a data-acquisition and processing capability which provides a logging capability for the non-contact and minimal contact sensors described above. This typically could include, for example, an analog-to-digital converter (ADC), a timer, and a processor. The processor may be configured to control the sampling of the signals, and may also apply any necessary data processing or reduction techniques (e.g., compression) to minimize unnecessary storage or transmission of data. [0032] A data communication subsystem may provide communication capability which could send the recorded data to a remote database for further storage and analysis, and a data analysis system including, for example, a database, can be configured to provide processing functionality as well as input to a visual display. [0033] In one specific embodiment of the system, data acquisition, processing, and communications can utilize using, for example, a Bluetooth-enabled data acquisition device (e.g. the commercially available BlueSentry" device from Roving Networks). Other conventional wireless approaches may also be used. This provides the ability to sample arbitrary voltage waveforms, and can also accept data in digital format. [0034] In this embodiment, the Bluetooth device can then transmit data to a cell phone using the Bluetooth protocol, so that the data can be stored on a cell-phone memory. The cell phone can also carry out initial processing of the data. The cell phone can also be used as a device for capturing subjective data from the user, using either a text-based entry system, or through a voice enabled question-and-answer system. Subjective data can also be captured using a web-page. [0035] The cell phone can provide the data transmission capability to a remote site using protocols such as GPRS or EDGE. The data analysis system is a personal computer running a database (e.g., the My SQL database software), which is capable of being queries by analysis software which can calculate useful QOL parameters. Finally a data display capability can be 9 WO 2010/036700 PCT/US2009/058020 provided by a program querying the database, the outputs of the analytical program and using graphical or text output on a web browser. [0036] As an example of the clinical use of a specific embodiment, the system was used to measure quality-of-life related to sleep in a specific clinical trial scenario. A group of 15 patients with chronic lower back pain (CLBP), and an age and gender matched cohort of 15 subjects with no back pain were recruited. After initial screening and enrollment, study participants completed a baseline assessment. Gender, age, weight, height, BMI and medication usage were recorded. All subjects completed baseline self report measures of sleep quality (Pittsburgh Sleep Quality Index Insomnia Severity Index [16], quality of life (SF36v2) [17] and pain as part of the SF36v2 questionnaire (bodily pain scale of the SF36v2). The CLBP subjects also completed the Oswestry Disability Index (ODI) as a measure of functional disability related to their low back pain. All subjects then underwent two consecutive nights of objective monitoring using the non contact biomotion sensor mentioned above, while simultaneously completing a subjective daily sleep log; the Pittsburgh Sleep Diary. Table 1 shows some objective measurements of sleep using the system, and includes the total sleep time, sleep efficiency, sleep onset latency. Other objective parameters which could be measured would include: number of awakenings (>1 minute in duration) and wake-after-sleep-onset. Table 1: Objective sleep indices obtained using the system Variable Control Group CLBP Group p-value (mean +sd) (mean +sd) Total sleep time (mins) 399 (41) 382 (74) 0.428 Sleep Efficiency (%) 85.8 (4.4) 77.8 (7.8) 0.002 Sleep Latency (mins) 9.4 (10.2) 9.3 (11.1) 0.972 [0037] The objective sleep indices described in Table 1 were obtained using a sleep stage classification system that processed the non-contact biomotion sensor data to produce sleep and awake classifications every 30 seconds. This was developed using the following observations: [0038] Large movements (e.g., several cm in size) can be easily recognized in the non contact signal. Bodily movement provides significant information about the sleep state of a subject, and has been widely used in actigraphy to determine sleep/wake state. The variability of respiration changes significantly with sleep stage. In deep sleep, it has long been noted that respiration is steadier in both frequency and amplitude than during wakefulness of REM sleep. 10 WO 2010/036700 PCT/US2009/058020 [0039] Accordingly, a first stage in processing of the non-contact biomotion signal was to identify movement and respiration information. To illustrate how this is possible, FIG 4A shows an example of the signal recorded by the non-contact sensor when there is a significant movement of the torso and arms due to the person shifting sleeping position. An algorithm based on detection of high amplitude and frequency sections of the signal was used to isolate the periods of movement. [0040] For periods where there is no significant limb or torso movement, respiratory-related movement is the predominant recorded signal and estimates of breathing rate and relative amplitude are obtained using a peak and trough identifying algorithm. Figure 4B illustrates the signal recorded by the sensor during a period of Stage 4 sleep that demonstrates a steady breathing effort. [0041] To validate the performance of the system in correctly labeling 30-second epochs, we recorded signals simultaneously with a full polysomnogram (PSG) montage. We compared the sleep epoch annotations from the PSG and the non-contact biomotion sensor and report the overall classification accuracy, sleep sensitivity and predictivity, wake specificity and predictivity. The overall accuracy is the percentage of total epochs correctly classified. The results are shown in Table 2, and provide evidence that the system can objectively measure sleep with a high degree of accuracy. Table 2: Accuracy of objective recognition of sleep state using the contactless method Overall By sleep state Awake 69% Awake 69% Sleep 87% REM 82% Pred. of Awake 53% Stage 1 61% Pred. of Sleep 91% Stage 2 87% Accuracy 82% Stage 3 97% Stage 4 98% [0042] Table 3 shows some of the subjective measurements from the same subjects, and includes their subjective assessment of sleep duration, sleep efficiency, number of awakenings, and sleep latency for each night, as well as their overall PSQI and ISI scores. 