AT514880B1 - Durchführungselement für harte Betriebsbedingungen sowie dessen Verwendung - Google Patents

Durchführungselement für harte Betriebsbedingungen sowie dessen Verwendung Download PDF

Info

Publication number
AT514880B1
AT514880B1 ATA50662/2014A AT506622014A AT514880B1 AT 514880 B1 AT514880 B1 AT 514880B1 AT 506622014 A AT506622014 A AT 506622014A AT 514880 B1 AT514880 B1 AT 514880B1
Authority
AT
Austria
Prior art keywords
glass
feedthrough
functional
electrically insulating
carrier
Prior art date
Application number
ATA50662/2014A
Other languages
English (en)
Other versions
AT514880A3 (de
AT514880A2 (de
Original Assignee
Schott Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US14/032,475 priority Critical patent/US9208929B2/en
Application filed by Schott Ag filed Critical Schott Ag
Publication of AT514880A2 publication Critical patent/AT514880A2/de
Publication of AT514880A3 publication Critical patent/AT514880A3/de
Application granted granted Critical
Publication of AT514880B1 publication Critical patent/AT514880B1/de

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G3/00Installations of electric cables or lines in or on buildings, equivalent structures or vehicles
    • H02G3/22Arrangements for leading cables or lines through walls, floors, or ceilings, e.g. into building
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C17/00Monitoring; Testing ; Maintaining
    • G21C17/10Structural combination of fuel element, control rod, reactor core, or moderator structure with sensitive instruments, e.g. for measuring radioactivity, strain
    • G21C17/116Passages or insulators, e.g. for electric cables
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/08Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances quartz; glass; glass wool; slag wool; vitreous enamels
    • H01B3/087Chemical composition of glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0009Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing silica as main constituent
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0036Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and a divalent metal oxide as main constituents
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0036Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and a divalent metal oxide as main constituents
    • C03C10/0045Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and a divalent metal oxide as main constituents containing SiO2, Al2O3 and MgO as main constituents
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/068Glass compositions containing silica with less than 40% silica by weight containing boron containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • C03C3/093Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/16Compositions for glass with special properties for dielectric glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/02Frit compositions, i.e. in a powdered or comminuted form
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/24Fusion seal compositions being frit compositions having non-frit additions, i.e. for use as seals between dissimilar materials, e.g. glass and metal; Glass solders
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B17/00Insulators or insulating bodies characterised by their form
    • H01B17/26Lead-in insulators; Lead-through insulators
    • H01B17/30Sealing
    • H01B17/303Sealing of leads to lead-through insulators
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B17/00Insulators or insulating bodies characterised by their form
    • H01B17/26Lead-in insulators; Lead-through insulators
    • H01B17/30Sealing
    • H01B17/303Sealing of leads to lead-through insulators
    • H01B17/305Sealing of leads to lead-through insulators by embedding in glass or ceramic material
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B17/00Insulators or insulating bodies characterised by their form
    • H01B17/56Insulating bodies
    • H01B17/58Tubes, sleeves, beads, or bobbins through which the conductor passes
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B17/00Insulators or insulating bodies characterised by their form
    • H01B17/56Insulating bodies
    • H01B17/62Insulating-layers or insulating-films on metal bodies
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B19/00Apparatus or processes specially adapted for manufacturing insulators or insulating bodies
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/12Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances ceramics
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/46Bases; Cases
    • H01R13/52Dustproof, splashproof, drip-proof, waterproof, or flameproof cases
    • H01R13/521Sealing between contact members and housing, e.g. sealing insert
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/46Bases; Cases
    • H01R13/52Dustproof, splashproof, drip-proof, waterproof, or flameproof cases
    • H01R13/5216Dustproof, splashproof, drip-proof, waterproof, or flameproof cases characterised by the sealing material, e.g. gels or resins
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/46Bases; Cases
    • H01R13/533Bases, cases made for use in extreme conditions, e.g. high temperature, radiation, vibration, corrosive environment, pressure
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2204/00Glasses, glazes or enamels with special properties
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2205/00Compositions applicable for the manufacture of vitreous enamels or glazes
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/003Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings with electrically conducting or insulating means
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/02Surface sealing or packing
    • E21B33/03Well heads; Setting-up thereof
    • E21B33/035Well heads; Setting-up thereof specially adapted for underwater installations
    • E21B33/038Connectors used on well heads, e.g. for connecting blow-out preventer and riser
    • E21B33/0385Connectors used on well heads, e.g. for connecting blow-out preventer and riser electrical connectors
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C13/00Pressure vessels; Containment vessels; Containment in general
    • G21C13/02Details
    • G21C13/032Joints between tubes and vessel walls, e.g. taking into account thermal stresses
    • G21C13/036Joints between tubes and vessel walls, e.g. taking into account thermal stresses the tube passing through the vessel wall, i.e. continuing on both sides of the wall
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

Durchführungselement (1) für harte Betriebsbedingungen, das einen Trägerkörper (2) mit zumindest einer Durchführungsöffnung aufweist, in der zumindest ein funktionales Element (4) in einem elektrisch isolierenden Befestigungsmaterial (3) angeordnet ist. Das elektrisch isolierende Befestigungsmaterial (3) umfasst ein Glas oder eine Glaskeramik mit einem spezifischen Durchgangswiderstand von mehr als 1,0 x 1010 Ω cm bei einer Temperatur von 350 °C. Das Glas oder die Glaskeramik weist einen definierten Zusammensetzungsbereich im System SiO2 – B2O3 – MO auf.

