WO2020164514A1 - 通信方法和通信设备 - Google Patents

通信方法和通信设备 Download PDF

Info

Publication number
WO2020164514A1
WO2020164514A1 PCT/CN2020/074871 CN2020074871W WO2020164514A1 WO 2020164514 A1 WO2020164514 A1 WO 2020164514A1 CN 2020074871 W CN2020074871 W CN 2020074871W WO 2020164514 A1 WO2020164514 A1 WO 2020164514A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink
cell
neighboring cell
reference signal
neighboring
Prior art date
Application number
PCT/CN2020/074871
Other languages
English (en)
French (fr)
Inventor
陈雷
袁世通
黄甦
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20755455.1A priority Critical patent/EP3923501A4/en
Priority to KR1020217029625A priority patent/KR102557553B1/ko
Publication of WO2020164514A1 publication Critical patent/WO2020164514A1/zh
Priority to US17/403,221 priority patent/US20210377892A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/005Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by adjustment in the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/0045Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0073Allocation arrangements that take into account other cell interferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0005Synchronisation arrangements synchronizing of arrival of multiple uplinks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/713Spread spectrum techniques using frequency hopping
    • H04B1/715Interference-related aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • H04J11/005Interference mitigation or co-ordination of intercell interference

Definitions

  • This application relates to the field of communication, and more specifically, to a communication method and communication device.
  • LTE long term evolution
  • 5G future 5th generation
  • NR new radio
  • the timing advance (TA) for terminal equipment to send uplink reference signals to neighboring cells Is sent based on the TA of the serving cell.
  • the uplink reference signal sent by the terminal equipment to a certain neighboring cell may cause interference to the neighboring cell.
  • the present application provides a communication method and communication device, in order to reduce the interference caused by the uplink reference signal sent by the terminal device to the neighboring cell, and improve the communication performance of the terminal device and the neighboring cell.
  • a communication method is provided.
  • the method may be executed by a terminal device, or may also be executed by a chip or a circuit configured in the terminal device, which is not limited in this application.
  • the method may include: obtaining the uplink timing advance TA of the serving cell; obtaining the downlink signal time difference between the serving cell station and the neighboring cell; and obtaining the neighbor cell's time difference based on the uplink TA of the serving cell and the downlink signal time difference Uplink TA; based on the downlink subframe timing and the uplink TA of the adjacent cell, send an uplink signal to the adjacent cell.
  • the terminal device can send uplink signals to the neighboring cell based on the uplink TA of the neighboring cell, so that the terminal device can send the uplink signal to the neighboring cell in a more accurate time, reducing the impact of the uplink signal sent by the terminal device on the neighboring cell.
  • the uplink TA of the serving cell can also be understood as a reference time, which is described in detail below.
  • the terminal equipment determines the uplink TA of the neighboring cell through the acquired reference time and the time difference between the reference time and the downlink signal of the neighboring cell. This allows the terminal equipment to determine the uplink TA of the neighboring cell when it needs to send an uplink signal to the neighboring cell. Improve the flexibility of communication between terminal equipment and neighboring cells.
  • the uplink TA of the neighboring cell is the sum of the time difference between the uplink TA of the serving cell and the downlink signal.
  • the terminal device uses the downlink signal time difference to compensate for the uplink TA of the serving cell, that is, the terminal device can determine that the uplink TA of the neighboring cell is the sum of the uplink TA and the downlink signal time difference of the serving cell, thereby quickly determining Uplink TA of neighboring cell.
  • the obtaining the uplink TA of the serving cell includes: receiving a timing advance group TAG from a network device, where the TAG includes the uplink TA of the serving cell; The TAG obtains the uplink TA of the serving cell.
  • the terminal device can obtain the uplink TA of the serving cell through a timing advance group (TAG) configured by the network device for the terminal device, such as an initial assignment or an adjusted value.
  • TAG timing advance group
  • the terminal device can quickly determine the uplink TA of the serving cell, and then determine the uplink TA of the neighboring cell.
  • the uplink TA of the serving cell is: the receiving time of the terminal device receiving the downlink subframe i of the serving cell and the terminal device sending the uplink subframe to the serving cell The time difference between the transmission times of frame i, where i is an integer greater than or equal to 0.
  • the uplink TA of the serving cell can be a cell-level signal transmission and reception time difference, where receiving is the uplink frame timing of the serving cell, and sending is the downlink frame timing associated with the serving cell. That is, the uplink TA of the serving cell may be the time difference between the receiving time of the terminal device receiving the downlink subframe i of the serving cell and the sending time of the terminal device sending the uplink subframe i to the serving cell.
  • the uplink TA of the serving cell is: the reception time of the downlink subframe j determined by the terminal device receiving the downlink signal of the serving cell and the direction of the terminal device The time difference between the transmission time of the uplink subframe j determined by the serving cell to send the uplink signal, where j is an integer greater than or equal to 0.
  • the uplink TA of the serving cell may be a reference signal level of the time difference between receiving and sending signals, where the received is the reference signal uplink frame timing, and the transmitted is the downlink frame timing associated with the reference signal. That is, the uplink TA of the serving cell may be the time difference between the receiving time of the downlink subframe j determined by the terminal device receiving a certain reference signal and the sending time of the uplink subframe j determined by the terminal device sending another reference signal.
  • the uplink TA of the serving cell is: the receiving time of the terminal device receiving the downlink subframe k of the serving cell and the terminal device sending to the serving cell The time difference between the transmission time of the uplink subframe k determined by the uplink signal; or, the reception time of the downlink subframe k determined by the terminal device receiving the downlink signal and the transmission time of the uplink subframe k to the serving cell The time difference between; where k is an integer greater than 0 or equal to 0.
  • the uplink TA of the serving cell can be the time difference between the cell-level receiving/signaling and the reference signal-level receiving/signaling.
  • the receiving can be the reference signal uplink frame timing of the serving cell
  • the sending can be the downlink frame timing associated with the serving cell. That is, the uplink TA of the serving cell can be determined by the terminal device receiving a certain reference signal from the serving cell. The time difference between the receiving time of the downlink subframe k and the sending time of the terminal device sending the uplink subframe k to the serving cell.
  • receiving can be the uplink frame timing of the serving cell, and sending can be the downlink frame timing associated with the reference signal of the serving cell. That is, the uplink TA of the serving cell may be the time difference between the receiving time of the terminal device receiving the downlink subframe k of the serving cell and the sending time of the uplink subframe k determined by the terminal device sending the reference signal to the serving cell.
  • the sending an uplink signal to the neighboring cell based on the downlink subframe timing and the uplink TA of the neighboring cell includes: based on the downlink subframe timing
  • the uplink TA of the neighboring cell and the timing deviation of the cell send an uplink signal to the neighboring cell, where the timing deviation of the cell is the subframe timing deviation of the serving cell and the neighboring cell.
  • the terminal device when the terminal device sends an uplink signal to the neighboring cell, it can comprehensively consider the downlink subframe timing, the uplink TA of the neighboring cell, and the timing deviation of the cell ( That is, the subframe timing deviation), which further enables the terminal device to send an uplink signal to the neighboring cell at a more accurate time, thereby improving the communication performance between the terminal device and the neighboring cell.
  • the downlink subframe timing is any one of the following: the downlink subframe timing of the primary cell, the downlink subframe timing of the serving cell, or the neighboring Downlink subframe timing of the cell.
  • the primary cell (SpCell, or can also be called a special cell), if it is a primary base station or a master node (master node, MN), the primary cell can refer to the primary cell (PCell); if it is A secondary base station or secondary node (secondary node, SN), the primary cell may refer to a primary secondary cell (primary secondary cell, PSCell).
  • the downlink subframe timing can be the downlink subframe timing of the primary cell, the downlink subframe timing of the serving cell, or the downlink subframe timing of the neighboring cell, etc., which can be the default, or it can be specified by the network device. of.
  • the obtaining the uplink TA of a neighboring cell includes: obtaining the uplink TA of a target neighboring cell, wherein the neighboring cell includes a plurality of neighboring cells, and the target The neighboring cell is one or more of the multiple neighboring cells; the sending an uplink signal to the neighboring cell based on the downlink subframe timing and the uplink TA of the neighboring cell includes: based on the downlink subframe timing And the uplink TA of the target neighboring cell, sending uplink signals to multiple neighboring cells; wherein, the target neighboring cell includes: among the multiple neighboring cells, the neighboring cell whose uplink TA is closest to the uplink TA of the serving cell Or, the neighboring cell with the highest priority among the plurality of neighboring cells, or the neighboring cell with the largest reference signal received power RSRP among the plurality of neighboring cells; or, the neighboring cell with the lowest priority among the plurality of neighboring cells The cell, or the neighbor cell with the
  • the uplink TA of any one of the neighboring cells may be used as the criterion, or the uplink TA of one neighboring cell may be selected according to certain conditions or rules.
  • the method before sending an uplink signal to the neighboring cell based on the downlink subframe timing and the uplink TA of the neighboring cell, the method includes: The uplink TA performs modulo and/or quantization processing.
  • the uplink TA can be processed first, such as modulo and/or quantization.
  • a communication method is provided.
  • the method may be executed by a terminal device, or may also be executed by a chip or a circuit configured in the terminal device, which is not limited in this application.
  • the method may include: obtaining the uplink timing advance TA of a neighboring cell; receiving configuration information of an uplink reference signal from a positioning management device or a serving cell, where the uplink reference signal is a reference signal sent by a terminal device to the neighboring cell; The subframe timing and the uplink TA of the neighboring cell send the uplink reference signal indicated by the configuration information of the uplink reference signal to the neighboring cell.
  • the terminal device transmits the uplink reference signal to the neighboring cell based on the configuration information of the uplink reference signal obtained from the positioning management device or the serving cell, and based on the obtained uplink TA of the neighboring cell, so that the terminal device can be The more accurate time is to send the uplink reference signal to the neighboring cell, which reduces the interference caused by the uplink signal sent by the terminal equipment to the neighboring cell, and improves the communication performance between the terminal equipment and the neighboring cell.
  • one or more of the following information is received or pre-stored: the correspondence between the uplink reference signal identifier and the uplink TA of the neighboring cell; or, the uplink reference signal set The corresponding relationship between the identifier and the uplink TA of the neighboring cell; or the corresponding relationship between the neighboring cell identifier and the uplink TA of the neighboring cell; the corresponding relationship between the set of multiple neighboring cell identifiers and the uplink TA of the neighboring cell.
  • the terminal device can determine the corresponding relationship based on the corresponding relationship when sending the uplink reference signal to the neighboring cell based on the corresponding relationship that is stored in advance or received in advance and related to the uplink TA of the neighboring cell.
  • the uplink TA of the neighboring cell can be determined using the terminal device's method to determine the corresponding relationship based on the corresponding relationship when sending the uplink reference signal to the neighboring cell based on the corresponding relationship that is stored in advance or received in advance and related to the uplink TA of the neighboring cell.
  • the uplink TA of the neighboring cell can determine the corresponding relationship based on the corresponding relationship when sending the uplink reference signal to the neighboring cell based on the corresponding relationship that is stored in advance or received in advance and related to the uplink TA of the neighboring cell.
  • the obtaining the uplink TA of the neighboring cell includes: according to the uplink reference signal sent to the neighboring cell, and the uplink reference signal identifier and the neighboring cell's According to the corresponding relationship of the uplink TA, the uplink TA of the neighboring cell is obtained; or, according to the set to which the uplink reference signal sent to the neighboring cell belongs, and the corresponding relationship between the uplink reference signal set identifier and the uplink TA of the neighboring cell, Obtain the uplink TA of the neighboring cell; or, obtain the uplink TA of the neighboring cell according to the neighboring cell sent by the uplink reference signal and the correspondence between the neighboring cell identifier and the neighboring cell's uplink TA; or Obtain the uplink TA of the neighboring cell according to the set to which the neighboring cell is sent by the uplink reference signal and the correspondence between the set of multiple neighboring cell identities and the uplink TA of the neighboring cell.
  • the terminal equipment can combine the uplink reference signal sent to the adjacent cell or the uplink reference signal sent to the adjacent cell according to the pre-stored or received corresponding relationship with the uplink TA of the adjacent cell
  • the method further includes: acquiring the downlink subframe timing; wherein, acquiring the downlink subframe timing specifically includes: receiving the downlink subframe timing Or, receive a downlink reference signal, and obtain the downlink subframe timing based on the time of the downlink reference signal, the downlink reference signal is received from a serving cell or a neighboring cell.
  • the terminal equipment can receive information about the timing of the downlink subframe, or it can be determined based on the received downlink reference signal, which can be sent by the serving cell to the terminal equipment, or it can be transmitted by the terminal equipment in the uplink.
  • the target cell sent to the terminal equipment.
  • the downlink subframe timing is any one of the following: downlink subframe timing of the primary cell, downlink subframe timing of the serving cell, or downlink subframe timing of neighboring cells Frame timing.
  • the downlink subframe timing may also be the downlink subframe timing of the primary cell, the downlink subframe timing of the serving cell, or the downlink subframe timing of the neighboring cell, which may be default or specified.
  • the uplink reference signal is a sounding reference signal SRS used for positioning
  • the configuration information of the uplink reference signal includes one or more of the following information: The identifier of the SRS resource, the number of ports of the SRS resource, the phase tracking reference signal PT-RS port number associated with the SRS resource, the comb configuration information of the SRS resource and the sequence cyclic shift, the start of the SRS resource Start symbol index, the number of consecutive symbols of the SRS resource and the repetition factor, the start resource block RB index of the SRS resource, the SRS resource frequency hopping configuration information, the SRS bandwidth, the group hopping sum of the SRS resource sequence Sequence hopping, periodic configuration information of the SRS resource, and spatial filtering information of the SRS resource.
  • the method further includes: receiving an identifier of the neighboring cell from the positioning management device or the serving cell.
  • the terminal device can determine which neighbor cell or neighbor cells to send the uplink reference signal to based on the received identifier of the neighbor cell.
  • a communication method is provided.
  • the method may be executed by a positioning management device, or may also be executed by a chip or circuit configured in the positioning management device, which is not limited in this application.
  • the method may include: determining an uplink timing advance TA of a neighboring cell; receiving configuration information of an uplink reference signal from a serving cell of a terminal device, where the uplink reference signal is a reference signal sent by the terminal device to the neighboring cell; The terminal device sends the configuration information of the uplink reference signal and the indication information of the uplink TA of the neighboring cell.
  • the positioning management device can determine the uplink TA of the neighboring cell and send the uplink TA of the neighboring cell to the terminal device, so that the terminal device can send the uplink reference signal to the neighboring cell based on the uplink TA of the neighboring cell, thereby The terminal device can send the uplink reference signal to the neighboring cell at a more accurate time, reducing the interference caused by the uplink signal sent by the terminal device to the neighboring cell, and improving the communication performance between the terminal device and the neighboring cell.
  • the sending the configuration information of the uplink reference signal and the indication information of the uplink TA of the neighboring cell to the terminal device includes: The device sends the configuration information of the uplink reference signal and one or more of the following information: the correspondence between the uplink reference signal identifier and the uplink TA of the neighboring cell; or the correspondence between the uplink reference signal set identifier and the uplink TA of the neighboring cell Relationship; or, the corresponding relationship between the neighbor cell identifier and the uplink TA of the neighbor cell; the corresponding relationship between the set of multiple neighbor cell identifiers and the uplink TA of the neighbor cell.
  • the positioning management device can send the corresponding relationship related to the uplink TA of the neighboring cell to the terminal device, avoiding sending each reference signal or the uplink TA corresponding to each neighboring cell to the terminal device, not only can the terminal device be When sending an uplink reference signal to a neighboring cell, based on the corresponding relationship, the uplink TA of the corresponding neighboring cell is determined, and signaling overhead can be saved.
  • the method further includes: sending information about downlink subframe timing to the terminal device, where the downlink subframe timing is any one of the following: Downlink subframe timing, downlink subframe timing of the serving cell, or downlink subframe timing of neighboring cells.
  • the positioning management device can inform the terminal device of downlink subframe timing information, so that the terminal device can quickly determine the time to send the uplink reference signal to the neighboring cell according to the information, which improves efficiency.
  • the method further includes: sending a measurement request message to the neighboring cell or the serving cell, the measurement request message being used to request the neighboring cell or The serving cell reports the time when the uplink reference signal is received.
  • the method further includes: the determining the uplink TA of the neighboring cell includes: acquiring location information of the terminal device, and according to the location information of the terminal device , Determine the uplink TA of the neighboring cell; or, determine the uplink TA of the neighboring cell based on the terminal device sending preamble information to the neighboring cell; or, obtain the time difference between the uplink TA and the downlink signal of the serving cell, Determine the uplink TA of the neighboring cell according to the time difference between the uplink TA of the serving cell and the downlink signal, where the downlink signal time difference is the downlink signal of the uplink TA of the serving cell and the uplink TA of the neighboring cell Time difference.
  • the positioning management device can determine the uplink TA of the neighboring cell through the location information of the terminal device; or, it can also send the preamble information to the neighboring cell through the terminal device to determine the uplink TA of the neighboring cell; or, it can also use the service
  • the time difference between the uplink TA of the cell and the downlink signal determines the uplink TA of the neighboring cell. Therefore, the uplink TA of the neighboring cell can be easily and quickly determined.
  • the obtaining the location information of the terminal device includes: obtaining the location of the terminal device by means of Global Positioning System GPS or strong cell identification E-CID Information; or, obtain the location information of the terminal device based on the beam measurement result of the neighboring cell reported by the terminal device.
  • the uplink reference signal is a sounding reference signal SRS used for positioning
  • the configuration information of the uplink reference signal includes one or more of the following information: The identifier of the SRS resource, the number of ports of the SRS resource, the phase tracking reference signal PT-RS port number associated with the SRS resource, the comb configuration information of the SRS resource and the sequence cyclic shift, the start of the SRS resource Start symbol index, the number of consecutive symbols of the SRS resource and the repetition factor, the start resource block RB index of the SRS resource, the SRS resource frequency hopping configuration information, the SRS bandwidth, the group hopping sum of the SRS resource sequence Sequence hopping, periodic configuration information of the SRS resource, and spatial filtering information of the SRS resource.
  • the method further includes: sending an identifier of the neighboring cell to the terminal device.
  • the terminal device can determine which neighbor cell or neighbor cells to send the uplink reference signal to based on the received neighbor cell identifier.
  • a communication method is provided.
  • the method may be executed by a network device (such as a serving base station), or may also be executed by a chip or circuit configured in the network device (such as a serving base station), which is not limited in this application.
  • the method may include: sending configuration information of an uplink reference signal to a positioning management device; determining an uplink timing advance TA of a neighboring cell; sending indication information of the uplink TA of the neighboring cell to a terminal device; and receiving the information from the terminal device The uplink reference signal indicated by the configuration information of the uplink reference signal.
  • the serving cell or the serving base station can determine the uplink TA of the neighboring cell and send the uplink TA of the neighboring cell to the terminal device, so that the terminal device can send the uplink reference signal to the neighboring cell based on the uplink TA of the neighboring cell Therefore, the terminal device can send the uplink reference signal to the neighboring cell at a more accurate time, reducing the interference caused by the uplink signal sent by the terminal device to the neighboring cell, and improving the communication performance between the terminal device and the neighboring cell.
  • the sending the indication information of the uplink TA of the neighboring cell to the terminal device includes: sending one or more of the following information to the terminal device : The corresponding relationship between the uplink reference signal identifier and the uplink TA of the neighboring cell; or the corresponding relationship between the uplink reference signal set identifier and the uplink TA of the neighboring cell; or the corresponding relationship between the neighbor cell identifier and the uplink TA of the neighboring cell; or, more Correspondence between the set of identities of the adjacent cells and the uplink TA of the adjacent cells
  • the serving cell can send the corresponding relationship related to the uplink TA of the neighboring cell to the terminal device, avoiding sending each reference signal or the uplink TA corresponding to each neighboring cell to the terminal device, not only can the terminal device be
  • the neighboring cell sends the uplink reference signal, based on the corresponding relationship, the uplink TA of the corresponding neighboring cell is determined, and signaling overhead can be saved.
  • the method further includes: sending information about downlink subframe timing to the terminal device, where the downlink subframe timing is any one of the following: the downlink subframe of the primary cell Frame timing, downlink subframe timing of the serving cell, or downlink subframe timing of neighboring cells.
  • the serving cell can inform the terminal equipment of downlink subframe timing information, so that the terminal equipment can quickly determine the time to send the uplink reference signal to the neighboring cell based on the information, which improves efficiency.
  • the method further includes: receiving a measurement request message from a positioning management device, the measurement request message being used to request the serving cell to report the time when the uplink reference signal is received .
  • the method further includes: the determining the uplink TA of the neighboring cell includes: acquiring the location information of the terminal device, and determining according to the location information of the terminal device The uplink TA of the neighboring cell; or, determine the uplink TA of the neighboring cell based on the terminal device sending the preamble information to the neighboring cell; or, obtain the time difference between the uplink TA and the downlink signal of the serving cell, and The time difference between the uplink TA of the serving cell and the downlink signal determines the uplink TA of the neighboring cell, where the downlink signal time difference is the downlink signal time difference between the uplink TA of the serving cell and the uplink TA of the neighboring cell.
  • the serving cell can determine the uplink TA of the neighboring cell through the location information of the terminal device; or, the terminal device can also send preamble information to the neighboring cell to determine the uplink TA of the neighboring cell; or, it can also be determined by the serving cell.
  • the time difference between the uplink TA and the downlink signal is used to determine the uplink TA of the neighboring cell. Therefore, the uplink TA of the neighboring cell can be determined conveniently and quickly.
  • acquiring the location information of the terminal device includes: acquiring the location information of the terminal device through GPS or E-CID; or, based on the terminal device The reported beam measurement results of neighboring cells are used to obtain the location information of the terminal device.
  • the uplink reference signal is a sounding reference signal SRS used for positioning
  • the configuration information of the uplink reference signal includes one or more of the following information: The identifier of the SRS resource, the number of ports of the SRS resource, the phase tracking reference signal PT-RS port number associated with the SRS resource, the comb configuration information of the SRS resource and the sequence cyclic shift, the start of the SRS resource Start symbol index, the number of consecutive symbols of the SRS resource and the repetition factor, the start resource block RB index of the SRS resource, the SRS resource frequency hopping configuration information, the SRS bandwidth, the group hopping sum of the SRS resource sequence Sequence hopping, periodic configuration information of the SRS resource, and spatial filtering information of the SRS resource.
  • the method further includes: sending an identifier of the neighboring cell to the terminal device.
  • the terminal device can determine which neighbor cell or neighbor cells to send the uplink reference signal to based on the received neighbor cell identifier.
  • a communication device is provided, and the communication device is configured to execute the method provided in the first aspect or the second aspect.
  • the communication device may include a module for executing the method provided in the first aspect or the second aspect.
  • a communication device is provided, and the communication device is configured to execute the method provided in the third aspect.
  • the communication device may include a module for executing the method provided in the third aspect.
  • a communication device is provided, and the communication device is configured to execute the method provided in the fourth aspect.
  • the communication device may include a module for executing the method provided in the fourth aspect.
  • a communication device in an eighth aspect, includes a memory and a processor, the memory is used to store instructions, the processor is used to execute the instructions stored in the memory, and to respond to the instructions stored in the memory.
  • the execution of causes the processor to execute the method provided in the first aspect or the second aspect.
  • a communication device in a ninth aspect, includes a memory and a processor.
  • the memory is used to store instructions.
  • the processor is used to execute the instructions stored in the memory and respond to the instructions stored in the memory. The execution of causes the processor to execute the method provided in the third aspect.
  • a communication device in a tenth aspect, includes a memory and a processor, the memory is used to store instructions, the processor is used to execute instructions stored in the memory, and to respond to the instructions stored in the memory. The execution of causes the processor to execute the method provided in the fourth aspect.
  • a chip in an eleventh aspect, includes a processing module and a communication interface.
  • the processing module is used to control the communication interface to communicate with the outside.
  • the processing module is also used to implement the first and second aspects. Aspect, the third aspect, or the method provided by the fourth aspect.
  • a computer-readable storage medium is provided with a computer program stored thereon, which when executed by a computer causes the computer to implement the first aspect, the second aspect, the third aspect, or the fourth aspect Provided method.
  • a computer program product containing instructions is provided, which when executed by a computer causes the computer to implement the method provided in the first aspect, the second aspect, the third aspect, or the fourth aspect.
  • a communication system which includes the communication device according to the fifth, sixth, and seventh aspects, or includes the communication device according to the eighth, ninth, and tenth aspects .
  • this application allows the terminal device to obtain the uplink TA of the neighboring cell, and send the uplink signal to the neighboring cell based on the uplink TA of the neighboring cell, so that the terminal device can send the uplink signal to the neighboring cell in a more accurate time. , Which reduces the interference to the serving cell caused by the uplink signal sent by the terminal equipment to the neighboring cell.
  • FIGS 1 and 2 show schematic diagrams of architectures applicable to embodiments of the present application
  • Figure 3 shows a schematic diagram of the uplink timing advance
  • FIG. 4 shows a schematic diagram of RTT
  • Figure 5 shows a schematic diagram of a terminal device sending uplink signals to a serving cell and neighboring cells
  • FIG. 6 shows a schematic interaction diagram of a communication method provided by an embodiment of the present application.
  • FIG. 13 shows a schematic interaction diagram of a communication method provided by another embodiment of the present application.
  • FIG. 14 shows a schematic diagram of a communication method suitable for use in another embodiment of the present application.
  • 15 and 16 show schematic diagrams of a configuration method applicable to another embodiment of the present application.
  • FIG. 17 shows a schematic block diagram of a communication device provided by an embodiment of the present application.
  • FIG. 18 shows another schematic block diagram of a communication device provided by an embodiment of the present application.
  • FIG. 19 shows a schematic block diagram of a terminal device provided by an embodiment of the present application.
  • FIG. 20 shows a schematic block diagram of a network device provided by an embodiment of the present application.