11 WO 2010/036700 PCT/US2009/058020 Table 3 Subjective sleep indices obtained using the system Variable Control Group CLBP Group p-value (mean +sd) (mean +sd) Pittsburgh Sleep Quality Index 2.1 (2.1) 11.7 (4.3) <0.001 Insomnia Severity Index 2.8 (4.6) 13.4 (7.3) <0.001 Estimated Sleep Onset Latency 11.7 (4.3) 45.3 (27.7) <0.001 Estimated Sleep Efficiency 95.3 (5.8) 73.4 (16.5) <0.001 Estimated Night Time Awakenings >3 2/15 15/15 <0.001 [0043] The system can report these subjective and objective measurements of sleep but, in one aspect, it can also report parameters related to overall Sleep Quality of Life Index (SQOLI) which combines objective and subjective measurements. There are a number of ways in which this could be done. For example, we could define the following SQOL indices: e SQOL duration = {0.8xOBJECTIVE SLEEP DURATION + 0.2xOBJECTIVE SLEEP DURATION } * SQOL fragmentation = { (number of periods of objectively measured wakefulness > 1 minute + reported self awakenings / objective sleep duration} e SQOL latency = OBJECTIVE SLEEP LA TENCY x SUBJECTIVE SLEEP LA TENCY [0044] The skilled user will be able to construct other combined measurements of sleep quality of life which capture the most meaningful outcomes for a particular application. [0045] In another embodiment, the system may be used to capture quality-of-life in patients with chronic cough (e.g., patients suffering from chronic obstructive pulmonary disease). In this embodiment, two contactless sensors may be used: the non-contact biomotion sensor described above, and a microphone. The system can measure objectively sounds associated with each coughing episode, and the respiratory effort associated with each cough. This provides a more accurate means of collecting cough frequency than relying on sound alone. There are also subjective measurements of cough impact on quality of life (e.g., the parent cough-specific QOL (PC-QOL) questionnaire described in "Development of a parent-proxy quality-of-life chronic cough-specific questionnaire: clinical impact vs psychometric evaluations," Newcombe PA, Sheffield JK, Juniper EF, Marchant JM, Halsted RA, Masters IB, Chang AB, Chest. 2008 Feb;133(2):386-95). 12 WO 2010/036700 PCT/US2009/058020 [0046] As another exemplary embodiment, the system could be used as a screening tool to identify sleep apnea severity and incidence in a clinical trial setting. In this embodiment, the contactless biomotion sensor is used to detect periods of no-breathing (apnea) and reduced amplitude breathing (hypopnea). FIG. 5 shows the estimated sleep apnea severity of the patients enrolled in a clinical trial, prior to therapy, as an example of how the system can be used. [0047] The user skilled in the art will realize that the system can be used in a number of clinical trial settings where measurement of quality-of-life is important. As specific examples of such uses, we can consider: [0048] Measurement of sleep quality of life in patients with atopic dermatitis (AD). Subjects with AD often have poor quality of life due to daytime itchiness combined with poor sleep quality due to subconscious scratching during sleep. In a clinical trial designed to assess the impact of an intervention such as a new drug or skin-cream, the system can be used to capture subjective and objective quality of life parameters as a final outcome measure. The outcome of the sleep quality-of-life index measurement can be a recommendation on whether to use a certain active medication, and the dosage of that medication [0049] Measurement of sleep quality in infants in response to feeding products. For example, lactose intolerance is known to affect quality-of-life in babies due to disrupted sleep, stomach pain, and crying episodes. Feeding products which aim to overcome lactose intolerance can be assessed by combination of objective sleep indices plus parent-reported crying episodes, to form an overall quality-of-life index. [0050] As a further specific embodiment, sleep quality can be enhanced by providing a behavioral feedback program related to sleep quality of life. A person self-reporting insomnia can use the system as follows to enhance their sleep quality of life. [0051] On a first visit with a physician, a person can self-report general dissatisfaction with their sleep quality of life. They can then choose to undertake a cognitive behavioral therapy program in the following steps. [0052] Step 1: They undertake an induction session with a therapist or self-guided manual. In this induction step, the individual is introduced to information about basic physiological mechanisms of sleep such as normal physiological sleep patterns, sleep requirements, etc. This 13 WO 2010/036700 PCT/US2009/058020 step ensures there are no incorrect perceptions of sleep (i.e. a person believing that 3 hours sleep a night is typical, or that you must sleep exactly 8 hrs per day for normal health). [0053] Step 2: Bootzin stimulus control instructions. In this step, subject-specific information is established, and basic behavioral interventions are agreed. For example, firstly, the subject and therapies agree a target standard wake-up time (e.g., 7AM). They then agree behavioral interventions such as getting out of bed after 20 minutes of extended awakening, and the need to avoid sleep-incompatible bedroom behavior (e.g., television, computer games, ... ). They may agree to eliminate daytime naps. [0054] Step 3: Establish initial target. Based on discussions above, the patient and therapist may then agree a sleep quality of life index (SQOLI) which will act as a target. As a specific example, the SQOLI may be based on achieving 85% sleep efficiency and a subjective "difficulty falling asleep" rating of <5 (on a 1-1O.scale where 10 is very difficult and 1 is easy) The behavioral program will then consist of a week in which the patient tries to achieve the target based on going to bed 5 hours before the agreed wake-up time (e.g. at 2AM in our example). The disclosure we have described above in FIGS. 1 to 5 provides the objective measurements of sleep efficiency and combines with the subjective user feedback to produce an SQOLI. At the end of the first week, the patient and therapist review the SQOLI measurements and determine the next step. [0055] Step 4: Feedback loop based on Sleep Quality of Index. If the subject has achieved the desired SQOLI in the first week, then a new target is set. As a specific example, the subject will now go to bed 5.5 hours before the agreed wake up time, but will still try to achieve the same targets of 85% sleep efficiency and "difficulty falling asleep" metric < 5. In subsequent weeks, the algorithm will be applied that the person can increase their sleep time by 30 minutes, provided they have met the targets in the previous week. This process can continue until a final desired steady state sleep quality of life index is reached (e.g., sleeping 7.5 hrs per night with a sleep efficiency of >85%). [0056] The person skilled in the art will realize that a number of behavioral interventions have been developed and described in the literature for improving sleep quality. However a limitation of all these current approaches is that they do not have a reliable and easy means for providing the sleep quality of life metric, and it is this limitation which the current disclosure overcomes. Furthermore, the person skilled in the art will also realize that a number of 14 WO 2010/036700 PCT/US2009/058020 pharmaceutical interventions are appropriate for improvement of sleep quality (e.g. prescription of Ambien*), and that the disclosure described here can support these medical interventions also. STATEMENT OF INDUSTRIAL APPLICABILITY [0057] The apparatus, system and method of this disclosure finds utility in contactless and minimum contact assessment of quality-of-life indices in clinical and consumer trials, and in interventions to improve the quality of life. 15