Description

Beschreibung [0001] Die vorliegende Erfindung betrifft Durchführungselemente im Allgemeinen und verbesserte Durchführungselemente im Besonderen, die unter harten Betriebsbedingungen, d.h. im Allgemeinen in rauen Umgebungen mit hohen Betriebs- oder Notfalltemperaturen über 260 °C verwendet werden können. Insbesondere können die Durchführungselemente der vorliegenden Erfindung Betriebs- und/oder Notfalldrücken über 2896 bar (42000 psi) standhalten. Daher können sie in zahlreichen Anwendungen verwendet werden, besonders in Bohrgeräten im Untertage- und/oder Explorationseinsatz sowie zur sicheren Einkapselung von toxischer Materie und in Raumfahrzeugen.
[0002] Durchführungselemente sind im Allgemeinen auf dem Gebiet der Technik bekannt und in vielen Vorrichtungen enthalten. Allgemein umfassen solche Durchführungselemente üblicherweise einen elektrischen Leiter, der durch ein elektrisch isolierendes Material in einer Durchführungsöffnung befestigt ist. Die Parameter, die die Leistungsfähigkeit solcher Durchführungselemente auszeichnen, sind im Wesentlichen der elektrische Widerstand des isolierenden Materials sowie die Widerstandsfähigkeit gegenüber Wärme und Druck, die tendenziell das isolierende Material und/oder den Leiter veranlassen, aus der Durchführungsöffnung auszureißen.
[0003] Obwohl solche Durchführungselemente eine sehr gut geeignete Technologie darstellen, um z.B. elektrischen Strom durch das Gehäuse von Vorrichtungen zu leiten, schränken die genannten Parameter die möglichen Anwendungsbereiche für Vorrichtungen, die solche Durchführungselemente enthalten, oftmals ein. In der US 5,203,723 A werden Durchführungselemente beschrieben, die aus einem Metallstift hergestellt sind, der von einem Polymermaterial als elektrisch isolierendes Material umgeben ist. Die Geometrie des Polymermaterials, das den elektrischen Leiter umgibt, ist geeignet, durch Vertiefungen und Vorsprüngen wie Schultern höheren Drücken standzuhalten. Die beschriebenen Durchführungselemente werden verwendet, um Verbindungen in einer Sonde eines Erdölbohrungsmessungs- oder Vermessungswerkzeugs herzustellen und können bei Betriebstemperaturen über 260 °C und Drücken von maximal 1930 bar (28.000 psi) verwendet werden. Der spezifische Durchgangswiderstand der verwendeten Polymere beträgt ungefähr 8,0 x 1014 Ω cm und ist damit ausgezeichnet. Die Langzeitstabilität solcher Polymere nimmt jedoch mit der Zeit ab, wenn sie höheren Betriebstemperaturen, elektromagnetischer Strahlung wie UV- oder Gammastrahlung und auch der mechanischen Verschlechterung aufgrund physischer Abrasion ausgesetzt sind.
[0004] Es sind auch Durchführungselemente bekannt, die ein anorganisches Material wie Glas als elektrisch isolierendes Material umfassen. US 8,397,638 A beschreibt z.B. eine Durchführungsvorrichtung eines Airbag-Zünders, in dem die Durchführungsöffnung eines Metallträgerkörpers durch ein Glasmaterial abgedichtet ist, das auch einen Stift als elektrischen Leiter hält. Solche Durchführungselemente sind vorgesehen, dem Druck des Explosivstoffs standzuhalten, wenn der Zünder gezündet wird, wobei Drücke von ungefähr 1000 bar, was 14500 psi entspricht, beobachtet werden können. Die elektrischen Eigenschaften des isolierenden Materials sind nicht beschrieben, aber es kann davon ausgegangen werden, dass der spezifische elektrische Durchgangswiderstand des Glasmaterials keine große Rolle spielt, da der Zünder nur einmal mit einem kurzen elektrischen Impuls gezündet und die Vorrichtung dann zerstört wird.
[0005] Durchführungselemente wie beschrieben sind nicht ausreichend für Anwendungen in rauen Umgebungen, z.B. Bohrvorrichtungen im Untertageeinsatz, die die Exploration und/oder Gewinnung von natürlichen Erdöl- und/oder Erdgasressourcen in zunehmender Tiefe erleichtern und daher über längere Zeit hinweg höheren Betriebstemperaturen ausgesetzt sind. Angesichts dessen ist es ein Ziel der vorliegenden Erfindung, ein Durchführungselement bereitzustellen, dass für den Einsatz bei Temperaturen von über 260 °C geeignet ist und hohe elektrische Isolierungseigenschaften des Leiters gegenüber seiner Umgebung gewährleisten.
[0006] Das Ziel wird durch das Durchführungselement gemäß der vorliegenden Offenbarung und den unabhängigen Ansprüchen erreicht. Bevorzugte Ausführungsformen ergeben sich aus den davon abhängigen Ansprüchen.
[0007] E in Durchführungselement gemäß der vorliegenden Offenbarung umfasst einen Trägerkörper mit zumindest einer Durchführungsöffnung, in der zumindest ein funktionales Element in einem elektrisch isolierenden Befestigungsmaterial angeordnet ist. Das elektrisch isolierende Befestigungsmaterial isoliert elektrisch das funktionale Element vom Trägerkörper und trennt daher physisch und elektrisch das funktionale Element vom Trägerkörper. Mit anderen Worten, das elektrisch isolierende Material dichtet die Durchführungsöffnung des Trägerkörpers ab.
[0008] Das funktionale Element ist vorzugsweise ein Leiter für elektrischen Strom. Das Durchführungselement nach der vorliegenden Offenbarung ist üblicherweise in das Gehäuse einer Vorrichtung integriert. Auf diese Weise kann das Gehäuse abgedichtet sein, insbesondere hermetisch abgedichtet. Das funktionale Element dient üblicherweise dazu, Informationen wie Signale und/oder Energie wie elektrischen Strom durch das Gehäuse zu leiten.
[0009] Gemäß der vorliegenden Offenbarung enthält das elektrisch isolierende Befestigungsmaterial ein Glas oder eine Glaskeramik mit einem spezifischen Durchgangswiderstand von mehr als 1,0-1010 Ω-cm bei einer Temperatur von 350 °C. Der Begriff „enthält" umfasst vorwiegend die Ausführungsformen, in denen das elektrisch isolierende Befestigungsmaterial nur aus dem Glas oder der Glaskeramik hergestellt ist, aber auch einen Mehrschichtkörper, der eine sandwichartige Anordnung von verschiedenen Glas- und/oder Glaskeramikmaterialien im beschriebenen Zusammensetzungsbereich, oder auch sonstige Zusammensetzungen oder Materialien wie etwa Polymere umfassen kann.
[0010] Der spezifische Durchgangswiderstand ergibt sich wie dem Fachmann bekannt ist aus dem gemessenen Durchgangswiderstand multipliziert mit der Messfläche dividiert durch die Probenlänge.
[0011] Das Glas oder die Glaskeramik gemäß der vorliegenden Erfindung umfasst in Mol-% auf Oxidbasis 25% - 55% Si02, 0,1% -15% B203, 0% -15% Al203, 20% - 50% MO, wobei MO ausgewählt ist aus der Gruppe bestehend aus, einzeln oder in jeder beliebigen Kombination, MgO und/oder CaO und/oder SrO und/oder BaO, und zu 0% bis weniger als 2 % M20, und wobei M20 ausgewählt ist aus der Gruppe bestehend aus, einzeln oder in jeder beliebigen Kombination, Li20 und/oder Na20 und/oder K20.
[0012] An dieser Stelle folgen einige Bemerkungen zur Art und Zusammensetzung des Glasmaterials. Das elektrisch isolierende Befestigungsmaterial kann gemäß der Beschreibung Glas sein. Glas ist bekannter Weise ein amorphes Material, in dem Kristallite unerwünscht sind. Im Gegensatz dazu ist Glaskeramik ein Material, in dem kristallisierte Bereiche in einer Glasmatrix eingebettet sind. Die kristallisierten Bereiche können 99 % oder mehr des Gesamtmaterials entsprechen. Glaskeramik wird häufig aus einem Glasmaterial hergestellt, das dann einer Wärmebehandlung unterzogen wird, bei der zumindest teilweise Kristallisierung induziert wird. Weil die kristallisierten Bereiche der Glaskeramik üblicherweise einen verschiedenen CTE (Wärmeausdehnungskoeffizient) aufweisen, können die amorphe Glasmatrix, die Konzentration der kristallisierten Bereiche sowie ihr spezifischer CTE verwendet werden, um den Gesamt-CTE des Glaskeramikmaterials anzupassen. In der vorliegenden Offenbarung ist ein amorphes Glasmaterial genauso gut geeignet wie das Glaskeramikmaterial. Beide weisen als elektrisch isolierendes Befestigungsmaterial, das in der Durchführungsöffnung vorhanden ist, die oben beschriebene Zusammensetzung auf.
[0013] In vorteilhaften Ausführungsformen ist das genannte Glas oder die Glaskeramik im Wesentlichen frei von BaO und/oder SrO und/oder Li20 und/oder Na20 und/oder K20. Diese Empfehlung umfasst die einzelnen Komponenten sowie mögliche Kombinationen davon.
[0014] In einer weiteren vorteilhaften Ausführungsform umfasst das genannte Glas oder die Glaskeramik in Mol-% auf Oxidbasis Si02 von 38,8% - 55%. Weitere geeignete Untergrenzen von Si02 sind 39% und/oder 40% (alle in Mol-% auf Oxidbasis). All diese Untergrenzen können mit vorteilhaften Obergrenzen von 51% und/oder 50% kombiniert werden.
[0015] Ein vorteilhafter Bereich für B2O3 im genannten Glas oder der Glaskeramik beträgt auch 0,1% -13% (in Mol-% auf Oxidbasis). Dieser Bereich kann natürlich mit allen oben beschriebenen Bereichen kombiniert werden.
[0016] Das elektrisch isolierende Glas- oder Glaskeramikmaterial mit der beschriebenen Zusammensetzung stellt einen besseren spezifischen Durchgangswiderstand für diese Gruppe von Materialien bereit. Da der spezifische Durchgangswiderstand eine Funktion der Temperatur ist, bei der der Wert des spezifischen Durchgangswiderstands gemessen wird, wird oben der spezifische Durchgangswiderstand bei einer Temperatur von 350 °C angegeben. Der spezifische Durchgangswiderstand sinkt bei steigenden Temperaturen. Dies beschränkt die maximale Betriebstemperatur der beschriebenen Durchführungselemente, da das elektrisch isolierende Befestigungsmaterial seine isolierenden Eigenschaften bei einer bestimmten Temperatur verliert. Indem ein derart hoher Mindestwert für den spezifischen Durchgangswiderstand bei einer Temperatur von 350 °C bereitgestellt wird, sind die Durchführungselemente gemäß dieser Offenbarung äußerst vorteilhaft und gut für die oben genannten Anwendungen bei hohen Temperaturen geeignet. Der Wert des spezifischen Durchgangswiderstands bei 250 °C ist ungefähr zehnmal höher als der Wert bei 350 °C.
[0017] Der zwischen dem funktionalen Element und dem Trägerkörper zu messende elektrische Widerstand hängt neben dem spezifischen Durchgangswiderstand des elektrisch isolierenden Befestigungsmaterials und der Temperatur, der das Durchführungselement ausgesetzt ist, von der Geometrie des Durchführungselements ab, z.B. vom Mindestabstand zwischen der Oberfläche des funktionalen Elements, das im isolierenden Material eingebettet ist, und der Innenwand der Durchführungsöffnung, die mit dem isolierenden Material in Kontakt ist. Aufgrund des hohen Werts des spezifischen Durchgangswiderstands des isolierenden Materials ist es möglich, ein Durchführungselement mit einer vergleichsweise kompakten Größe zu gestalten. Eine solche bevorzugte Ausführungsform ist durch ein Durchführungselement dargestellt, wobei das elektrisch isolierende Befestigungsmaterial das funktionale Element vom Trägerkörper elektrisch isoliert, wobei der elektrische Widerstand zumindest 500 ΜΩ bei einer Betriebstemperatur von 260 °C beträgt.
[0018] Das funktionale Element kann verschiedene Funktionen in einem Durchführungselement gemäß der vorliegenden Erfindung ausüben. Der häufigste Fall liegt vor, wenn das funktionale Element ein elektrischer Leiter ist. In diesem Fall kann das funktionale Element ein gefüllter oder hohler Stift oder ein Rohr sein. Ein solcher Stift kann aus Metall oder sonstigen geeigneten Leitern hergestellt sein. Das funktionale Element kann im Rahmen der vorliegenden Erfindung auch andere Funktionen erfüllen, z.B. kann es einen Wellenleiter für z.B. Mikrowellen oder Schallwellen darstellen, die durch das Durchführungselement zu leiten sind. In diesen Fällen kann das funktionale Element meist ein Rohr sein, das vorzugsweise aus Metall oder Keramik hergestellt ist. Das funktionale Element kann auch verwendet werden, um ein Kühlfluid wie Kühlwasser oder Kühlgase durch das Durchführungselement zu leiten. Eine weitere mögliche Ausführungsform des funktionalen Elements ist einfach ein Halteelement, das weitere funktionale Elemente hält, z.B. Thermoelemente oder Fasern wie Lichtleiter. Mit anderen Worten ausgedrückt kann in dieser Ausführungsform das funktionale Element als Adapter für funktionale Elemente fungieren, die nicht unmittelbar in dem elektrisch isolierenden Glas- oder Glaskeramikmaterial befestigt werden können. In diesen Fällen ist das am besten geeignete funktionale Element ein Hohlelement oder ein Rohr.
[0019] Nicht nur die geometrische Gestalt wie die Dicke des elektrisch isolierenden Glas- oder Glaskeramikbefestigungsmaterials und der Durchführungsöffnung definieren den maximalen Druck, dem das Durchführungselement gemäß der Erfindung ausgesetzt werden könnte, sondern auch die Verbundfestigkeit des Glas- oder Glaskeramikmaterials in der Durchführungsöffnung. Wenn ein solches Material verwendet wird, um eine Durchführungsöffnung abzudichten, liegen chemische und physikalische Verbundphänomene im Kontaktbereich des Glas- oder Glaskeramikmaterials und der Innenwand der Durchführungsöffnung oder der Außenfläche des funktionalen Elements vor. Diese Verbundphänomene können chemische Reaktionen oder physikalische Wechselwirkungen zwischen einerseits dem Material der Innenwand der Durch führungsöffnung und damit des Materials des Trägerkörpers und/oder des funktionalen Elements und andererseits den Komponenten des Glas- oder Glaskeramikbefestigungsmaterials sein. Wenn die Zusammensetzung des Glas- oder Glaskeramikbefestigungsmaterials auf geeignete Weise ausgewählt ist, tragen diese Verbundphänomene signifikant zur Verbindungsfestigkeit zwischen dem Befestigungsmaterial und den zu befestigenden Materialien bei. Im Zusammenhang mit der vorliegenden Erfindung kann der Nutzen der beschriebenen Zusammensetzung durch den Maximaldruck, der bei einer Betriebstemperatur von 260 °C die 2896 bar (42000 psi) übersteigt, demonstriert werden, dem das Durchführungselement gemäß der Erfindung standhalten kann. Dieser Maximaldruck deutet auf einen Betriebsdruck hin, dem das Durchführungselement über einen längeren Zeitraum hinweg ausgesetzt sein kann. Der Maximaldruck hängt auch von der Betriebstemperatur ab, bei Raumtemperatur können Maximaldrücke über 4482 bar (65000 psi) mit dem beschriebenen Durchführungselement hergestellt werden. Kurzzeitspitzendrücke können diese Maximaldrücke signifikant übersteigen.
[0020] Wenn das beschriebene Durchführungselement mit den zulässigen Maximaldruck übersteigenden Überdruck beaufschlagt ist, tritt typischerweise das Befestigungsmaterial zusammen mit dem funktionalen Element oder das funktionale Element allein aus der Durchführungsöffnung aus. Daraufhin kann umgebende Materie durch die Durchführungsöffnung hindurchtreten und umgebende Geräte zerstören. Es sind daher höchstmögliche Werte für den Maximaldruck wünschenswert.