  • GSM global system for mobile communications
  • CDMA code division multiple access
  • WCDMA broadband code division multiple access
  • GPRS general packet radio service
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD LTE Time division duplex
  • UMTS universal mobile telecommunication system
  • WiMAX worldwide interoperability for microwave access
  • FIG. 1 shows a schematic diagram of an architecture 100 suitable for an embodiment of the present application.
  • the network architecture may specifically include the following network elements:
  • Terminal equipment it can be called user equipment (UE), terminal, access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile equipment, user terminal, wireless communication equipment, User agent or user device.
  • the terminal devices involved in the embodiments of the present application may include various handheld devices with wireless communication functions, vehicle-mounted devices, wearable devices, computing devices, or other processing devices connected to a wireless modem.
  • the terminal equipment can be a mobile station (Mobile Station, MS), subscriber unit (subscriber unit), cellular phone (cellular phone), smart phone (smart phone), wireless data card, personal digital assistant (personal digital assistant, PDA) computer, Tablet computer, wireless modem (modem), handheld device (handset), laptop computer (laptop computer), machine type communication (machine type communication, MTC) terminal, etc.
  • MS Mobile Station
  • subscriber unit subscriber unit
  • cellular phone cellular phone
  • smart phone smart phone
  • wireless data card personal digital assistant
  • PDA personal digital assistant
  • Tablet computer wireless modem
  • modem handheld device
  • laptop computer laptop computer
  • machine type communication machine type communication
  • Figure 1 and Figure 2 both take the terminal device as the UE as an example
  • Network equipment It can be equipment used to communicate with terminal equipment.
  • the network equipment can be an evolved NodeB (eNB or eNodeB) in the LTE system, or it can be a global system for mobile communications,
  • BTS base transceiver station
  • CDMA code division multiple access
  • NodeB base station
  • WCDMA wideband code division multiple access
  • NB base station
  • it can also be a wireless controller in a cloud radio access network (cloud radio access network, CRAN) scenario
  • the network device can be a relay station, access point, in-vehicle device, wearable device, and in the future 5G network
  • the network equipment in the future evolution PLMN network, etc. are not limited in the embodiment of the present application.
  • Mobility management entity can be used to manage the location information, security, and business continuity of terminal equipment.
  • LMU network element it can be integrated in a network device, such as a base station, or it can be separated from the base station. Responsible for receiving uplink signals sent by terminal equipment. In the embodiment of this application, it is assumed that the LMU has the ability to send downlink signals.
  • Evolved serving mobile location center can be used for positioning, for example, it is called a positioning service center or a positioning center or a positioning management device.
  • the MME and LMUs are called location management devices. It is used to collect the measurement information and location information reported by the base station and terminal equipment, and it is also responsible for calculating the position of the measurement volume of the base station or terminal equipment and determining the location of the terminal equipment.
  • the terminal device can be connected to the radio access network via the eNodeB through the LTE-Uu interface.
  • the E-SMLC and the LMU are connected through the SLm interface, and the E-SMLC and the MME are connected through the SLs interface.
  • FIG. 2 shows another schematic diagram of an architecture 200 applicable to an embodiment of the present application.
  • the architecture 200 may specifically include the following network elements:
  • Location management function (LMF) network element can be used for positioning, for example, it is called a location service center or a location center or a location management device. In the embodiments of the present application, they are all called a location management device. It is used to collect the measurement information and location information reported by the base station and terminal equipment. It is also responsible for calculating the position of the measurement volume of the base station or terminal equipment to determine the location of the terminal equipment.
  • the LMF may be a device or component deployed in the core network to provide a positioning function for terminal equipment.
  • Access and mobility management function (AMF) entities mainly used for mobility management and access management, etc., and can be used to implement mobility management entity (mobility management entity, MME) functions in addition to sessions Functions other than management, for example, lawful interception, or access authorization (or authentication) functions. In the embodiment of the present application, it can be used to realize the functions of accessing and mobility management network elements.
  • MME mobility management entity
  • the UE is connected to the radio access network (NG-RAN) via the next-generation eNodeB (ng-eNB) and gNB through the LTE-Uu and/or NR-Uu interface, respectively; Connect to the core network via AMF through NG-C interface.
  • the next-generation radio access network (NG-RAN) includes one or more ng-eNBs; NG-RAN may also include one or more gNBs; NG-RAN may also include one or more Ng-eNB and gNB.
  • the ng-eNB is an LTE base station that accesses the 5G core network, and the gNB is a 5G base station that accesses the 5G core network.
  • the core network includes functions such as AMF and LMF. The AMF and LMF are connected through the NLs interface.
  • the ng-eNB in Figures 1 and 2 above can also be replaced with a transmission point (TP) (TP as shown in Figures 1 and 2).
  • TP transmission point
  • the positioning management device is mentioned many times.
  • the positioning management device refers to a network element that can manage the serving cell and neighboring cells.
  • the location management equipment can be a part of the core network or integrated into the access network equipment.
  • the location management device may be the LMF in the core network shown in FIG. 2, or may be the MME and LMU shown in the figure.
  • the positioning management device may also be called a positioning center. This application does not limit the name of the location management device. In the future evolution technology, the location management device may be given other names.
  • LMF network element may also be referred to as an entity, equipment, device, or module, etc., which is not specifically limited in this application.
  • LMF LMF network element
  • LMF entity LMF entity
  • the name of the interface between the various network elements described above is only an example, and the name of the interface in a specific implementation may be other names, which is not specifically limited in this application.
  • the name of the message (or signaling) transmitted between the various network elements is only an example, and does not constitute any limitation on the function of the message itself.
  • the embodiment of the beam in the NR protocol can be a spatial domain filter, or a spatial filter or a spatial parameter.
  • the beam used to transmit signals can be called transmission beam (Tx beam), can be called spatial domain transmission filter or spatial transmission parameter; the beam used to receive signals can be called To receive the beam (reception beam, Rx beam), it may be called a spatial domain receive filter (spatial domain receive filter) or a spatial receive parameter (spatial RX parameter).
  • the transmitting beam may refer to the distribution of signal strength in different directions in space after a signal is transmitted through the antenna
  • the receiving beam may refer to the signal strength distribution of the wireless signal received from the antenna in different directions in space.
  • the beam may be a wide beam, or a narrow beam, or other types of beams.
  • the beam forming technology may be beamforming technology or other technology.
  • the beamforming technology may specifically be a digital beamforming technology, an analog beamforming technology, or a hybrid digital/analog beamforming technology, etc.
  • Beams generally correspond to resources. For example, when performing beam measurement, network equipment uses different resources to measure different beams. The terminal equipment feeds back the measured resource quality, and the network equipment knows the quality of the corresponding beam. During data transmission, the beam information is also indicated by its corresponding resource. For example, the network device indicates the PDSCH beam information of the terminal device through the TCI resource in the DCI.
  • multiple beams with the same or similar communication characteristics may be regarded as one beam.
  • One or more antenna ports can be included in a beam for transmitting data channels, control channels, and sounding signals.
  • One or more antenna ports forming a beam can also be regarded as an antenna port set.
  • uplink communication includes the transmission of uplink physical channels and uplink signals.
  • the uplink physical channel includes: random access channel (random access channel, PRACH), uplink control channel (physical uplink control channel, PUCCH), and uplink data channel (physical uplink shared channel, PUSCH), etc.
  • Uplink signals include but are not limited to: sounding reference signal (sounding reference signal, SRS), uplink control channel demodulation reference signal (PUCCH de-modulation reference signal, PUCCH-DMRS), uplink data channel demodulation reference signal (PUSCH de-modulation) reference signal, PUSCH-DMRS), uplink phase noise tracking signal (phase noise tracking reference signal, PTRS), uplink positioning signal (uplink positioning RS), etc.
  • Downlink communication includes the transmission of downlink physical channels and downlink signals.
  • the downlink physical channel includes: a broadcast channel (physical broadcast channel, PBCH), a downlink control channel (physical downlink control channel, PDCCH), a downlink data channel (physical downlink shared channel, PDSCH), etc.
  • Downlink signals include, but are not limited to: primary synchronization signal (PSS), secondary synchronization signal (secondary synchronization signal, SSS), downlink control channel demodulation reference signal (PDCCH de-modulation reference signal, PDCCH-DMRS), downlink Data channel demodulation reference signal (PDSCH de-modulation reference signal, PDSCH-DMRS), downlink phase noise tracking signal, channel status information reference signal (channel status information reference signal, CSI-RS), cell reference signal (cell reference signal, CRS), precise synchronization signal (time/frequency tracking reference signal, TRS), positioning signal (positioning RS), UE-specific reference signal (user equipment specific reference signal, US-RS), synchronization signal/physical broadcast channel block (synchronization signal) /physical broadcast channel block, SS/PBCH block) etc.
  • the resource can be an uplink signal resource or a downlink signal resource.
  • the uplink signal and the downlink signal refer to the above description.
  • the resources can be configured through radio resource control (radio resource control, RRC) signaling.
  • RRC radio resource control
  • a resource is a data structure, including its corresponding uplink/downlink signal related parameters, such as the type of uplink/downlink signal, the resource element that carries the uplink/downlink signal, the transmission time and period of the uplink/downlink signal , The number of ports used to send uplink/downlink signals, etc.
  • Each uplink/downlink signal resource has a unique identification to identify the uplink/downlink signal resource.
  • the identifier of the resource may also be referred to as the index of the resource, which is not limited in the embodiment of the present application.
  • the cell is described by the higher layers from the perspective of resource management or mobility management or service unit.
  • the coverage of each network device can be divided into one or more cells, and the cell can be regarded as composed of certain frequency domain resources.
  • the cell may be an area within the coverage of the wireless network of the network device.
  • different cells may correspond to different network devices.
  • the cell may be replaced by the base station corresponding to the cell.
  • the “serving cell” is mentioned many times in the embodiments of the present application, and the “serving cell” can be replaced by the network equipment corresponding to the serving cell, for example, the “serving cell” is replaced by the “serving base station”.
  • neighboreighbor cells are mentioned many times in the embodiments of this application. Neighbor cells can also be referred to as non-serving cells.
  • the "neighbor cells” can be replaced by network equipment corresponding to the neighbor cells, for example, “Neighbor cell” is replaced by "neighbor base station”.
  • the network device can configure the terminal device to send or receive signals in certain time-frequency resources, such as slots, subframes, frames, and symbols.
  • time-frequency resources such as slots, subframes, frames, and symbols.
  • the terminal equipment needs to use the downlink signal to perform timing synchronization to determine and match the time boundary of the network equipment.
  • downlink reference signals such as SSB, CSI-RS, CRS, etc.
  • the reference signal used for timing synchronization can be called a timing anchor.
  • Downlink timing anchors can also be used to determine the timing of uplink transmission.
  • the terminal device After the terminal device determines the boundary of the downlink subframe through the downlink timing signal, it can send the uplink signal according to the same time reference system.
  • the network device can configure a timing advance (TA) for each terminal device. The terminal device sends the uplink signal in advance according to the timing advance based on the downlink timing synchronization, so that the terminal device The time when the sent uplink signal reaches the network device and the uplink reception timing of the network device can be aligned.
  • TA timing advance
  • the network device can configure multiple timing advance groups (TAGs) for the terminal device through high-level signaling, and each TAG corresponds to an ID (for example, TAG-ID) and a time alignment timer (time alignment timer).
  • TAGs timing advance groups
  • the network device can associate a TAG-ID for each cell.
  • the network device initially assigns the N TA of each TAG through the initial access response, where N TA represents a quantized time advance parameter.
  • the network device can also adjust the TA of each TAG through signaling (such as a MAC-CE message or DCI).
  • the TA adjustment amount may be an absolute adjustment amount, that is, the current adjustment amount directly replaces the existing amount; or the TA adjustment amount may also be a relative adjustment amount, that is, the adjustment amount is increased or decreased based on the existing TA amount.
  • the terminal device can apply the adjusted TA in slot (n+k). Wherein, n and k are integers greater than 0 or equal to 0.
  • the terminal device can calculate the time advance of the uplink subframe i corresponding to the N TA relative to the synchronized downlink subframe i through the N TA configured by the network device.
  • the calculation formula may be:
  • T TA (N TA +N TA, offset )T C.
  • T TA represents the TA when the terminal device sends SRS
  • N TA represents the quantified TA of the network device configuration
  • T C represents the unit of time.
  • N TA, offset represents a quantity related to the frequency band.
  • the network equipment may be specified through high-level signaling, or the network equipment may set some range, which is then determined by the terminal equipment through the downlink measured signal strength, arrival time, etc. .
  • Table 1 shows a possible value of N TA,offset .
  • FR1 and FR2 in Table 1 represent frequency range (frequency range, FR).
  • 3GPP 3rd generation partnership project
  • FR1 and FR2 should not constitute any limitation in this application. This application does not exclude the possibility of defining other names in future agreements to represent the same or similar meaning.
  • FR1 and FR2 are used in the following embodiments respectively.
  • FR1 Sub 6G frequency band, in other words, the low frequency frequency band is the main frequency band of 5G.
  • the frequency below 3GHz can be called Sub3G
  • the other frequency bands can be called C-band.
  • the frequency range corresponding to FR1 may correspond to 750MHz-6000MHz as shown in Table 2, but is not limited to this, and this application does not exclude the possibility of defining other ranges to represent the same or similar meaning in future agreements.
  • FR2 Millimeter waves above 6G, in other words, the high-frequency band is an extended frequency band of 5G with abundant spectrum resources. It should be understood that the frequency range corresponding to FR2 may correspond to 24250MHz-52600MHz as shown in Table 2, but is not limited to this, and this application does not exclude the possibility of defining other ranges to represent the same or similar meaning in future agreements.
  • the terminal device can send the uplink signal according to the calculated timing advance. As shown in Figure 3.
  • a terminal device sends an uplink reference signal to a neighboring cell or a location measurement unit (location measurement unit, LMU).
  • the neighboring cell or LMU measures the received uplink reference signal, such as recording the arrival time of the uplink reference signal (or the time difference with a certain absolute moment as the reference point), and then summarizes the measurement result to the positioning management device (such as LMF).
  • the positioning management equipment locates the terminal equipment according to the measurement results, cell location and other information.
  • RTT means: the time from when the sender sends a signal to when the receiver receives the signal (or, it can also be understood as propagation delay), plus the time from when the receiver sends a message back to the sender receives the message.
  • RTT (T DL + T UL ).
  • T DL represents the time from when the network device sends a signal to when the terminal device receives the signal
  • T UL represents the time from when the terminal device sends a backhaul message to when the network device receives the backhaul message.
  • the uplink signal sent by the terminal device may cause interference to a neighboring cell or other terminal devices that send an uplink signal to the neighboring cell.
  • this application proposes a communication method that enables a terminal device to send an uplink signal to a neighboring cell based on the uplink TA of the neighboring cell, so that the uplink signal sent by the terminal device is aligned with the uplink reception timing of the neighboring cell, and the terminal device
  • the uplink signal sent to the neighboring cell causes interference to the neighboring cell and improves the communication performance between the terminal equipment and the neighboring cell.
  • the high-level parameters may be included in high-level signaling.
  • the high-level signaling may be, for example, a radio resource control (Radio Resource Control, RRC) message, or other high-level signaling, which is not limited in this application.
  • RRC Radio Resource Control
  • "used to indicate” may include used for direct indication and used for indirect indication, and may also include explicit indication and implicit indication.
  • the information indicated by a certain piece of information (configuration information as described below) is called information to be instructed.
  • information to be instructed In the specific implementation process, there are many ways to indicate the information to be indicated. For example, but not limited to, you can directly indicate the information to be instructed.
  • Information such as the information to be indicated or the index of the information to be indicated.
  • the information to be indicated can also be indicated indirectly by indicating other information, where there is an association relationship between the other information and the information to be indicated. It is also possible to indicate only a part of the information to be indicated, and other parts of the information to be indicated are known or agreed in advance. For example, it is also possible to use a pre-arranged (for example, protocol stipulation) whether there is a certain cell to indicate the information to be indicated, thereby reducing the indication overhead to a certain extent.
  • protocol stipulation for example, protocol stipulation
  • pre-acquisition may include being indicated by network device signaling or pre-defined, for example, protocol definition.
  • pre-defined can be implemented by pre-saving corresponding codes, tables or other methods that can be used to indicate related information in the equipment (for example, including terminal equipment and network equipment), and this application does not make any specific implementation methods. limited.
  • the “protocols” involved in the embodiments of the present application may refer to standard protocols in the communication field, for example, may include LTE protocol, NR protocol, and related protocols applied to future communication systems, which are not limited in this application.
  • FIG. 6 is a schematic flowchart of a communication method 600 according to an embodiment of this application.
  • the method 600 includes the following steps.
  • the terminal device obtains the uplink TA of the serving cell.
  • the serving cell can also be understood as a network device corresponding to the serving cell, such as a serving base station, which is uniformly represented by the serving cell below. It should be understood that, as mentioned above, the "serving cell” in the embodiments of the present application can be replaced by the "serving base station”.
  • the uplink TA of the serving cell can also be called the reference time, the reference uplink time or the reference TA (such as the TA of the target cell of the terminal equipment uplink transmission), that is, the terminal equipment obtains the uplink TA of the serving cell, which can also be understood as the terminal equipment obtains one Base time or base TA.
  • the naming of the uplink TA of the serving cell, the uplink TA of the serving base station, the reference time, the reference uplink time, or the reference TA is only a name and does not limit the scope of protection of this application, and this application does not exclude future Other names are defined in the agreement to indicate the possibility of the same or similar meaning. In the following embodiments, it is represented by the uplink TA of the serving cell.
  • the uplink TA of the serving cell in step 610 is different from the TA of the TAG configured by the network device. To distinguish, the uplink TA of the serving cell in step 610 is recorded as the uplink TA of the serving cell, and the TAG configured by the network device is The TA of is recorded as the TA of the serving cell.
  • the uplink TA of the serving cell can be any of the following: the TA of the serving cell, the cell-level signal receiving and sending time difference, the reference signal receiving and sending signal time difference, the time difference between the signal sent by the terminal device and the signal received by the serving cell, or the signal sent by the serving cell and the terminal The time difference when the device receives the signal.
  • the terminal device may also obtain an uplink TA of a neighboring cell.
  • the neighboring cell may be a target cell for the terminal device to perform uplink transmission.
  • only the uplink TA of the serving cell is taken as an example for illustrative description.
  • the terminal device obtains the downlink signal time difference between the serving cell and the neighboring cell.
  • the neighboring cell can also be called a non-serving cell, or it can also be called a neighboring cell, and it can also be understood as the network equipment corresponding to the neighboring cell, such as a neighboring base station, which is collectively referred to as a neighboring cell below . It should be understood that, as described above, the "neighbor cell" in the embodiment of the present application can be replaced by the "neighbor base station”.
  • Downlink signal time difference can also be called timing compensation, or timing compensation time, or uplink timing compensation time, etc. It is used to indicate the time difference between the uplink TA of the serving cell and the uplink TA of the neighboring cell. In other words, it is used to indicate the uplink timing component that needs additional compensation on the basis of the uplink TA of the serving cell when the terminal device sends an uplink signal to the neighboring cell.
  • the names of the downlink signal time difference, timing compensation amount, timing compensation time, or uplink timing compensation time shall not constitute any limitation in this application, and this application does not exclude the definition of other names in future agreements to indicate the same or similar meaning Possible. In the following embodiments, it is represented by the time difference of the downlink signal.
  • time difference of the downlink signal The specific form of the time difference of the downlink signal and the manner in which the terminal device obtains the time difference of the downlink signal will be described in detail below.
  • downlink signal may be various reference signals, or may also be a downlink subframe, etc., which is not limited.
  • Downlink signals include but are not limited to: CSI-RS, CS-RS, US-RS, DMRS, and SS/PBCH block. The following is without loss of generality and is uniformly represented by downlink signals.
  • the terminal device obtains the uplink TA of the neighboring cell based on the time difference between the uplink TA and the downlink signal of the serving cell.
  • the uplink TA of the neighboring cell is the sum of the time difference between the uplink TA of the serving cell and the downlink signal.
  • FIG. 7 shows an example. As shown in Figure 7:
  • the uplink TA of the serving cell may be: the TA of the serving cell or a cell-level RX-TX time difference (RX-TX time difference), for example, represented by T ref .
  • RX-TX time difference RX-TX time difference
  • T ref T4-T3.
  • the downlink signal time difference may be: the time difference between the receiving time of the terminal equipment receiving the downlink reference signal from the neighboring cell and the receiving time of the downlink reference signal from the serving cell, for example, represented by T offset .
  • T offset T2-T1.
  • the terminal device sends an uplink signal according to the downlink subframe timing and the uplink TA of the neighboring cell.
  • the terminal device can send uplink signals to one or more neighboring cells according to the timing of the downlink subframe and the uplink TA of the neighboring cell.
  • the uplink signal may be a reference signal, or it may be an SSB, or it may be an uplink subframe, etc., which is not limited.
  • uplink signals include but are not limited to: SRS and DMRS, that is, the following uplink signals can be replaced with SRS or DMRS. The following is without loss of generality, and is uniformly represented by uplink signals.
  • the downlink subframe timing or it can also be called a downlink timing point, or it can be called a downlink timing synchronization point, or it can also be called a downlink timing reference point, or it can be called a frame timing reference, etc., which can be used for terminals
  • the device determines the time to send the uplink signal according to the uplink TA of the neighboring cell and the downlink subframe timing. Its naming should not constitute any limitation in this application, and this application does not exclude the possibility of defining other names to represent the same or similar meaning in future agreements. In the embodiment of this application, it is represented by downlink subframe timing.
  • the terminal equipment can determine the downlink subframe timing according to any one of the following: the downlink subframe timing of the primary cell, the downlink subframe timing of the serving cell, the downlink subframe timing determined according to the cell corresponding to the uplink TA of the neighboring cell, According to the downlink subframe timing determined according to the signal corresponding to the uplink TA of the neighboring cell, the downlink subframe timing determined according to the designated cell (for example, it can be designated by the positioning management device (such as LMF) or the serving cell), according to the designated The downlink subframe timing determined by the reference signal (for example, it can be designated by the positioning management device (such as LMF) or the serving cell), the reference signal of the neighboring cell (for example, one or more can be designated by the positioning management device (such as LMF)), and the designated Downlink subframe timing of the cell.
  • the positioning management device such as LMF
  • the reference signal for example, it can be designated by the positioning management device (such as LMF) or the serving cell
  • the terminal device may determine the downlink subframe timing according to the cell used to determine the timing of the downlink subframe, that is, the downlink timing subframe i in FIG. 8, and determine according to the uplink TA of the neighboring cell determined in step 630 The time to send an uplink signal to neighboring cell A.
  • the cell used to determine the timing of the downlink subframe may be a serving cell, a cell corresponding to an uplink TA used to calculate a neighboring cell, or a designated cell, or a neighboring cell, and so on.
  • the cell used to determine the timing of the downlink subframe may be a serving cell, as in step 610
  • the cell used to determine the timing of the downlink subframe may also be a cell that needs compensation, such as the neighboring cell used to determine the downlink signal time difference in step 620, which is not limited. The following is an example with reference to FIG. 9 and FIG. 10.
  • the time difference of the downlink signal is recorded as TDOA
  • the arrival time of the downlink signal to the serving cell is recorded as TOAserve
  • the arrival time of the downlink signal to the neighboring cell is recorded as TOA neigh .
  • the uplink TA of the neighboring cell includes the following two situations.
  • Case 1 Take the downlink subframe timing of the neighboring cell as a reference, as shown in Figure 9.
  • Case 2 Take the downlink subframe timing of the serving cell as a reference, as shown in Figure 10.
  • the foregoing exemplarily lists two cases where the downlink subframe timing of the neighboring cell is used as a reference, and the downlink subframe timing of the serving cell is used as a reference, and the application is not limited thereto.
  • the downlink subframe timing of the designated cell can also be used as a reference. I will not repeat them here.
  • the terminal device may send an uplink signal to the neighboring cell based on the downlink subframe timing, the uplink TA of the neighboring cell determined in step 630, and the cell timing deviation.
  • the subframe timing deviation between the serving cell and the neighboring cell can be called the cell timing deviation or the cell timing deviation, or it can also be called the base station subframe timing deviation, or it can also be called the cell subframe timing Offset.
  • cell timing deviation, cell subframe timing deviation, cell subframe timing offset, etc. are only a naming, and their naming should not constitute any limitation to this application, and this application does not exclude the definition of other names in future agreements To indicate the possibility of the same or similar meaning. In the following embodiments, it is represented by cell timing offset.
  • the terminal device can obtain the cell timing offset of the two cells through configuration information, and then use the cell timing offset to confirm the additional time offset when sending uplink.
  • the cell timing deviation means the time deviation or synchronization deviation when the cell sends a downlink subframe, and the cell timing deviation is not related to the propagation distance.
  • the terminal device can obtain the cell timing offset in any of the following ways.
  • Method A A positioning management device (such as LMF) informs the terminal device of the initialization time of the system frame number 0 (SFN 0) of the two cells through signaling, or the initialization time difference of SFN0. Correspondingly, the terminal equipment determines the cell timing offset according to the received signaling.
  • LMF positioning management device
  • Manner B The positioning management device (such as LMF) informs the terminal device of the cell timing deviation of the two cells through signaling, for example, the subframe timing offset of a certain subframe.
  • LMF positioning management device
  • the uplink TA when the terminal device sends an uplink signal to the neighboring cell the uplink TA of the serving cell + 2*TDOA -2*D.
  • the uplink TA of the serving cell is the uplink TA of the serving cell obtained by the terminal device in step 610.
  • the uplink TA when the terminal device sends an uplink signal to the neighboring cell the uplink TA of the serving cell + TDOA-2 *D.
  • the uplink TA of the serving cell is the uplink TA of the serving cell obtained by the terminal device in step 610.
  • the terminal device adjusts the uplink TA when sending an uplink signal to the neighboring cell.
  • the terminal device may also adjust or process the uplink TA of the neighboring cell obtained in step 630.
  • the uplink TA of the neighboring cell used by the terminal device in step 640 and the uplink TA of the neighboring cell determined by the terminal device in step 630 based on the time difference between the uplink TA and the downlink signal of the serving cell may be the same or different.