Claims (15)

1. A quality-of-life monitoring system for human subjects, comprising a plurality of multi-parameter physiological and environmental sensors configured to detect a plurality of physiological and environmental parameters related to a quality of life assessment, wherein each of said plurality of sensors either have no contact or minimal contact with a monitored subject; a timer that controls sampling of the detected parameters and allows a chronological reconstruction of recorded signals relating thereto; an input device which captures subjective responses from the monitored subject; a data storage device configured to record sampled signals a data transmission capability so that data collected from a subject can be transmitted to a remote data monitoring center, and messages can be transmitted to the monitoring sensors a data monitoring and analysis capability so that overall quality-of-life parameters can be calculated based on the measured signals.
2. The system of claim 1, further comprising one or more sensors configured to receive a reflected radio-frequency signal off a living subject.
3. The system of claim 1 wherein the measured quality of life parameter pertains to sleep quality.
4. The system of claim 1 wherein the measured quality-of-life parameter comprises an objective measurement of sleep combined with a subjective assessment of sleep.
5. The system of claim 1 wherein the measured quality-of-life parameter is an objective measurement of sleep. 16 WO 2010/036700 PCT/US2009/058020
6. The system of claim 1, wherein the outputs of the monitoring system include one or more objective measurements of sleep, one or more subjective measurements of sleep, and one or more environmental parameters.
7. The system of claim 1, wherein each of said plurality of multi-parameter physiological and environmental sensors are arranged at least 50 cm from the subject being monitored to provide an open space therebetween.
8. The system of claim 1, wherein there is no direct mechanical coupling between aid plurality of multi-parameter physiological and environmental sensors and the monitored subject.
9. A method for assessing a quality of life index, the method comprising: measuring multi-parameter physiological and environmental parameters which are related to a quality of life assessment of a monitored subject with no contact or minimal contact with the monitored subject; collecting subjective responses from the monitored subject about their quality-of-life; analyzing objective and subjective measurements to generate a quantitative quality-of-life index; and generating suggested interventions to affect the measured quality of life index of the monitored subject.
10. The method of claim 9, wherein the measured multi-parameter physiological parameters pertain to sleep.
11. The method of claim 9, wherein the subjective responses pertain to sleep.
12. The method of claim 9, wherein the multi-parameter physiological and environmental parameters are collected by sensing elements arranged more than 50 cm from the monitored subject. 17 WO 2010/036700 PCT/US2009/058020
13. The method of claim 9, wherein the multi-parameter physiological and environmental parameters are collected with no direct mechanical coupling between the sensing elements and the monitored subject.
14. The method of claim 9, wherein the suggested interventions pertain to a future behavior of the monitored subject, wherein the method further comprises remeasuring at least one quality of life parameter and comparing a current value to a past value thereof.
15. The method of claim 9, wherein the suggested interventions pertain to a potential change in a pharmaceutical dosing. 18
AU2009296732A 2008-09-24 2009-09-23 Contactless and minimal-contact monitoring of quality of life parameters for assessment and intervention Abandoned AU2009296732A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US9979208P true 2008-09-24 2008-09-24
US61/099,792 2008-09-24
PCT/US2009/058020 WO2010036700A1 (en) 2008-09-24 2009-09-23 Contactless and minimal-contact monitoring of quality of life parameters for assessment and intervention

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AU2016204801A AU2016204801A1 (en) 2008-09-24 2016-07-11 Contactless and minimal-contact monitoring of quality of life parameters for assessment and intervention
AU2017204883A AU2017204883A1 (en) 2008-09-24 2017-07-14 Contactless and minimal-contact monitoring of quality of life parameters for assessment and intervention

Related Child Applications (1)

Application Number Title Priority Date Filing Date
AU2016204801A Division AU2016204801A1 (en) 2008-09-24 2016-07-11 Contactless and minimal-contact monitoring of quality of life parameters for assessment and intervention

Publications (1)

Publication Number Publication Date
AU2009296732A1 true AU2009296732A1 (en) 2010-04-01

Family

ID=41278347

Family Applications (3)

Application Number Title Priority Date Filing Date
AU2009296732A Abandoned AU2009296732A1 (en) 2008-09-24 2009-09-23 Contactless and minimal-contact monitoring of quality of life parameters for assessment and intervention
AU2016204801A Abandoned AU2016204801A1 (en) 2008-09-24 2016-07-11 Contactless and minimal-contact monitoring of quality of life parameters for assessment and intervention
AU2017204883A Withdrawn AU2017204883A1 (en) 2008-09-24 2017-07-14 Contactless and minimal-contact monitoring of quality of life parameters for assessment and intervention

Family Applications After (2)