[0021] Das beschriebene elektrisch isolierende Glas- oder Glaskeramikbefestigungsmaterial kann zumindest eine Durchführungsöffnung hermetisch abdichten. Der Begriff hermetisches Abdichten bezieht sich bekannterWeise auf die Qualität der Abdichtung. In diesem Fall bedeutet hermetisch, dass die Abdichtung im Wesentlichen gegen Austreten aller möglichen Medien vollständig dicht ist. Normalerweise wird Hermetizität durch einen Helium-Lecktest gemessen. Das Verfahren ist in der Industrie bekannt. Helium-Leckraten unter 1,0 x 10'8 cm3/s (Kubikzentimeter pro Sekunde) bei Raumtemperatur oder 1,69 x 10'1° mbar l/s bei Raumtemperatur zeigen an, dass die Dichtung der Durchführungsöffnung hermetisch ist.
[0022] Der beschriebene Zusammensetzungsbereich des elektrisch isolierenden Befestigungsmaterials ermöglicht es, im Wesentlichen den CTE des elektrisch isolierenden Befestigungsmaterials auf den CTE des Trägerkörpers abzustimmen. Das bedeutet, dass die Werte des CTE des elektrisch isolierenden Befestigungsmaterials und des Trägerkörpers im Wesentlichen gleich oder zumindest ähnlich sind. In diesem Fall liegt eine so genannte angepasste Durchführung vor. Die Kräfte, die das elektrisch isolierende Befestigungsmaterial in der Durchführungsöffnung halten, sind vorwiegend die chemischen und/oder physikalischen Kräfte, die durch die beschriebene Wechselwirkung der Glas- oder Glaskeramikkomponenten und des Materials des Trägerkörpers an der Grenzfläche des Glas- oder Glaskeramikbefestigungsmaterials an der Innenwand der Durchführungsöffnung bedingt sind.
[0023] Alternativ dazu kann die Zusammensetzung des elektrisch isolierenden Glas- oder Glaskeramikbefestigungsmaterials im beschriebenen Zusammensetzungsbereich so ausgewählt werden und/oder das Material des Trägerkörpers kann so ausgewählt sein, dass eine sogenannte Druckdurchführung entsteht. In diesem Fall ist der CTE des Trägerkörpermaterials größer als der CTE des elektrisch isolierenden Glas- oder Glaskeramikbefestigungsmaterials. Wenn während des Herstellens des Durchführungselements der Trägerkörper gemeinsam mit dem Glas- oder Glaskeramikbefestigungsmaterial (und dem funktionalen Element) erhitzt wird, das in die zumindest eine Durchführungsöffnung eingebracht ist, schmilzt das Glas- oder Glaskeramikbefestigungsmaterial auf und verbindet sich mit der Innenwand der betreffenden Durchführungsöffnung. Wenn diese Anordnung abkühlt, schrumpft der Trägerkörper regelrecht auf das Glas- oder Glaskeramikmaterial in der Durchführungsöffnung, was zu den Kräften beiträgt, die das elektrisch isolierende Glas- oder Glaskeramikbefestigungsmaterial in der zumindest einen Durchführungsöffnung halten. Der Trägerkörper übt daher einen zusätzlichen Haltedruck gegenüber dem elektrisch isolierenden Befestigungsmaterial aus. Dieser zusätzliche Haltedruck ist zumindest bei Raumtemperatur vorhanden und trägt vorzugsweise zur sicheren Abdichtung von zumindest einer Durchführungsöffnung bis zu Temperaturen bei, bei der das Durchfüh rungselement hergestellt wurde. Die oben genannten chemischen oder physikalischen molekularen Kräfte, die im Zusammenhang mit der abgestimmten Dichtung erwähnt wurden, können natürlich nach wie vor vorhanden sein.
[0024] I m Wesentlichen kann der Trägerkörper aus allen geeigneten Materialien und/oder Materialienkombinationen hergestellt sein. Vorteilhafte Materialien für den Trägerkörper sind jedoch Keramikmaterialien, vorzugsweise Al203-Keramikmaterialien und/oder stabilisierte Zr02-Keramikmaterialien und/oder Glimmer.
[0025] Alternativ dazu kann der Trägerkörper vorteilhafter Weise aus Metallen und/oder Legierungen hergestellt sein. Bevorzugte Materialien dieser Gruppe sind rostfreier Stahl SAE 304 SS und/oder rostfreier Stahl SAE 316 SS und/oder Inconel.
[0026] Das funktionale Element ist bevorzugt aus einem Metallmaterial und/oder einer Legierung hergestellt, vorteilhafter Weise ausgewählt aus der Gruppe bestehend aus Beryllium-Kupfer und/oder Nickel-Eisen-Legierung und/oder Kovar und/oder Inconel.
[0027] Keramik- und Metallmaterialien sind Fachleuten bekannt und werden daher nicht näher beschrieben. Sowohl der Trägerkörper als auch das funktionale Element können natürlich auch andere Materialien als die hier beschriebenen umfassen, z.B. in anderen Bereichen als nahe der Durchführungsöffnungen, und/oder können eine sandwichartige Struktur aus verschiedenen Materialien umfassen.
[0028] Die Leistungsfähigkeit des beschriebenen Durchführungselements kann eingestellt werden, wenn bestimmte Materialkombinationen für den Trägerkörper und das funktionale Element verwendet werden. Besonders bevorzugt ist die Kombination aus einem funktionalen Element aus Beryllium-Kupfer und einem Trägerkörper aus rostfreiem Stahl SAE 304 SS oder rostfreiem Stahl SAE 316 SS. Ebenfalls bevorzugt ist die Kombination aus einem funktionalen Element aus einer Nickel-Eisen-Legierung und einem Trägerkörper aus rostfreiem Stahl SAE 304 SS oder Inconel. Eine weitere bevorzugte Kombination ist durch ein aus Kovar in Kombination mit einem Trägerkörper, der im Wesentlichen aus Inconel hergestellt ist, hergestelltes funktionales Element repräsentiert. Außerdem besonders bevorzugt ist die Kombination aus einem funktionalen Element aus Inconel in Kombination mit einem Trägerkörper aus Inconel. Die bevorzugten Kombinationen sind in der folgenden Tabelle zusammengefasst:
[0029] I m Rahmen des beschriebenen Zusammensetzungsbereichs des elektrisch isolierenden Glas- oder Glaskeramikbefestigungsmaterials gibt es natürlich bevorzugte Bereiche für den Gehalt seiner Komponenten. Diese bevorzugten Bereiche können bevorzugte Eigenschaften für das Glas- oder Glaskeramikbefestigungsmaterial bereitstellen, besonders aber nicht notwendigerweise in Kombination mit den genannten Materialien für den Trägerkörper und/oder das funktionale Element.
[0030] Vorzugsweise enthält das elektrisch isolierende Befestigungsmaterial ein Glas oder eine Glaskeramik, das oder die in Mol-% auf Oxidbasis enthält 35% - 50% Si02, 5% - 15% B203, 0% - 5% Al203, 30% - 50% MO und 0% bis weniger als 1% M20.
[0031] Besonders bevorzugt ist die Ausführungsform, in der das elektrisch isolierende Befestigungsmaterial ein Glas oder eine Glaskeramik umfasst, das in Mol-% auf Oxidbasis 35% - 50% Si02, 5% -15% B203, 0% - <2% Al203, 30% - 50% MO und 0% bis weniger als 1% M20 enthält.
[0032] Wie oben erörtert enthält in einer weiteren vorteilhaften Ausführungsform das elektrisch isolierende Befestigungsmaterial ein Glas oder eine Glaskeramik, das in Mol-% auf Oxidbasis 39% - 55% Si02, 5% -15% B203, 0% - <2% Al203, 30% - 50% MO enthält und im Wesentlichen frei von BaO und/oder SrO und/oder Li20 und/oder Na20 und/oder K20 ist.
[0033] Die Bedeutung der Abkürzungen MO und M20 wurde bereits im Detail erklärt und muss außerdem auf die genannten bevorzugten Zusammensetzungsbereiche angewandt werden.
[0034] Besonders vorteilhaft ist eine Ausführungsform, in der das Glas oder die Glaskeramik in den beschriebenen Zusammensetzungsbereichen im Wesentlichen frei von M20 und/oder PbO und/oder Fluor ist. „Im Wesentlichen frei von" bedeutet, dass es keinen beabsichtigten Gehalt der genannten Komponenten gibt. Es können jedoch unvermeidbare Unreinheiten vorhanden sein, die durch Erosion der Glasschmelzgeräte während ihres Betriebs und/oder durch künstliche und/oder natürliche Kontaminierung der im Glasherstellungsprozess verwendeten Rohmaterialien bedingt sind. Üblicherweise liegen solche Unreinheiten nicht über 2 ppm. Wenn M20 aus der Glaszusammensetzung entfernt wird, kann der spezifische Durchgangswiderstand des elektrisch isolierenden Glas- oder Glaskeramikbefestigungsmaterials die höchsten Werte erreichen. Das Abdichten der Durchführungsöffnungen kann jedoch auf den anspruchsvolleren Glasschmelzeigenschaften schwieriger sein. PbO und Fluor sind aufgrund ihrer negativen Auswirkungen auf die Umwelt unerwünschte Komponenten.
[0035] Zusätzliche Komponenten können vorteilhaft sein, um die Glasschmelz- und Verarbeitungseigenschaften des elektrisch isolierenden Glas- oder Glaskeramikbefestigungsmaterials zu verbessern. Solche vorteilhaften zusätzlichen Komponenten sind Zr02 und/oder Y203 und/oder La203, die entweder in den ersten oder bevorzugten Ausführungsformen der Glasoder Glaskeramikzusammensetzung vorhanden sein können, jeweils von 0% bis zu 10% in Mol-% auf Oxidbasis, entweder einzeln oder in jeder möglichen Kombination.
[0036] Ebenso vorteilhaft kann das elektrisch isolierende Glas- oder Glaskeramikbefestigungsmaterial bis zu 30 % des Gesamtvolumens an Füllstoffen umfassen. Solche Füllstoffe sind üblicherweise anorganische Füllstoffe. Besonders vorteilhaft sind Zr02 und/oder Al203 und/oder MgO, entweder einzeln oder in jeder möglichen Kombination.
[0037] Neben der Auswahl der Zusammensetzung des elektrisch isolierenden Glas- oder Glaskeramikbefestigungsmaterials in den beschriebenen Zusammensetzungsbereichen ist es außerdem möglich, die Druckresistenz des Durchführungselements durch mechanische Maßnahmen zu verbessern, die während der Herstellung des Trägerkörpers angewandt werden können. Es kann daher zumindest eine Durchführungsöffnung mit Maßnahmen ausgestaltet sein, um noch mehr Widerstand gegen Druckbelastung bereitzustellen. Solche Maßnahmen sind vorteilhafter Weise Mittel zum Verhindern einer Relativbewegung des elektrisch isolierenden Befestigungsmaterials in Bezug auf den Trägerkörper, die auf der Innenwand der Durchführungsöffnung angebracht werden. Solche Mittel zum Verhindern von Relativbewegungen können Strukturen sein, die mit dem elektrisch isolierenden Glas- oder Glaskeramikbefestigungsmaterial in der Durchführungsöffnung verzahnt sind. Es sind alle geometrischen Strukturen, die eine solche Verriegelungsfunktion bereitstellen, geeignet, z.B. Aussparungen und/oder hervorstehende Bereiche der Innenwand der Durchführungsöffnung. Ein hervorstehender Bereich kann eine Schulter in der Durchführungsöffnung sein, die den Durchmesser der Durchführungsöffnung lokal verringert. Eine solche Schulter ist oftmals nahe der Oberfläche des Trägerkörpers angeordnet, die der Seite gegenüberliegt, auf der die Druckbelastung zu erwarten ist.
[0038] In den meisten Fällen weist eine Durchführungsöffnung zumindest einen Bereich mit einem zylindrischen Profil auf. Vorteilhafte Ausführungsformen von Durchführungsöffnungen mit solchen Maßnahmen zum Verhindern einer Relativbewegung des elektrisch isolierenden Befestigungsmaterials in Bezug auf den Trägerkörper umfassen eine Durchführungsöffnung, die zumindest einen Bereich mit einem kegelstumpfartigen Profil aufweist. Durch das kegelstumpfartige Profil ist der Durchmesser der Durchführungsöffnung verringert, der größere Durchmesser ist häufig im Bereich der Oberfläche des Trägerkörpers angeordnet, der der erwarteten Druckbelastung zugewandt ist, und der geringere Durchmesser ist meist im Bereich der Oberfläche des Trägerkörpers angeordnet, der der zu erwartenden Druckbelastung entgegengesetzt ist.
[0039] Eine weitere Maßnahme, um die maximale Druckbelastung zu verbessern und das Austreten des funktionalen Elements aus dem elektrisch isolierenden Befestigungsmaterial zu verhindern, ist es, für die Umfangswand des zumindest einen funktionalen Elements Mittel zum Verhindern einer Relativbewegung des funktionalen Elements in Bezug auf das elektrisch isolierende Befestigungsmaterial und den Trägerkörper bereitzustellen. Diese Mittel zum Verhindern von Relativbewegungen können wieder lokale Variationen des Durchmessers des funktionalen Elements sein, z.B. Schultern, Aussparungen, abgestumpfte Bereiche usw. Diese Strukturen sind im Bereich des funktionalen Elements angeordnet, das innerhalb des elektrisch isolierenden Befestigungsmaterials befestigt ist, weshalb diese Mittel zum Verhindern einer Bewegung eine Verriegelung mit dem elektrisch isolierenden Befestigungsmaterial bereitstellen.
[0040] Das Durchführungselement gemäß der vorliegenden Offenbarung kann vorteilhafter Weise in Bohr- und/oder Explorationsvorrichtungen, besonders für die Exploration und/oder Gewinnung von Erdöl- und/oder Erdgasressourcen verwendet werden. Dieser Anwendungsbereich umfasst natürlich Anwendungen an Land sowie unter Wasser. Diese Anwendungen können besonders von der Druckresistenz und den elektrischen Isolierungsfähigkeiten des Durchführungselements profitieren, die das Durchführungselement bereitstellt.
[0041] E in weiterer vorteilhafter Anwendungsbereich des Durchführungselements gemäß der vorliegenden Erfindung ist das Einkapseln einer Energieerzeugungs- oder Energiespeichervorrichtung wie Energieerzeugungsanlagen und/oder Gasdrucktanks und/oder elektrochemische Zellen und/oder Salzschmelztanks usw.. Hier sind insbesondere die elektrischen Isolierungseigenschaften bei hohen Temperaturen für eine sichere und verlässliche Einkapselung relevant.
[0042] Das vorliegende Durchführungselement stellt Merkmale bereit, die auch die Anwendung für das sichere Einkapseln jeder Art von Materie ermöglicht, besonders toxischer oder zumindest für die Umwelt und/oder die Gesundheit schädlicher Materie. Zum Beispiel kann ein Durchführungselement gemäß der vorliegenden Offenbarung verwendet werden, um Notfallgeräte und/oder Sensoren und/oder Betätigungselemente innerhalb der Kapselung mit operationeilen Vorrichtungen und/oder Personal außerhalb der Kapselung zu verbinden. Solche Kapselungen sind typischerweise in chemischen und/oder physikalischen Reaktoren oder Speichervorrichtungen vorhanden, die z.B. zumindest für eine Zwischenlagerung von Atommüll verwendet werden.
[0043] Auch Anwendungen im Weltraum können von der Temperatur- und Druckresistenz des vorliegenden Durchführungselements profitieren. Weltraummissionen, wie Satelliten in Planetenorbits oder interplanetare Missionen sowie Raumgeländefahrzeuge, sind extremen Umgebungen ausgesetzt, besonders in Bezug auf hohe und niedrige Temperaturen und Temperaturschwankungen. Die Zuverlässigkeit von Durchführungselementen in diesen Vorrichtungen ist oftmals maßgeblich für den Erfolg der Mission.
[0044] Das Durchführungselement gemäß der vorliegenden Offenbarung ist besonders geeignet, um eine Durchleitung eines Gehäuses bereitzustellen, das einen Sensor und/oder ein Betätigungselement einhaust.
[0045] Kurzbeschreibung der Zeichnung [0046] Fig. 1a zeigt das Profil eines Durchführungselements gemäß der vorliegenden Offen barung.
[0047] Fig. 1 b zeigt eine Ansicht von oberhalb auf ein Durchführungselement.
[0048] Fig. 2 zeigt das Profil eines Durchführungselements gemäß der vorliegenden Offen barung mit einer Durchführungsöffnung mit einem kegelstumpfartigen Profil, das ein Mittel zum Verhindern einer Relativbewegung des elektrisch isolierenden Befestigungsmaterials in Bezug auf den Trägerkörper darstellt.