  • the terminal device may send uplink signals based on the uplink TA of the neighboring cell determined in step 630, or the terminal device may first process the uplink TA of the neighboring cell determined in step 630, and then based on the processed uplink TA , Send an uplink signal.
  • the uplink TA of the neighboring cell determined by the terminal device based on the time difference between the uplink TA of the serving cell and the downlink signal in step 630 is recorded as the first uplink TA
  • the uplink TA of the neighboring cell used by the terminal device in step 640 is recorded as the first uplink TA.
  • the first uplink TA and the second uplink TA may be the same; or, the first uplink TA and the second uplink TA may also be different.
  • the terminal device may process the first uplink TA to obtain the second uplink TA.
  • the terminal device can use at least one of the following methods for processing.
  • the terminal device can perform modulo processing on the first uplink TA.
  • the second uplink TA mod (the first uplink TA, T0).
  • T0 can be a time unit granularity, for example, T0 can be a subframe time length, such as 1ms; another example, T0 can also be the maximum TA supported by the adjacent cell frequency band; another example, T0 can also be agreed upon by the agreement The maximum value of TA; for example, T0 can also configure the maximum value of TA for network equipment.
  • the terminal device may perform quantization processing on the first uplink TA.
  • the second uplink TA Quantization (first uplink TA, T1).
  • Quantization () represents the quantization operation.
  • T1 can be a time unit granularity, for example, T1 can be a time unit T C , and for T C, please refer to the above description.
  • the terminal device can perform modulo and quantization processing on the first uplink TA.
  • the terminal device can perform both modulo processing and quantization processing on the first uplink TA, that is, modulo and quantization can be used in combination. For example, the terminal device may first modulate the first uplink TA, and then quantize the modulated TA; for another example, the terminal device may first quantize the first uplink TA, and then modulate the quantized TA.
  • the terminal device may first process the first uplink TA, and then perform modulo and/or quantization processing on the processed TA.
  • the terminal device may first perform the following processing on the first uplink TA: the first uplink TA-Tc*N TA, offset , and then perform modulo and/or quantization processing on the processed TA.
  • N TA and offset represent the offset value, which may be related to the frequency band.
  • the network equipment can be specified through high-level signaling, or the network equipment can set some range, and then the signal strength and arrival time measured by the terminal equipment through the downlink Wait to be determined. For example, refer to Table 1 above.
  • the terminal device may also send an uplink signal based on the uplink TA of the neighboring cell obtained in step 630.
  • the terminal device can obtain the uplink TA of the serving cell in any of the following ways:
  • Method 1 The terminal device obtains the uplink TA of the serving cell through the TAG.
  • the method 600 further includes: the network device issues a TAG to the terminal device, and the TAG includes the TA of the serving cell; the terminal device obtains the TA of the serving cell according to the TAG, that is, the TA of the serving cell
  • the uplink TA is the TA of the serving cell.
  • the network device can configure one or more TAGs for the terminal device through high-level signaling, and each TAG corresponds to an ID, such as TAG-ID.
  • the network equipment such as the base station, initially assigns the NTA of each TAG through the initial access response, and adjusts the NTA of each TAG through the MAC-CE message.
  • the terminal device can obtain the uplink TA of the serving cell through signaling issued by the network device.
  • the terminal device determines the uplink TA of the serving cell according to the time difference between the receiving time of the downlink subframe i of the receiving serving cell and the sending time of the terminal device sending the uplink subframe i to the serving cell, where i is greater than 0 or equal to An integer of 0.
  • the uplink TA of the serving cell may be the cell-level signal receiving and sending time difference, or in other words, the serving cell's uplink TA may be the cell receiving and sending signal time difference or the cell-based signal receiving and sending time difference, for example, denoted as UE RX-TX time difference. It should be understood that the specific naming does not limit the application.
  • the uplink TA of the serving cell When the uplink TA of the serving cell is the cell-level signal receiving and sending time difference, it is received as the uplink frame timing of the serving cell, and sent as the downlink frame timing associated with the serving cell. That is, the uplink TA of the serving cell may be the time difference between the receiving time of the terminal device receiving the downlink subframe i of the serving cell and the sending time of the terminal device sending the uplink subframe i to the serving cell.
  • Manner 3 The terminal device determines the uplink TA of the serving cell according to the time difference between the receiving time of the downlink subframe j determined by receiving the downlink signal of the serving cell and the sending time of the uplink subframe j determined by the terminal device sending the uplink signal to the serving cell , Where j is an integer greater than 0 or equal to 0.
  • the uplink TA of the serving cell may be a reference signal-level signal reception time difference, or in other words, the uplink TA of the serving cell may be a reference signal reception time difference or a reference signal-based transmission time difference, For example, it is recorded as UE RX-TX time difference (RS level).
  • RS level UE RX-TX time difference
  • the uplink TA of the serving cell When the uplink TA of the serving cell is the time difference between receiving and sending signals at the reference signal level, it is received as the reference signal uplink frame timing, and sent as the downlink frame timing associated with the reference signal. That is, the uplink TA of the serving cell may be the time difference between the receiving time of the downlink subframe j determined by the terminal device receiving a certain reference signal and the sending time of the uplink subframe j determined by the terminal device sending another reference signal.
  • the terminal device determines the uplink TA of the serving cell according to the time difference between the receiving time of the downlink subframe k of the receiving serving cell and the sending time of the uplink subframe k determined by the terminal device for sending the uplink signal to the serving cell, where k is An integer greater than or equal to 0.
  • the uplink TA of the serving cell may be the time difference between the cell-level receiving/signaling and the reference signal-level receiving/signaling. It should be understood that the specific naming does not limit the application.
  • the receiving may be the serving cell's uplink frame timing
  • the sending may be the downlink frame timing associated with the serving cell's reference signal. That is, the uplink TA of the serving cell may be the time difference between the receiving time of the terminal device receiving the downlink subframe k of the serving cell and the sending time of the uplink subframe k determined by the terminal device sending the reference signal to the serving cell.
  • the terminal device determines the uplink TA of the serving cell according to the time difference between the receiving time of the downlink subframe k determined by receiving the downlink signal and the sending time of sending the uplink subframe k to the serving cell.
  • the uplink TA of the serving cell may be the time difference between the cell-level receiving/signaling and the reference signal-level receiving/signaling. It should be understood that the specific naming does not limit the application.
  • the receiving can be the reference signal uplink frame timing of the serving cell
  • the sending can be the downlink frame timing associated with the serving cell. That is, the uplink TA of the serving cell may be the time difference between the receiving time of the downlink subframe k determined by the terminal device receiving a certain reference signal from the serving cell and the sending time of the terminal device sending the uplink subframe k to the serving cell.
  • the terminal device may select the arrival time of the first path in the received signal as the arrival time of the cell downlink subframe or reference signal;
  • the terminal device may select the determined downlink subframe with the earliest reception time among multiple multi-beams as the final received beam for measurement in a receiving beam scanning manner.
  • the uplink TA of the serving cell may also be determined through a downlink subframe designated by a network device (such as a serving cell or a positioning management device (such as LMF)), or a reference signal designated by a network device.
  • a network device such as a serving cell or a positioning management device (such as LMF)
  • a reference signal designated by a network device.
  • the serving cell takes the serving cell as an example, and the application is not limited thereto. It is used to determine the cell based on the uplink TA of a neighboring cell, that is, the cell corresponding to the uplink TA of the neighboring cell is calculated by the terminal device, which can be a serving cell or a network device (such as a serving cell or a positioning management device) (Such as LMF))
  • the designated cell may also be the default primary cell, or a neighboring cell (such as a target cell for uplink transmission by a terminal device), etc., and there is no limitation on this.
  • the terminal device Used to determine the signal (such as reference signal) based on the uplink TA of the neighboring cell, that is, the terminal device is used to calculate the signal corresponding to the uplink TA of the neighboring cell (such as the reference signal), which can be a signal sent by the serving cell (Such as reference signal), it can also be a signal (such as a reference signal) designated by a network device (such as a serving cell or a positioning management device (such as LMF)), or it can default to a synchronization signal/physical broadcast that the terminal device of the primary cell selects to access
  • the channel block may also be a reference signal beam indicator, a path loss, or a corresponding downlink reference signal in the TA indicator for the terminal device to transmit uplink, and so on, which is not limited.
  • the above describes the manner in which the terminal device obtains the uplink TA of the serving cell.
  • the manner in which the terminal device obtains the time difference of the downlink signal in step 620 will be described below.
  • the downlink signal time difference can also be called the timing compensation amount, which is used to indicate the uplink timing component that needs additional compensation on the basis of the uplink TA of the serving cell when the terminal device sends an uplink signal to the neighboring cell.
  • the compensation reference source can be: the primary cell (PCell), the serving cell, the cell used to calculate the uplink TA of the neighboring cell, the signal corresponding to the uplink TA of the neighboring cell, the designated cell (such as network equipment (such as the serving cell) Or a cell designated by a positioning management device (such as LMF), a designated signal (such as a reference signal designated by a network device (such as a serving cell or a positioning management device (such as LMF))), etc.
  • the designated cell such as network equipment (such as the serving cell) Or a cell designated by a positioning management device (such as LMF), a designated signal (such as a reference signal designated by a network device (such as a serving cell or a positioning management device (such as LMF))
  • the designated cell such as network equipment (such as the serving cell) Or a cell designated by a positioning management device (such as LMF), a designated signal (such as a reference signal designated by a network device (such as a serving cell or a positioning management
  • the compensation target can be: the signal of the neighboring cell (for example, one or more reference signals can be designated by the network equipment (such as the serving cell or the positioning management device (such as LMF)), the designated neighboring cell (for example, the specific reference may not be clearly designated) Signal, selected by the terminal device itself), other designated cells or signals, etc.
  • the network equipment such as the serving cell or the positioning management device (such as LMF)
  • the designated neighboring cell for example, the specific reference may not be clearly designated
  • Signal selected by the terminal device itself
  • other designated cells or signals etc.
  • the terminal device can obtain the time difference of the downlink signal by any of the following methods:
  • Method 1 The terminal device determines the time difference of the downlink signal according to the time difference of the reference signal.
  • the downlink signal time difference may be the reference signal time difference: taking reference signal A and reference signal B as an example, the downlink signal time difference may be: the terminal device receives the reception of the downlink subframe i determined by the reference signal A The time difference between the time and the receiving time of the downlink subframe j determined by the terminal device receiving the reference signal B.
  • the reference signal A and the reference signal B are from different cells.
  • the arrival time of the subframe may be based on the arrival time of the start of the subframe (for example, the start of the first OFDM symbol).
  • the downlink signal time difference may be: the time difference between the receiving time of the start of the downlink subframe i determined by the terminal device receiving the reference signal A and the receiving time of the start of the downlink subframe j determined by the terminal device receiving the reference signal B.
  • the terminal device may select the arrival time of the first path in the received signal as the arrival time of the reference signals A and B.
  • the downlink signal time difference may be: the time difference between the arrival time of the first path in the reference signal A received by the terminal device and the arrival time of the first path in the reference signal B received by the terminal device.
  • the terminal device may select the determined downlink subframe reception of the multiple multiple beams with the earliest receiving time as the final received beam for measurement in a receiving beam scanning manner.
  • the subframe indexes i and j may be equal.
  • the reception time difference between the starting point of the downlink subframe i determined by the reference signal A and the starting point of the downlink subframe j determined by the reference signal B is selected.
  • the downlink signal time difference may be: the time difference between the reception time at the beginning of the downlink subframe i determined by the terminal device receiving the reference signal A and the reception time at the beginning of the downlink subframe j determined by the terminal device receiving the reference signal B, where the reference signal The start point of the downlink subframe i determined by A is closest to the start point of the downlink subframe j determined by the reference signal B.
  • Method 2 The terminal equipment determines the downlink signal time difference according to the downlink timing time difference.
  • the downlink signal time difference may be a reception time difference determined by the terminal device to receive downlink reference signals from two cells.
  • the downlink signal time difference may be: the time difference between the downlink timing of the neighboring cell and the downlink timing of the serving cell, or the time difference between the downlink timing of the serving cell and the downlink timing of the neighboring cell.
  • the downlink signal time difference may be: the time difference between the downlink subframe i of the neighboring cell and the downlink subframe j of the serving cell, or the time difference between the downlink subframe j of the serving cell and the downlink subframe i of the neighboring cell .
  • a network device (such as a serving cell or a positioning management device (such as LMF)) can clearly indicate the reference signal used to measure downlink reception timing, such as the CSI-RS, PRS, TRS, or SSB of a neighboring cell; or, the network device can also If it is not clearly specified, it is determined by the terminal device itself, for example, the SSB accessed by the terminal device in the serving cell, or the terminal device in the SSB of the neighboring cell selects itself according to the signal quality.
  • the reference signal used to measure downlink reception timing such as the CSI-RS, PRS, TRS, or SSB of a neighboring cell.
  • the arrival time of the subframe may be based on the arrival time of the start of the subframe (for example, the start of the first OFDM symbol).
  • the downlink signal time difference may be: the time difference between the arrival time of the start of the downlink subframe i of the neighboring cell and the arrival time of the start of the downlink subframe j of the serving cell.
  • the terminal device may select the arrival time of the first path in the received signal as the arrival time of the downlink subframe.
  • the downlink signal time difference may be: the time difference between the arrival time of the first path in the reference signal received by the terminal device from the serving cell and the arrival time of the first path in the reference signal received by the terminal device from the neighboring cell.
  • the terminal device may select the determined downlink subframe reception of the multiple multiple beams with the earliest receiving time as the final received beam for measurement in a receiving beam scanning manner.
  • the subframe indexes i and j may be equal.
  • the reception time difference between the starting point of the downlink subframe i determined by the reference signal A and the starting point of the downlink subframe j determined by the reference signal B is selected.
  • the downlink signal time difference may be: the receiving time of the terminal device at the beginning of the downlink subframe i determined by the reference signal A from the serving cell and the receiving time at the beginning of the downlink subframe j determined by the terminal device receiving the reference signal B from the neighboring cell
  • the starting point of the downlink subframe i determined by the reference signal A is the closest to the starting point of the downlink subframe j determined by the reference signal B.
  • step 630 the manner in which the terminal device obtains the uplink TA of the neighboring cell based on the time difference between the uplink TA and the downlink signal of the serving cell will be described below.
  • the uplink TA of the neighboring cell can be obtained in any of the following ways.
  • the uplink TA of the neighboring cell is: the uplink TA of the serving cell + the arrival time of the neighboring cell downlink reference signal subframe i-the arrival time of the serving cell downlink reference signal subframe i.
  • the uplink TA of the neighboring cell is: the uplink TA of the serving cell + the arrival time of the downlink reference signal subframe i of the neighboring cell-the arrival time of the downlink reference signal subframe j of the serving cell.
  • the uplink TA of the neighboring cell is: the uplink TA of the serving cell + the arrival time of the start of the downlink reference signal subframe i of the neighboring cell-the arrival time of the start of the downlink reference signal subframe j of the serving cell.
  • i and j can be the closest starting point of the subframe.
  • the uplink TA of the neighboring cell is: the UE RX-TX time difference of the serving cell + the arrival time of the neighboring cell downlink reference signal subframe i-the arrival time of the serving cell downlink reference signal subframe i.
  • the uplink TA of the neighboring cell is: the UE RX-TX time difference of the serving cell + the arrival time of the neighboring cell downlink reference signal subframe i-the arrival time of the serving cell downlink reference signal subframe j.
  • the uplink TA of the neighboring cell is: the UE RX-TX time difference of the serving cell + the arrival time of the neighboring cell downlink reference signal subframe i-the arrival time of the serving cell downlink reference signal subframe j.
  • i and j can be the closest starting point of the subframe.
  • Manner 7 The uplink TA of the neighboring cell is: UE RX-TX time difference (RS level) + the arrival time of the neighboring cell downlink reference signal subframe i-the arrival time of the serving cell downlink reference signal subframe i.
  • Manner 8 The uplink TA of the neighboring cell is: UE RX-TX time difference (RS level) + the arrival time of the neighboring cell's downlink reference signal subframe i-the arrival time of the serving cell's downlink reference signal subframe j.
  • the uplink TA of the neighboring cell is: UE RX-TX time difference (RS level) + the arrival time of the neighboring cell downlink reference signal subframe i-the arrival time of the serving cell downlink reference signal subframe j.
  • i and j can be the closest starting point of the subframe.
  • the uplink TA of the serving cell in each of the above methods can be obtained by the terminal device through any of the methods listed above for obtaining the uplink TA of the serving cell, or it can be replaced by the uplink TA of a neighboring cell.
  • the target cell for the terminal device to perform uplink transmission can be obtained by the terminal device through any of the methods listed above for obtaining the uplink TA of the serving cell, or it can be replaced by the uplink TA of a neighboring cell.
  • the terminal device may also use the TA of the neighboring cell obtained in step 630 to determine the uplink timing of other cells.
  • the time difference between the downlink signal of the neighboring cell and other cells can be additionally added. I will not repeat them here.
  • the terminal device may calculate the uplink TA of the neighboring cell according to the time difference between the uplink TA of the serving cell and the downlink signal.
  • the uplink signal sent by the terminal device may be received by multiple neighboring cells, or the terminal device is not sure which neighbor cell's uplink TA shall prevail to send the uplink signal.
  • the terminal device is not sure which neighbor cell's uplink TA shall prevail.
  • Case 1 The uplink transmission configured by the network device (such as the serving cell or the positioning management device (such as LMF)) to the terminal device is not associated with a specific neighboring cell;
  • Case 2 The uplink transmission configured by the network device (such as a serving cell or a positioning management device (such as LMF)) to the terminal device is associated with multiple neighboring cells.
  • the network device such as a serving cell or a positioning management device (such as LMF)
  • the embodiments of the present application provide multiple selection methods to determine which neighboring cell uplink TA of the terminal device should be used as the criterion to send the uplink signal.
  • the uplink signal that the terminal device is ready to send or is about to send contains the downlink signal of the neighboring cell or is associated with the neighbor cell ID, as a downlink signal for spatial filtering, path loss or explicit TA reference Source, the uplink signal is based on the uplink TA of the neighboring cell.
  • the terminal device is ready to send or associates the uplink signal to be sent with multiple neighboring cells or reference signals of multiple neighboring cells, and the terminal device can determine which neighboring cell is used for uplink by any of the following methods TA shall prevail.
  • the terminal equipment can directly configure the priority of each cell according to the network equipment (such as positioning management equipment (such as LMF)).
  • the order of the cell ID list is positively or negatively correlated with the priority to determine which neighboring cell uplink TA Prevail.
  • the uplink TA of the cell with the highest priority may prevail; for another example, the uplink TA of the cell with the lowest priority may prevail.
  • Manner 2 The terminal equipment measures the downlink reference signals of these cells, and selects according to the measurement results, for example, selecting the largest RSRP, or selecting the smallest RSRP, and so on.
  • Manner 3 The uplink TA of the cell selected by the terminal equipment is closest to the uplink TA of the serving cell.
  • the terminal device itself can determine the uplink TA of the neighboring cell when sending the uplink signal to the neighboring cell by acquiring the uplink TA of the serving cell and the time difference of the downlink signal, thereby not only making the terminal device accurate and flexible
  • the uplink signal is sent to the neighboring cell to improve the communication performance and efficiency of the terminal equipment and the neighboring cell, and the problem of interference to the neighboring cell caused by the uplink signal sent by the terminal equipment can be avoided.
  • FIG. 13 is a schematic flowchart of a communication method 700 according to an embodiment of this application.
  • the method 700 includes the following steps.
  • the network device obtains the uplink TA of the neighboring cell. In other words, the network device obtains the uplink TA of the terminal device that sends the uplink signal to the neighboring cell.
  • a neighboring cell can also be understood as a neighboring cell, that is, an uplink TA that the network device estimates that the terminal device sends uplink signals to the neighboring cell, and can also be understood as the uplink TA that the network device estimates that the terminal device sends uplink signals to the neighboring cell.
  • the neighboring cells are uniformly used. It should be understood that all the “neighbor cells” in the embodiments of the present application can be replaced by "neighbor base stations”.
  • the uplink signal reference may be made to the description in method 600, which is not repeated here.
  • the upper signal below can be replaced with SRS, and the following is without loss of generality and is uniformly represented by an uplink signal.
  • the network device can be a serving cell, or, it can also be a positioning management device (such as LMF).
  • LMF positioning management device
  • the network device After the network device obtains the uplink TA of the neighboring cell, it can configure the uplink signal sending configuration for the terminal device.
  • the network device configures an uplink signal sending configuration for the terminal device.
  • the network device can configure the terminal device with configuration information related to sending uplink signals, for example, the LMF or the serving cell can configure the terminal device with configuration information related to sending uplink signals.
  • the above line signal is SRS as an example
  • the positioning management device is LMF as an example. Two possible configuration methods are introduced:
  • LMF configures SRS (such as through LPP or NRPP protocol) to terminal equipment;
  • the serving cell configures the SRS to the terminal device.
  • the network device may configure a positioning dedicated uplink reference signal for the terminal device, for example, a set of SRS, and the use is set to positioning (positioning).
  • a positioning dedicated uplink reference signal for the terminal device, for example, a set of SRS, and the use is set to positioning (positioning).
  • the uplink reference signal or uplink reference signal set may include the following features:
  • the signal of a certain neighboring cell can be used as a downlink reference signal or beam indicator for calculating path loss.
  • the SRS in the SRS set may use the CSI-RS or PRS of the neighboring cell as the beam indication, and the terminal device needs to determine the uplink transmission beam of the SRS according to the downlink reference signal corresponding to the beam indication.
  • the SRS in the SRS set may use the CSI-RS or PRS of the neighboring cell as the power indicator, and the terminal device needs to calculate the path loss according to the received power of the downlink reference signal corresponding to the power indicator to determine the uplink transmission power of the SRS.
  • the reference signal may not be sent according to the uplink timing of the cell.
  • the uplink TA is different from the uplink TA of the serving cell, and the specific uplink TA can be determined in the manner in the embodiment of the present application.
  • a resource set can share one uplink TA, or each resource can have its own TA.
  • a resource set can share a downlink timing reference signal (specified by a network device or determined by other means), or each resource can have its own downlink timing reference signal.
  • the network device may also configure multiple TAs for neighboring cells (for example, each neighboring cell), resources, resource sets, or neighboring cell sets (for example, neighboring cell sets), and then specify a downlink signal Resource, the terminal device measures the designated downlink signal resource, and determines which TA to use according to the measurement result (such as RSRP, SINR, etc.).
  • the mapping between specific measurement results and TA can be configured by a positioning management device such as LMF.
  • the network device After configuring the sending configuration of the uplink signal for the terminal device, the network device sends the configuration information to the terminal device.
  • the network device sends configuration information to the terminal device.
  • the terminal device can send an uplink signal according to the configuration information.
  • the configuration information includes: information related to TA and some configuration information related to uplink signals (for example, SRS configuration information).
  • the information related to TA includes the following two situations.
  • the information related to the TA may include the association relationship of the TA.
  • the network device can configure the TA corresponding to the uplink signal resource or the uplink signal resource set through configuration information (for example, NR positioning protocol (NR Positioning Protocol, NRPP) signaling, RRC signaling) To the terminal equipment.
  • configuration information for example, NR positioning protocol (NR Positioning Protocol, NRPP) signaling, RRC signaling
  • the network device can send the association relationship related to the TA to the terminal device (for example, through step 7214 shown in FIG. 15 or step 7223 shown in FIG. 16), and then the terminal device is based on the association of the TA Relationship, determine the uplink TA that sends the uplink signal.
  • the association relationship of the TA may also be pre-configured, for example, a network device or protocol pre-specified, and the terminal device may pre-store the association relationship of the TA.
  • the association relationship of TAs can be in any of the following forms: one resource corresponds to one TA, multiple resources corresponds to one TA, one resource set corresponds to one TA, multiple resource sets corresponds to one TA, and one neighbor cell ID or neighbor cell ID corresponds to one TA, multiple neighbor cell IDs or neighbor cell IDs (or neighbor cell ID sets or neighbor cell ID sets) correspond to one TA.
  • the terminal device may determine the uplink TA that sends the corresponding uplink signal according to the association relationship of the TA, for example, the resource identifier and the association relationship of the TA.
  • the TA-related information may include the uplink TA that the terminal device sends a signal.
  • the network device may notify the terminal device of the uplink TA for sending the uplink signal through signaling (for example, NRPP signaling, RRC signaling).
  • signaling for example, NRPP signaling, RRC signaling.
  • case 1 and case 2 may exist independently or at the same time, which is not limited.
  • the network device sends the cell ID to the terminal device, and the terminal device can determine which cells to send uplink signals (for example, send SRS) according to the cell ID.
  • the terminal device can determine which cells to send uplink signals (for example, send SRS) according to the cell ID.
  • the configuration information may also include downlink subframe timing information.
  • downlink subframe timing please refer to the description in method 600, which is not repeated here.
  • the LMF may send a measurement request message to the neighboring cell.
  • the LMF sends a measurement request message to the neighboring cell.
  • LMF can request the serving cell, one or more neighboring cells through signaling (such as NR positioning protocol A (NR positioning protocol A, NRPPa) signaling, Slm interface interacting with LMU, or NR SLm interface (NR-SLm), etc.) Measure uplink signals sent by terminal equipment with other related measurement entities.
  • signaling such as NR positioning protocol A (NR positioning protocol A, NRPPa) signaling, Slm interface interacting with LMU, or NR SLm interface (NR-SLm), etc.
  • the above line signal is SRS as an example.
  • the LMF can pass the SRS configuration information in step 720 to the relevant measurement entity. That is, the measurement request message can carry the SRS configuration information. In other words, the SRS configuration information can be passed through
  • the measurement request message sent by the LMF informs the terminal device, which can further save signaling overhead.
  • the terminal device sends an uplink signal to a neighboring cell.
  • the terminal device After receiving the configuration information of the uplink signal, the terminal device can send the uplink signal to one or more neighboring cells.