Application Number Title Priority Date Filing Date
AU2016204801A Abandoned AU2016204801A1 (en) 2008-09-24 2016-07-11 Contactless and minimal-contact monitoring of quality of life parameters for assessment and intervention
AU2017204883A Withdrawn AU2017204883A1 (en) 2008-09-24 2017-07-14 Contactless and minimal-contact monitoring of quality of life parameters for assessment and intervention

Country Status (8)

Country Link
US (4) US9223935B2 (en)
EP (2) EP3764369A1 (en)
JP (4) JP2012503804A (en)
KR (2) KR101850855B1 (en)
CN (3) CN102224503A (en)
AU (3) AU2009296732A1 (en)
CA (1) CA2738307C (en)
WO (1) WO2010036700A1 (en)

Families Citing this family (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008037020A1 (en) * 2006-09-27 2008-04-03 Resmed Ltd Methods and apparatus for assessing sleep quality
US20100099954A1 (en) * 2008-10-22 2010-04-22 Zeo, Inc. Data-driven sleep coaching system
US8870950B2 (en) 2009-12-08 2014-10-28 Mitral Tech Ltd. Rotation-based anchoring of an implant
US9326725B2 (en) 2010-03-30 2016-05-03 Children's National Medical Center Apparatus and method for human algometry
US10335060B1 (en) 2010-06-19 2019-07-02 Dp Technologies, Inc. Method and apparatus to provide monitoring
US9763657B2 (en) 2010-07-21 2017-09-19 Mitraltech Ltd. Techniques for percutaneous mitral valve replacement and sealing
EP2460464A1 (en) * 2010-12-03 2012-06-06 Koninklijke Philips Electronics N.V. Sleep disturbance monitoring apparatus
JP5803169B2 (en) * 2011-03-14 2015-11-04 オムロンヘルスケア株式会社 Sleep evaluation apparatus and sleep evaluation method
JP6154372B2 (en) * 2011-03-30 2017-06-28 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Non-contact sleep disorder screening system
US9295600B2 (en) 2011-04-08 2016-03-29 Hill-Rom Services, Inc. Person support apparatus with activity and mobility sensing
WO2012162740A1 (en) * 2011-05-31 2012-12-06 Sonomedical Pty Ltd Electronic monitoring system for the production of data packages for analytic and diagnostic purposes
US8655796B2 (en) 2011-06-17 2014-02-18 Sanjay Udani Methods and systems for recording verifiable documentation
US9192326B2 (en) 2011-07-13 2015-11-24 Dp Technologies, Inc. Sleep monitoring system
WO2013021374A2 (en) 2011-08-05 2013-02-14 Mitraltech Ltd. Techniques for percutaneous mitral valve replacement and sealing
US8852272B2 (en) 2011-08-05 2014-10-07 Mitraltech Ltd. Techniques for percutaneous mitral valve replacement and sealing
US8870764B2 (en) * 2011-09-06 2014-10-28 Resmed Sensor Technologies Limited Multi-modal sleep system
EP3245945B1 (en) 2011-11-07 2020-07-22 ResMed Pty Ltd Apparatus for providing ventilation to a patient
US9459597B2 (en) 2012-03-06 2016-10-04 DPTechnologies, Inc. Method and apparatus to provide an improved sleep experience by selecting an optimal next sleep state for a user
JP6258917B2 (en) * 2012-03-28 2018-01-10 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. System and method for awake sleep detection alarm
US10791986B1 (en) 2012-04-05 2020-10-06 Dp Technologies, Inc. Sleep sound detection system and use
CN102646320B (en) * 2012-04-26 2014-04-30 北京恒通安信科技有限公司 Method for realizing intelligent nursing for living of old men
US10426380B2 (en) 2012-05-30 2019-10-01 Resmed Sensor Technologies Limited Method and apparatus for monitoring cardio-pulmonary health
US10525219B2 (en) 2012-06-26 2020-01-07 Resmed Sensor Technologies Limited Methods and apparatus for monitoring and treating respiratory insufficiency
US20150128353A1 (en) * 2012-09-10 2015-05-14 Boyd Thomas Kildey Sleep monitoring system and method
RU2533683C2 (en) 2012-09-21 2014-11-20 Общество с ограниченной ответственностью "НаноПульс" (ООО "НаноПульс") Device for remote non-contact monitoring of parameters of living body vital activity
WO2014059145A1 (en) 2012-10-12 2014-04-17 Forty Winks Llc Sleep tracking and waking optimization system and method therefor
CN103226798B (en) * 2012-11-13 2014-10-15 中山大学肿瘤防治中心 Quality of life condition collection method based on cloud computing
US20150351906A1 (en) 2013-01-24 2015-12-10 Mitraltech Ltd. Ventricularly-anchored prosthetic valves
US20160049051A1 (en) * 2013-06-21 2016-02-18 Hello Inc. Room monitoring device with packaging
US9594354B1 (en) 2013-04-19 2017-03-14 Dp Technologies, Inc. Smart watch extended system
US20140343380A1 (en) * 2013-05-15 2014-11-20 Abraham Carter Correlating Sensor Data Obtained from a Wearable Sensor Device with Data Obtained from a Smart Phone
WO2015006364A2 (en) 2013-07-08 2015-01-15 Resmed Sensor Technologies Limited Method and system for sleep management