[0049] Fig. 3 zeigt das Profil des Prinzips eines Durchführungselements gemäß der vorlie genden Offenbarung mit einer Durchführungsöffnung mit einer Schulter in ihrem zylindrischen Profil, die ein Mittel zum Verhindern einer Relativbewegung des elektrisch isolierenden Befestigungsmaterials in Bezug auf den Trägerkörper darstellt. Darüber hinaus ist das funktionale Element mit einer Schulter versehen, die ein Mittel zum Verhindern einer Relativbewegung des funktionalen Elements in Bezug auf das elektrisch isolierende Befestigungsmaterial und den Trägerkörper darstellt.
[0050] Fig. 4 zeigt das Profil eines Durchführungselements gemäß Fig. 1a, wobei die Ober fläche des elektrisch isolierenden Befestigungsmaterials durch eine Schutzschicht geschützt ist.
[0051] Fig. 5a zeigt das Profil eines Durchführungselements gemäß der vorliegenden Be schreibung, wobei der Trägerkörper mit einer Vielzahl von Durchführungsöffnungen bereitgestellt ist.
[0052] Fig. 5b zeigt eine Draufsicht eines Durchführungselements gemäß Fig. 6a.
[0053] Fig. 6a zeigt eine perspektivische Ansicht eines Durchführungselements gemäß der vorliegenden Erfindung, das typischerweise zur Einkapselung von Energieer-zeugungs- oder Energiespeichervorrichtungen verwendet wird.
[0054] Fig. 6b zeigt das Profil eines Durchführungselements gemäß Fig. 6a.
[0055] Fig. 7 zeigt eine untertägige Bohrinstallation mit einem Durchführungselement ge mäß der vorliegenden Beschreibung.
[0056] Fig. 8 zeigt eine Kapselung einer Energieerzeugungsvorrichtung mit einem Durch führungselement gemäß der vorliegenden Beschreibung.
[0057] Fig. 9 zeigt eine Energieerzeugungsvorrichtung mit einem Gehäuse und einer Kap selung, die beide ein Durchführungselement gemäß der vorliegenden Erfindung umfassen.
[0058] Fig. 10 zeigt die Temperaturabhängigkeit des spezifischen Durchgangswiderstands von Glas- oder Glaskeramikbefestigungsmaterialien gemäß der Erfindung sowie Vergleichsbeispiele.
[0059] Fig. 1a und Fig. 1b stellen ein Durchführungselement 1 schematisch dar, dessen Trägerkörper 2 in diesem Beispiel den Außenumriss eines Zylinders aufweist. Natürlich sind alle Strukturen möglich, z.B. sind auch scheibenförmige Elemente in der Erfindung umfasst. Im Trägerkörper 2 ist eine Durchführungsöffnung vorhanden, die durch ein elektrisch isolierendes Befestigungsmaterial 3 abgedichtet ist. Die Durchführungsöffnung definiert einen Durchlass durch den Trägerkörper 2 und weist natürlich eine innere Durchführungsöffnungswand auf, die an das elektrisch isolierende Befestigungsmaterial 3 angrenzt. Ein funktionales Element 4 ist im elektrisch isolierenden Befestigungsmaterial 3 in der Durchführungsöffnung angeordnet und wird dadurch gehalten.
[0060] In dieser Ausführungsform ist das funktionale Element 4 ein Stift, der als Leiter für elektrischen Strom dient. In diesem Beispiel sind der Trägerkörper 2, die Durchführungsöffnung und das funktionale Element 4 in einer koaxialen Konfiguration angeordnet. In diesem Beispiel weist die Durchführungsöffnung auch ein zylindrisches Profil auf. Die Durchführungsöffnung kann eine Bohrung innerhalb des Trägerkörpers sein, was ein geeigneter Weg ist, eine Durchführungsöffnung in einem im Allgemeinen zylindrischen Trägerkörper 2 aus Vollmaterial herzustellen. Es ist außerdem möglich, einen solchen Trägerkörper 2 aus einem gegossenen Material herzustellen, wobei die Durchführungsöffnung bereits während des Gussprozesses erzeugt wird.
[0061] Die in Fig. 2 dargestellte Ausführungsform entspricht im Allgemeinen der Ausführungsform gemäß Fig. 1a und Fig. 1b, doch weist die Durchführungsöffnung ein kegelstumpfförmiges Profil auf. Dieses kegelstumpfförmige Profil verengt den Durchmesser der Durchführungsöffnung an der Unterseite des Durchführungselements 1. In dieser Prinzipzeichnung des Beispiels erstreckt sich das abgestumpfte Profil über die gesamte Länge der Durchführungsöffnung. Natürlich ist es auch möglich, dass das abgestumpfte Profil nur in einem ersten Bereich der Durchführungsöffnung vorhanden ist, während ein zweiter oder weiterer Bereich ein unterschiedliches Profil, z.B. ein zylindrisches Profil, aufweisen kann. Indem der Durchmesser der Durchführungsöffnung lokal verringert wird, erhöht sich der Druck, der erforderlich ist, um das elektrisch isolierende Befestigungsmaterial 3 aus der Durchführungsöffnung zu drücken, weil das abgestumpfte Profil in das Befestigungsmaterial 3 eingreift und regelrecht als Keil dient, wenn Druck auf die Oberseite des Durchführungselements 1 beaufschlagt wird, wo der Durchmesser der Durchführungsöffnung beträchtlich größer ist. Der Maximaldruck, dem das Durchführungselement 1 standhalten kann, kann daher durch die Gestaltung des Profils der Durchführungsöffnung erhöht werden. Solche abgestumpfte Profile können wieder z.B. durch Bohren und Polieren eines Vollmaterials hergestellt sein, z.B. unter Verwendung einer Kegelreibahle, oder durch Gießen unter Verwendung eines geeigneten Formwerkzeugs.
[0062] Das vorteilhafte allgemeine Prinzip des lokalen Schmälerns des Durchmessers der Durchführungsöffnung kommt auch in der Ausführungsform gemäß Fig. 3 zur Geltung. Hier weist die Durchführungsöffnung einen ersten Bereich 21 mit einem zylindrischen Profil und einen zweiten Bereich 22 mit einem zylindrischen Profil auf, wobei der Durchmesser des zylindrischen Profils im zweiten Bereich 22 kleiner ist als der Durchmesser des zylindrischen Profils im ersten Bereich 21. Es wird dadurch eine Schulter in der Durchführungsöffnung erzeugt, die wiederum als Mittel zum Verhindern einer Relativbewegung des elektrisch isolierenden Befestigungsmaterials in Bezug auf den Trägerkörper 2 dient.
[0063] Wie in Fig. 3 auch gezeigt, weist das funktionale Element 4 Mittel 41 zum Verhindern einer Relativbewegung des funktionalen Elements 4 in Bezug auf das elektrisch isolierende Befestigungsmaterial 3 und in Bezug auf den Trägerkörper 2 auf. In diesem Beispiel sind diese Mittel durch einen vorstehenden Bereich 41 des funktionalen Elements 4 dargestellt, der in dieser Ausführungsform eine Schulter auf der Oberfläche des funktionalen Elements 4 erzeugt. Obwohl die Draufsicht der Ausführungsform gemäß Fig. 3 nicht gezeigt ist, ist für Fachleute leicht verständlich, dass der hervorstehende Bereich 41 des funktionalen Elements keine Scheibenstruktur aufweisen muss. Es ist auch möglich, dass die obere und die untere Fläche des hervorstehenden Bereichs 41 Kanten aufweist, z.B. in Form eines Vierecks, einer Kreuzes, eines Sterns usw., wodurch auch eine Verriegelungsfunktion gegen Torsion des funktionalen Elements 4 bereitgestellt werden kann.
[0064] Beim Gestalten eines Durchführungselements 1 mit Mitteln zum Verhindern einer Relativbewegung des elektrisch isolierenden Befestigungsmaterials 3 und/oder des funktionalen Elements 4 in Bezug auf den Trägerkörper muss natürlich bedacht werden, dass aufgrund der lokalen Verringerung des Durchmessers der Durchführungsöffnung der elektrische Gesamtwiderstand des elektrisch isolierenden Befestigungsmaterials 3 des Durchführungselements gegenüber elektrischen Kurzschlüssen, besonders zwischen dem funktionalen Element 4 und dem Trägerkörper 2, verringert sein kann. Es kann daher von Vorteil sein, Aussparungen anstatt Vorsprünge als Mittel zum Verhindern einer Bewegung zu verwenden.
[0065] Die Glas- oder Glaskeramikmaterialien, die wie in der vorliegenden Offenbarungen beschrieben als elektrisch isolierende Befestigungsmaterialien 3 verwendet werden, stellen einen ausgezeichneten spezifischen Durchgangswiderstand bereit. Die Gesamtisolierfähigkeit und die Überschlagspannung des Durchführungselements 1 kann weiter verbessert werden, indem zusätzliche Schutzelemente 31, 32, insbesondere zusätzliche Isolatoren, eingefügt werden. Daher umfasst die Ausführungsform gemäß Fig. 4 auch Schutzelemente 31, 32 auf oder zumindest nahe der Oberfläche des elektrisch isolierenden Glas- oder Glaskeramikbefestigungsmaterials 3. Die Schutzelemente 31, 32 können im Wesentlichen aus einem anderen Glas, z.B. Glaslot, und/oder organischen Verbindungen oder Polymeren, z.B. Silikonhaftmittel oder Hochtemperaturepoxidsystemen hergestellt sein. Das Durchführungselement 1 weist ohne Schutzelemente 31, 32 eine typische Überschlagspannung von 1,0 kV auf. Für das Durchführungselement 1 mit Isolatoren 31, 32 können Überschlagsspannungen von 2,0 kV und mehr erreicht werden.
[0066] Wie auch aus Fig. 4 ersichtlich ist, verhindern die Schutzelemente 31, 32 jegliche Berührungen der Glas- oder Glaskeramikoberflächen des elektrisch isolierenden Befestigungsmaterials mit anderen Medien. Die elektrisch isolierenden Glas- oder Glaskeramikbefestigungselemente gemäß der vorliegenden Erfindung sind gegen Luft und die meisten gasförmigen Medien chemisch stabil. In rauen Umgebungen können jedoch aggressivere Medien mit der Oberfläche des elektrisch isolierenden Glas- oder Glaskeramikbefestigungselements 3 in Berührung kommen. Die Korrosionsfähigkeiten dieser Medien nehmen mit ansteigenden Temperaturen häufig zu. Dauer umfasst die Ausführungsform nach Fig. 4 auch Schutzelemente 31, 32 auf oder zumindest nahe der Oberfläche des elektrisch isolierenden Glas- oder Glaskeramikbefestigungselements 3. Diese Schutzelemente 31, 32 verhindern jegliche Berührungen der Glasoder Glaskeramikoberflächen mit anderen Medien. Beispielsweise können die Schutzelemente 31, 32 aus denselben Materialien hergestellt sein wie die oben beschriebenen Isolatoren. Es können auch alle sonstigen geeigneten Materialien verwendet werden. Natürlich ist es auch möglich, dass die Schutzelemente 31, 32 nur auf einer Seite des elektrisch isolierenden Glasoder Glaskeramikbefestigungsmaterial 3 vorhanden sind. Die Ausführungsform, die zumindest ein Schutzelement 31, 32 umfasst, wird besonders vorteilhafterWeise in untertägigen Explorations- und/oder Gewinnungsanwendungen eingesetzt.
[0067] Wie auch aus Fig. 4 ersichtlich ist, ist in diesem Beispiel die Oberfläche des elektrisch isolierenden Glas- oder Glaskeramikbefestigungsmaterials 3 nicht mit der oberen und/oder unteren Oberfläche des Trägerkörpers 2 in einer Linie ausgerichtet. Diese Ausführungsform kann für die Anwendung der Schutzelemente 31, 32 günstig sein. Es ist jedoch vorgesehen und auch in die Erfindung eingeschlossen, dass diese Ebenen ausgesparter Oberfläche auch in den Ausführungsformen ohne Schutzelemente 31, 32 vorhanden sein können, und dass die Ausführungsformen mit Schutzelementen 31, 32 auch Oberflächen des elektrisch isolierenden Glasoder Glaskeramikbefestigungsmaterials aufweisen können, die mit der oberen und/oder unteren Oberfläche des Trägerkörpers 2 in einer Linie ausgerichtet sein können.
[0068] Fig. 5a zeigt das Profil eines Durchführungselements 1 gemäß der vorliegenden Offenbarung mit einer Vielzahl von Durchführungsöffnungen in einem Trägerkörper 2. Dieses so genannte planare Element weist Abmessungen auf, die mehr breit als hoch sind.
[0069] Wie aus Fig. 5b ersichtlich ist, die die Draufsicht des Durchführungselements zeigt, können die Durchführungsöffnungen in einer Matrix angeordnet sein. Die Matrix selbst ist variabel, was bedeutet, dass die Stelle der Durchführungsöffnungen je nach gewünschter Anwendung ausgewählt sein kann. Diese Ausführungsform kann z.B. verwendet werden, um für multiple elektrische und/oder elektronische Bauteile elektrischen Strom bereitzustellen, z.B. um sie mit Energie zu versorgen und/oder um Signale, die durch diese Bauteile erzeugt werden, durch den Trägerkörper 2 zu leiten. Der Trägerkörper kann das Gehäuse einer betreffenden Vorrichtung abdichten oder auch nicht. Der Trägerkörper 2 kann aus einem Metall und/oder einer Legierung oder einem Keramikmaterial hergestellt sein.
[0070] In Fig. 6a ist eine perspektivische Ansicht eines sogenannten Großdurchführungselements 1 gezeigt. Solche Durchführungselemente 1 werden typischerweise als Durchführung einer Kapselung einer Energieerzeugungsanlage oder als Durchführung einer Kapselung eines Gasbehälters verwendet. Der Trägerkörper ist in diesem Beispiel ein scheibenförmiges Element, vorzugsweise aus rostfreiem Stahl. Der Trägerkörper weist Bohrungen 25 auf, die verwendet werden können, um das Durchführungselement 1 an anderen Bauteilen, z.B. Gehäusen und Kapselungen zu befestigen. Der Trägerkörper 2 stellt daher in diesem Beispiel einen
Flansch dar. In dieser Ausführungsform sind drei Durchführungsöffnungen vorhanden, die mit elektrisch isolierendem Befestigungsmaterial 3 abgedichtet sind, in dem die funktionalen Elemente 4 befestigt sind. Das funktionale Element 4 ist in diesem Beispiel ein Leiter für elektrischen Strom, der besonders für Starkstrom und Hochspannung angepasst ist. Das funktionale Element 4 weist ferner eine Region 45 an seinem Ende auf, die verwendet werden kann, um Verbindungsfähigkeiten bereitzustellen, insbesondere um Leistungsleitungen und/oder Stecker anzuschließen.
[0071] Fig. 6b zeigt das Profil des Durchführungselements 1 gemäß Fig. 6a entlang der Schnittlinie A-A. Die Bohrungen 25 verlaufen durch den Trägerkörper 2 hindurch. Es sind jedoch jegliche anderen Maßnahmen zum Befestigen des Durchführungselements 1 auf einem weiteren Element oder einer weiteren Vorrichtung möglich. Wie zu sehen ist, umfasst das funktionale Element 4 zwei wichtige Elemente. Eines ist ein Rohr 44, das mit dem elektrisch isolierenden Befestigungsmaterial 3 in Kontakt ist und vom elektrisch isolierenden Befestigungsmaterial 3 in der Durchführungsöffnung gehalten wird. Das zweite Element 43 des funktionalen Elements 4 ist der Leiter für elektrischen Strom 43. Der Leiter 43 und das Rohr 44 sind üblicherweise aneinander befestigt, z.B. über eine hartgelötete oder gelötete Verbindung. Das Rohr 44 und der Leiter 43 bestehen in diesem Beispiel aus verschiedenen Materialien, z.B. Metallen. Diese Konstruktion ist günstig, wenn der Leiter 43 aufgrund seiner Materialzusammensetzung keine hermetische Verbindung mit dem elektrisch isolierenden Befestigungsmaterial 3 eingehen kann. Dann wird das Rohr 44 verwendet, das aus einem Metall besteht, das in der Lage ist, im elektrisch isolierenden Befestigungsmaterial 3 hermetisch abgedichtet zu sein. Zum Beispiel kann für den Leiter 43 Kupfer verwendet werden, insbesondere aufgrund seiner guten Eigenschaften als Leiter für elektrischen Strom. Aber Kupfer kann nur schwer in einem elektrisch isolierenden Befestigungsmaterial 3 auf Glas- oder Glaskeramikbasis befestigt werden. Dann kann ein Rohr 44, das im Wesentlichen z.B. aus rostfreiem Stahl besteht, im elektrisch isolierenden Befestigungsmaterial 3 abgedichtet sein, und der Leiter 43 ist mit dem Rohr 44 verlötet.