  • the terminal device may also send an uplink signal to the serving cell.
  • FIG. 13 only shows that the terminal device sends an uplink signal to a neighboring cell.
  • the terminal device determines the uplink TA according to the received configuration information (such as the SRS configuration), and sends the uplink signal based on the timing of the uplink TA and the downlink subframe.
  • the received configuration information such as the SRS configuration
  • the terminal device may determine the downlink subframe timing based on any of the following methods.
  • Manner 1 The terminal device determines the timing of the downlink subframe based on the downlink signal
  • the terminal device determines the downlink subframe timing based on the frame timing information.
  • the timing information for the terminal device to send the uplink signal may be determined according to the beam indication configured by the network device (such as a base station or LMF) to indicate the uplink signal, and/or the terminal device sends the uplink signal
  • the timing information of may be determined according to the downlink timing information determined by the downlink signal for path loss calculation.
  • the uplink TA for sending the uplink signal may be, for example, (N TA +N TA, offset ) T C.
  • TA represents the TA when the terminal device sends the uplink signal
  • N TA represents the TA configured by the serving cell or LMF
  • N TA,offset represents a frequency-related quantity, which may be specified by high-level signaling. Table 1 above shows a possible value of N TA,offset behaveing.
  • the neighboring cell measures the arrival time of the uplink signal sent by the terminal device, and reports the measurement result to the LMF.
  • the neighboring cell measures the arrival time of the uplink signal sent by the terminal device, such as recording the arrival time of the uplink reference signal (or taking an absolute time as an absolute time). The time difference of the reference point).
  • the serving cell, neighboring cells, and other related measurement entities may all measure the arrival time of the uplink signal sent by the terminal device, and report the measurement result to the LMF.
  • FIG. 13 only shows that the neighboring cell measures the arrival time of the uplink signal sent by the terminal device and reports the measurement result to the LMF.
  • the LMF may determine the location of the terminal device based on the reported measurement result.
  • the LMF can determine the location of the terminal device according to the measurement results reported by the serving cell, neighboring cells, and other related measurement entities. For example, the serving cell, neighboring cells, and other related measurement entities record the uplink signal arrival time (or the time difference with a certain absolute time as a reference point), and then summarize the measurement results to the LMF. The LMF reports the terminal based on the measurement results, cell location, and other information. The device is positioned.
  • the embodiment of the present application does not limit the manner in which the LMF determines the location of the terminal device, and any manner that enables the LMF to determine the location of the terminal device according to the reported measurement result falls within the protection scope of the embodiment of the present application.
  • the network device can obtain the uplink TA of the neighboring cell in any of the following ways.
  • Manner 1 The network device obtains the initial position of the terminal device, and obtains the uplink TA of the neighboring cell according to the initial position of the terminal device. For example, the network device estimates the uplink TA of the neighboring cell based on the distance between the terminal device and the neighboring cell and the speed of the transmission signal.
  • the network device may be a serving cell or LMF, for example. That is, the serving cell or LMF can obtain the uplink TA information (for example, uplink timing advance difference or absolute uplink timing advance) of the uplink signal sent by the terminal device to each neighboring cell, LMU, etc., through the initial position of the terminal device.
  • the serving cell or LMF can obtain the uplink TA information (for example, uplink timing advance difference or absolute uplink timing advance) of the uplink signal sent by the terminal device to each neighboring cell, LMU, etc., through the initial position of the terminal device.
  • the network device can obtain the initial position of the terminal device or the rough transmission delay through any of the following methods.
  • Method A The terminal device or the network device obtains the position of the terminal device (such as the previous position) or the initial position with lower accuracy by positioning means.
  • the terminal device locates itself through the global positioning system (GPS), and then reports the GPS positioning result to the network device, so that the network device obtains the location of the terminal device according to the GPS positioning result reported by the terminal device.
  • GPS global positioning system
  • the network device obtains the rough location of the terminal device by means of enhanced cell-ID (E-CID).
  • E-CID enhanced cell-ID
  • Method B The terminal device reports the beam measurement result of the neighboring cell to the LMF, and the LMF uses the reported beam measurement result to roughly determine the location of the terminal device by combining the position of the neighboring cell and the beam space orientation.
  • the terminal device sends a preamble to the neighboring cell, and the network device obtains the uplink TA of the neighboring cell.
  • the serving cell or the positioning management device can trigger the terminal device to send a random access signal to the neighboring cell.
  • the serving cell or the positioning management device triggers the random access procedure for neighboring cells as follows:
  • a network device (such as a serving cell or a positioning management device) can send a random access resource request (such as through NRPPa) to a neighboring cell.
  • the request message includes, but is not limited to: the downlink reference signal of the neighboring cell corresponding to the random access resource ( For example, SSB or CSI-RS of neighboring cells, random access preamble length, reference signal strength threshold and other information.
  • the neighboring cell can provide random access resources (for example, through NRPPa) by sending a random access resource response to the network device.
  • the response message includes, but is not limited to: downlink reference signals that can be used for random access requests, and the corresponding random access resources. Access preamble, random access opportunity, etc.
  • the network equipment configures the terminal equipment to send random access preambles to neighboring cells.
  • the network equipment configures the random access configuration of the neighboring cell through signaling (such as NRPP), including the downlink reference signal of the neighboring cell corresponding to the random access resource (such as the SSB or CSI-RS of the neighboring cell), random access preamble length, and reference
  • the signal strength threshold and other information are sent to the terminal equipment.
  • the network device can additionally configure a sending interval for the terminal device, and the terminal device can switch the frequency, subcarrier interval, etc. within this interval.
  • the positioning management device may request the serving cell to complete the random access configuration.
  • the positioning management device sends a request for the terminal device to send a random access preamble to the serving cell, and provides the random access configuration information described above.
  • the serving cell then configures the information to the terminal device through RRC, etc., and triggers the terminal device to send a random access preamble (for example, through the PDCCH order).
  • the serving cell can also send a response to the positioning management device to inform that the random access preamble has been sent.
  • the terminal device sends a random access preamble to the neighboring cell according to the configuration.
  • the terminal device can send a response to the network device after sending the preamble.
  • the network device obtains the uplink TA of the neighboring cell from the neighboring cell.
  • the network device can determine the uplink TA of the neighboring cell by using the uplink TA of the serving cell and the time difference of the downlink signal in the method 600. For example, the terminal device may report the uplink TA and downlink signal time difference of the serving cell to the network device, and the network device determines the uplink TA of the neighboring cell based on the uplink TA and downlink signal time difference of the serving cell.
  • the network device can obtain the uplink TA of the neighboring cell through any of the above methods.
  • the above line signal is SRS as an example, and the above two possible configurations are introduced.
  • LMF configures SRS (such as through LPP or NR-PP protocol) to terminal equipment.
  • the serving cell (or the neighboring cell where the terminal device performs uplink transmission) provides the resource configuration of the SRS, and the LMF configures the SRS (for example, through the LPP or NR-PP protocol) to the terminal device.
  • configuration information such as uplink TA, downlink subframe timing, power control reference signal, or beam reference signal for sending the SRS may be included in the resource configuration of the SRS provided by the serving cell, or may be specified by the LMF.
  • Figure 15 includes the following steps.
  • the LMF requests SRS resources from the serving cell.
  • the LMF can request SRS resources from the serving cell, and the LMF can also request SRS resources from other cells, such as a cell that provides reference data, or a target cell for uplink transmission by a terminal device.
  • LMF can request SRS resources through the NRPPa protocol.
  • the serving cell can determine the resource configuration of the SRS according to the request of the LMF.
  • the serving cell determines the resource used for the terminal device to send the SRS.
  • the configuration of the SRS resource may include one or more of the following information: the identification of the SRS resource, the number of ports of the SRS resource, the PT-RS port number associated with the SRS resource, the SRS resource comb configuration information, and sequence cyclic shift , SRS resource start symbol index, SRS resource continuous symbol number and repetition factor, SRS resource start resource block RB index, SRS resource frequency hopping configuration information, SRS bandwidth, SRS resource sequence group hopping and sequence hopping, SRS resource Periodic configuration, or spatial filtering information of SRS resources, etc.
  • FIG. 15 only shows the resources determined by the serving cell for the terminal device to send SRS, and this application is not limited to this. For example, it may also be used for determining a neighboring cell (such as a neighboring cell for uplink transmission by a terminal device). The resource for sending SRS to the terminal device.
  • the serving cell After the serving cell determines the resource configuration of the SRS, it can inform the LMF.
  • the serving cell sends a response to feed back the SRS resource configuration to the LMF.
  • the serving cell may also inform the LMF of the TA and/or neighboring cell (or neighboring cell) information associated with each uplink signal resource or each uplink signal resource set.
  • the neighboring cell (or neighboring cell) information includes, for example, but not limited to: the neighboring cell ID (or neighboring cell ID) associated with the uplink signal, the downlink signal sent by the neighboring cell, or the uplink TA of the neighboring cell, etc.
  • the terminal device may send an SRS to the neighboring cell (or neighboring cell) according to the information of the neighboring cell (or neighboring cell).
  • the LMF After the LMF receives the SRS resource configuration fed back by the serving cell, it can send the SRS resource configuration to the terminal device.
  • the LMF sends the resource configuration of the SRS to the terminal device.
  • the LMF may send the resource configuration of the SRS to the terminal device through the NRPP protocol (for example, NRPP signaling).
  • the NRPP protocol for example, NRPP signaling.
  • the LMF may also configure the TA-related information mentioned in step 730 to the terminal device through the configuration information.
  • the terminal device After receiving the resource configuration of the SRS, the terminal device can send the SRS according to the resource configuration of the SRS. Alternatively, after receiving the resource configuration of the SRS, the terminal device may also send a response to the LMF.
  • the terminal device sends a response to confirm whether the SRS can be sent according to the configuration of the LMF.
  • the terminal device can ignore part of the reference signal and inform the LMF in the response. For example, if the SRS configured by the LMF for positioning conflicts with the PUCCH or PUSCH that the terminal device needs to send, the terminal device may choose not to send the SRS for positioning.
  • step 7215 only shows the case where the terminal device sends a response to the LMF, and this application is not limited to this.
  • the terminal device may directly send the SRS according to the resource configuration of the SRS after receiving the resource configuration of the SRS. .
  • the serving cell configures the SRS to the terminal device.
  • the serving cell determines the SRS resource configuration (such as the SRS resource configuration mentioned in step 7212 above), and the serving cell configures the SRS to the terminal device (may be used for positioning SRS resource and resource collection form).
  • Figure 16 includes the following steps.
  • the LMF may request SRS resources from the serving cell, and the LMF may also request SRS resources from other cells, such as a cell that provides reference data, or a target cell for uplink transmission by a terminal device.
  • LMF can request SRS resources through the NRPPa protocol.
  • the LMF can provide the serving cell with related information about the neighboring cell, such as the neighboring cell's uplink TA, downlink subframe timing, power control reference signal, or beam reference signal, etc., to assist the serving cell in configuring SRS .
  • related information about the neighboring cell such as the neighboring cell's uplink TA, downlink subframe timing, power control reference signal, or beam reference signal, etc.
  • the serving cell can determine the resource configuration of the SRS according to the request of the LMF.
  • the serving cell determines a resource for the terminal device to send the SRS.
  • Step 7222 may refer to step 7212, which will not be repeated here.
  • the serving cell allocates SRS resources to the terminal device.
  • the resource configuration of the SRS may be configured to the terminal device in the form of SRS resources and resource collections positioned for use.
  • the beam indication of the SRS and the reference signal used for power calculation may be configured as the reference signal of the non-serving cell, or may also be configured as the reference signal of the serving cell.
  • the LMF may notify the serving cell of the SRS transmission advance (such as the uplink TA of the neighboring cell) sent by the terminal device to the neighboring cell.
  • the LMF may notify the serving cell through NRPP signaling.
  • the serving cell can be configured accordingly based on the uplink TA.
  • the serving cell configures the SRS
  • it reports the SRS configuration to the LMF
  • the LMF distributes it to the relevant cells and measurement units.
  • the serving cell sends a response and reports the SRS resource configuration to the LMF.
  • the serving cell reports the relevant configuration in step 7223 to the LMF.
  • the serving cell may also notify the LMF of the association relationship of the TA mentioned in step 730 (such as the TA associated with each uplink signal resource or each uplink signal resource set).
  • the serving cell may also inform the LMF of neighboring cell information.
  • the neighbor cell information includes, but is not limited to, the neighbor cell ID (or neighbor cell ID) associated with the uplink signal, the downlink signal sent by the neighbor cell, or the uplink TA of the neighbor cell, for example.
  • the terminal device may send an SRS to the neighboring cell (or neighboring cell) according to the information of the neighboring cell (or neighboring cell).
  • the serving cell can first deliver the SRS configuration to the terminal device, and the LMF will inform the LMF of the SRS configuration when requested.
  • the uplink TA configured by the serving cell or LMF may be configured with a quantified TA.
  • the quantification please refer to the description in the method 600, which will not be repeated here.
  • the terminal device After the terminal device receives the uplink TA configured by the serving cell or LMF, it can determine the offset according to the frequency band before sending it.
  • the uplink TA for sending uplink signals can be determined by the following formula:
  • T TA (N TA +N TA, offset )T C
  • T TA represents the TA when the terminal device sends SRS
  • N TA represents the TA configured by the serving cell or LMF
  • N TA, offset represents a frequency-related quantity, which may be specified by high-level signaling.
  • Table 1 above shows a possible value of N TA, offset .
  • network equipment such as base stations or positioning management equipment
  • the offset table used in the TA of the serving cell may be different from the offset table used in confirming the TA of the serving cell.
  • the terminal device may determine the downlink subframe timing based on any of the following methods.
  • Manner 1 The terminal device determines the downlink subframe timing based on the downlink signal.
  • the network device can designate the downlink signal of the serving cell (for example, PCell) and/or neighboring cells as the downlink subframe timing (for example, it can also be called the frame timing reference). In other words, the network device can inform the terminal device to serve the cell and/or The downlink signal of the neighboring cell is used as the downlink subframe timing.
  • the terminal device obtains the downlink subframe timing by determining the subframe boundary of the downlink signal (for example, downlink reference signal).
  • the uplink timing information can be confirmed by the acquired downlink subframe timing, that is, the terminal device can determine the time to send the uplink signal based on the downlink subframe timing.
  • the network device may configure a corresponding downlink signal for the reference signal resource or the reference signal resource set, so that the terminal device can obtain the downlink timing through the subframe boundary of the downlink signal corresponding to the reference signal resource or the reference signal resource set.
  • the network device may also associate a corresponding downlink signal for a neighboring cell or LMU, so that the terminal device can obtain the downlink timing through the subframe boundary of the associated downlink signal of the neighboring cell or LMU.
  • the terminal device determines the downlink subframe timing based on the frame timing information.
  • the network device may configure the terminal device with uplink transmission frame timing information, for example, a cell, an uplink reference signal resource, or an uplink reference signal resource set, etc., and configure a subframe initialization time (SFN initialization time).
  • the network device can also configure the time difference relative to the timing of the serving cell or a certain reference cell, such as the initial time difference of the subframe, the frame timing offset, and so on.
  • the terminal device determines the timing of the downlink subframe in any of the foregoing manners, and then may send an uplink signal according to the determined timing of the downlink subframe and the uplink TA of the neighboring cell.
  • the network equipment configures the terminal equipment with the uplink TA of the neighboring cell and informs the terminal equipment. This not only enables the terminal equipment to accurately and flexibly send uplink signals to the neighboring cell, and improves the terminal equipment and neighboring cell. The communication performance and efficiency of the cell, and the problem of interference caused by the uplink signal sent by the terminal equipment to the neighboring cell can be avoided.
  • the methods and operations implemented by terminal devices can also be implemented by components (such as chips or circuits) that can be used in terminal devices
  • the methods and operations implemented by network devices can also be implemented by It can be implemented by components (such as chips or circuits) of network devices.
  • the size of the sequence numbers of the foregoing processes does not mean the order of execution, and the execution order of the processes should be determined by their functions and internal logic, and should not correspond to the implementation process of the embodiments of this application. Constitute any limitation.
  • each network element such as a transmitting end device or a receiving end device, includes hardware structures and/or software modules corresponding to each function in order to realize the above functions.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • the embodiments of the present application can divide the transmitter device or the receiver device into functional modules according to the above method examples.
  • each functional module can be divided corresponding to each function, or two or more functions can be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software functional modules. It should be noted that the division of modules in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation. The following is an example of dividing each function module corresponding to each function.
  • FIG. 17 is a schematic block diagram of a communication device 1700 according to an embodiment of the application.
  • the communication device 1700 includes a communication unit 1710 and a processing unit 1720.
  • the communication device 1700 may implement the steps or processes performed by the terminal device corresponding to the above method embodiment, for example, it may be a terminal device, or a chip or circuit configured in the terminal device.
  • the communication unit 1710 is configured to perform the transceiving-related operations on the terminal device side in the above method embodiment
  • the processing unit 1720 is configured to perform the processing related operations on the terminal device in the above method embodiment.
  • the processing unit 1720 is used to: obtain the uplink timing advance TA of the serving cell; obtain the downlink signal time difference between the serving cell station and the neighboring cell; and based on the uplink TA and downlink of the serving cell The signal time difference is used to obtain the uplink TA of the neighboring cell; the communication unit 1710 is configured to send an uplink signal to the neighboring cell based on the downlink subframe timing and the uplink TA of the neighboring cell.
  • the uplink TA of the neighboring cell is the sum of the time difference between the uplink TA of the serving cell and the downlink signal.
  • the communication unit 1710 is configured to: receive the timing advance group TAG from the network device, where the TAG includes the uplink TA of the serving cell; and the processing unit 1720 is configured to obtain the uplink TA of the serving cell from the TAG.
  • the uplink TA of the serving cell is: the time difference between the time when the communication device 1700 receives the downlink subframe i of the serving cell and the time when the communication device 1700 sends the uplink subframe i to the serving cell,
  • i is an integer greater than 0 or equal to 0.
  • the uplink TA of the serving cell is: the reception time of the downlink subframe j determined by the communication device 1700 receiving the downlink signal of the serving cell and the uplink subframe determined by the communication device 1700 sending the uplink signal to the serving cell The time difference between the sending times of j, where j is an integer greater than or equal to 0.
  • the uplink TA of the serving cell is: the receiving time of the communication device 1700 receiving the downlink subframe k of the serving cell and the sending time of the uplink subframe k determined by the communication device 1700 sending the uplink signal to the serving cell Or, the time difference between the receiving time of the downlink subframe k determined by the communication device 1700 receiving the downlink signal and the sending time of sending the uplink subframe k to the serving cell; where k is an integer greater than or equal to 0.
  • the communication unit 1710 is configured to: send an uplink signal to the neighboring cell based on the timing of the downlink subframe, the uplink TA of the neighboring cell, and the timing deviation of the cell, where the timing deviation of the cell is the serving cell Subframe timing deviation from neighboring cells.
  • the downlink subframe timing is any one of the following: the downlink subframe timing of the primary cell, the downlink subframe timing of the serving cell, or the downlink subframe timing of the neighboring cell.
  • the processing unit 1720 is configured to: obtain the uplink TA of a target neighboring cell, where the neighboring cell includes multiple neighboring cells, and the target neighboring cell is one of the multiple neighboring cells.
  • the communication unit 1710 is configured to: send uplink signals to multiple neighboring cells based on the downlink subframe timing and the uplink TA of the target neighboring cell; wherein the target neighboring cell includes: the uplink TA and the serving cell of the multiple neighboring cells The neighboring cell with the closest uplink TA; or, the neighboring cell with the highest priority among multiple neighboring cells, or the neighboring cell with the largest reference signal received power RSRP among multiple neighboring cells; or, the lowest priority among multiple neighboring cells The neighboring cell, or the neighboring cell with the smallest RSRP among multiple neighboring cells.
  • the processing unit 1720 is configured to: perform modulo and/or quantization processing on the uplink TA of the neighboring cell.
  • the communication device 1700 may implement the steps or processes executed by the terminal device in the method 600 according to the embodiment of the present application.
  • the communication device 1700 may include a unit for executing the method executed by the terminal device in the method 600 in FIG. 6 .
  • each unit in the communication device 1700 and other operations and/or functions described above are used to implement the corresponding process of the method 600 in FIG. 6.
  • the processing unit 1720 is used to: obtain the uplink timing advance TA of the neighboring cell; the communication unit 1710 is used to: receive the configuration of the uplink reference signal from the positioning management device or the serving cell Information, the uplink reference signal is a reference signal sent by the communication device 1700 to a neighboring cell; based on the downlink subframe timing and the uplink TA of the neighboring cell, the uplink reference signal indicated by the configuration information of the uplink reference signal is sent to the neighboring cell.
  • the processing unit 1720 is configured to: pre-store one or more of the following information: the corresponding relationship between the uplink reference signal identifier and the uplink TA of the neighboring cell; or, the uplink reference signal set identifier and The corresponding relationship between the uplink TA of the neighboring cell; or, the corresponding relationship between the neighboring cell identifier and the neighboring cell's uplink TA; the corresponding relationship between the set of multiple neighboring cell identifiers and the upstream TA of the neighboring cell.
  • the communication unit 1710 is configured to: receive one or more of the following information: the corresponding relationship between the uplink reference signal identifier and the uplink TA of the neighboring cell; or, the uplink reference signal set identifier and the neighbor The corresponding relationship between the uplink TA of the cell; or the corresponding relationship between the neighbor cell identifier and the neighbor cell's uplink TA; the corresponding relationship between the set of multiple neighbor cell identifiers and the uplink TA of the neighbor cell.
  • the processing unit 1720 is configured to: obtain the uplink TA of the neighboring cell according to the uplink reference signal sent to the neighboring cell and the correspondence between the uplink reference signal identifier and the uplink TA of the neighboring cell; or, Obtain the uplink TA of the neighboring cell according to the set to which the uplink reference signal sent to the neighboring cell belongs, and the correspondence between the uplink reference signal set identifier and the uplink TA of the neighboring cell; or, the neighboring cell and the neighboring cell sent according to the uplink reference signal The corresponding relationship between the identifier and the uplink TA of the neighboring cell is obtained, and the uplink TA of the neighboring cell is obtained; or, according to the set of the neighboring cell sent by the uplink reference signal, and the corresponding relationship between the set of multiple neighboring cell identifiers and the uplink TA of the neighboring cell, Obtain the uplink TA of the neighboring cell.
  • the communication unit 1710 is configured to: obtain the timing of the downlink subframe; wherein, obtaining the timing of the downlink subframe specifically includes: receiving information about the timing of the downlink subframe; or, receiving a downlink reference signal based on The time of the downlink reference signal acquires the timing of the downlink subframe, and the downlink reference signal is received from the serving cell or neighboring cell.
  • the downlink subframe timing is any one of the following: the downlink subframe timing of the primary cell, the downlink subframe timing of the serving cell, or the downlink subframe timing of the neighboring cell.
  • the uplink reference signal is a sounding reference signal SRS used for positioning
  • the configuration information of the uplink reference signal includes one or more of the following information: the identifier of the SRS resource, the number of ports of the SRS resource , SRS resource associated phase tracking reference signal PT-RS port number, SRS resource comb configuration information and sequence cyclic shift, SRS resource start symbol index, SRS resource continuous symbol number and repetition factor, SRS resource start resource block RB index, SRS resource frequency hopping configuration information, SRS bandwidth, group hopping and sequence hopping of SRS resource sequence, periodic configuration information of SRS resource, and spatial filtering information of SRS resource.
  • the communication unit 1710 is configured to: receive an identifier of a neighboring cell from a positioning management device or a serving cell.
  • the communication device 1700 may implement steps or processes executed by the terminal device in the method 700 corresponding to the embodiment of the present application, and the communication device 1700 may include a unit for executing the method executed by the terminal device in the method 700. In addition, each unit in the communication device 1700 and other operations and/or functions described above are used to implement the corresponding procedures of the method 700, respectively.
  • the communication unit 1710 in the communication device 1700 may also be an input/output interface.
  • the communication device 1700 can implement actions corresponding to the cell (such as a serving cell or a neighboring cell) in the above method embodiment.
  • the communication device 1700 can be called a base station or a network. equipment. Take a network device as an example, for example, it may be a network device, or a chip or circuit configured in the network device.
  • the communication unit 1710 is configured to perform the transceiving-related operations on the cell side in the above method embodiment
  • the processing unit 1720 is configured to perform the processing related operations on the cell side in the above method embodiment.
  • the communication unit 1710 is used to: send configuration information of the uplink reference signal to the positioning management device; the processing unit 1720 is used to: determine the uplink timing advance TA of the neighboring cell; the communication unit 1710 is used to: send the indication information of the uplink TA of the neighboring cell to the terminal equipment; receive the uplink reference signal indicated by the configuration information of the uplink reference signal from the terminal equipment.
  • the communication unit 1710 is configured to: send one or more of the following information to the terminal device: the corresponding relationship between the uplink reference signal identifier and the uplink TA of the neighboring cell; or, the uplink reference signal set The corresponding relationship between the identifier and the uplink TA of the neighboring cell; or the corresponding relationship between the neighboring cell identifier and the uplink TA of the neighboring cell; or the corresponding relationship between the set of multiple neighboring cell identifiers and the uplink TA of the neighboring cell.
  • the communication unit 1710 is configured to send information about the timing of the downlink subframe to the terminal device, the downlink subframe timing being any one of the following: the downlink subframe timing of the primary cell, the downlink subframe timing of the serving cell Frame timing, or downlink subframe timing of neighboring cells.
  • the communication unit 1710 is configured to receive a measurement request message from the positioning management device, and the measurement request message is used to request the serving cell to report the time of receiving the uplink reference signal.
  • the processing unit 1720 is configured to: obtain the location information of the terminal device, and determine the uplink TA of the neighboring cell according to the location information of the terminal device; or, determine based on the terminal device sending the preamble information to the neighboring cell The uplink TA of the neighboring cell; or, the time difference between the uplink TA and the downlink signal of the serving cell is obtained, and the uplink TA of the neighboring cell is determined according to the time difference between the uplink TA and the downlink signal of the serving cell.