CN103750820B (en) * 2013-12-26 2015-09-23 沈阳熙康阿尔卑斯科技有限公司 A kind of sleep quality monitoring method and device
WO2015107681A1 (en) * 2014-01-17 2015-07-23 任天堂株式会社 Information processing system, information processing server, information processing program, and information providing method
EP3179381A4 (en) * 2014-08-07 2018-04-11 Nintendo Co., Ltd. Information processing system, information processing server, information processing program, and information provision method
CN103780691B (en) * 2014-01-20 2017-10-10 魔玛智能科技(上海)有限公司 Wisdom sleep system and its user terminal system and cloud system
US20150273215A1 (en) * 2014-03-26 2015-10-01 Pacesetter, Inc. Systems and methods for assessment of pain and other parameters during trial neurostimulation
US10568565B1 (en) * 2014-05-04 2020-02-25 Dp Technologies, Inc. Utilizing an area sensor for sleep analysis
USD765256S1 (en) 2014-05-09 2016-08-30 Resmed Sensor Technologies Limited Apparatus for sleep information detection
KR101576147B1 (en) 2014-07-22 2015-12-09 신광일 System for all-in-one thermometer using smart device
US10524910B2 (en) 2014-07-30 2020-01-07 Mitraltech Ltd. 3 Ariel Sharon Avenue Articulatable prosthetic valve
JP6600837B2 (en) * 2014-08-20 2019-11-06 株式会社北電子 Sleep information display control program
CN107205818B (en) 2015-02-05 2019-05-10 卡迪尔维尔福股份有限公司 Artificial valve with the frame that slides axially
JP2018517448A (en) 2015-04-20 2018-07-05 レスメッド センサー テクノロジーズ リミテッド Human detection and identification from characteristic signals
EP3294115A4 (en) * 2015-05-13 2018-12-12 Resmed Limited Systems and methods for screening, diagnosis, and monitoring of sleep-disordered breathing
US10232139B1 (en) 2015-06-12 2019-03-19 Chrona Sleep, Inc. Smart pillow cover and alarm to improve sleeping and waking
EP3340876A2 (en) 2015-08-26 2018-07-04 ResMed Sensor Technologies Limited Systems and methods for monitoring and management of chronic disease
US10610133B2 (en) 2015-11-05 2020-04-07 Google Llc Using active IR sensor to monitor sleep
US10531866B2 (en) 2016-02-16 2020-01-14 Cardiovalve Ltd. Techniques for providing a replacement valve and transseptal communication
US20190099156A1 (en) * 2016-03-28 2019-04-04 Robert Bosch Gmbh Sonar-Based Contactless Vital and Environmental Monitoring System and Method
CN106073714A (en) * 2016-06-24 2016-11-09 航天神舟生物科技集团有限公司 The recognition methods of a kind of sleep quality and system
US20190231525A1 (en) 2016-08-01 2019-08-01 Mitraltech Ltd. Minimally-invasive delivery systems
JP2018023459A (en) * 2016-08-08 2018-02-15 セイコーエプソン株式会社 Biological clock time calculation device and biological clock time calculation method
CA3031187A1 (en) 2016-08-10 2018-02-15 Cardiovalve Ltd. Prosthetic valve with concentric frames
EP3488364A4 (en) * 2016-08-26 2019-08-14 Riot Solutions, Inc. A system and method for non-invasive non-contact health monitoring
US10769418B2 (en) 2017-01-20 2020-09-08 At&T Intellectual Property I, L.P. Devices and systems for collective impact on mental states of multiple users
KR20180097403A (en) 2017-02-23 2018-08-31 삼성전자주식회사 Method for obtaining biometric information and appratus therefor
JP2018147167A (en) * 2017-03-03 2018-09-20 西川産業株式会社 Sleep environment detection system and sleep environment detection method
US20180322253A1 (en) 2017-05-05 2018-11-08 International Business Machines Corporation Sensor Based Monitoring
US10699247B2 (en) 2017-05-16 2020-06-30 Under Armour, Inc. Systems and methods for providing health task notifications
US10628047B2 (en) 2017-06-02 2020-04-21 Aetna Inc. System and method for minimizing computational resources when copying data for a well-being assessment and scoring
US10888421B2 (en) 2017-09-19 2021-01-12 Cardiovalve Ltd. Prosthetic heart valve with pouch
US10537426B2 (en) 2017-08-03 2020-01-21 Cardiovalve Ltd. Prosthetic heart valve
US10575948B2 (en) 2017-08-03 2020-03-03 Cardiovalve Ltd. Prosthetic heart valve
US20190083244A1 (en) * 2017-09-19 2019-03-21 Cardiovalve Ltd. Prosthetic valve with connecting struts of variable size and tissue anchoring legs of variable size that extend from junctions
WO2019191782A1 (en) * 2018-03-30 2019-10-03 Takasago International Corporation (Usa) Fragrance compositions and use thereof for improving sleep
WO2021050966A1 (en) 2019-09-13 2021-03-18 Resmed Sensor Technologies Limited Systems and methods for detecting movement
EP3848940A1 (en) * 2020-01-08 2021-07-14 Koninklijke Philips N.V. A system and method for triggering an action based on a disease severity or affective state of a subject