[0072] Im Beispiel gemäß Fig. 6b ist auch ein Schutzelement 33 vorhanden, das die Durchführungsöffnung auf einer Seite des Durchführungselements 1 bedeckt. Dieses Schutzelement kann das gleiche sein wie die Schutzelemente 31, 32, wie in Fig. 4 beschrieben. Natürlich können auch andere Arten von Schutzelementen 33 verwendet werden. In diesem Beispiel dient das Schutzelement 33 dazu, das elektrisch isolierende Befestigungsmaterial 3 in der Durchführungsöffnung zu schützen und die Überschlagspannung zu verbessern. Das Schutzelement 33 ist in diesem Beispiel mit der Oberfläche des elektrisch isolierenden Befestigungsmaterials 3 nicht in Kontakt. Folglich ist ein Hohlraum 35 zwischen der Oberfläche des elektrisch isolierenden Befestigungsmaterials 3 und der Unterseite des Schutzelements 33 vorhanden. Dieser Hohlraum kann mit bestimmten Medien, z.B. Schutzfluiden oder Gasen, gefüllt sein oder nicht. Gemäß Fig. 4 ist das funktionale Element 4 ferner durch eine Kappe 46 geschützt, die mechanischen Beschädigungen des funktionalen Elements 4 vorbeugt, insbesondere des Leiters 43 und des Rohrs 44, das über die Ebene des Trägerkörpers vorsteht. Natürlich kann der Hohlraum 35 und/oder die Kappe 46 in einer anderen Ausführungsform eines Durchführungselements 1 gemäß der vorliegenden Erfindung auch nicht vorhanden sein.
[0073] Fig. 7 zeigt das Prinzip des vorteilhaften Einsatzes des offenbarten Durchführungselements in Explorations- und/oder Gewinnungsinstallationen im Untertageeinsatz. In diesem Beispiel wird eine Bohrvorrichtung verwendet, um z.B. Erdöl- oder Erdgasvorkommen zu erreichen. Es ist bekannt und entspricht dem Stand der Technik, dass die Bohrvorrichtung in verschiedene Richtungen gelenkt werden kann. Ohne solche Lenkfähigkeiten wäre es unmöglich, die betreffenden Reservoirs zu erreichen. Um solche Lenkfähigkeiten zu erleichtern, umfasst eine Bohrvorrichtung Bauteile, die über Durchführungselemente 10 gemäß der vorliegenden Offenbarung kontaktiert werden müssen.
[0074] In Fig. 8 ist eine Kapselung 20 einer Energieerzeugungsvorrichtung gezeigt. Der Generator und/oder Reaktor muss in der Kapselung sicher eingekapselt sein, auch in Notfall- und Störungssituationen. Ein Durchführungselement 1 gemäß der vorliegenden Offenbarung wird vorteilhafter Weise verwendet, um Kontakt zum Generator und/oder zu Vorrichtungen in der
Kapselung bereitzustellen. Solche Vorrichtungen sind z.B. Vorrichtungen zum Überwachen der Betriebsbedingungen des Generators und/oder zum Steuern des Generators oder sonstiger Vorrichtungen.
[0075] In Fig. 9 ist eine Energieerzeugungsvorrichtung 21 wie z.B. ein Reaktor gezeigt. Die Energieerzeugungsvorrichtung 21 umfasst ein Gehäuse mit einem Durchführungselement 1 gemäß der vorliegenden Offenbarung. Energie, die in der Energieerzeugungsvorrichtung 21 erzeugt wird, kann über das Durchführungselement 1 nach außen und/oder in Steuerungs-und/oder Sensor- und/oder Betätigungsgeräte transportiert werden. Die Energieerzeugungsvorrichtung 21 ist gemäß diesem Beispiel in dem Gehäuse 20 angeordnet, welches das Containment eines Reaktors darstellen kann. Wie im Zusammenhang mit Fig. 8 beschrieben, kann die Kapselung auch mit einem Durchführungselement 1 bereitgestellt sein.
[0076] Wie aus den obigen Erklärungen ersichtlich ist, stellt das Durchführungselement gemäß der vorliegenden Erfindung seine verbesserte Leistungsfähigkeit aufgrund der Zusammensetzung des elektrisch isolierenden Glas- oder Glaskeramikmaterials bereit. Es wurde eine große Anzahl von Beispielen für Glas- oder Glaskeramikmaterialien geschmolzen und auf einem beschriebenen Durchführungselement angebracht. Die Zusammensetzungen von sechs bevorzugten Glasmaterialien und der Wert ihres jeweiligen spezifischen Durchgangswiderstands sind in Tabelle 1 zusammengefasst.
[0077] Tabelle 1: Zusammensetzungen des Befestigungsmaterials und spezifischer Durchgangswiderstand
[0078] Alle Befestigungsmaterialzusammensetzungen sind in Mol-% auf Oxidbasis angegeben. Alle Befestigungsmaterialien Bsp. 1 bis Bsp. 6 waren amorphe Glasmaterialien. Die Vorteile der Beispiele 1 bis 6 gemäß der Erfindung werden offensichtlich, wenn sie mit den Eigenschaften bekannter Glasmaterialien verglichen werden, wenn diese für Durchführungselemente gemäß der vorliegenden Offenbarung verwendet werden. Solche Vergleichsbeispiele sind in Tabelle 2 zusammengefasst und werden dort als CE 1 bis CE 3 bezeichnet.
[0079] Tabelle 2: Vergleichbare Zusammensetzungen des Befestigungsmaterials und spezifischer Durchgangswiderstand
[0080] Wie aus den Vergleichsbeispielen CE 1 bis CE 3 hervorgeht ist der beste spezifische Durchgangswiderstand dieser Materialien um eine Größenordnung geringer als der niedrigste spezifische Durchgangswiderstand der Befestigungsmaterialien gemäß der Erfindung.
[0081] Die Temperaturabhängigkeit des spezifischen Durchgangswiderstands der beispielhaften Befestigungsmaterialien Bsp. 1 bis 6 auf einer logarithmischen Skala wird im Graphen gemäß Fig. 10 gezeigt. Es sind außerdem die entsprechenden Graphen für die in Tabelle 2 genannten Vergleichsbeispiele gezeigt. Wie aus den Graphen gemäß Fig. 10 hervorgeht, ist das beste Vergleichsbeispiel CE1. Es muss jedoch betont werden, dass eine logarithmische Skala verwendet wurde, weshalb selbst CE1 dem spezifischen Durchgangswiderstandsverhalten des elektrisch isolierenden Befestigungsmaterials gemäß der Erfindung nicht nahekommen kann. Bei Befestigungsmaterialien mit einem spezifischen Durchgangswiderstand unter 1,0 x 1010 Ω cm bei einer Betriebstemperatur von 350 ° C war es nicht möglich, ein Durchführungselement mit einem spezifischen Gesamtwiderstand von zumindest 500 ΜΩ bei einer Betriebstemperatur von 260 °C herzustellen. Diese Eigenschaften sind nur durch das hier offenbarte Befestigungsmaterial bereitgestellt.
[0082] Die Glassysteme gemäß Bsp. 1 bis 6 wiesen hervorragende mechanische Stabilität auf, wenn sie in einem Durchführungselement verwendet wurden. Maximale Betriebsdruckwerte von mehr als 2896 bar (42000 psi) (bei 260 °C) und Werte von mehr als 4482 bar (65000 psi) (bei Raumtemperatur) wurden erreicht. Es erwies sich sogar, dass höhere Maximaldrücke möglich sind, aber die genannten Werte stellen die Obergrenze der verfügbaren Messgeräte dar.
[0083] Die Erfindung und die vorhergehende Beschreibung können auch durch die folgenden Feststellungen gekennzeichnet und/oder zusammengefasst sein, die Teil der gesamten Offenbarung sind.
[0084] Feststellung 1: Durchführungselement für harte Betriebsbedingungen, wobei das Durchführungselement Folgendes umfasst: einen Trägerkörper mit zumindest einer Durchführungsöffnung, in der zumindest ein funktionales Element in einem elektrisch isolierenden Befestigungsmaterial angeordnet ist; wobei das elektrisch isolierende Befestigungsmaterial das funktionale Element vom Trägerkörper elektrisch isoliert; wobei das elektrisch isoliertende Befestigungsmaterial ein Glas oder eine
Glaskeramik mit einem spezifischen Durchgangswiderstand von mehr als 1,0 x 1010 Q cm bei einer Temperatur von 350 °C umfasst und das Glas oder die Glaskeramik in Mol-% auf Oxidbasis enthält:
Si02 25 - 55, vorteilhaft 38,8 - 55, vorteilhaft 39 - 55 oder 39 - 51 oder 39 - 50, vorteilhaft 40 - 55 oder 40 - 51 oder 40 - 50. B203 0,1 - 15, vorteilhaft 0,1-13
Al203 0- 15 MO 20 - 50 M20 0 - <2, wobei MO ausgewählt ist aus der Gruppe bestehend aus, einzeln oder kombiniert, MgO und/oder CaO und/oder SrO und/oder BaO, und M20 ausgewählt ist aus der Gruppe bestehend aus, einzeln oder kombiniert, Li20 und/oder Na20 und/oder K20.
[0085] Feststellung 2: Durchführungselement nach Feststellung 1, wobei das elektrisch isolierende Befestigungsmaterial das funktionale Element vom Trägerkörper mit einem spezifischen Widerstand elektrischer Isolierung von zumindest 500 ΜΩ bei einer Betriebstemperatur von 260 °C elektrisch isoliert.
[0086] Feststellung 3: Durchführungselement nach zumindest einer der vorhergehenden Feststellungen, wobei das funktionale Element ein elektrischer Leiter oder ein Wellenleiter oder eine Kühlfluidleitung oder das Gehäuse eines Thermoelements oder ein Hohlelements, das weitere funktionale Elemente trägt, ist.
[0087] Feststellung 4: Durchführungselement nach zumindest einer der vorhergehenden Feststellungen, wobei die Anordnung des zumindest einen funktionalen Elements im elektrisch isolierenden Befestigungsmaterial in der zumindest einen Durchführungsöffnung Überdrücken von 2896 bar (42000 psi) bei einer Betriebstemperatur von 260 °C standhalten kann.
[0088] Feststellung 5: Durchführungselement nach zumindest einer der vorhergehenden Feststellungen, wobei das elektrisch isolierende Befestigungsmaterial die zumindest eine Durchführungsöffnung hermetisch abdichtet.
[0089] Feststellung 6: Durchführungselement nach zumindest einer der vorhergehenden Feststellungen, wobei das elektrisch isolierende Befestigungsmaterial einen CTE aufweist, der im Wesentlichen auf den CTE des Trägerkörpers abgestimmt ist.
[0090] Feststellung 7: Durchführungselement nach zumindest einer der Feststellungen 1 bis 5, wobei das elektrisch isolierende Befestigungsmaterial einen CTE aufweist, der einen kleineren Wert als der CTE des Trägerkörpers aufweist, wodurch zumindest bei Raumtemperatur der Trägerkörper einen zusätzlichen Haltedruck hin zum elektrisch isolierenden Befestigungsmaterial ausübt.
[0091] Feststellung 8: Durchführungselement nach zumindest einer der vorhergehenden Feststellungen, wobei der Trägerkörper aus einem Keramikmaterial hergestellt ist, das aus der Gruppe bestehend aus Al203-Keramik und/oder stabilisierter Zr02-Keramik und/oder Glimmer ausgewählt ist.
[0092] Feststellung 9: Durchführungselement nach zumindest einer der vorhergehenden Feststellungen 1 bis 7, wobei der Trägerkörper aus einem Metallmaterial und/oder einer Legierung hergestellt ist, das/die aus der Gruppe bestehend aus rostfreiem Stahl SAE 304 SS und/oder rostfreiem Stahl SAE 316 SS und/oder Inconel ausgewählt ist.
[0093] Feststellung 10: Durchführungselement nach zumindest einer der vorhergehenden Feststellungen, wobei das funktionale Element im Wesentlichen aus einem Metallmaterial und/oder einer Legierung hergestellt ist, das/die aus der Gruppe bestehend aus Beryllium-Kupfer und/oder Nickel-Eisen-Legierung und/oder Kovar und/oder Inconel ausgewählt ist.
[0094] Feststellung 11: Durchführungselement nach zumindest einer der vorhergehenden Feststellungen, wobei die folgenden Materialkombinationen für das funktionale Element und den Trägerkörper vorhanden sind: ein funktionales Element, das im Wesentlichen aus Beryllium-Kupfer hergestellt ist, kombiniert mit einem Trägerkörper, der im Wesentlichen aus rostfreiem Stahl SAE 304 SS oder rostfreiem Stahl SAE 316 SS hergestellt ist, und/oder ein funktionales Element, das im Wesentlichen aus einer Nickel-Eisen-Legierung hergestellt ist, kombiniert mit einem Trägerkörper, der im Wesentlichen aus 304 SS oder Inconel hergestellt ist, und/oder ein Verbindungselement als funktionales Element, das im Wesentlichen aus Kovar hergestellt ist, kombiniert mit einem Trägerkörper, der im Wesentlichen aus Inconel hergestellt ist, und/oder ein Verbindungselement als funktionales Element, das im Wesentlichen aus Inconel hergestellt ist, kombiniert mit einem Trägerkörper, der im Wesentlichen aus Inconel hergestellt ist.
[0095] Feststellung 12: Durchführungselement nach zumindest einer der vorhergehenden Feststellungen, wobei das Glas oder die Glaskeramik in Mol-% auf Oxidbasis enthält:
Si02 35 - 50 B203 5- 15
Al203 0 - 5 MO 30 - 50 M20 0-<1.
[0096] Feststellung 13: Durchführungselement nach zumindest einer der vorhergehenden Feststellungen, wobei das Glas oder die Glaskeramik in Mol-% auf Oxidbasis enthält:
Si02 35 - 50 B203 5- 15
Al203 0 - <2 MO 30 - 50 M20 0-<1.
[0097] Feststellung 14: Durchführungselement nach zumindest einer der Feststellungen 1 bis 12, wobei das Glas oder die Glaskeramik in Mol-% auf Oxidbasis enthält:
Si02 38.8 - 55, vorteilhaft 39 - 55 oder 39 - 51 oder 39 - 50, ebenso vorteilhaft 40 - 55 oder 40 - 51 oder 40 - 50. B203 5- 15
Al203 0 - 5 MO 30 - 50 M20 0-<1.
[0098] Feststellung 15: Durchführungselement nach zumindest einer der vorhergehenden Feststellungen, wobei das Glas oder die Glaskeramik im Wesentlichen frei von M20 und/oder PbO und/oder Fluor ist, einzeln oder in jeglichen Kombinationen davon.
[0099] Feststellung 16: Durchführungselement nach zumindest einer der vorhergehenden Feststellungen, wobei das Glas oder die Glaskeramik in Mol-% auf Oxidbasis zusätzlich enthält:
Zr02 0- 10 Y203 0- 10
La203 0- 10.
[00100] Feststellung 17: Durchführungselement nach zumindest einer der vorhergehenden Feststellungen, wobei das Glas oder die Glaskeramik bis zu 30 Vol.-% an Füllstoffen umfasst, die vorzugsweise ausgewählt sind aus der Gruppe bestehend aus, einzeln oder kombiniert, Zr02 und/oder Al203 und/oder MgO.
[00101] Feststellung 18: Durchführungselement nach zumindest einer der vorhergehenden Feststellungen, wobei die zumindest eine Durchführungsöffnung eine innere Durchführungsöffnungswand aufweist, die Mittel zum Verhindern einer Relativbewegung des elektrisch isolierenden Befestigungsmaterials in Bezug auf den Trägerkörper aufweist.
[00102] Feststellung 19: Durchführungselement nach zumindest einer der vorhergehenden Feststellungen, wobei die zumindest eine Durchführungsöffnung zumindest eine Region mit einem zylindrischen oder kegelstumpfartigen Profil aufweist.
[00103] Feststellung 20: Durchführungselement nach zumindest einer der vorhergehenden Feststellungen, wobei das zumindest eine funktionale Element Mittel zum Verhindern einer Relativbewegung des zumindest einen funktionalen Elements in Bezug auf das elektrisch isolierende Befestigungsmaterial und den Trägerkörper aufweist, wenn Druck auf das Durchführungselement ausgeübt wird.
[00104] Feststellung 21: Erdölbohrungs- und/oder Erdgasbohrungs- oder Explorationsvorrichtung, umfassend das Durchführungselement nach zumindest einer der Feststellungen 1 bis 20.
[00105] Feststellung 22: Energieerzeugungs- oder Energiespeichervorrichtung mit einem Gehäuse, das das Durchführungselement nach zumindest einer der Feststellungen 1 bis 20 umfasst.
[00106] Feststellung 23: Kapselung einer Energieerzeugungsvorrichtung oder einer Energiespeichervorrichtung, umfassend das Durchführungselement nach zumindest einer der Feststellungen 1 bis 20.
[00107] Feststellung 24: Kapselung eines Reaktors, insbesondere eines kerntechnischen Reaktors, oder einer Aufbewahrungseinrichtung für toxische Materie, umfassend das Durchführungselement nach zumindest einer der Feststellungen 1 bis 20.
[00108] Feststellung 25: Raumfahrzeug oder Raumfahrt-Erkundungsfahrzeug umfassend das Durchführungselement nach zumindest einer der Feststellungen 1 bis 20.
[00109] Feststellung 26: Sensor oder Betätigungseinheit, der/die in ein Gehäuse eingeschlossen ist, das das Durchführungselement nach zumindest einer der Feststellungen 1 bis 20 umfasst.