  • the downlink signal time difference is the uplink TA of the serving cell and the neighbor The time difference of the downlink signal of the uplink TA of the cell.
  • the processing unit 1720 is configured to: obtain the location information of the terminal device by means of GPS or E-CID; or, obtain the location information of the terminal device based on the beam measurement result of the neighboring cell reported by the terminal device .
  • the uplink reference signal is a sounding reference signal SRS used for positioning
  • the configuration information of the uplink reference signal includes one or more of the following information: the identifier of the SRS resource, the number of ports of the SRS resource , SRS resource associated phase tracking reference signal PT-RS port number, SRS resource comb configuration information and sequence cyclic shift, SRS resource start symbol index, SRS resource continuous symbol number and repetition factor, SRS resource start resource block RB index, SRS resource frequency hopping configuration information, SRS bandwidth, group hopping and sequence hopping of SRS resource sequence, periodic configuration information of SRS resource, and spatial filtering information of SRS resource.
  • the communication unit 1710 is configured to send an identifier of a neighboring cell to the terminal device.
  • the communication device 1700 may implement the steps or processes performed by a cell (such as a serving cell or a neighboring cell) in the method 700 according to an embodiment of the present application, and the communication device 1700 may include a method for performing cell execution in the method 700 Unit.
  • a cell such as a serving cell or a neighboring cell
  • the communication device 1700 may include a method for performing cell execution in the method 700 Unit.
  • each unit in the communication device 1700 and other operations and/or functions described above are used to implement the corresponding procedures of the method 700, respectively.
  • the communication device 1700 can implement actions corresponding to those performed by the positioning management device in the above method embodiments.
  • the communication device 1700 may be called a positioning management device, for example, it may be a positioning management device. Management equipment, or a chip or circuit configured in the positioning management equipment.
  • the communication unit 1710 is configured to perform the transceiving-related operations on the positioning management device side in the above method embodiment
  • the processing unit 1720 is configured to perform the processing related operations on the positioning management device side in the above method embodiment.
  • the processing unit 1720 is used to determine the uplink timing advance TA of the neighboring cell; the communication unit 1710 is used to receive the configuration information of the uplink reference signal from the serving cell of the terminal device,
  • the uplink reference signal is a reference signal sent by the terminal equipment to the neighboring cell; the configuration information of the uplink reference signal and the indication information of the uplink TA of the neighboring cell are sent to the terminal equipment.
  • the communication unit 1710 is configured to: send one or more of the following information to the terminal device: the corresponding relationship between the uplink reference signal identifier and the uplink TA of the neighboring cell; or, the uplink reference signal set The corresponding relationship between the identifier and the uplink TA of the neighboring cell; or the corresponding relationship between the neighboring cell identifier and the uplink TA of the neighboring cell; or the corresponding relationship between the set of multiple neighboring cell identifiers and the uplink TA of the neighboring cell.
  • the communication unit 1710 is configured to send information about the timing of the downlink subframe to the terminal device, the downlink subframe timing being any one of the following: the downlink subframe timing of the primary cell, the downlink subframe timing of the serving cell Frame timing, or downlink subframe timing of neighboring cells.
  • the communication unit 1710 is configured to send a measurement request message to a neighboring cell or a serving cell, and the measurement request message is used to request the neighboring cell or the serving cell to report the time when the uplink reference signal is received.
  • the processing unit 1720 is configured to: obtain the location information of the terminal device, and determine the uplink TA of the neighboring cell according to the location information of the terminal device; or, determine based on the terminal device sending the preamble information to the neighboring cell The uplink TA of the neighboring cell; or, the time difference between the uplink TA and the downlink signal of the serving cell is obtained, and the uplink TA of the neighboring cell is determined according to the time difference between the uplink TA and the downlink signal of the serving cell.
  • the downlink signal time difference is the uplink TA of the serving cell and the neighbor The time difference of the downlink signal of the uplink TA of the cell.
  • the processing unit 1720 is configured to: obtain the location information of the terminal device by means of GPS or E-CID; or, obtain the location information of the terminal device based on the beam measurement result of the neighboring cell reported by the terminal device .
  • the uplink reference signal is a sounding reference signal SRS used for positioning
  • the configuration information of the uplink reference signal includes one or more of the following information: the identifier of the SRS resource, the number of ports of the SRS resource , SRS resource associated phase tracking reference signal PT-RS port number, SRS resource comb configuration information and sequence cyclic shift, SRS resource start symbol index, SRS resource continuous symbol number and repetition factor, SRS resource start resource block RB index, SRS resource frequency hopping configuration information, SRS bandwidth, group hopping and sequence hopping of SRS resource sequence, periodic configuration information of SRS resource, and spatial filtering information of SRS resource.
  • the communication unit 1710 is configured to: send the identification of the neighboring cell to the terminal device
  • the communication device 1700 may implement steps or processes executed by the positioning management device in the method 700 according to the embodiment of the present application, and the communication device 1700 may include a unit for executing the method executed by the positioning management device in the method 700.
  • each unit in the communication device 1700 and other operations and/or functions described above are used to implement the corresponding procedures of the method 700, respectively.
  • processing unit 1720 in the above embodiments may be implemented by a processor or a processor-related circuit
  • the communication device 1700 may be implemented by a transceiver or a transceiver-related circuit.
  • FIG. 18 is a schematic diagram of a communication device 1800 provided by an embodiment of this application.
  • the communication device 1800 includes a processor 1810, a memory 1820, and a transceiver 1830.
  • the memory 1820 stores a program.
  • the processor 1810 is used to execute the program stored in the memory 1820, and executes the program stored in the memory 1820 so that the processor 1810 uses In executing the relevant processing steps in the above method embodiment, the execution of the program stored in the memory 1820 enables the processor 1810 to control the transceiver 1830 to execute the receiving and sending related steps in the above method embodiment.
  • the communication device 1800 is used to execute the actions performed by the terminal device in the above method embodiment.
  • the execution of the program stored in the memory 1820 enables the processor 1810 to execute the above method embodiment.
  • the processing steps on the terminal device side in the middle execute the program stored in the memory 1820, so that the processor 1810 controls the transceiver 1830 to execute the receiving and sending steps on the terminal device side in the above method embodiment.
  • the communication device 1800 is used to execute the actions performed by the positioning management device in the above method embodiment.
  • the execution of the program stored in the memory 1820 enables the processor 1810 to execute the above method.
  • the processing steps on the location management device side in the embodiment execute the program stored in the memory 1820 so that the processor 1810 controls the transceiver 1830 to execute the receiving and sending steps on the location management device side in the above method embodiment.
  • the communication device 1800 is configured to execute the actions performed by the cell in the above method embodiment.
  • the execution of the program stored in the memory 1820 enables the processor 1810 to execute the above method embodiment.
  • the processing steps on the side of Wu Xiaowu execute the programs stored in the memory 1820 so that the processor 1810 controls the transceiver 1830 to perform the receiving and sending steps on the cell side in the above method embodiment.
  • FIG. 19 is a schematic diagram of a communication device 1900 provided by an embodiment of this application.
  • the communication device 1900 may be a terminal device or a chip.
  • the communication device 1900 may be used to perform the actions performed by the terminal device in the foregoing method embodiments.
  • FIG. 19 shows a simplified schematic diagram of the structure of the terminal device. It is easy to understand and easy to illustrate.
  • the terminal device uses a mobile phone as an example.
  • the terminal equipment includes a processor, a memory, a radio frequency circuit, an antenna, and an input and output device.
  • the processor is mainly used to process the communication protocol and communication data, and to control the terminal device, execute the software program, and process the data of the software program.
  • the memory is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of baseband signal and radio frequency signal and the processing of radio frequency signal.
  • the antenna is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, and keyboards, are mainly used to receive data input by users and output data to users. It should be noted that some types of terminal devices may not have input and output devices.
  • the processor When data needs to be sent, the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal to the outside in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data.
  • FIG. 19 only one memory and processor are shown in FIG. 19. In an actual terminal device product, there may be one or more processors and one or more memories.
  • the memory may also be referred to as a storage medium or storage device.
  • the memory may be set independently of the processor, or may be integrated with the processor, which is not limited in the embodiment of the present application.
  • the antenna and radio frequency circuit with the transceiving function can be regarded as the transceiving unit of the terminal device, and the processor with the processing function can be regarded as the processing unit of the terminal device.
  • the terminal device includes a transceiver unit 1910 and a processing unit 1920.
  • the transceiver unit 1910 may also be referred to as a transceiver, a transceiver, a transceiver, and the like.
  • the processing unit 1920 may also be called a processor, a processing board, a processing module, a processing device, and so on.
  • the device for implementing the receiving function in the transceiver unit 1910 can be regarded as the receiving unit, and the device for implementing the sending function in the transceiver unit 1910 as the sending unit, that is, the transceiver unit 1910 includes a receiving unit and a sending unit.
  • the transceiver unit may sometimes be called a transceiver, a transceiver, or a transceiver circuit.
  • the receiving unit may sometimes be called a receiver, receiver, or receiving circuit.
  • the transmitting unit may sometimes be called a transmitter, a transmitter, or a transmitting circuit.
  • the transceiving unit 1910 is also used to perform the sending operation on the terminal device side in step 640 shown in FIG. 6, and/or the transceiving unit 1910 is also used to perform other transceiving steps on the terminal device side.
  • the processing unit 1920 is configured to execute the processing steps on the terminal device side in the embodiment of the present application, for example, step 610 to step 630.
  • the transceiving unit 1910 is further configured to perform the receiving operation on the terminal device side in step 430 shown in FIG. 13, and the transceiving unit 1910 is further configured to perform other transceiving steps on the terminal device side.
  • FIG. 19 is only an example and not a limitation, and the foregoing terminal device including a transceiver unit and a processing unit may not rely on the structure shown in FIG. 19.
  • the chip When the communication device 1900 is a chip, the chip includes a transceiver unit and a processing unit.
  • the transceiver unit may be an input/output circuit or a communication interface;
  • the processing unit may be a processor, microprocessor, or integrated circuit integrated on the chip.
  • the embodiment of the present application also provides a communication device 2000, and the communication device 2000 may be a network device or a chip.
  • the communication device 2000 can be used to perform the actions performed by the cell or the positioning management device in the foregoing method embodiments.
  • FIG. 20 shows a simplified schematic diagram of the base station structure.
  • the base station includes the 2010 part and the 2020 part.
  • the 2010 part is mainly used for receiving and sending radio frequency signals and the conversion between radio frequency signals and baseband signals;
  • the 2020 part is mainly used for baseband processing and controlling the base station.
  • the 2010 part can usually be called a transceiver unit, transceiver, transceiver circuit, or transceiver.
  • the 2020 part is usually the control center of the base station, and may generally be referred to as a processing unit, which is used to control the base station to perform processing operations on the network device side in the foregoing method embodiments.