Family Cites Families (105)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2634413A (en) 1948-04-08 1953-04-07 Bell Telephone Labor Inc Velocity measuring system utilizing radio technique
US4085740A (en) 1966-03-28 1978-04-25 Lockheed Corporation Method for measuring physiological parameter
GB1378754A (en) 1971-09-07 1974-12-27 Peak Technologies Ltd Patient monitoring
US3911899A (en) * 1973-11-08 1975-10-14 Chemetron Corp Respiration monitoring method and apparatus
US3993995A (en) 1975-12-08 1976-11-23 Rca Corporation Respiration monitor
US4513748A (en) 1983-08-30 1985-04-30 Rca Corporation Dual frequency heart rate monitor utilizing doppler radar
US4958638A (en) * 1988-06-30 1990-09-25 Georgia Tech Research Corporation Non-contact vital signs monitor
JP3393647B2 (en) * 1992-11-09 2003-04-07 アイライフ、システムズ、インコーポレーテッド Apparatus and method for remote monitoring of physiological parameters
US5314037A (en) 1993-01-22 1994-05-24 Shaw David C H Automobile collision avoidance system
US5361070B1 (en) 1993-04-12 2000-05-16 Univ California Ultra-wideband radar motion sensor
US5671733A (en) * 1994-04-21 1997-09-30 Snap Laboratories, L.L.C. Method of analyzing sleep disorders
US5573012A (en) * 1994-08-09 1996-11-12 The Regents Of The University Of California Body monitoring and imaging apparatus and method
US5590650A (en) * 1994-11-16 1997-01-07 Raven, Inc. Non-invasive medical monitor system
US5995856A (en) * 1995-11-22 1999-11-30 Nellcor, Incorporated Non-contact optical monitoring of physiological parameters
US6062216A (en) * 1996-12-27 2000-05-16 Children's Medical Center Corporation Sleep apnea detector system
US5902250A (en) * 1997-03-31 1999-05-11 President And Fellows Of Harvard College Home-based system and method for monitoring sleep state and assessing cardiorespiratory risk
US6011477A (en) * 1997-07-23 2000-01-04 Sensitive Technologies, Llc Respiration and movement monitoring system
US7542878B2 (en) * 1998-03-03 2009-06-02 Card Guard Scientific Survival Ltd. Personal health monitor and a method for health monitoring
US5966090A (en) 1998-03-16 1999-10-12 Mcewan; Thomas E. Differential pulse radar motion sensor
US6132371A (en) 1998-05-20 2000-10-17 Hewlett-Packard Company Leadless monitoring of physiological conditions
US6146332A (en) * 1998-07-29 2000-11-14 3416704 Canada Inc. Movement detector
JP3057438B2 (en) 1998-09-11 2000-06-26 日本アビオニクス株式会社 Non-contact cardiopulmonary function monitoring device
US6821249B2 (en) 1999-03-08 2004-11-23 Board Of Regents, The University Of Texas Temperature monitoring of congestive heart failure patients as an indicator of worsening condition
US6492933B1 (en) 1999-09-02 2002-12-10 Mcewan Technologies, Llc SSB pulse Doppler sensor and active reflector system
US6602191B2 (en) 1999-12-17 2003-08-05 Q-Tec Systems Llp Method and apparatus for health and disease management combining patient data monitoring with wireless internet connectivity
US6839581B1 (en) 2000-04-10 2005-01-04 The Research Foundation Of State University Of New York Method for detecting Cheyne-Stokes respiration in patients with congestive heart failure
ES2260245T3 (en) * 2000-06-23 2006-11-01 Bodymedia, Inc. SYSTEM TO CONTROL HEALTH, WELFARE AND EXERCISE.
MXPA06002836A (en) * 2000-06-16 2006-06-14 Bodymedia Inc System for monitoring and managing body weight and other physiological conditions including iterative and personalized planning, intervention and reporting capability.
KR100956791B1 (en) 2001-08-06 2010-05-11 보디미디어 인코퍼레이티드 Apparatus for monitoring health, wellness and fitness
GB2364390B (en) * 2000-07-03 2004-11-17 Yousri Mohammad Tah Haj-Yousef A method and device for detecting and monitoring concealed bodies and objects
EP1410755A4 (en) 2001-06-15 2009-01-28 Sumitomo Osaka Cement Co Ltd Monitoring apparatus
US7149570B2 (en) * 2001-10-27 2006-12-12 Koninklijke Philips Electronics N.V. Alarm activated acoustic measuring signals for patient monitoring
US6834251B1 (en) 2001-12-06 2004-12-21 Richard Fletcher Methods and devices for identifying, sensing and tracking objects over a surface
IL147502D0 (en) * 2002-01-07 2002-08-14 Widemed Ltd Self-adaptive system, for the analysis of biomedical signals of a patient
US7009561B2 (en) * 2003-03-11 2006-03-07 Menache, Llp Radio frequency motion tracking system and method
US6753780B2 (en) * 2002-03-15 2004-06-22 Delphi Technologies, Inc. Vehicle occupant detection system and method using radar motion sensor
AU2003262625A1 (en) * 2002-08-01 2004-02-23 California Institute Of Technology Remote-sensing method and device
CA2397185A1 (en) * 2002-08-05 2004-02-05 Christian Cloutier Baby activity monitor
CN1713850B (en) * 2002-10-09 2012-04-18 康迪医疗革新有限公司 Apparatus for maintaining and monitoring sleep quality during therapeutic treatments
DE10259522A1 (en) * 2002-12-19 2004-07-01 Robert Bosch Gmbh Radar-based sensing of the position and / or movement of the body or in the body of living beings
US7395117B2 (en) * 2002-12-23 2008-07-01 Cardiac Pacemakers, Inc. Implantable medical device having long-term wireless capabilities
US7438686B2 (en) 2003-01-10 2008-10-21 Medtronic, Inc. Apparatus and method for monitoring for disordered breathing
JP2004252770A (en) 2003-02-20 2004-09-09 Omron Corp Drowning detection device
JP4721451B2 (en) 2003-02-28 2011-07-13 コンソリデーティッド リサーチ オブ リッチモンド,インコーポレイテッド Automated system and apparatus for facilitating behavioral therapy using information indicating awake / sleep state of a subject
IL155955D0 (en) 2003-05-15 2003-12-23 Widemed Ltd Adaptive prediction of changes of physiological/pathological states using processing of biomedical signal
US6932769B2 (en) 2003-05-28 2005-08-23 Delphi Technologies, Inc. Ultrasonic occupant detection and classification system
US20040249257A1 (en) 2003-06-04 2004-12-09 Tupin Joe Paul Article of manufacture for extracting physiological data using ultra-wideband radar and improved signal processing techniques
US8002553B2 (en) * 2003-08-18 2011-08-23 Cardiac Pacemakers, Inc. Sleep quality data collection and evaluation
JP4472294B2 (en) * 2003-08-22 2010-06-02 株式会社サトー Sleep apnea syndrome diagnosis apparatus, signal analysis apparatus and method thereof
US8606356B2 (en) * 2003-09-18 2013-12-10 Cardiac Pacemakers, Inc. Autonomic arousal detection system and method
WO2005034750A1 (en) * 2003-10-07 2005-04-21 Olympus Corporation Sleep aspiration state measurement device
WO2005048824A2 (en) 2003-11-18 2005-06-02 Vivometrics, Inc. Method and system for processing data from ambulatory physiological monitoring