Claims (13)

  1. Patentansprüche 1. Durchführungselement (1) für harte Betriebsbedingungen, wobei das Durchführungselement (1) umfasst: einen Trägerkörper (2) mit zumindest einer Durchführungsöffnung, in der zumindest ein funktionales Element (4) in einem elektrisch isolierenden Befestigungsmaterial (3) angeordnet ist; wobei das elektrisch isolierende Befestigungsmaterial (3) das funktionale Element (4) vom Trägerkörper (2) elektrisch isoliert; wobei das elektrisch isolierende Befestigungsmaterial (3) ein Glas oder eine Glaskeramik mit einem spezifischen Durchgangswiderstand von mehr als 1,0 x 1010 Ω cm bei einer Temperatur von 350 °C umfasst und das Glas oder die Glaskeramik in Mol-% auf Oxidbasis enthält: Si02 25 -55 B203 0,1 -15 Al203 0-15 MO 20 - 50 M20 0 - <2, wobei MO ausgewählt ist aus der Gruppe bestehend aus, einzeln oder in jeder beliebigen Kombination, MgO und/oder CaO und/oder SrO und/oder BaO, und M20 ausgewählt ist aus der Gruppe bestehend aus, einzeln oder in jeder beliebigen Kombination, Li20 und/oder Na20 und/oder K20.
  2. 2. Durchführungselement (1) nach Anspruch 1, wobei das elektrisch isolierende Befestigungsmaterial (3) das funktionale Element (4) vom Trägerkörper (2) mit einem elektrischen Widerstand von zumindest 500 ΜΩ bei einer Betriebstemperatur von 260 °C elektrisch isoliert.
  3. 3. Durchführungselement (1) nach einem der vorhergehenden Ansprüche, wobei das funktionale Element (4) ein elektrischer Leiter oder ein Wellenleiter oder eine Kühlfluidleitung oder das Gehäuse eines Thermoelements oder ein Hohlelement, das weitere funktionale Elemente trägt, ist.
  4. 4. Durchführungselement (1) nach einem der vorhergehenden Ansprüche, wobei die Anordnung des zumindest einen funktionalen Elements (4) im elektrisch isolierenden Befestigungsmaterial (3) in der zumindest einen Durchführungsöffnung Drücken von 2896 bar (42000 psi) bei einer Betriebstemperatur von 260 °C standhalten kann.
  5. 5. Durchführungselement (1) nach einem der vorhergehenden Ansprüche, wobei das elektrisch isolierende Befestigungsmaterial (3) einen CTE aufweist, der einen kleineren Wert als der CTE des Trägerkörpers (2) aufweist, wodurch zumindest bei Raumtemperatur der Trägerkörper (2) einen zusätzlichen Haltedruck auf das elektrisch isolierende Befestigungsmaterial (3) ausübt.
  6. 6. Durchführungselement (1) nach einem der vorhergehenden Ansprüche, wobei die folgenden Materialkombinationen für das funktionale Element (4) und den Trägerkörper (2) vorhanden sind: ein funktionales Element (4), das im Wesentlichen aus Beryllium-Kupfer hergestellt ist, kombiniert mit einem Trägerkörper (2), der im Wesentlichen aus rostfreiem Stahl SAE 304 SS oder rostfreiem Stahl SAE 316 SS hergestellt ist, und/oder ein funktionales Element (4), das im Wesentlichen aus einer Nickel-Eisen-Legierung hergestellt ist, kombiniert mit einem Trägerkörper (2), der im Wesentlichen aus rostfreiem Stahl 304 SS oder Inconel hergestellt ist, und/oder ein funktionales Element (4), das im Wesentlichen aus Kovar hergestellt ist, kombiniert mit einem Trägerkörper (2), der im Wesentlichen aus Inconel hergestellt ist, und/oder ein funktionales Element (4), das im Wesentlichen aus Inconel hergestellt ist, kombiniert mit einem Trägerkörper (2), der im Wesentlichen aus Inconel hergestellt ist.
  7. 7. Durchführungselement (1) nach einem der vorhergehenden Ansprüche, wobei das Glas oder die Glaskeramik (3) in Mol-% auf Oxidbasis enthält: Si02 35 - 50 B203 5-15 Al203 0 - 5 MO 30 - 50 M20 0-<1.
  8. 8. Durchführungselement (1) nach einem der vorhergehenden Ansprüche, wobei das Glas oder die Glaskeramik (3) in Mol-% auf Oxidbasis enthält: Si02 35 - 50 B203 5- 15 Al203 0 - <2 MO 30 - 50 M20 0-<1.
  9. 9. Durchführungselement (1) nach einem der Ansprüche 1 bis 6, wobei das Glas oder die Glaskeramik (3) in Mol-% auf Oxidbasis enthält: Si02 39 - 55 B203 5- 15 Al203 0 - 5 MO 30 - 55 M20 0-<1.
  10. 10. Durchführungselement (1) nach einem der vorhergehenden Ansprüche, wobei das Glas oder die Glaskeramik (3) im Wesentlichen frei von M20 und/oder PbO und/oder Fluor ist.
  11. 11. Durchführungselement (1) nach einem der vorhergehenden Ansprüche, wobei das Glas oder die Glaskeramik (3) in Mol-% auf Oxidbasis zusätzlich enthält: Zr02 0- 10 Y203 0- 10 La203 0- 10.
  12. 12. Durchführungselement (1) nach einem der vorhergehenden Ansprüche, wobei das Glas oder die Glaskeramik (3) bis zu 30 Vol.-% an Füllstoffen umfasst, die vorzugsweise ausgewählt sind aus der Gruppe bestehend aus, einzeln oder kombiniert, Zr02 und/oder Al203 und/oder MgO.
  13. 13. Verwendung eines Durchführungselements (1) nach einem der Ansprüche 1 bis 12 als Erdöl- und/oder Erdgasbohrungs- oder Explorationsvorrichtung (10), oder als Energieer-zeugungs- oder Energiespeichervorrichtung mit einem Gehäuse, oder als Kapselung einer Energieerzeugungsvorrichtung oder einer Energiespeichervorrichtung o-der eines Reaktors oder einer Speichervorrichtung von toxischer und/oder schädlicher Materie, oder in einem Raumfahrzeug oder Raumfahrt-Erkundungsfahrzeug, oder in einem Gehäuse eines Sensors und/oder Aktuators. Hierzu 7 Blatt Zeichnungen
ATA50662/2014A 2013-09-20 2014-09-19 Durchführungselement für harte Betriebsbedingungen sowie dessen Verwendung AT514880B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/032,475 US9208929B2 (en) 2013-09-20 2013-09-20 GTMS connector for oil and gas market