  • the transceiver unit of the 2010 part can also be called a transceiver or a transceiver, etc. It includes an antenna and a radio frequency unit, and the radio frequency unit is mainly used for radio frequency processing.
  • the device used to implement the receiving function in the 2010 part can be regarded as the receiving unit, and the device used to implement the sending function as the sending unit, that is, the 2010 part includes the receiving unit and the sending unit.
  • the receiving unit may also be called a receiver, a receiver, or a receiving circuit
  • the sending unit may be called a transmitter, a transmitter, or a transmitting circuit, etc.
  • the 2020 part may include one or more single boards, and each single board may include one or more processors and one or more memories.
  • the processor is used to read and execute programs in the memory to implement baseband processing functions and control the base station. If there are multiple boards, the boards can be interconnected to enhance processing capabilities. As an optional implementation, multiple single boards may share one or more processors, or multiple single boards may share one or more memories, or multiple single boards may share one or more processing at the same time. Device.
  • the transceiver unit of part 2010 is used to perform the sending operation on the network device side in step 730 in FIG. 13, and/or the transceiver unit of part 2010 is also used to perform the network device side in the embodiment of this application.
  • the processing unit in the 2020 part is used to execute the processing steps on the network device side in the embodiment of the present application.
  • the transceiver unit of part 2010 is used to perform the cell-side transceiver operations in step 440, step 450, and step 460 in FIG. 13, and/or the transceiver unit of part 2010 is also used to perform this Apply for other receiving and sending steps on the cell side in the embodiment.
  • the processing unit of the 2020 part is used to execute the processing steps in step 410, step 420, and step 460 in FIG. 15.
  • FIG. 20 is only an example and not a limitation, and the foregoing network device including a transceiver unit and a processing unit may not rely on the structure shown in FIG. 20.
  • the chip When the communication device 2000 is a chip, the chip includes a transceiver unit and a processing unit.
  • the transceiver unit may be an input/output circuit or a communication interface;
  • the processing unit is a processor or microprocessor or integrated circuit integrated on the chip.
  • the embodiments of the present application also provide a computer-readable storage medium on which a computer program is stored.
  • the computer program When the computer program is executed by a computer, the computer realizes the method on the terminal device side or the method on the network device side in the foregoing method embodiments.
  • the embodiments of the present application also provide a computer program product containing instructions, which when executed by a computer, cause the computer to implement the method on the terminal device side or the method on the network device side in the foregoing method embodiments.
  • An embodiment of the present application also provides a system, which includes the aforementioned one or more terminal devices and one or more network devices.
  • the terminal device or the network device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer includes hardware such as a central processing unit (CPU), a memory management unit (MMU), and memory (also referred to as main memory).
  • the operating system may be any one or more computer operating systems that implement business processing through processes, for example, Linux operating system, Unix operating system, Android operating system, iOS operating system, or windows operating system.
  • the application layer includes applications such as browsers, address books, word processing software, and instant messaging software.
  • the embodiments of the application do not specifically limit the specific structure of the execution subject of the methods provided in the embodiments of the application, as long as the program that records the codes of the methods provided in the embodiments of the application can be provided according to the embodiments of the application.
  • the execution subject of the method provided in the embodiment of the present application may be a terminal device or a network device, or a functional module in the terminal device or network device that can call and execute the program.
  • various aspects or features of the present application can be implemented as methods, devices, or products using standard programming and/or engineering techniques.
  • article of manufacture as used in this application encompasses a computer program accessible from any computer-readable device, carrier, or medium.
  • computer-readable media may include, but are not limited to: magnetic storage devices (for example, hard disks, floppy disks, or tapes, etc.), optical disks (for example, compact discs (CD), digital versatile discs (DVD)) Etc.), smart cards and flash memory devices (for example, erasable programmable read-only memory (EPROM), cards, sticks or key drives, etc.).
  • various storage media described herein may represent one or more devices and/or other machine-readable media for storing information.
  • machine-readable medium may include, but is not limited to, wireless channels and various other media capable of storing, containing, and/or carrying instructions and/or data.
  • processors mentioned in the embodiments of this application may be a central processing unit (Central Processing Unit, CPU), or other general-purpose processors, digital signal processors (Digital Signal Processors, DSPs), and application-specific integrated circuits ( Application Specific Integrated Circuit (ASIC), Field Programmable Gate Array (FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the memory mentioned in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • DDR SDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • Enhanced SDRAM, ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • Synchronous Link Dynamic Random Access Memory Synchronous Link Dynamic Random Access Memory
  • DR RAM Direct Rambus RAM
  • the processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic device, discrete gate or transistor logic device, or discrete hardware component
  • the memory storage module
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种通信方法和通信设备。该方法包括:终端设备获取服务小区的上行定时提前量TA;终端设备获取服务小区与邻小区的下行信号时间差;终端设备基于服务小区的上行TA与下行信号时间差,获取邻小区的上行TA;基于下行子帧定时和邻小区的上行TA,终端设备向邻小区发送上行信号。通过获取邻小区的上行TA,使得终端设备可以基于邻小区的上行TA,向邻小区发送上行信号,从而终端设备发送的上行信号和该邻小区的上行接收定时对齐,降低终端设备发送的上行信号对邻小区造成的干扰,提高终端设备和邻小区的通信性能。

Description

通信方法和通信设备
本申请要求于2019年02月15日提交中国专利局、申请号为201910118299.3、申请名称为“通信方法和通信设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及一种通信方法和通信设备。
背景技术
在一些通信系统中,如长期演进(long term evolution,LTE)系统、未来的第五代(5th generation,5G)系统或新无线(new radio,NR)中,
不管是上行到达时间差(uplink-time differ of arrival,UTDOA)定位测量,还是往返时延(round time trip,RTT)定位测量,终端设备向邻小区发送上行参考信号的时间提前量(timing advance,TA)是基于服务小区的TA发送的。
如此一来,终端设备向某一个邻小区发送的上行参考信号可能对邻小区造成干扰。
发明内容
本申请提供一种通信方法和通信设备,以期降低终端设备发送的上行参考信号对邻小区造成的干扰,提高终端设备和邻小区的通信性能。
第一方面,提供了一种通信方法。该方法可以由终端设备执行,或者,也可以由配置于终端设备中的芯片或电路执行,本申请对此不作限定。
该方法可以包括:获取服务小区的上行定时提前量TA;获取所述服务小区站与邻小区的下行信号时间差;基于所述服务小区的上行TA与所述下行信号时间差,获取所述邻小区的上行TA;基于下行子帧定时和所述邻小区的上行TA,向所述邻小区发送上行信号。
基于上述技术方案,终端设备可以基于邻小区的上行TA,向邻小区发送上行信号,从而可以使得终端设备以较准确的时间向邻小区发送上行信号,降低了终端设备发送的上行信号对邻小区造成的干扰。其中,服务小区的上行TA,也可以理解为一个基准时间,下文详细描述。终端设备通过获取到的基准时间以及基准时间与邻小区的下行信号时间差,来确定邻小区的上行TA,可以使得终端设备在需要向邻小区发送上行信号时再确定邻小区的上行TA,进一步可以提高终端设备与邻小区之间通信的灵活性。
结合第一方面,在第一方面的某些实现方式中,所述邻小区的上行TA为所述服务小区的上行TA和所述下行信号时间差之和。
基于上述技术方案,终端设备使用下行信号时间差来补偿服务小区的上行TA,也就是说,终端设备可以确定邻小区的上行TA为服务小区的上行TA和下行信号时间差之和,从而可以快速地确定邻小区的上行TA。
结合第一方面,在第一方面的某些实现方式中,所述获取服务小区的上行TA,包括:接收来自网络设备的定时提前组TAG,所述TAG包括所述服务小区的上行TA;从所述TAG获取所述服务小区的上行TA。
基于上述技术方案,通过网络设备为终端设备配置的定时提前组(timing advance group,TAG),例如初始赋值或者调整后的值,终端设备可以获取服务小区的上行TA。通过利用网络设备的配置得到服务小区的上行TA,终端设备可以快速地确定服务小区的上行TA,进而确定邻小区的上行TA。
结合第一方面,在第一方面的某些实现方式中,服务小区的上行TA为:终端设备接收所述服务小区下行子帧i的接收时间与所述终端设备向所述服务小区发送上行子帧i的发送时间之间的时间差,其中,i为大于0或等于0的整数。
基于上述技术方案,服务小区的上行TA可以为小区级的收发信号时间差,其中,收为服务小区上行帧定时,发为与该服务小区关联的下行帧定时。也就是说,服务小区的上行TA可以为终端设备接收该服务小区下行子帧i的接收时间与终端设备向该服务小区发送上行子帧i的发送时间之间的时间差。
结合第一方面,在第一方面的某些实现方式中,所述服务小区的上行TA为:终端设备接收所述服务小区的下行信号确定的下行子帧j的接收时间与所述终端设备向所述服务小区发送上行信号确定的上行子帧j的发送时间之间的时间差,其中,j为大于0或等于0的整数。
基于上述技术方案,服务小区的上行TA可以为参考信号级的收发信号时间差,其中,收为参考信号上行帧定时,发为与该参考信号关联的下行帧定时。也就是说,服务小区的上行TA可以为终端设备接收某参考信号确定的下行子帧j的接收时间与终端设备发送另一参考信号确定的上行子帧j的发送时间之间的时间差。
结合第一方面,在第一方面的某些实现方式中,所述服务小区的上行TA为:终端设备接收所述服务小区下行子帧k的接收时间与所述终端设备向所述服务小区发送上行信号确定的上行子帧k的发送时间之间的时间差;或,所述终端设备接收所述下行信号确定的下行子帧k的接收时间与向所述服务小区发送上行子帧k的发送时间之间的时间差;其中,k为大于0或等于0的整数。
基于上述技术方案,服务小区的上行TA可以为小区的级收/发信号与参考信号级的收/发信号时间差。例如,收可以为服务小区的参考信号上行帧定时,发可以为与该服务小区关联的下行帧定时,也就是说,服务小区的上行TA可以为终端设备接收来自服务小区的某参考信号确定的下行子帧k的接收时间与终端设备向该服务小区发送上行子帧k的发送时间之间的时间差。又如,收可以为服务小区上行帧定时,发可以为与该服务小区的参考信号关联的下行帧定时。也就是说,服务小区的上行TA可以为终端设备接收该服务小区下行子帧k的接收时间与终端设备向该服务小区发送参考信号确定的上行子帧k的发送时间之间的时间差。
结合第一方面,在第一方面的某些实现方式中,所述基于下行子帧定时和所述邻小区的上行TA,向所述邻小区发送上行信号,包括:基于所述下行子帧定时、所述邻小区的上行TA、以及小区的定时偏差,向所述邻小区发送上行信号,其中,所述小区的定时偏差为所述服务小区与所述邻小区的子帧定时偏差。
基于上述方案,考虑到服务小区与邻小区之间可能存在子帧定时偏差,终端设备向邻小区发送上行信号时,可以综合考虑下行子帧定时、邻小区的上行TA、以及小区的定时偏差(即子帧定时偏差),进一步使得终端设备在更精确的时间向邻小区发送上行信号,提高终端设备与邻小区的通信性能。
结合第一方面,在第一方面的某些实现方式中,所述下行子帧定时为以下任意一项:主小区的下行子帧定时、所述服务小区的下行子帧定时、或所述邻小区的下行子帧定时。
其中,主小区(SpCell,或者也可以称为特殊小区(special cell)),如果是主基站或主节点(master node,MN),该主小区可以指主小区(primary cell,PCell);如果是辅基站或辅节点(secondary node,SN),该主小区可以指主辅小区(primary secondary cell,PSCell)。
基于上述技术方案,下行子帧定时可以主小区的下行子帧定时、服务小区的下行子帧定时、或邻小区的下行子帧定时等,其可以是默认的,或者,也可以是网络设备指定的。
结合第一方面,在第一方面的某些实现方式中,所述获取邻小区的上行TA,包括:获取目标邻小区的上行TA,其中,所述邻小区包括多个邻小区,所述目标邻小区为所述多个邻小区中的一个或多个;所述基于下行子帧定时和所述邻小区的上行TA,向所述邻小区发送上行信号,包括:基于所述下行子帧定时和所述目标邻小区的上行TA,向多个邻小区发送上行信号;其中,所述目标邻小区包括:所述多个邻小区中上行TA与所述服务小区的上行TA最接近的邻小区;或,所述多个邻小区中优先级最高的邻小区,或,所述多个邻小区中参考信号接收功率RSRP最大的邻小区;或,所述多个邻小区中优先级最低的邻小区,或,所述多个邻小区中RSRP最小的邻小区。
基于上述技术方案,当终端设备向多个邻小区发送上行信号时,可以以其中任意一个邻小区的上行TA为准,或者也可以按照一定的条件或规则选择一个邻小区的上行TA为准。
结合第一方面,在第一方面的某些实现方式中,所述基于下行子帧定时和所述邻小区的上行TA,向所述邻小区发送上行信号之前,包括:对所述邻小区的上行TA进行求模和/或量化处理。
基于上述技术方案,终端设备基于服务小区的上行TA和下行信号时间差确定邻小区的上行TA后,可以先对该上行TA进行处理,如求模和/或量化处理等。
第二方面,提供了一种通信方法。该方法可以由终端设备执行,或者,也可以由配置于终端设备中的芯片或电路执行,本申请对此不作限定。
该方法可以包括:获取邻小区的上行定时提前量TA;从定位管理设备或者服务小区接收上行参考信号的配置信息,所述上行参考信号为终端设备向所述邻小区发送的参考信号;基于下行子帧定时以及所述邻小区的上行TA,向所述邻小区发送所述上行参考信号的配置信息所指示的上行参考信号。
基于上述技术方案,终端设备通过从定位管理设备或者服务小区获取到的上行参考信号的配置信息,并基于获取到的邻小区的上行TA,向邻小区发送上行参考信号,从而可以使得终端设备以较准确的时间向邻小区发送上行参考信号,降低了终端设备发送的上行信号对邻小区造成的干扰,提高了终端设备与邻小区的通信性能。
结合第二方面,在第二方面的某些实现方式中,接收或者预存储以下信息中的一项或 多项:上行参考信号标识与邻小区的上行TA的对应关系;或者,上行参考信号集合标识与邻小区的上行TA的对应关系;或者,邻小区标识与邻小区的上行TA的对应关系;多个邻小区标识的集合与邻小区的上行TA的对应关系。
基于上述技术方案,终端设备可以根据预先保存的,或者接收到的,与邻小区的上行TA相关的对应关系,可以使得终端设备在向邻小区发送上行参考信号时,基于该对应关系,确定相应的邻小区的上行TA。
结合第二方面,在第二方面的某些实现方式中,所述获取邻小区的上行TA,包括:根据向所述邻小区发送的上行参考信号,以及所述上行参考信号标识与邻小区的上行TA的对应关系,获取所述邻小区的上行TA;或者,根据向所述邻小区发送的上行参考信号所属的集合,以及所述上行参考信号集合标识与邻小区的上行TA的对应关系,获取所述邻小区的上行TA;或者,根据所述上行参考信号发送的所述邻小区,以及所述邻小区标识与邻小区的上行TA的对应关系,获取所述邻小区的上行TA;或者,根据所述上行参考信号发送的所述邻小区所属的集合,以及所述多个邻小区标识的集合与邻小区的上行TA的对应关系,获取所述邻小区的上行TA。
基于上述技术方案,终端设备可以根据预先保存的,或者接收到的,与邻小区的上行TA相关的对应关系,并结合向邻小区发送的上行参考信号,或者,向邻小区发送的上行参考信号所属的集合,或者,该发送上行参考信号的邻小区,或者,该邻小区所属的集合,确定邻小区的上行TA。从而,避免了需要向终端设备发送每个参考信号或每个邻小区对应的上行TA,节省了信令开销,提高了效率。
结合第二方面,在第二方面的某些实现方式中,所述方法还包括:获取所述下行子帧定时;其中,获取所述下行子帧定时,具体包括:接收所述下行子帧定时的信息;或,接收下行参考信号,并基于所述下行参考信号的时间获取所述下行子帧定时,所述下行参考信号是从服务小区或邻小区接收的。
基于上述技术方案,终端设备可以接收下行子帧定时的信息,或者,也可以根据接收的下行参考信号确定,该下行参考信号可以是服务小区发送给终端设备的,也可以是终端设备上行传输的目标小区发送给终端设备的。
结合第二方面,在第二方面的某些实现方式中,所述下行子帧定时为以下任意一项:主小区的下行子帧定时、服务小区的下行子帧定时、或邻小区的下行子帧定时。
基于上述技术方案,下行子帧定时也可以为主小区的下行子帧定时、服务小区的下行子帧定时、或邻小区的下行子帧定时,其可以是默认的,也可以是指定的。
结合第二方面,在第二方面的某些实现方式中,所述上行参考信号为用于定位的探测参考信号SRS,所述上行参考信号的配置信息包括以下信息中的一项或多项:所述SRS资源的标识、所述SRS资源的端口数、所述SRS资源关联的相位跟踪参考信号PT-RS端口号、所述SRS资源梳齿配置信息以及序列循环移位、所述SRS资源起始符号索引、所述SRS资源连续符号个数以及重复因子、所述SRS资源起始资源块RB索引、所述SRS资源跳频配置信息,所述SRS带宽、所述SRS资源序列的组跳和序列跳、所述SRS资源的周期性配置信息、所述SRS资源的空间滤波信息。
结合第二方面,在第二方面的某些实现方式中,所述方法还包括:从所述定位管理设备或者所述服务小区接收所述邻小区的标识。
基于上述技术方案,终端设备可以基于接收到的邻小区的标识,确定向哪个邻小区或哪些邻小区发送上行参考信号。
第三方面,提供了一种通信方法。该方法可以由定位管理设备执行,或者,也可以由配置于定位管理设备中的芯片或电路执行,本申请对此不作限定。
该方法可以包括:确定邻小区的上行定时提前量TA;从终端设备的服务小区接收上行参考信号的配置信息,所述上行参考信号为所述终端设备向所述邻小区发送的参考信号;向所述终端设备发送所述上行参考信号的配置信息以及所述邻小区的上行TA的指示信息。
基于上述技术方案,定位管理设备可以确定邻小区的上行TA,并将该邻小区的上行TA发送给终端设备,使得终端设备可以基于该邻小区的上行TA,向邻小区发送上行参考信号,从而可以使得终端设备以较准确的时间向邻小区发送上行参考信号,降低了终端设备发送的上行信号对邻小区造成的干扰,提高了终端设备与邻小区的通信性能。
结合第三方面,在第三方面的某些实现方式中,所述向所述终端设备发送所述上行参考信号的配置信息以及所述邻小区的上行TA的指示信息,包括:向所述终端设备发送所述上行参考信号的配置信息以及以下信息中的一项或多项:上行参考信号标识与邻小区的上行TA的对应关系;或者,上行参考信号集合标识与邻小区的上行TA的对应关系;或者,邻小区标识与邻小区的上行TA的对应关系;多个邻小区标识的集合与邻小区的上行TA的对应关系。
基于上述技术方案,定位管理设备可以向终端设备发送与邻小区的上行TA相关的对应关系,避免了向终端设备发送每个参考信号或每个邻小区对应的上行TA,不仅可以使得终端设备在向邻小区发送上行参考信号时,基于该对应关系,确定相应的邻小区的上行TA,而且可以节省信令开销。
结合第三方面,在第三方面的某些实现方式中,所述方法还包括:向所述终端设备发送下行子帧定时的信息,所述下行子帧定时为以下任意一项:主小区的下行子帧定时、服务小区的下行子帧定时、或邻小区的下行子帧定时。
基于上述技术方案,定位管理设备可以将下行子帧定时的信息告诉终端设备,使得终端设备根据该信息快速地确定向邻小区发送上行参考信号的时间,提高了效率。
结合第三方面,在第三方面的某些实现方式中,所述方法还包括:向所述邻小区或所述服务小区发送测量请求消息,所述测量请求消息用于请求所述邻小区或所述服务小区上报接收所述上行参考信号的时间。
结合第三方面,在第三方面的某些实现方式中,所述方法还包括:所述确定邻小区的上行TA,包括:获取所述终端设备的位置信息,根据所述终端设备的位置信息,确定所述邻小区的上行TA;或者,基于所述终端设备向所述邻小区发送前导信息,确定所述邻小区的上行TA;或者,获取所述服务小区的上行TA和下行信号时间差,根据所述服务小区的上行TA和所述下行信号时间差,确定所述邻小区的上行TA,其中,所述下行信号时间差为所述服务小区的上行TA与所述邻小区的上行TA的下行信号时间差。
基于上述技术方案,定位管理设备可以通过终端设备的位置信息,确定邻小区的上行TA;或者,也可以通过终端设备向邻小区发送前导信息,确定邻小区的上行TA;或者,也可以通过服务小区的上行TA和下行信号时间差,确定邻小区的上行TA。从而可以方 便快速地确定邻小区的上行TA。
结合第三方面,在第三方面的某些实现方式中,所述获取所述终端设备的位置信息,包括:通过全球定位系统GPS或强型小区标识E-CID方式获取所述终端设备的位置信息;或者,基于所述终端设备上报的邻小区的波束测量结果,获取所述终端设备的位置信息。
结合第三方面,在第三方面的某些实现方式中,所述上行参考信号为用于定位的探测参考信号SRS,所述上行参考信号的配置信息包括以下信息中的一项或多项:所述SRS资源的标识、所述SRS资源的端口数、所述SRS资源关联的相位跟踪参考信号PT-RS端口号、所述SRS资源梳齿配置信息以及序列循环移位、所述SRS资源起始符号索引、所述SRS资源连续符号个数以及重复因子、所述SRS资源起始资源块RB索引、所述SRS资源跳频配置信息,所述SRS带宽、所述SRS资源序列的组跳和序列跳、所述SRS资源的周期性配置信息、所述SRS资源的空间滤波信息。
结合第三方面,在第三方面的某些实现方式中,所述方法还包括:向所述终端设备发送所述邻小区的标识。
基于上述技术方案,通过向终端设备发送邻小区的标识,使得终端设备可以基于接收到的邻小区的标识,确定向哪个邻小区或哪些邻小区发送上行参考信号。
第四方面,提供了一种通信方法。该方法可以由网络设备(如服务基站)执行,或者,也可以由配置于网络设备(如服务基站)中的芯片或电路执行,本申请对此不作限定。
该方法可以包括:向定位管理设备发送上行参考信号的配置信息;确定邻小区的上行定时提前量TA;向终端设备发送所述邻小区的上行TA的指示信息;从所述终端设备接收所述上行参考信号的配置信息所指示的上行参考信号。
基于上述技术方案,服务小区或服务基站可以确定邻小区的上行TA,并将该邻小区的上行TA发送给终端设备,使得终端设备可以基于该邻小区的上行TA,向邻小区发送上行参考信号,从而可以使得终端设备以较准确的时间向邻小区发送上行参考信号,降低了终端设备发送的上行信号对邻小区造成的干扰,提高了终端设备与邻小区的通信性能。
结合第四方面,在第四方面的某些实现方式中,所述向终端设备发送所述邻小区的上行TA的指示信息,包括:向所述终端设备发送以下信息中的一项或多项:上行参考信号标识与邻小区的上行TA的对应关系;或者,上行参考信号集合标识与邻小区的上行TA的对应关系;或者,邻小区标识与邻小区的上行TA的对应关系;或者,多个邻小区标识的集合与邻小区的上行TA的对应关系。
基于上述技术方案,服务小区可以向终端设备发送与邻小区的上行TA相关的对应关系,避免了向终端设备发送每个参考信号或每个邻小区对应的上行TA,不仅可以使得终端设备在向邻小区发送上行参考信号时,基于该对应关系,确定相应的邻小区的上行TA,而且可以节省信令开销。
结合第四方面,在第四方面的某些实现方式中,方法还包括:向所述终端设备发送下行子帧定时的信息,所述下行子帧定时为以下任意一项:主小区的下行子帧定时、服务小区的下行子帧定时、或邻小区的下行子帧定时。
基于上述技术方案,服务小区可以将下行子帧定时的信息告诉终端设备,使得终端设备根据该信息快速地确定向邻小区发送上行参考信号的时间,提高了效率。
结合第四方面,在第四方面的某些实现方式中,方法还包括:从定位管理设备接收测 量请求消息,所述测量请求消息用于请求所述服务小区上报接收所述上行参考信号的时间。
结合第四方面,在第四方面的某些实现方式中,方法还包括:所述确定邻小区的上行TA,包括:获取所述终端设备的位置信息,根据所述终端设备的位置信息,确定所述邻小区的上行TA;或者,基于所述终端设备向所述邻小区发送前导信息,确定所述邻小区的上行TA;或者,获取所述服务小区的上行TA和下行信号时间差,根据所述服务小区的上行TA和所述下行信号时间差,确定所述邻小区的上行TA,其中,所述下行信号时间差为所述服务小区的上行TA与所述邻小区的上行TA的下行信号时间差。
基于上述技术方案,服务小区可以通过终端设备的位置信息,确定邻小区的上行TA;或者,也可以通过终端设备向邻小区发送前导信息,确定邻小区的上行TA;或者,也可以通过服务小区的上行TA和下行信号时间差,确定邻小区的上行TA。从而可以方便快速地确定邻小区的上行TA。