US7304580B2 (en) 2003-12-04 2007-12-04 Hoana Medical, Inc. Intelligent medical vigilance system
US7199749B2 (en) 2003-12-12 2007-04-03 Georgia Tech Research Corporation Radar detection device employing a scanning antenna system
US7524279B2 (en) * 2003-12-31 2009-04-28 Raphael Auphan Sleep and environment control method and system
WO2005067790A1 (en) * 2004-01-16 2005-07-28 Compumedics Ltd Method and apparatus for ecg-derived sleep disordered breathing monitoring, detection and classification
WO2005081170A2 (en) 2004-02-19 2005-09-01 Edward Henry Mathews Diabetes management and patient database system via mobile communication device
JP4620959B2 (en) * 2004-03-26 2011-01-26 キヤノン株式会社 Biological information monitor device
JP5344818B2 (en) * 2004-06-24 2013-11-20 アディダス アーゲー Cough monitoring system and method
US7207948B2 (en) 2004-06-24 2007-04-24 Vivometrics, Inc. Systems and methods for monitoring cough
US7473228B2 (en) * 2004-07-08 2009-01-06 Delphi Technologies, Inc. System and method for monitoring a respiration rate of an occupant of a predetermined volume
US7679545B2 (en) 2004-08-05 2010-03-16 Georgia Tech Research Corporation Suppressing motion interference in a radar detection system
CN1737857A (en) 2004-08-16 2006-02-22 张玉峰 Student flat housing information management system
US20060079164A1 (en) 2004-09-30 2006-04-13 Decastro Eugene A Automatic sash safety mechanism
JP4392427B2 (en) 2004-10-14 2010-01-06 アンリツ株式会社 Small pulse radar with low power consumption and control method thereof
US7578793B2 (en) * 2004-11-22 2009-08-25 Widemed Ltd. Sleep staging based on cardio-respiratory signals
US20060183980A1 (en) 2005-02-14 2006-08-17 Chang-Ming Yang Mental and physical health status monitoring, analyze and automatic follow up methods and its application on clothing
AU2006217448A1 (en) 2005-02-22 2006-08-31 Health-Smart Limited Methods and systems for physiological and psycho-physiological monitoring and uses thereof
US7814324B2 (en) * 2005-02-24 2010-10-12 Hewlett-Packard Development Company, L.P. Method of making a patient monitor
US7903020B2 (en) 2005-04-22 2011-03-08 University Of Florida Research Foundation, Inc. System and methods for remote sensing using double-sideband signals
US7314451B2 (en) * 2005-04-25 2008-01-01 Earlysense Ltd. Techniques for prediction and monitoring of clinical episodes
US20060247505A1 (en) 2005-04-28 2006-11-02 Siddiqui Waqaas A Wireless sensor system
US7387607B2 (en) * 2005-06-06 2008-06-17 Intel Corporation Wireless medical sensor system
US20080269589A1 (en) 2005-07-15 2008-10-30 Koninklijke Philips Electronics N. V. Apparatus for the Detection of Heart Activity
CN1739451A (en) 2005-07-21 2006-03-01 高春平 Method and device for monitoring psycological and professional test truth
US20070027367A1 (en) * 2005-08-01 2007-02-01 Microsoft Corporation Mobile, personal, and non-intrusive health monitoring and analysis system
KR100791371B1 (en) * 2005-10-07 2008-01-07 삼성전자주식회사 Apparatus and method for inducing sound sleep and wake-up
US8026840B2 (en) 2005-10-28 2011-09-27 Raytheon Company Biometric radar system and method for identifying persons and positional states of persons
US20070118054A1 (en) 2005-11-01 2007-05-24 Earlysense Ltd. Methods and systems for monitoring patients for clinical episodes
WO2007101343A1 (en) * 2006-03-06 2007-09-13 Wireless 2000 Rf & Uwb Technologies Ltd. Ultra wideband monitoring systems and antennas
CN100355392C (en) 2006-03-28 2007-12-19 北京大学 System for monitoring and intervening sleep and dream, and processing method therefor
EP2008211A2 (en) 2006-04-07 2008-12-31 Koninklijke Philips Electronics N.V. Self-adaptive care plan goal modules
WO2007143535A2 (en) * 2006-06-01 2007-12-13 Biancamed Ltd. Apparatus, system, and method for monitoring physiological signs
US20070296571A1 (en) * 2006-06-13 2007-12-27 Kolen Paul T Motion sensing in a wireless rf network
US7733224B2 (en) * 2006-06-30 2010-06-08 Bao Tran Mesh network personal emergency response appliance
JP5046364B2 (en) 2006-09-15 2012-10-10 パナソニック株式会社 Sleep condition evaluation system and program thereof
US8120462B2 (en) * 2006-09-25 2012-02-21 Sensomatic Electronics, LLC Method and system for standing wave detection for radio frequency identification marker readers
WO2008037020A1 (en) * 2006-09-27 2008-04-03 Resmed Ltd Methods and apparatus for assessing sleep quality
CN101689219A (en) 2006-11-01 2010-03-31 必安康医疗有限公司 The system and method that is used for monitoring cardiorespiratory parameters
US7868757B2 (en) 2006-12-29 2011-01-11 Nokia Corporation Method for the monitoring of sleep using an electronic device
WO2008096307A1 (en) 2007-02-07 2008-08-14 Philips Intellectual Property & Standards Gmbh Sleep management
US7898455B2 (en) * 2007-07-17 2011-03-01 Rosenbury Erwin T Handheld instrument capable of measuring heartbeat and breathing motion at a distance
US20100152600A1 (en) 2008-04-03 2010-06-17 Kai Sensors, Inc. Non-contact physiologic motion sensors and methods for use
EP2265169A4 (en) 2008-04-03 2013-01-09 Kai Medical Inc Non-contact physiologic motion sensors and methods for use
US8870785B2 (en) * 2008-05-09 2014-10-28 Koninklijke Philips N.V. Contactless respiration monitoring of a patient
US20100099954A1 (en) 2008-10-22 2010-04-22 Zeo, Inc. Data-driven sleep coaching system
GB2471903A (en) * 2009-07-17 2011-01-19 Sharp Kk Sleep management system for monitoring sleep quality and making recommendations for improvement
GB2471902A (en) 2009-07-17 2011-01-19 Sharp Kk Sleep management system which correlates sleep and performance data
WO2011114333A2 (en) * 2010-03-17 2011-09-22 Hypnocore Ltd. Sleep analysis based on inter beat interval
EP2417908A1 (en) 2010-08-12 2012-02-15 Philips Intellectual Property & Standards GmbH Device, system and method for measuring vital signs
JP5872559B2 (en) 2010-09-22 2016-03-01 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Method and apparatus for monitoring a subject's respiratory activity
EP2460464A1 (en) 2010-12-03 2012-06-06 Koninklijke Philips Electronics N.V. Sleep disturbance monitoring apparatus
US20120245479A1 (en) * 2011-03-23 2012-09-27 Meena Ganesh Physiology Monitoring and Alerting System and Process
US8740793B2 (en) 2011-08-29 2014-06-03 General Electric Company Radar based systems and methods for monitoring a subject
WO2013093712A1 (en) 2011-12-22 2013-06-27 Koninklijke Philips Electronics N.V. Wake-up system