Publications (3)

Publication Number Publication Date
AT514880A2 AT514880A2 (de) 2015-04-15
AT514880A3 AT514880A3 (de) 2015-10-15
AT514880B1 true AT514880B1 (de) 2016-03-15

Family

ID=51869526

Family Applications (1)

Application Number Title Priority Date Filing Date
ATA50662/2014A AT514880B1 (de) 2013-09-20 2014-09-19 Durchführungselement für harte Betriebsbedingungen sowie dessen Verwendung

Country Status (9)

Country Link
US (4) US9208929B2 (de)
JP (3) JP6410539B2 (de)
CN (1) CN104466520B (de)
AT (1) AT514880B1 (de)
CA (1) CA2863391C (de)
DE (1) DE102014218983A1 (de)
FR (1) FR3011134B1 (de)
GB (1) GB2518529B (de)
RU (1) RU2584236C2 (de)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9419424B2 (en) * 2011-08-24 2016-08-16 Abb Schweiz Ag Switchgear bus support bushing structure
US9208929B2 (en) 2013-09-20 2015-12-08 Schott Corporation GTMS connector for oil and gas market
GB2534757A (en) * 2013-10-01 2016-08-03 Onesubsea Ip Uk Ltd Electrical conductor and method of fabricating the same
WO2016102566A1 (de) 2014-12-22 2016-06-30 Schott Ag Durchführungs- oder verbindungselement mit verbesserter thermischer belastbarkeit
DE102015207285B4 (de) * 2015-04-22 2019-05-02 Schott Ag Glasiges oder zumindest teilweise kristallisiertes Einschmelzmaterial, Fügeverbindung, Sperrschicht, und Schichtsystem mit dem Einschmelzmaterial und dessen Integration in Bauteilen
JP2016216300A (ja) * 2015-05-20 2016-12-22 株式会社ノリタケカンパニーリミテド 接合材及びその利用
FR3038444B1 (fr) 2015-06-30 2017-08-11 Soc Technique Pour L'energie Atomique Assemblage de penetration electrique de cuve d'un reacteur nucleaire
FR3044158B1 (fr) * 2015-11-19 2017-11-17 Soc Technique Pour L'energie Atomique ASSEMBLY OF ELECTRIC PENETRATION OF TANK OF A NUCLEAR REACTOR
CN106882923B (zh) * 2015-12-16 2019-09-27 辽宁省轻工科学研究院有限公司 一种耐650℃高温的微晶玻璃及其制备方法
DE102016103485A1 (de) * 2016-02-26 2017-08-31 Schott Ag Durchführungen für Anwendungen bei hohem Aussendruck sowie Verfahren zu deren Herstellung
CN105976875B (zh) * 2016-06-08 2018-05-04 中国科学院等离子体物理研究所 一种适用于强磁场及辐射条件下的多功能真空馈通件
DE102016111390A1 (de) 2016-06-21 2017-12-21 Schott Ag Zumindest teilweise kristallisiertes Glas, eine mit diesem Glas hergestellte Verbindung, beispielsweise eine Metall-Glas-Verbindung, insbesondere eine Metall-Glasverbindung bei einem Durchführungselement sowie ein Verfahren zur Herstellung einer solchen Verbindung, insbesondere bei einem Durchführungselement
US10179749B2 (en) * 2016-08-30 2019-01-15 Shenzhen Sunlord Electronics Co., Ltd. Low-temperature co-fired ceramic material and preparation method thereof
EP3563389A1 (de) * 2016-12-30 2019-11-06 NuScale Power, LLC Behälterdichtung
DE102017221426A1 (de) * 2017-11-29 2019-05-29 Schott Ag Durchführung mit Flachleiter
CN108117269B (zh) * 2017-12-25 2021-01-01 西安赛尔电子材料科技有限公司 一种玻封连接器绝缘防潮表面处理方法
DE102018120893A1 (de) * 2018-08-27 2020-02-27 Schott Ag TO-Gehäuse mit einer Durchführung aus Glas
EP3650415A1 (de) 2018-11-07 2020-05-13 Schott Ag Fügeverbindung umfassen ein kristalliesiertes glas, deren verwendung sowie kristallisierbares sowie zumindest teilweise kristallissiertes glas und dessen verwendung
DE102018127748A1 (de) 2018-11-07 2020-05-07 Schott Ag Fügeverbindung umfassend ein kristallisiertes Glas, deren Verwendung sowie kristallisierbares sowie zumindest teilweise kristallisiertes Glas und dessen Verwendung
DE102019208035A1 (de) * 2019-06-03 2020-12-03 Schott Ag Glas-Metall-Durchführung mit einer Hülse