结合第四方面,在第四方面的某些实现方式中,获取所述终端设备的位置信息,包括:通过GPS或E-CID方式获取所述终端设备的位置信息;或者,基于所述终端设备上报的邻小区的波束测量结果,获取所述终端设备的位置信息。
结合第四方面,在第四方面的某些实现方式中,所述上行参考信号为用于定位的探测参考信号SRS,所述上行参考信号的配置信息包括以下信息中的一项或多项:所述SRS资源的标识、所述SRS资源的端口数、所述SRS资源关联的相位跟踪参考信号PT-RS端口号、所述SRS资源梳齿配置信息以及序列循环移位、所述SRS资源起始符号索引、所述SRS资源连续符号个数以及重复因子、所述SRS资源起始资源块RB索引、所述SRS资源跳频配置信息,所述SRS带宽、所述SRS资源序列的组跳和序列跳、所述SRS资源的周期性配置信息、所述SRS资源的空间滤波信息。
结合第四方面,在第四方面的某些实现方式中,方法还包括:向所述终端设备发送所述邻小区的标识。
基于上述技术方案,通过向终端设备发送邻小区的标识,使得终端设备可以基于接收到的邻小区的标识,确定向哪个邻小区或哪些邻小区发送上行参考信号。
第五方面,提供一种通信装置,所述通信装置用于执行第一方面或第二方面提供的方法。可选地,所述通信装置可以包括用于执行第一方面或第二方面提供的方法的模块。
第六方面,提供一种通信装置,所述通信装置用于执行第三方面提供的方法。可选地,所述通信装置可以包括用于执行第三方面提供的方法的模块。
第七方面,提供一种通信装置,所述通信装置用于执行第四方面提供的方法。可选地,所述通信装置可以包括用于执行第四方面提供的方法的模块。
第八方面,提供一种通信装置,所述通信装置包括存储器和处理器,所述存储器用于存储指令,所述处理器用于执行所述存储器存储的指令,并且对所述存储器中存储的指令的执行使得所述处理器执行第一方面或第二方面提供的方法。
第九方面,提供一种通信装置,所述通信装置包括存储器和处理器,所述存储器用于存储指令,所述处理器用于执行所述存储器存储的指令,并且对所述存储器中存储的指令的执行使得所述处理器执行第三方面提供的方法。
第十方面,提供一种通信装置,所述通信装置包括存储器和处理器,所述存储器用于 存储指令,所述处理器用于执行所述存储器存储的指令,并且对所述存储器中存储的指令的执行使得所述处理器执行第四方面提供的方法。
第十一方面,提供一种芯片,所述芯片包括处理模块与通信接口,所述处理模块用于控制所述通信接口与外部进行通信,所述处理模块还用于实现第一方面、第二方面、第三方面、或第四方面提供的方法。
第十二方面,提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被计算机执行时使得所述计算机实现第一方面、第二方面、第三方面、或第四方面提供的方法。
第十三方面,提供一种包含指令的计算机程序产品,所述指令被计算机执行时使得所述计算机实现第一方面、第二方面、第三方面、或第四方面提供的方法。
第十四方面,提供一种通信系统,包括如第五方面、第六方面、第七方面所述的通信装置,或者,包括如第八方面、第九方面、第十方面所述的通信装置。
综上所述,本申请通过使得终端设备获取到邻小区的上行TA,并基于该邻小区的上行TA向邻小区发送上行信号,从而可以使得终端设备以较准确的时间向邻小区发送上行信号,降低了终端设备向邻小区发送的上行信号对服务小区造成的干扰。
附图说明
图1和图2示出了适用于本申请实施例的架构的示意图;
图3示出了上行定时提前量的一示意图;
图4示出了RTT的一示意图;
图5示出了终端设备向服务小区和邻小区发送上行信号的一示意图;
图6示出了本申请一实施例提供的通信方法的示意性交互图;
图7至图12示出了适用于本申请一实施例提供的通信方法的示意图;
图13示出了本申请又一实施例提供的通信方法的示意性交互图;
图14示出了适用于本申请又一实施例提供的通信方法的示意图;
图15和图16示出了适用于本申请又一实施例的配置方法的示意图;
图17示出了本申请实施例提供的通信设备的示意性框图;
图18示出了本申请实施例提供的通信设备的另一示意性框图;
图19示出了本申请实施例提供的终端设备的示意性框图;
图20示出了本申请实施例提供的网络设备的示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通信(global system for mobile communications,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system, UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、未来的第五代(5th generation,5G)系统或新无线(new radio,NR)等。
为便于理解本申请实施例,首先结合图1和图2详细说明适用于本申请实施例的网络架构。
图1示出了适用于本申请实施例的架构100的示意图。如图1所示,该网络架构具体可以包括下列网元:
1、终端设备:可以称用户设备(user equipment,UE)、终端、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、无线通信设备、用户代理或用户装置。本申请实施例中涉及的终端设备可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备。终端设备可以是移动站(Mobile Station,MS)、用户单元(subscriber unit)、蜂窝电话(cellular phone)、智能电话(smart phone)、无线数据卡、个人数字助理(personal digital assistant,PDA)电脑、平板型电脑、无线调制解调器(modem)、手持设备(handset)、膝上型电脑(laptop computer)、机器类型通信(machine type communication,MTC)终端等。
其中,图1和图2均以终端设备为UE作为示例
2、网络设备:可以是用于与终端设备通信的设备,该网络设备可以是LTE系统中的演进型基站(evolved NodeB,eNB或eNodeB),还可以是全球移动通信(global system for mobile communications,GSM)系统或码分多址(code division multiple access,CDMA)中的基站(base transceiver station,BTS),也可以是宽带码分多址(wideband code division multiple access,WCDMA)系统中的基站(NodeB,NB),还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络中的网络设备或者未来演进的PLMN网络中的网络设备等,本申请实施例并不限定。
3、移动性管理实体(mobility management entity,MME):可用于管理终端设备的位置信息、安全性以及业务连续性。
4、位置测量单元(location measurement unit,LMU)网元:可以集成于网络设备中,如基站中,也可以与基站分离。负责接收终端设备发送的上行信号。在本申请实施例中,假设LMU具有发送下行信号的能力。
5、演进的服务移动位置中心(evolved serving mobile location cente,E-SMLC)网元:可以用于定位,例如称为定位服务中心或定位中心或定位管理设备,在本申请实施例中,MME和LMU均称为定位管理设备。用于收集基站和终端设备上报的测量信息和位置信息,其还负责将基站或终端设备的测量量进行位置解算,确定终端设备位置。
该架构中,终端设备可以通过LTE-Uu接口经由eNodeB连接到无线接入网。E-SMLC与LMU之间通过SLm接口连接,E-SMLC与MME之间通过SLs接口连接。
图2示出了适用于本申请实施例的架构200的另一示意图。如图所示,该架构200具体可以包括下列网元:
1、定位管理功能(location management function,LMF)网元:可以用于定位,例如称为定位服务中心或定位中心或定位管理设备,在本申请实施例中,均称为定位管理设备。用于收集基站和终端设备上报的测量信息和位置信息,其还负责将基站或终端设备的测量 量进行位置解算,确定终端设备位置。LMF可以是一种部署在核心网中为终端设备提供定位功能的装置或组件。
2、接入和移动管理功能(access and mobility management function,AMF)实体:主要用于移动性管理和接入管理等,可以用于实现移动性管理实体(mobility management entity,MME)功能中除会话管理之外的其它功能,例如,合法监听、或接入授权(或鉴权)等功能。在本申请实施例中,可用于实现接入和移动管理网元的功能。
其余网元可参考上述架构100的描述,此处不再赘述。
该架构200中,UE通过LTE-Uu和/或NR-Uu接口分别经由下一代基站(next-generation eNodeB,ng-eNB)和gNB连接到无线接入网(NG-RAN);无线接入网通过NG-C接口经由AMF连接到核心网。其中,下一代无线接入网(next-generation radio access network,NG-RAN)包括一个或多个ng-eNB;NG-RAN也可以包括一个或多个gNB;NG-RAN还可以包括一个或多个ng-eNB以及gNB。ng-eNB为接入5G核心网的LTE基站,gNB为接入5G核心网的5G基站。核心网包括AMF与LMF等功能。AMF与LMF之间通过NLs接口连接。
上述图1和图2中的ng-eNB也可以替换为传输节点(transmission point,TP)(如图1和图2中所示的TP)。
在本申请实施例中,多次提及定位管理设备。定位管理设备表示可以管理服务小区与邻小区的网元。定位管理设备可以是核心网的一部分,也可以集成到接入网设备中。例如,定位管理设备可以为图2中所示的核心网中的LMF,也可以为图中所示的MME和LMU。定位管理设备也可称为定位中心。本申请并不限定定位管理设备的名称,在未来演进技术中,定位管理设备可能会被赋予其它名称。
应理解,上述应用于本申请实施例的网络架构仅是举例说明,适用本申请实施例的网络架构并不局限于此,任何能够实现上述各个网元的功能的网络架构都适用于本申请实施例。例如,本申请实施例可以应用于其他定位系统中。
还应理解,上述“网元”也可以称为实体、设备、装置或模块等,本申请并未特别限定。并且,在本申请中,为了便于理解和说明,在对部分描述中省略“网元”这一描述,例如,将LMF网元简称LMF,此情况下,该“LMF”应理解为LMF网元或LMF实体,以下,省略对相同或相似情况的说明。
还应理解,上述各个网元之间的接口名称只是一个示例,具体实现中接口的名称可能为其他的名称,本申请对此不作具体限定。此外,上述各个网元之间的所传输的消息(或信令)的名称也仅仅是一个示例,对消息本身的功能不构成任何限定。
还应理解,上述命名仅为便于区分不同的功能,而不应对本申请构成任何限定,本申请并不排除在5G网络以及未来其它的网络中采用其他命名的可能。例如,在6G网络中,上述各个网元中的部分或全部可以沿用5G中的术语,也可能采用其他名称等。在此进行统一说明,以下不再赘述。
为便于理解本申请实施例,下面首先介绍本申请实施例涉及的一些术语。
1、波束
波束在NR协议中的体现可以是空域滤波器(spatial domain filter),或者称空间滤波器(spatial filter)或空间参数(spatial parameter)。用于发送信号的波束可以称为发送波 束(transmission beam,Tx beam),可以称为空域发送滤波器(spatial domain transmission filter)或空间发射参数(spatial transmission parameter);用于接收信号的波束可以称为接收波束(reception beam,Rx beam),可以称为空域接收滤波器(spatial domain receive filter)或空间接收参数(spatial RX parameter)。
发送波束可以是指信号经天线发射出去后在空间不同方向上形成的信号强度的分布,接收波束可以是指从天线上接收到的无线信号在空间不同方向上的信号强度分布。
此外,波束可以是宽波束,或者窄波束,或者其它类型波束。形成波束的技术可以是波束赋形技术或者其它技术。波束赋形技术具体可以为数字波束赋形技术、模拟波束赋形技术或者混合数字/模拟波束赋形技术等。
波束一般和资源对应,例如进行波束测量时,网络设备通过不同的资源来测量不同的波束,终端设备反馈测得的资源质量,网络设备就知道对应的波束的质量。在数据传输时,波束信息也是通过其对应的资源来进行指示的。例如网络设备通过DCI中的TCI资源,来指示终端设备PDSCH波束的信息。
可选地,具有相同或者类似的通信特征的多个波束可以视为一个波束。
一个波束内可以包括一个或多个天线端口,用于传输数据信道、控制信道和探测信号等。形成一个波束的一个或多个天线端口也可以看作是一个天线端口集。
2、上行信号/下行信号
根据长期演进LTE协议或NR协议,在物理层,上行通信包括上行物理信道和上行信号的传输。
其中,上行物理信道包括:随机接入信道(random access channel,PRACH)、上行控制信道(physical uplink control channel,PUCCH)、以及上行数据信道(physical uplink shared channel,PUSCH)等。上行信号包括但不限于:探测参考信号(sounding reference signal,SRS)、上行控制信道解调参考信号(PUCCH de-modulation reference signal,PUCCH-DMRS)、上行数据信道解调参考信号(PUSCH de-modulation reference signal,PUSCH-DMRS)、上行相位噪声跟踪信号(phase noise tracking reference signal,PTRS)、上行定位信号(uplink positioning RS)等等。下行通信包括下行物理信道和下行信号的传输。
其中,下行物理信道包括:广播信道(physical broadcast channel,PBCH)、下行控制信道(physical downlink control channel,PDCCH)、下行数据信道(physical downlink shared channel,PDSCH)等。下行信号包括但不限于:主同步信号(primary synchronization signal,PSS)、辅同步信号(secondary synchronization signal,SSS)、下行控制信道解调参考信号(PDCCH de-modulation reference signal,PDCCH-DMRS)、下行数据信道解调参考信号(PDSCH de-modulation reference signal,PDSCH-DMRS)、下行相位噪声跟踪信号、信道状态信息参考信号(channel status information reference signal,CSI-RS)、小区参考信号(cell reference signal,CRS)、精同步信号(time/frequency tracking reference signal,TRS)、定位信号(positioning RS)、UE专用参考信号(user equipment specific reference signal,US-RS)、同步信号/物理广播信道块(synchronization signal/physical broadcast channel block,SS/PBCH block)等。其中,SS/PBCH block可以简称为同步信号块(synchronization signal block,SSB)。
3、资源
资源可以是上行信号资源,也可以是下行信号资源。关于上行信号和下行信号参考上述描述。
资源可以通过无线资源控制(radio resource control,RRC)信令配置。
在配置结构上,一个资源是一个数据结构,包括其对应的上行/下行信号的相关参数,例如上行/下行信号的类型,承载上行/下行信号的资源粒,上行/下行信号的发送时间和周期,发送上行/下行信号所采用的端口数等。
每一个上行/下行信号的资源具有唯一的标识,以标识该上行/下行信号的资源。
可以理解的是,资源的标识也可以称为资源的索引,本申请实施例对此不作任何限制。
4、小区
小区(cell):小区是高层从资源管理或移动性管理或服务单元的角度来描述的。每个网络设备的覆盖范围可以被划分为一个或多个小区,且该小区可以看作由一定频域资源组成。小区可以为网络设备的无线网络的覆盖范围内的区域。在本申请实施例中,不同的小区可以对应不同的网络设备。
在本申请实施例中,小区可由该小区对应的基站代替。
例如,本申请实施例中多次提及“服务小区”,“服务小区”可由该服务小区对应的网络设备代替,如“服务小区”由“服务基站”代替。
又如,本申请实施例中多次提及“邻小区”,邻小区,也可以称为非服务小区(non-serving cell),“邻小区”可由该邻小区对应的网络设备代替,例如“邻小区”由“邻基站”代替。
5、下行定时
网络设备可以配置终端设备在某些时频资源,例如,时隙(slot)、子帧、帧、符号,发送或接收信号。为了确定这些信号具体的发送或接收时间,终端设备需要借助下行信号进行定时同步,以确定并匹配网络设备的时间边界。通常可以使用下行参考信号(例如SSB、CSI-RS、CRS等)来定时同步,用于定时同步的参考信号可以称为定时锚点。
下行的定时锚点也可以用于确定上行传输的定时。当终端设备通过下行定时信号确定了下行子帧的边界后,可以按照同样的时间参考系发送上行信号。为了实现在接收端的上行接收对齐,网络设备可以为每个终端设备配置一个时间提前量(timing advance,TA),终端设备在下行定时同步的基础上根据时间提前量提前发送上行信号,这样终端设备发送的上行信号到达网络设备的时间和网络设备的上行接收定时可以对齐。
6、上行发送TA调整
网络设备可以通过高层信令为终端设备配置多个定时提前组(timing advance group,TAG),每个TAG对应一个ID(例如记作TAG-ID)和一个时间对齐计时器(time alignment timer)。网络设备可以为每个小区关联一个TAG-ID。网络设备通过初始接入响应对每个TAG的N TA进行初始赋值,其中N TA表示一个经过了量化的时间提前参数。
网络设备还可以通过信令(如MAC-CE消息或DCI)对每个TAG的TA进行调整。TA调整量可能是一个绝对调整量,即当前调整量直接替换掉现有量;或者,TA调整量也可能是一个相对调整量,即调整量在现有TA量基础上增减量。假设终端设备在slot n收到网络设备调整TA的MAC-CE消息后,终端设备可以在slot(n+k)应用调整后的TA。其中,n、k为大于0或等于0的整数。
终端设备通过网络设备配置的N TA,可以计算该N TA对应的上行子帧i相对于同步的 下行子帧i的时间提前量,计算公式可以为:
T TA=(N TA+N TA,offset)T C
其中,T TA表示终端设备发送SRS时的TA;
N TA表示网络设备配置的经过量化的TA;
T C表示时间单位,例如,在当前协议中,T C=1/(Δf max*N f),Δf max=480.10 3Hz,N f=4096;
N TA,offset表示一个与频带相关的量,网络设备可能通过高层信令指定,,或者,也可以是网络设备设定一些范围,然后由终端设备通过下行测量的信号强度、到达时间等进行确定。表1示出了N TA,offset的一种可能的取值情况。
表1
Figure PCTCN2020074871-appb-000001
表1中FR1、FR2表示频谱范围(frequency range,FR)。在第三代合作伙伴计划(3rd generation partnership project,3GPP)协议中,5G的总体频谱资源可以分为以下两个频谱范围(frequency range,FR),如表2所示。
表2
频率范围名称 频率范围
FR1 750MHz–6000MHz
FR2 24250MHz–52600MHz
应理解,上述频率范围FR1、FR2的命名不应对本申请构成任何限定。本申请并不排除在未来的协议中定义其他名称来表示相同或相似含义的可能。为区分,在下文实施例中分别用FR1、FR2表示。
FR1:Sub 6G频段,换句话说,低频频段,为5G的主用频段。在FR1中,3GHz以下的频率可以称为Sub 3G,其余频段可以称为C-band。应理解,FR1对应的频率范围可以对应于如表2所示的750MHz–6000MHz,但不限于此,本申请并不排除在未来的协议中定义其他的范围来表示相同或相似含义的可能。
FR2:6G以上的毫米波,换句话说,高频频段,为5G的扩展频段,频谱资源丰富。应理解,FR2对应的频率范围可以对应于如表2所示的24250MHz–52600MHz,但不限于此,本申请并不排除在未来的协议中定义其他的范围来表示相同或相似含义的可能。
终端设备可以根据计算得到的时间提前量发送上行信号。如图3所示。
7、基于上行到达时间差(uplink-time differ of arrival,UTDOA)
UTDOA定位中,终端设备向邻区或位置测量单元(location measurement unit,LMU)发送上行参考信号。邻区或LMU对接收到的上行参考信号进行测量,如记录上行参考信号到达时间(或以某个绝对时刻作为参考点的时间差),然后将测量结果汇总到定位管理设备(例如LMF)。定位管理设备根据测量结果、小区位置等信息对终端设备进行定位。
8、往返时延(round time trip,RTT)
RTT表示:发送端发送信号到接收端接收到信号的时间(或者,也可以理解为传播延迟(Propagation delay)),加上接收端回传消息到发送端接收到回传消息的时间。RTT还可以用于确定收发端距离,例如记作D,即D=RTT/2*c,c为光速。
一般不考虑收发端的处理时延,RTT可以等于两倍的收发端之间的传播时延。如图4所示,RTT=(T DL+T UL)。
其中,T DL表示网络设备发送信号到终端设备接收到该信号的时间;T UL表示终端设备发送回传消息到网络设备接收到该回传消息的时间。
如图5所示,现有方案中,不管是UTDOA定位,还是RTT测量,终端设备向服务小区和邻小区发送上行信号时,均是基于服务小区的上行TA发送。从而可能会导致终端设备发送的上行信号和该邻小区的上行接收定时不对齐。
由于时间未对齐,可能会出现终端设备发送的上行信号对邻小区、或者对向该邻小区发送上行信号的其它终端设备,造成干扰的问题。
有鉴于此,本申请提出一种通信方法,使得终端设备能够基于邻小区的上行TA向邻小区发送上行信号,从而使得终端设备发送的上行信号和该邻小区的上行接收定时对齐,避免终端设备向邻小区发送的上行信号对邻小区造成干扰,提高终端设备和邻小区的通信性能。
为了便于理解本申请实施例,作出以下几点说明。
第一,在本申请实施例中,多处涉及高层参数,该高层参数可以包含在高层信令中。该高层信令例如可以是无线资源控制(radio resource control,RRC)消息,也可以是其他高层信令,本申请对此不做限定。
第二,在本申请实施例中,“用于指示”可以包括用于直接指示和用于间接指示,也可以包括显式指示和隐式指示。将某一信息(如下文所述的配置信息)所指示的信息称为待指示信息,则具体实现过程中,对待指示信息进行指示的方式有很多种,例如但不限于,可以直接指示待指示信息,如待指示信息本身或者该待指示信息的索引等。也可以通过指示其他信息来间接指示待指示信息,其中该其他信息与待指示信息之间存在关联关系。还可以仅仅指示待指示信息的一部分,而待指示信息的其他部分则是已知的或者提前约定的。例如,还可以借助预先约定(例如协议规定)是否存在某个信元来实现对待指示信息的指示,从而在一定程度上降低指示开销。
第三,在下文示出的实施例中第一、第二、第三、第四以及各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围。例如,区分不同的测量对象等。
第四,在下文示出的实施例中,“预先获取”可包括由网络设备信令指示或者预先定义,例如,协议定义。其中,“预先定义”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于 其具体的实现方式不做限定。
第五,本申请实施例中涉及的“协议”可以是指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
第六,“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。“多个”是指两个或两个以上,其它量词与之类似。此外,对于单数形式“a”,“an”和“the”出现的元素(element),除非上下文另有明确规定,否则其不意味着“一个或仅一个”,而是意味着“一个或多于一个”。例如,“a device”意味着对一个或多个这样的device。再者,至少一个(at least one of).......”意味着后续关联对象中的一个或任意组合,例如“A,B和C中的至少一个”包括A,B,C,AB,AC,BC,或ABC。
下面将结合附图详细说明本申请提供的各个实施例。
图6为本申请实施例的通信方法600的示意性流程图。该方法600包括如下步骤。
610,终端设备获取服务小区的上行TA。
其中,服务小区,也可以理解为该服务小区对应的网络设备,如服务基站,下文统一用服务小区表示。应理解,如前所述,本申请实施例中的“服务小区”均可以用“服务基站”代替。
服务小区的上行TA,也可以称为基准时间、基准上行时间或者基准TA(如终端设备上行传输的目标小区的TA),即终端设备获取服务小区的上行TA,也可以理解为终端设备获取一个基准时间或者基准TA。
应理解,服务小区的上行TA、服务基站的上行TA、基准时间、基准上行时间或者基准TA,其命名仅是一种名称,不对本申请的保护范围造成限定,本申请并不排除在未来的协议中定义其他名称来表示相同或相似含义的可能。在下文实施例中用服务小区的上行TA表示。
还应理解,步骤610中的服务小区的上行TA与网络设备配置的TAG的TA不同,为区分,将步骤610中的服务小区的上行TA记为服务小区的上行TA,将网络设备配置的TAG的TA记为服务小区的TA。
服务小区的上行TA可以为以下任意一项:服务小区的TA、小区级的收发信号时间差、参考信号的收发信号时间差、终端设备发送信号与服务小区接收信号的时间差、或服务小区发送信号与终端设备接收信号的时间差。
下文将详细描述终端设备获取服务小区的上行TA的方式。
应理解,在步骤610中,终端设备也可以获取一个邻小区的上行TA,如该邻小区可以是终端设备进行上行传输的目标小区。在本申请实施例中,为便于理解,仅以服务小区的上行TA为例进行示例性说明。
620,终端设备获取服务小区与邻小区的下行信号时间差。
其中,邻小区,也可以称为非服务小区(non-serving cell),或者,也可以称为邻区,也可以理解为该邻小区对应的网络设备,如邻基站,下文统一用邻小区表示。应理解,如前所述,本申请实施例中的“邻小区”均可以用“邻基站”代替。
下行信号时间差,也可以称为定时补偿量,或者称为定时补偿时间,或者称为上行定 时补偿时间等等,其用于表示服务小区的上行TA与邻小区的上行TA之间的时间差,换句话说,其用于表示终端设备向邻小区发上行信号时,在服务小区的上行TA的基础上,需要额外补偿的上行定时分量。
应理解,下行信号时间差、定时补偿量、定时补偿时间,或者上行定时补偿时间,其命名不应对本申请构成任何限定,本申请并不排除在未来的协议中定义其他名称来表示相同或相似含义的可能。在下文实施例中用下行信号时间差表示。
下文将详细描述下行信号时间差的具体形式,以及终端设备获取下行信号时间差的方式。
应理解,下行信号,可以是各种的参考信号,或者,也可以是下行子帧等等,对此不作限定。下行信号包括但不限于:CSI-RS、CS-RS、US-RS、DMRS以及SS/PBCH block。下文为不失一般性,统一用下行信号表示。
630,终端设备基于服务小区的上行TA和下行信号时间差,获取邻小区的上行TA。
可选地,在一些实施例中,邻小区的上行TA为服务小区的上行TA和下行信号时间差之和。
为便于理解,图7示出了一个示例。如图7所示:
服务小区的上行TA可以为:服务小区的TA或小区级的收发信号时间差(RX-TX time difference),例如用T ref表示。如T ref=T4-T3。
下行信号时间差可以为:终端设备接收来自邻小区的下行参考信号的接收时间和接收来自服务小区的下行参考信号的接收时间之间的时间差,例如用T offset表示。如T offset=T2-T1。
邻小区的上行TA可以为:T offset+T ref=T2-T1+T4-T3。
640,终端设备根据下行子帧定时和邻小区的上行TA,发送上行信号。
终端设备根据下行子帧定时和邻小区的上行TA,可以向一个或多个邻小区发送上行信号。
上行信号,可以是参考信号,或者,也可以是SSB,或者,也可以是上行子帧等等,对此不作限定。如,上行信号包括但不限于:SRS与DMRS,也就是说,下文中的上行信号均可替换为SRS或DMRS。下文为不失一般性,统一用上行信号表示。
下行子帧定时,或者也可以称为下行定时点,或者也可以称为下行定时同步点,或者也可以称为下行定时参考点,或者也可以称为帧定时参考等等,其可以用于终端设备根据邻小区的上行TA以及该下行子帧定时确定发送上行信号的时间。其命名不应对本申请构成任何限定,本申请并不排除在未来的协议中定义其他名称来表示相同或相似含义的可能。在本申请实施例中,用下行子帧定时表示。
终端设备可以根据以下任意一项确定下行子帧定时:主小区的下行子帧定时、服务小区的下行子帧定时、根据用于计算邻小区的上行TA对应的小区所确定的下行子帧定时、根据用于计算邻小区的上行TA对应的信号所确定的下行子帧定时、根据指定的小区确定的下行子帧定时(如可以由定位管理设备(如LMF)或服务小区指定)、根据指定的参考信号确定的下行子帧定时(如可以由定位管理设备(如LMF)或服务小区指定)、邻小区的参考信号(如可以由定位管理设备(如LMF)指定一个或多个)、指定的小区的下行子帧定时。
如图8所示,终端设备可以根据用于确定下行子帧定时的小区确定下行子帧定时,即图8中的下行定时子帧i,并根据步骤630中确定的邻小区的上行TA,确定向邻区A发送上行信号的时间。
应理解,用于确定下行子帧定时的小区,可以为服务小区、用于计算邻小区的上行TA对应的小区、或者指定的小区、或者邻小区等等。
可选地,在一些实施例中,在步骤640中,用于确定下行子帧定时的小区(即如图8所示的用于确定下行子帧定时的小区)可以是服务小区,如步骤610中的服务小区;或者,用于确定下行子帧定时时的小区也可以是需要补偿的小区,如步骤620中的用于确定下行信号时间差的邻小区,对此不作限定。以下结合图9和图10举例说明。
为区分,将下行信号时间差记为TDOA,下行信号到达服务小区的到达时间记为TOAserve,下行信号到达邻小区的到达时间记为TOA neigh,一种可能的实现方式,TDOA=TOA neigh-TOA serve
以服务小区的下行子帧定时作为参考,服务小区的上行TA=2*TOA serve,即2倍空口时延。将该服务小区的上行TA记为TA1,即TA1=2*TOA serve。邻小区的上行TA包括以下两种情况。
情况1:以邻小区的下行子帧定时作为参考,如图9所示。邻小区的TA=2*TOA neigh=2*(TOA serve+TDOA)=TA1+2*TDOA,即2倍邻区空口。将该情况下邻小区的上行TA记为TA2,即TA2=TA1+2*TDOA。
情况2:以服务小区的下行子帧定时作为参考,如图10所示。邻小区的TA2应补偿服务小区和邻小区的定时差量TDOA(也就是说,少提前TDOA),即邻小区的上行TA=TA2-TDOA=2*TOA serve+TDOA=TA1+TDOA。将该情况下邻小区的上行TA记为TA2’,即TA2’=TA1+TDOA。
上述示例性地列举了以邻小区的下行子帧定时作为参考、以服务小区的下行子帧定时作为参考的两种情况,本申请并未限定于此。例如,如前所述,也可以以指定小区的下行子帧定时作为参考。此处,不再赘述。
可选地,在一些实施例中,终端设备可以基于下行子帧定时、步骤630中确定的邻小区的上行TA、以及小区定时偏差,向邻小区发送上行信号。
服务小区与邻小区可能存在子帧定时偏差。为区分,可以将服务小区与邻小区之间的子帧定时偏差称为小区的定时偏差或小区定时偏差,或者,也可以称为基站子帧定时偏差,或者,也可以称为小区子帧定时偏移量。应理解,小区定时偏差、小区子帧定时偏差、小区子帧定时偏移量等仅是一种命名,其命名不应对本申请构成任何限定,本申请并不排除在未来的协议中定义其他名称来表示相同或相似含义的可能。在下文实施例中用小区定时偏差表示。
在服务小区与邻小区存在小区定时偏差的情况下,终端设备可以通过配置信息获取两个小区的小区定时偏差,然后在发送上行的时候,使用小区定时偏差确认额外的时间偏移。
应理解,该小区定时偏差表示小区发出下行子帧时的时间偏差,或同步偏差,该小区定时偏差与传播距离不相关。
终端设备可以通过如下任一方式获取小区定时偏差。
方式A:定位管理设备(如LMF)等通过信令告知终端设备两个小区的系统帧号0 (system frame number 0,SFN 0)的始化时间,或SFN0初始化时间差。相应地,终端设备根据接收到的信令,确定小区定时偏差。
方式B:定位管理设备(如LMF)等通过信令告知终端设备两个小区的小区定时偏差,例如某个子帧的子帧定时偏移量。
以图9和图10所示的两种情况为例进行说明,将服务小区与邻小区的小区定时偏差记为D。
以图9所示的情况为例,即以邻小区的下行子帧定时作为参考,如图11所示,终端设备向邻小区发送上行信号时的上行TA=服务小区的上行TA+2*TDOA-2*D。
其中,服务小区的上行TA,即为终端设备在步骤610中获取的服务小区的上行TA。
以图10所示的情况为例,即以服务小区的下行子帧定时作为参考,如图12所示,终端设备向邻小区发送上行信号时的上行TA=服务小区的上行TA+TDOA-2*D。
其中,服务小区的上行TA,即为终端设备在步骤610中获取的服务小区的上行TA。
以上介绍了服务小区与邻小区之间存在小区定时偏差时,终端设备调整向邻小区发送上行信号时的上行TA。
可选地,在一些实施例中,终端设备也可以调整或处理步骤630中获取到的邻小区的上行TA。