Also Published As

Publication number Publication date
KR101850855B1 (en) 2018-04-20
US20160125160A1 (en) 2016-05-05
KR20170012608A (en) 2017-02-02
JP2015171585A (en) 2015-10-01
US20210193275A1 (en) 2021-06-24
CN108231188A (en) 2018-06-29
US20100152543A1 (en) 2010-06-17
US10891356B2 (en) 2021-01-12
US9223935B2 (en) 2015-12-29
WO2010036700A1 (en) 2010-04-01
CN107506569B (en) 2021-07-13
US10885152B2 (en) 2021-01-05
US20110178377A1 (en) 2011-07-21
JP2021037293A (en) 2021-03-11
CN107506569A (en) 2017-12-22
AU2017204883A1 (en) 2017-08-03
CA2738307C (en) 2020-11-17
JP2017225823A (en) 2017-12-28
CN102224503A (en) 2011-10-19
EP2350898A1 (en) 2011-08-03
JP2012503804A (en) 2012-02-09
AU2016204801A1 (en) 2016-07-28
EP2350898B1 (en) 2020-05-20
EP3764369A1 (en) 2021-01-13
KR20110076925A (en) 2011-07-06
CA2738307A1 (en) 2010-04-01

Similar Documents

Publication Publication Date Title
US20210193275A1 (en) Contactless and minimal-contact monitoring of quality of life parameters for assessment and intervention
Bhat et al. Is there a clinical role for smartphone sleep apps? Comparison of sleep cycle detection by a smartphone application to polysomnography
De Zambotti et al. Wearable sleep technology in clinical and research settings
Kelly et al. Recent developments in home sleep-monitoring devices
Paalasmaa et al. Unobtrusive online monitoring of sleep at home
De Chazal et al. Sleep/wake measurement using a non‐contact biomotion sensor
Blackwell et al. Factors that may influence the classification of sleep-wake by wrist actigraphy: the MrOS Sleep Study
US20150031964A1 (en) Physiological signal detecting device and system
Rofouei et al. A non-invasive wearable neck-cuff system for real-time sleep monitoring
EP2278508A1 (en) Method and system for managing a user&#39;s sleep
CN102341035A (en) A System For The Assessment Of Sleep Quality In Adults And Children
Guillodo et al. Clinical applications of mobile health wearable–based sleep monitoring: systematic review
Crivello et al. The meaning of sleep quality: a survey of available technologies
Patel et al. Accuracy of a smartphone application in estimating sleep in children.
Gaiduk et al. Sensor-mesh-based system with application on sleep study
JP2014039586A (en) Sleep improvement support device
Lokavee et al. Detection of Sleep-Disordered Breathing and Sleep Efficiency with Wireless Pillow-Sheet Sensor Network
Hendriks et al. Bed Sensor Technology for Objective Sleep Monitoring Within the Clinical Rehabilitation Setting: Observational Feasibility Study
Romano et al. Sleep Tracker and Smartphone: Strengths and Limits to Estimate Sleep and Sleep-Disordered Breathing
CN111820879A (en) Health evaluation management method suitable for chronic disease patients
Joy Activity Trackers in Sleep Monitoring Devices

Legal Events

Date Code Title Description
MK5 Application lapsed section 142(2)(e) - patent request and compl. specification not accepted