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080016684A1 (en) * 2006-07-06 2008-01-24 General Electric Company Corrosion resistant wafer processing apparatus and method for making thereof
WO2010022123A1 (en) * 2008-08-19 2010-02-25 Quick Connectors, Inc. High pressure, high temperature standoff for electrical connector in a underground well
WO2013050513A1 (de) * 2011-10-07 2013-04-11 Technische Universität Darmstadt Erfindung betreffend druckbeaufschlagte stromdurchführungen

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4358541A (en) * 1981-11-23 1982-11-09 Corning Glass Works Glass-ceramic coatings for use on metal substrates
JPS6337505A (en) * 1986-07-31 1988-02-18 Mitsubishi Electric Corp Material for terminal and connector
US4841101A (en) * 1987-12-21 1989-06-20 Pollock John A Hermetically sealed feedthroughs and methods of making same
US5104755A (en) * 1989-06-15 1992-04-14 Medtronic, Inc. Glass-metal seals
AU638020B2 (en) * 1989-06-15 1993-06-17 Medtronic, Inc. Improved glass-metal seals
AU635043B2 (en) * 1989-07-12 1993-03-11 Medtronic, Inc. Lithium thionyl chloride resistant feedthrough
US5175067A (en) * 1989-07-12 1992-12-29 Medtronic, Inc. Feed through
WO1991006129A1 (en) * 1989-10-11 1991-05-02 Medtronic, Inc. Corrosion resistant feedthrough
US5203723A (en) 1992-02-27 1993-04-20 Halliburton Logging Services Inc. Low cost plastic hermetic electrical connectors for high pressure application
US5565262A (en) * 1995-01-27 1996-10-15 David Sarnoff Research Center, Inc. Electrical feedthroughs for ceramic circuit board support substrates
DE59706104D1 (de) * 1997-10-02 2002-02-28 Siemens Ag Abdichten einer Hochtemperatur-Brennstoffzelle oder eines Hochtemperatur-Brennstoffzellenstapels
US6534346B2 (en) 2000-05-16 2003-03-18 Nippon Electric Glass Co., Ltd. Glass and glass tube for encapsulating semiconductors
US20030096162A1 (en) * 2001-11-09 2003-05-22 Lasater Brian J. Lithium-ion battery seal
WO2004063110A2 (en) 2003-01-03 2004-07-29 Battelle Memorial Institute Glass-ceramic material and method of making
US6903268B2 (en) * 2003-10-29 2005-06-07 Medtronic, Inc. Implantable device feedthrough assembly
JP4736342B2 (ja) * 2004-04-09 2011-07-27 株式会社村田製作所 ガラスセラミック原料組成物、ガラスセラミック焼結体およびガラスセラミック多層基板
US7327553B2 (en) * 2004-07-27 2008-02-05 Brendel Richard L Feedthrough capacitor filter assemblies with laminar flow delaminations for helium leak detection
WO2007001380A2 (en) 2004-09-22 2007-01-04 Battelle Memorial Institute High strength insulating joints for solid oxide fuel cells and other high temperature applications and method of making
US7399720B1 (en) * 2004-10-15 2008-07-15 Brow Richard K Glass and glass-ceramic sealant compositions
JP4974046B2 (ja) * 2005-07-14 2012-07-11 日本電気硝子株式会社 平面表示装置用ガラススペーサー及びこれを用いたスペーサー
FR2908928B1 (fr) * 2006-11-21 2009-11-27 Commissariat Energie Atomique LITHIUM BATTERY-BASED DRYWAY, ITS MANUFACTURING METHOD AND ITS USE IN A LITHIUM BATTERY, AND LITHIUM BATTERY USING SUCH A TRAVERSEE
RU73119U1 (ru) * 2007-12-04 2008-05-10 Закрытое акционерное общество "Энеръгия+21" Высоковольтный проходной изолятор
DE102007061175B3 (de) 2007-12-17 2009-08-27 Schott Ag Verfahren zur Herstellung einer elektrischen Durchführung
JP5354445B2 (ja) * 2008-06-25 2013-11-27 日本電気硝子株式会社 金属被覆用ガラス及び半導体封止材料
CN101367615B (zh) * 2008-09-28 2010-12-29 陈培 一种添加纳米氧化铝的封接玻璃及其制备方法
DE102009008673B3 (de) 2009-02-12 2010-08-19 Schott Ag Gestanztes Durchführungselement mit eingelötetem Kontaktstift
EP2403812B1 (de) * 2009-03-04 2018-11-14 Schott AG Kristallisierendes glaslot und dessen verwendung
JP2010260781A (ja) * 2009-04-07 2010-11-18 Nippon Electric Glass Co Ltd 無機充填材及びその製造方法
CN101863622A (zh) * 2009-04-15 2010-10-20 李胜春 一种掺杂纳米氧化物的红色焊料玻璃及其制备方法
UA95661C2 (ru) * 2009-07-03 2011-08-25 Товариство З Обмеженою Відповідальністю "Славенергопром" Кремнийорганический проходной изолятор и способ его изготовления
CN102120693A (zh) * 2010-01-11 2011-07-13 上海歌灵新材料科技有限公司 一种无铅封接玻璃及其制备方法
DE102010035251B4 (de) * 2010-02-15 2013-09-26 Schott Ag Hochtemperatur-Glaslot und dessen Verwendung
US8642887B1 (en) * 2010-12-03 2014-02-04 Greatbatch Ltd. Metallization barrier for a hermetic feedthrough
EP2675767B1 (de) * 2011-02-18 2019-08-21 Schott AG Durchführung
JP5999297B2 (ja) * 2011-09-08 2016-09-28 日本電気硝子株式会社 結晶性ガラス組成物およびそれを用いた接着材料
US9233253B2 (en) * 2012-01-16 2016-01-12 Greatbatch Ltd. EMI filtered co-connected hermetic feedthrough, feedthrough capacitor and leadwire assembly for an active implantable medical device
DE102012206266B3 (de) * 2012-04-17 2013-07-11 Schott Ag Barium- und strontiumfreies glasiges oder glaskeramisches Fügematerial und dessen Verwendung
US9208929B2 (en) 2013-09-20 2015-12-08 Schott Corporation GTMS connector for oil and gas market

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080016684A1 (en) * 2006-07-06 2008-01-24 General Electric Company Corrosion resistant wafer processing apparatus and method for making thereof
WO2010022123A1 (en) * 2008-08-19 2010-02-25 Quick Connectors, Inc. High pressure, high temperature standoff for electrical connector in a underground well
WO2013050513A1 (de) * 2011-10-07 2013-04-11 Technische Universität Darmstadt Erfindung betreffend druckbeaufschlagte stromdurchführungen

Also Published As

Publication number Publication date
AT514880A3 (de) 2015-10-15
RU2014137894A (ru) 2016-04-10
JP2015063456A (ja) 2015-04-09
US20170018336A1 (en) 2017-01-19
GB201416167D0 (en) 2014-10-29
US9627109B2 (en) 2017-04-18
AT514880A2 (de) 2015-04-15
DE102014218983A1 (de) 2015-03-26
JP2018027886A (ja) 2018-02-22
US20150083487A1 (en) 2015-03-26
JP2021038142A (ja) 2021-03-11
JP6410539B2 (ja) 2018-10-24
FR3011134B1 (fr) 2021-01-08
US20160055932A1 (en) 2016-02-25
US9818500B2 (en) 2017-11-14
CN104466520A (zh) 2015-03-25
GB2518529B (en) 2015-08-05
RU2584236C2 (ru) 2016-05-20
US9208929B2 (en) 2015-12-08
GB2518529A (en) 2015-03-25
FR3011134A1 (fr) 2015-03-27
US20170186510A1 (en) 2017-06-29
US9741463B2 (en) 2017-08-22
CA2863391A1 (en) 2015-03-20
CA2863391C (en) 2018-11-20
CN104466520B (zh) 2017-12-12

Similar Documents

Publication Publication Date Title
EP2514005B1 (de) Flexibler zellverbinder
EP2093846B1 (de) Leiterdurchführung, Gehäusevorrichtung, Feldgerät und Verfahren zur Herstellung einer Leiterdruchführung
US4150249A (en) Flame resistant cable structure
EP0927337B1 (de) Vorrichtung zur erfassung des drucks und der temperatur im saugrohr einer brennkraftmaschine und verfahren zu ihrer herstellung
DE3609455C2 (de) Sicherung für eine elektrische Schaltung
EP1829180B1 (de) Druckbeaufschlagbare vorrichtung mit einer fluiddichten leitungsdurchführung
EP1911134B1 (de) Funkenstrecke
DE102012005637B4 (de) Messgerät
DE60018962T2 (de) Vorinstallation eines drucksensormoduls
EP2507563B1 (de) Absorberrohr
DE10238628B4 (de) Keramisch isolierter Hochtemperatursensor
DE69629336T2 (de) Hochdruckentladungslampe und ihr herstellungsverfahren
EP1361634B1 (de) Elektrische Durchführung und Verwendung der elektrischen Durchführung
EP2958139A1 (de) Halbleitermodul mit einer mindestens einen Halbleiterbaustein bedeckenden Umhüllungsmasse
EP1412953B1 (de) Elektrokeramisches bauelement
DE102012221002A1 (de) Abwinkelbare und/oder abgewinkelte Leiterplattenstruktur mit zumindest zwei Leiterplattenabschnitten und Verfahren zu deren Herstellung
DE10054013B4 (de) Drucksensormodul
DE202008018148U1 (de) Temperatursensor-Anordnung
DE102004028927B4 (de) Beschleunigungssensor
DE4427994A1 (de) Metallbasisplatine und elektronische Einrichtung, die diese verwendet
DE4214380A1 (de) Uebertragungsleitung mit fluiddurchlaessigem mantel
DE102009000588A1 (de) Leistungshalbleitermodul mit verbesserter Isolationsfestigkeit und Verfahren zur Herstellung eines Leistungshalbleitermoduls mit verbesserter Isolationsfestigkeit
EP1396003A1 (de) Sicherungsbauelement
DE19840198A1 (de) Temperatursonde mit Saphir-Temperaturmeßstutzen
DE112010001711T5 (de) Struktur zum hemmen der ausbreitung von ausgelaufener flüssigkeit für eine elektrizitätsspeichervorrichtung und sammelleitermodul