也就是说,终端设备在步骤640中使用的邻小区的上行TA,与终端设备在步骤630中基于服务小区的上行TA和下行信号时间差确定邻小区的上行TA,可以相同,也可以不同。换句话说,终端设备可以基于步骤630中确定的邻小区的上行TA发送上行信号,或者,终端设备也可以先对步骤630中确定的邻小区的上行TA进行处理,再基于处理后的上行TA,发送上行信号。
为区分,将终端设备在步骤630中基于服务小区的上行TA和下行信号时间差确定邻小区的上行TA记为第一上行TA,将终端设备在步骤640中使用的邻小区的上行TA记为第二上行TA。第一上行TA和第二上行TA可以相同;或者,第一上行TA和第二上行TA也可以不同,如终端设备可以对第一上行TA进行处理,得到第二上行TA。
终端设备可以采用以下至少一种方式进行处理。
方式1,终端设备可以对第一上行TA进行求模处理。
例如:第二上行TA=mod(第一上行TA,T0)。
其中,mod()表示求模操作,例如,mod(5,3)=2。
其中,T0可以为一个时间单位粒度,例如,T0可以为一个子帧时间长度,如1ms;又如,T0还可以为邻小区频段支持的TA最大值;又如,T0还可以为协议约定的TA最大值;又如,T0还可以为网络设备配置的TA最大值等。
方式2,终端设备可以对第一上行TA进行量化(Quantization)处理。
例如:第二上行TA=Quantization(第一上行TA,T1)。
其中,Quantization()表示量化操作。
其中,T1可以为一个时间单位粒度,例如T1可以为时间单位T C,关于T C可参考上文描述。
方式3,终端设备可以对第一上行TA进行求模和量化处理。
终端设备可以对第一上行TA既进行求模处理,又进行量化处理,也就是说,求模和 量化可以联合使用。例如,终端设备可以先对第一上行TA进行求模,再对求模后的TA进行量化;又如,终端设备可以先对第一上行TA进行量化,再对量化后的TA进行求模。
方式4,终端设备可以先对第一上行TA进行处理,再对处理后的TA进行求模和/或量化处理。
例如,终端设备可以先将第一上行TA进行以下处理:第一上行TA-Tc*N TA,offset,再对处理后的TA进行求模和/或量化处理。其中,N TA,offset表示偏移值,可能与频带相关,网络设备可以通过高层信令指定,或者,也可以是网络设备设定一些范围,然后由终端设备通过下行测量的信号强度、到达时间等进行确定。例如,可以参考上述表1。
上述示例性地介绍了对第一上行TA进行处理的几种可能的方式,本申请并未限定于此,例如,终端设备也可以基于步骤630中得到的邻小区的上行TA发送上行信号。
下文将描述步骤610中,终端设备获取服务小区的上行TA的方式。
终端设备可以通过如下任一种方式获取服务小区的上行TA:
方式1:终端设备通过TAG获取服务小区的上行TA。
可选地,在一些实施例中,该方法600还包括:网络设备向终端设备下发TAG,该TAG中包括服务小区的TA;终端设备根据该TAG,获取服务小区的TA,即服务小区的上行TA为服务小区的TA。
例如,网络设备可以通过高层信令为终端设备配置一个或多个TAG,每个TAG对应一个ID,如记为TAG-ID。网络设备,如基站,通过初始接入响应对每个TAG的NTA进行初始赋值,并通过MAC-CE消息对每个TAG的NTA进行调整。终端设备可以通过网络设备下发的信令获取服务小区的上行TA。
方式2:终端设备根据接收服务小区下行子帧i的接收时间与终端设备向服务小区发送上行子帧i的发送时间之间的时间差,确定服务小区的上行TA,其中,i为大于0或等于0的整数。
可选地,在一些实施例中,服务小区的上行TA可以为小区级的收发信号时间差,或者说,服务小区的上行TA可以为小区的收发信号时间差或基于小区的收发信号时间差,例如记作UE RX-TX time difference。应理解,其具体命名不对本申请造成限定。
服务小区的上行TA为小区级的收发信号时间差时,收为服务小区上行帧定时,发为与该服务小区关联的下行帧定时。也就是说,服务小区的上行TA可以为终端设备接收该服务小区下行子帧i的接收时间与终端设备向服务小区发送上行子帧i的发送时间之间的时间差。
方式3:终端设备根据接收服务小区的下行信号确定的下行子帧j的接收时间与终端设备向服务小区发送上行信号确定的上行子帧j的发送时间之间的时间差,确定服务小区的上行TA,其中,j为大于0或等于0的整数。
可选地,在一些实施例中,服务小区的上行TA可以为参考信号级的收发信号时间差,或者说,服务小区的上行TA可以为参考信号的收发信号时间差或基于参考信号的收发信号时间差,例如记作UE RX-TX time difference(RS level)。应理解,其具体命名不对本申请造成限定。
服务小区的上行TA为参考信号级的收发信号时间差时,收为参考信号上行帧定时,发为与该参考信号关联的下行帧定时。也就是说,服务小区的上行TA可以为终端设备接 收某参考信号确定的下行子帧j的接收时间与终端设备发送另一参考信号确定的上行子帧j的发送时间之间的时间差。
方式4:终端设备根据接收服务小区下行子帧k的接收时间与终端设备向服务小区发送上行信号确定的上行子帧k的发送时间之间的时间差,确定服务小区的上行TA,其中,k为大于0或等于0的整数。
可选地,在一些实施例中,服务小区的上行TA可以为小区的级收/发信号与参考信号级的收/发信号时间差。应理解,其具体命名不对本申请造成限定。
服务小区的上行TA为小区的级收/发信号与参考信号级的收/发信号时间差时,收可以为服务小区上行帧定时,发可以为与该服务小区的参考信号关联的下行帧定时。也就是说,服务小区的上行TA可以为终端设备接收该服务小区下行子帧k的接收时间与终端设备向该服务小区发送参考信号确定的上行子帧k的发送时间之间的时间差。
方式5:终端设备根据接收下行信号确定的下行子帧k的接收时间与向服务小区发送上行子帧k的发送时间之间的时间差,确定服务小区的上行TA。
可选地,在一些实施例中,服务小区的上行TA可以为小区的级收/发信号与参考信号级的收/发信号时间差。应理解,其具体命名不对本申请造成限定。
服务小区的上行TA为小区的级收/发信号与参考信号级的收/发信号时间差时,收可以为服务小区的参考信号上行帧定时,发可以为与该服务小区关联的下行帧定时。也就是说,服务小区的上行TA可以为终端设备接收来自服务小区的某参考信号确定的下行子帧k的接收时间与终端设备向该服务小区发送上行子帧k的发送时间之间的时间差。
在上述任意一种方式中,关于终端设备接收下行子帧或参考信号的接收时间:
可选地,在一些实施例中,终端设备可以选择接收信号中第一径的到达时间作为小区下行子帧或参考信号的到达时间;
或者,可选地,在一些实施例中,终端设备可以以接收波束扫描的方式选择多个多波束中确定的下行子帧的接收时间最早的一个作为最终接收波束进行测量。
应理解,上述以服务小区的下行子帧为例进行说明,本申请并未限定于此。例如,也可以是通过网络设备(如服务小区或定位管理设备(如LMF))指定的下行子帧、或通过网络设备指定的参考信号,来确定服务小区的上行TA。
还应理解,上述以服务小区为例进行说明,本申请并未限定于此。用于确定邻小区的上行TA时所基于的小区,也就是说,终端设备用于计算邻小区的上行TA对应的小区,可以是服务小区,也可以是网络设备(如服务小区或定位管理设备(如LMF))指定的小区,也可以是默认为主小区,也可以为邻小区(如终端设备上行传输的目标小区),等等,对此不作限定。
还应理解,上述以服务小区的下行信号为例进行说明,本申请并未限定于此。用于确定邻小区的上行TA时所基于的信号(如参考信号),也就是说,终端设备用于计算邻小区的上行TA对应的信号(如参考信号),可以是服务小区下发的信号(如参考信号),也可以是网络设备(如服务小区或定位管理设备(如LMF))指定的信号(如参考信号),也可以默认为主小区终端设备选择接入的同步信号/物理广播信道块,也可以为终端设备上行传输参考信号波束指示、路损或TA指示中对应的下行参考信号,等等,对此不作限定。
以上介绍了终端设备获取服务小区的上行TA的方式。下文将描述步骤620中,终端设备获取下行信号时间差的方式。
如前所述,下行信号时间差,也可以称为定时补偿量,其用于表示终端设备向邻小区发上行信号时,在服务小区的上行TA的基础上,需要额外补偿的上行定时分量。
补偿参考来源可以为:主小区(PCell)、服务小区、用于计算邻小区的上行TA对应的小区、用于计算邻小区的上行TA对应的信号、指定的小区(如网络设备(如服务小区或定位管理设备(如LMF))指定的小区)、指定的信号(如网络设备(如服务小区或定位管理设备(如LMF))指定的参考信号)等。
补偿目标可以为:邻小区的信号(如可以由网络设备(如服务小区或定位管理设备(如LMF))指定一个或多个参考信号)、指定的邻小区(如可以不明确指定具体的参考信号,由终端设备自身选择)、其他指定的小区或信号等。
终端设备可以通过如下任一种方法获取下行信号时间差:
方法1:终端设备根据参考信号的时间差,确定下行信号时间差。
可选地,在一些实施例中,下行信号时间差可以为参考信号时间差:以参考信号A和参考信号B为例,下行信号时间差可以为:终端设备接收参考信号A确定的下行子帧i的接收时间与终端设备接收参考信号B确定的下行子帧j的接收时间的时间差。其中,参考信号A和参考信号B来自不同小区。
可选地,子帧到达时间可以以子帧起点(例如第一个OFDM符号起点)的到达时间为准。例如,下行信号时间差可以为:终端设备接收参考信号A确定的下行子帧i起点的接收时间与终端设备接收参考信号B确定的下行子帧j起点的接收时间之间的时间差。
可选地,终端设备可以选择接收信号中第一径的到达时间作为参考信号A和B的到达时间。例如,下行信号时间差可以为:终端设备接收参考信号A中第一径的到达时间与终端设备接收参考信号B中第一径的到达时间之间的时间差。
可选地,终端设备可以以接收波束扫描的方式选择多个多波束中确定的下行子帧接收的接收时间最早的一个作为最终接收波束进行测量。
可选地,子帧索引i、j可以相等。
可选地,选取参考信号A确定的下行子帧i起点与参考信号B确定的下行子帧j起点中最接近的子帧起点的接收时间差。例如,下行信号时间差可以为:终端设备接收参考信号A确定的下行子帧i起点的接收时间与终端设备接收参考信号B确定的下行子帧j起点的接收时间之间的时间差,其中,参考信号A确定的下行子帧i起点与参考信号B确定的下行子帧j起点最接近。
方法2:终端设备根据下行定时时间差,确定下行信号时间差。
可选地,在一些实施例中,下行信号时间差可以为终端设备接收来自两个小区的下行参考信号所确定的接收时间差。
以服务小区和邻小区为例。例如,下行信号时间差可以为:邻小区的下行定时与服务小区的下行定时之间的时间差,或者,服务小区的下行定时与邻小区的下行定时之间的时间差。又如,下行信号时间差可以为:邻小区的下行子帧i与服务小区的下行子帧j之间的时间差,或者,服务小区的下行子帧j与邻小区的下行子帧i之间的时间差。
网络设备(如服务小区或定位管理设备(如LMF))可以明确指示测量下行接收定 时所使用的参考信号,例如邻小区的CSI-RS、PRS、TRS、或SSB等;或者,网络设备也可以不明确指定,由终端设备自身确定,例如服务小区中终端设备接入的SSB、或邻小区的SSB中终端设备根据信号质量自身选择等。
可选地,子帧到达时间可以以子帧起点(例如第一个OFDM符号起点)的到达时间为准。例如,下行信号时间差可以为:邻小区的下行子帧i起点的到达时间与服务小区的下行子帧j起点的到达时间之间的时间差。
可选地,终端设备可以选择接收信号中第一径的到达时间作为下行子帧的到达时间。例如,下行信号时间差可以为:终端设备接收来自服务小区的参考信号中第一径的到达时间与终端设备接收来自邻小区的参考信号中第一径的到达时间之间的时间差。
可选地,终端设备可以以接收波束扫描的方式选择多个多波束中确定的下行子帧接收的接收时间最早的一个作为最终接收波束进行测量。
可选地,子帧索引i、j可以相等。
可选地,选取参考信号A确定的下行子帧i起点与参考信号B确定的下行子帧j起点中最接近的子帧起点的接收时间差。例如,下行信号时间差可以为:终端设备接收来自服务小区的参考信号A确定的下行子帧i起点的接收时间与终端设备接收来自邻小区的参考信号B确定的下行子帧j起点的接收时间之间的时间差,其中,参考信号A确定的下行子帧i起点与参考信号B确定的下行子帧j起点最接近。
以上介绍了终端设备获取服务小区的上行TA以及下行信号时间差的方式。下文将描述步骤630中,终端设备基于服务小区的上行TA和下行信号时间差,获取邻小区的上行TA的方式。
基于步骤610的服务小区的上行TA的不同获取方式、以及步骤620中的下行信号时间差的不同形式,可以通过以下任一方式获取邻小区的上行TA。
方式1:邻小区的上行TA为:服务小区的上行TA+邻小区下行参考信号子帧i起始的到达时间-服务小区下行参考信号子帧i起始的到达时间。
方式2:邻小区的上行TA为:服务小区的上行TA+邻小区下行参考信号子帧i起始的到达时间-服务小区下行参考信号子帧j起始的到达时间。
方式3:邻小区的上行TA为:服务小区的上行TA+邻小区下行参考信号子帧i起始的到达时间-服务小区下行参考信号子帧j起始的到达时间。其中,i和j可以为最接近的子帧起点。
方式4:邻小区的上行TA为:服务小区的UE RX-TX time difference+邻小区下行参考信号子帧i起始的到达时间-服务小区下行参考信号子帧i起始的到达时间。
方式5:邻小区的上行TA为:服务小区的UE RX-TX time difference+邻小区下行参考信号子帧i起始的到达时间-服务小区下行参考信号子帧j起始的到达时间。
方式6:邻小区的上行TA为:服务小区的UE RX-TX time difference+邻小区下行参考信号子帧i起始的到达时间-服务小区下行参考信号子帧j起始的到达时间。其中,i和j可以为最接近的子帧起点。
方式7:邻小区的上行TA为:UE RX-TX time difference(RS level)+邻小区下行参考信号子帧i起始的到达时间-服务小区下行参考信号子帧i起始的到达时间。
方式8:邻小区的上行TA为:UE RX-TX time difference(RS level)+邻小区下行参 考信号子帧i起始的到达时间-服务小区下行参考信号子帧j起始的到达时间。
方式9:邻小区的上行TA为:UE RX-TX time difference(RS level)+邻小区下行参考信号子帧i起始的到达时间-服务小区下行参考信号子帧j起始的到达时间。其中,i和j可以为最接近的子帧起点。
上述示例性地列举了邻小区的上行TA的几种获取方式,应理解,本申请并未限定于此。例如,上述各个方式中的服务小区的上行TA,可以由终端设备通过上文列举的任一获取服务小区的上行TA的方式获取得到,或者,也可以由邻小区的上行TA代替,该邻小区为终端设备进行上行传输的目标小区。
可选地,终端设备也可以利用步骤630中获取到的邻小区的TA,确定其他小区的上行定时。此时额外加上邻小区与其他小区的下行信号时间差即可。此处,不再赘述。
可选地,在上述各个实施例中,终端设备可以根据服务小区的上行TA和下行信号时间差推算出邻小区的上行TA。在某些情况下,终端设备发送的上行信号可能被多个邻小区收到,或者,终端设备不确定以哪个邻小区的上行TA为准发送上行信号。例如,在以下两种情况下,终端设备不确定以哪个邻小区的上行TA为准。
情况1,网络设备(如服务小区或定位管理设备(如LMF))配置给终端设备的上行发送没有关联某一个特定的邻小区;
情况2,网络设备(如服务小区或定位管理设备(如LMF))配置给终端设备的上行发送关联了多个邻小区。
当终端设备发送的上行信号可能被多个邻小区收到时,不同的邻小区可能有不同的上行TA。对此,本申请实施例提供多种选择方式,以能够解决终端设备以哪一个邻小区的上行TA为准,发送上行信号。
可选地,在一些实施例中,终端设备准备发送或将要发送的上行信号中包含了邻小区的下行信号或关联了邻小区ID,以作为空间滤波、路损或明确的TA参考的下行信号来源,则该上行信号以该邻小区的上行TA为准。
又一种可能的实现方式,终端设备准备发送或将要发送的上行信号与多个邻小区或多个邻小区的参考信号关联,则终端设备可以通过以下任意一种方式确定以哪个邻小区的上行TA为准。
方式1,终端设备可以根据网络设备(如定位管理设备(如LMF))直接配置各个小区的优先级,比如小区ID列表的顺序与优先级正相关或反相关,确定以哪个邻小区的上行TA为准。如可以以优先级最高的小区的上行TA为准;又如,可以以优先级最低的小区的上行TA为准。
方式2,终端设备测量这些小区的下行参考信号,按照测量结果选择,例如选择RSRP最大的,或者选择RSRP最小的等等。
方式3,终端设备选择的小区的上行TA与服务小区的上行TA最接近。
基于上述描述,本申请提供的方案,终端设备自身可以通过获取服务小区的上行TA以及下行信号时间差,确定向邻小区发送上行信号时的邻小区的上行TA,从而不仅可以使得终端设备准确又灵活地向邻小区发送上行信号,提高终端设备和邻小区的通信性能和效率,而且可以避免终端设备发送的上行信号对邻小区造成干扰的问题。
本文中描述的各个实施例可以为独立的方案,也可以根据内在逻辑进行组合,这些方 案都落入本申请的保护范围中。
图13为本申请实施例的通信方法700的示意性流程图。该方法700包括如下步骤。
710,网络设备获取邻小区的上行TA。换句话说,网络设备获取终端设备向邻小区发送上行信号的上行TA。
其中,邻小区,也可以理解为邻小区,即网络设备估计终端设备向邻小区发送上行信号的上行TA,也可以理解为网络设备估计终端设备向邻小区发送上行信号的上行TA。下文统一用邻小区表示。应理解,本申请实施例中的“邻小区”均可以用“邻基站”代替。
其中,关于上行信号可以参考方法600中的描述,此处不再赘述。例如,下文中的上信号均可替换为SRS,下文为不失一般性,统一用上行信号表示。
网络设备可以是服务小区,或者,也可以是定位管理设备(如LMF)等。下文将详细描述网络设备获取邻小区的上行TA的方式。
网络设备获取邻小区的上行TA后,可以为终端设备配置上行信号的发送配置。
720,网络设备为终端设备配置上行信号的发送配置。
换句话说,网络设备可以为终端设备配置与发送上行信号相关的配置信息,例如LMF或服务小区为终端设备配置与发送上行信号相关的配置信息。
以上行信号为SRS为例,以定位管理设备为LMF为例,介绍两种可能的配置方式:
配置方式一:LMF将SRS(如通过LPP或者NRPP协议)配置给终端设备;
配置方式二:服务小区将SRS配置给终端设备。
下文将详细描述SRS配置的内容以及这两种配置方式。
可选地,在一些实施例中,网络设备可以为终端设备配置定位专用的上行参考信号,例如,SRS集合,用途设定为定位(positioning)。该上行参考信号或上行参考信号集合可以包括以下特点:
特点1:可以以某个邻小区的信号(即某个非服务小区的信号)作为计算路损的下行参考信号或波束指示。例如,该SRS集合中的SRS可以使用邻小区的CSI-RS或PRS作为波束指示,终端设备需要根据波束指示对应的下行参考信号确定该SRS的上行发送波束。另外,该SRS集合中的SRS可以使用邻小区的CSI-RS或PRS作为功率指示,终端设备需要根据功率指示对应的下行参考信号的接收功率计算路径损耗,确定该SRS的上行发送功率。
特点2:可以不按照本小区的上行定时发送参考信号。终端设备发送用于定位的SRS参考信号集合中的SRS时,上行的TA与服务小区的上行TA不同,具体的上行TA可以采用本申请实施例中的方式确定。一个资源集合可以共享一个上行TA,也可以每个资源都有自己的TA。类似的,一个资源集合可以共享一个下行定时参考信号(由网络设备指定或其他方式确定),也可以每个资源有自己的下行定时参考信号。
可选地,在一些实施例中,网络设备还可以为邻小区(例如每个邻小区)、资源、资源集合、或邻小区集合(例如邻小区集合)配置多个TA,然后指定一个下行信号资源,终端设备对该指定的下行信号资源进行测量,根据测量结果(比如RSRP,SINR等)确定使用哪一个TA。具体测量结果与TA的映射可以由定位管理设备如LMF等配置。
网络设备为终端设备配置好上行信号的发送配置后,将配置信息发送给终端设备。
730,网络设备向终端设备发送配置信息。相应地,终端设备接收到该配置信息后, 可以根据该配置信息发送上行信号。
其中,该配置信息中包括:与TA相关的信息、以及与上行信号相关的一些配置信息(例如SRS配置信息)。其中,关于与TA相关的信息,包括以下两种情况。
情况1:与TA相关的信息可以包括TA的关联关系。
可选地,在一些实施例中,网络设备可以通过配置信息(例如NR定位协议(NR positioning protocol,NRPP)信令、RRC信令),将上行信号资源或上行信号资源集合对应的TA,配置给终端设备。换句话说,网络设备可以将与该TA相关的关联关系发送给终端设备(如通过图15中所示的步骤7214或在图16中所示的步骤7223),继而终端设备基于该TA的关联关系,确定发送上行信号的上行TA。
或者,可选地,在一些实施例中,该TA的关联关系也可以是预先配置好的,例如网络设备或协议预先规定好的,终端设备可以预先保存该TA的关联关系。
TA的关联关系可以是如下任意一种形式:一个资源对应一个TA、多个资源对应一个TA、一个资源集合对应一个TA、多个资源集合对应一个TA、一个邻小区ID或邻区ID对应一个TA、多个邻小区ID或邻区ID(或邻小区ID集合或邻区ID集合)对应一个TA。
其中,关于资源的描述,参考上文术语解释,此处不再赘述。
终端设备可以根据该TA的关联关系,例如,根据资源标识以及该TA的关联关系,确定发送相应上行信号的上行TA。
情况2:与TA相关的信息可以包括终端设备发送上信号的上行TA。
例如,可选地,在一些实施例中,网络设备可以通过信令(例如NRPP信令、RRC信令)告知终端设备发送上行信号的上行TA。
应理解,上述情况1和情况2可以独立存在,也可以同时存在,对此,不作限定。
可选地,在一些实施例中,网络设备向终端设备发送小区的ID,终端设备可以根据该小区的ID,确定将向哪些小区发送上行信号(例如发送SRS)。
可选地,在一些实施例中,该配置信息中还可以包括下行子帧定时的信息。关于下行子帧定时的定义,可参考方法600中的描述,此处不再赘述。
为便于邻小区测量终端设备发送的上行信号的到达时间进行测量,LMF可以向邻小区发送测量请求消息。
740,LMF向邻小区发送测量请求消息。
LMF可以通过信令(例如NR定位协议A(NR positioning protocol A,NRPPa)信令、与LMU交互的Slm接口,或NR SLm接口(NR-SLm)等)请求服务小区、一个或多个邻小区和其他相关测量实体测量终端设备发送的上行信号。
以上行信号为SRS为例,LMF可以将步骤720中的SRS配置信息传递给相关测量实体,也就是说,该测量请求消息中可以携带SRS的配置信息,换句话说,SRS的配置信息可以通过LMF发送的测量请求消息告诉终端设备,从而可以进一步节省信令开销。
750,终端设备向邻小区发送上行信号。
终端设备接收到上行信号的配置信息后,可以向一个或多个邻小区发送上行信号。终端设备还可以向服务小区发送上行信号,图13中为便于理解,仅示出了终端设备向邻小区发送上行信号。
终端设备根据接收到的配置信息(如SRS配置),确定上行TA,并基于上行TA与 下行子帧定时,发送上行信号。
终端设备可以基于如下任一方式,确定下行子帧定时。
方式1:终端设备基于下行信号确定下行子帧定时;
方式2:终端设备基于帧定时信息确定下行子帧定时。
下文将详细描述终端设备确定下行子帧定时的上述两种方式。
可选地,在一些实施例中,终端设备发送上行信号的定时信息可以根据网络设备(例如基站或LMF)配置的用于指示该上行信号的波束指示确定,和/或,终端设备发送上行信号的定时信息可以根据进行路损计算的下行信号所确定的下行定时信息确定。如图14所示,其中,发送上行信号的上行TA,例如可以为:(N TA+N TA,offset)T C。其中,TA表示终端设备发送上行信号时的TA;N TA表示服务小区或LMF配置的TA;T C表示时间单位,例如现有协议中可以为:T C=1/(Δf max*N f),Δf max=480.10 3Hz,N f=4096;N TA,offset表示一个与频带相关的量,可能通过高层信令指定,如上述表1示出了N TA,offset的一种可能的取值情况。
760,邻小区对终端设备发送的上行信号的到达时间进行测量,并向LMF上报测量结果。
换句话说,邻小区基于LMF发送的测量请求消息、以及终端设备发送的上行信号,对终端设备发送的上行信号的到达时间进行测量,如记录上行参考信号到达时间(或以某个绝对时刻作为参考点的时间差)。
在步骤760中,服务小区、邻小区和其他相关测量实体均可以对终端设备发送的上行信号的到达时间进行测量,并向LMF上报测量结果。图13中为便于理解,仅示出了邻小区对终端设备发送的上行信号的到达时间进行测量,并向LMF上报测量结果。
770,LMF可以基于上报的测量结果,确定终端设备的位置。
LMF可以根据服务小区、邻小区和其他相关测量实体上报的测量结果确定终端设备的位置。例如,服务小区、邻小区和其他相关测量实体记录上行信号到达时间(或以某个绝对时刻作为参考点的时间差),然后将测量结果汇总到LMF,LMF根据测量结果、小区位置等信息对终端设备进行定位。本申请实施例对LMF确定终端设备位置的方式不作限定,任何使得LMF根据上报的测量结果确定终端设备位置的方式均落入本申请实施例的保护范围。
下文将描述步骤710中,网络设备获取邻小区的上行TA的方式。
网络设备可以通过如下任一种方式获取邻小区的上行TA。
方式1:网络设备获取终端设备的初始位置,并根据该终端设备的初始位置,获取邻小区的上行TA。例如,网络设备根据终端设备与邻小区的距离,以及传输信号的速度,估计邻小区的上行TA。
网络设备例如可以为服务小区或者LMF。也就是说,服务小区或者LMF可以通过终端设备的初始位置,获取终端设备向各个邻小区、LMU等发送上行信号的上行TA信息(例如,上行定时提前差量或上行定时提前绝对量等)。
网络设备可以通过以下任意一种方法获取终端设备初始位置,或粗略的传输时延。
方法A:终端设备或网络设备通过定位手段获取终端设备的位置(如之前的位置)或精度较低的初始位置。
例如,终端设备通过全球定位系统(global positioning system,GPS)对自己进行定位,然后向网络设备上报GPS的定位结果,从而网络设备根据终端设备上报的GPS的定位结果,获取终端设备的位置。
又如,网络设备通过增强型小区标识(enhanced cell-ID,E-CID)的方式,获取终端设备的粗略位置。
方法B:终端设备向LMF上报对邻小区的波束测量结果,LMF通过该上报的波束测量结果,结合邻小区的位置和波束空间朝向等大致判断终端设备所在位置。
应理解,上述两种方法仅是示例性说明,本申请实施例对如何获取到终端设备所在位置的方法不作限定,任何可以获取到终端设备所在位置的方法都落入本申请实施例的保护范围。
方式2:通过终端设备向邻小区发送前导(preamble),网络设备获取邻小区的上行TA。例如,服务小区或定位管理设备可以触发终端设备向邻小区发送随机接入信号。服务小区或定位管理设备触发针对邻小区的随机接入流程可以如下:
1)网络设备(例如服务小区或定位管理设备)可以向邻小区发送随机接入资源请求(例如通过NRPPa),该请求消息包括但不限于:随机接入资源对应的邻小区的下行参考信号(比如邻小区的SSB或CSI-RS),随机接入前导长度、参考信号强度门限等信息。邻小区可以通过向网络设备发送随机接入资源响应的方式提供随机接入资源(例如通过NRPPa),该响应消息中包括但不限于:可以用于随机接入请求的下行参考信号、对应的随机接入前导、随机接入机会等。
2)网络设备配置终端设备向邻小区发送随机接入前导。网络设备通过信令(例如NRPP)将邻小区的随机接入配置,包括随机接入资源对应的邻小区的下行参考信号(比如邻小区的SSB或CSI-RS)、随机接入前导长度、参考信号强度门限等信息,发送给终端设备。网络设备可以额外为终端设备配置一个发送间隔,终端设备可以在该间隔内进行频率、子载波间隔等切换。
可选地,在一些实施例中,定位管理设备可以请求服务小区完成随机接入配置。例如,定位管理设备向服务小区发出终端设备发送随机接入前导的请求,并提供上文所述的随机接入配置信息。然后由服务小区将该信息通过RRC等配置给终端设备,并触发终端设备进行随机接入前导发送(例如通过PDCCH order)。之后,服务小区还可以向定位管理设备发送应答,告知随机接入前导已经发送。
3)终端设备根据配置向邻小区发送随机接入前导。终端设备在发送前导之后可以向网络设备发送一个应答。
4)网络设备向邻小区获取邻小区的上行TA。
方式3:网络设备可以通过方法600中的服务小区的上行TA以及下行信号时间差,确定邻小区的上行TA。例如,终端设备可以将服务小区的上行TA以及下行信号时间差上报给网络设备,网络设备基于该服务小区的上行TA以及下行信号时间差,确定邻小区的上行TA。
方式3中关于服务小区的上行TA以及下行信号时间差可参考方法600中的描述,此处不再赘述。
网络设备可以通过上述任意一种方式,获取邻小区的上行TA。
下文将描述步骤720中,网络设备为终端设备配置上行信号的发送配置的方式。
以上行信号为SRS为例,介绍上述两种可能的配置方式。
配置方式一:LMF将SRS(如通过LPP或者NR-PP协议)配置给终端设备。
服务小区(或者终端设备进行上行传输的邻小区)提供SRS的资源配置,LMF将SRS(如通过LPP或者NR-PP协议)配置给终端设备。可选地,发送SRS的上行TA、下行子帧定时、功率控制参考信号、或者波束参考信号等配置信息,可以包含在服务小区提供的SRS的资源配置中,也可以由LMF指定。
下面结合图15中介绍上述配置方式一。图15包括如下步骤。
7211,LMF向服务小区请求SRS的资源。
LMF可以向服务小区请求SRS的资源,LMF也可以向其他小区,如提供参考数据的小区、或者终端设备进行上行传输的目标小区等,请求SRS的资源。如LMF可以通过NRPPa协议请求SRS的资源。
服务小区可以根据LMF的请求确定SRS的资源配置。
7212,服务小区确定用于终端设备发送SRS的资源。
其中,SRS资源的配置可以包括以下信息中的一项或多项:SRS资源的标识、SRS资源的端口数、SRS资源关联的PT-RS端口号、SRS资源梳齿配置信息以及序列循环移位、SRS资源起始符号索引、SRS资源连续符号个数以及重复因子、SRS资源起始资源块RB索引、SRS资源跳频配置信息,SRS带宽、SRS资源序列的组跳和序列跳、SRS资源的周期性配置、或者SRS资源的空间滤波信息等。
应理解,上述SRS的资源配置仅是示例性说明,本申请并未限定于此,任何属于SRS资源的配置均落入本申请的保护范围。
还应理解,图15仅示出了服务小区确定用于终端设备发送SRS的资源,本申请并未限定于此,例如,也可以是邻小区(如终端设备进行上行传输的邻小区)确定用于终端设备发送SRS的资源。
服务小区确定SRS的资源配置后,可以告知LMF。
7213:服务小区发送应答,将SRS的资源配置反馈到LMF。
可选地,在一些实施例中,服务小区还可以将每个上行信号资源或每个上行信号资源集合关联的TA和/或邻小区(或者邻小区)信息告知LMF。邻小区(或者邻小区)信息例如包括但不限于:上行信号关联的邻小区ID(或邻小区ID)、邻小区发送的下行信号、或邻小区的上行TA等。终端设备可以根据该邻小区(或者邻小区)的信息,向该邻小区(或者邻小区)发送SRS。
LMF接收到服务小区反馈的SRS的资源配置后,可以将该SRS的资源配置发送给终端设备。
7214:LMF将SRS的资源配置发送给终端设备。
例如,LMF可以通过NRPP协议(例如NRPP信令)将SRS的资源配置发送给终端设备。SRS的资源配置中包括的信息可参考步骤7212。
LMF还可以通过配置信息将步骤730中提及的与TA相关的信息配置给终端设备。
终端设备接收到SRS的资源配置后,可以根据该SRS的资源配置发送SRS。或者,终端设备接收到SRS的资源配置后,也可以向LMF发送应答。
7215:终端设备发送应答,确认是否能够按照LMF的配置发送SRS。
当LMF配置给终端设备的SRS与终端设备的其他上行传输冲突时,终端设备可以忽略掉其中部分参考信号并在应答中告知LMF。例如,LMF配置的用于定位的SRS与终端设备需要发送PUCCH或PUSCH发生了冲突,终端设备可以选择不发送用于定位的SRS。
应理解,步骤7215仅示出了终端设备向LMF发送应答的情况,本申请并未限定于此,例如,终端设备也可以在接收到SRS的资源配置后,直接根据该SRS的资源配置发送SRS。
配置方式二:服务小区将SRS配置给终端设备。
服务小区(或者终端设备进行上行传输的邻小区)确定SRS的资源配置(如上述步骤7212中提及的SRS的资源配置),并由服务小区将SRS配置给终端设备(可能以用途为定位的SRS资源和资源集合形式)。
下面结合图16中介绍上述配置方式二。图16包括如下步骤。
7221,LMF可以向服务小区请求SRS的资源,LMF也可以向其他小区,如提供参考数据的小区、或者终端设备进行上行传输的目标小区等,请求SRS的资源。如LMF可以通过NRPPa协议协议请求SRS的资源。
可选地,在一些实施例中,LMF可以向服务小区提供邻小区的相关信息,例如邻小区的上行TA、下行子帧定时、功率控制参考信号、或波束参考信号等,协助服务小区配置SRS。
服务小区可以根据LMF的请求确定SRS的资源配置。
7222,服务小区确定用于终端设备发送SRS的资源。
步骤7222可以参考步骤7212,此处不再赘述。
7223,服务小区将SRS的资源配置给终端设备。
可选地,在一些实施例中,SRS的资源配置可能以用途为定位的SRS资源和资源集合形式,配置给终端设备。SRS的波束指示和用于功率计算的参考信号,可以配置为非服务小区的参考信号,或者,也可以配置为服务小区的参考信号。
可选地,在一些实施例中,LMF可以将终端设备向邻小区发送SRS的发送提前量(如邻小区的上行TA)告知服务小区,例如LMF通过NRPP信令告知服务小区。服务小区可以基于该上行TA进行相应的配置。
服务小区将SRS配置好后,将SRS配置上报给LMF,由LMF分发到相关小区和测量单元。
7224,服务小区发送应答,将SRS的资源配置上报给LMF。
也就是说,服务小区将步骤7223中的相关配置上报LMF。
可选地,在一些实施例中,服务小区还可以将步骤730中提及的TA的关联关系(如每个上行信号资源或每个上行信号资源集合关联的TA)告知LMF。
可选地,在一些实施例中,服务小区还可以将邻小区信息告知LMF。邻小区信息例如包括但不限于:上行信号关联的邻小区ID(或邻小区ID)、邻小区发送的下行信号、或邻小区的上行TA等。终端设备可以根据该邻小区(或者邻小区)的信息,向该邻小区(或者邻小区)发送SRS。
应理解,上述各个步骤之间没有明确的先后顺序限定。例如,上述步骤7223和步骤7221、步骤7224之间没有明确的先后顺序限定,如服务小区可以先将SRS的配置下发给 终端设备,LMF在请求的时候再将该SRS的配置告诉LMF。
上述两种配置方式中,服务小区或LMF配置的上行TA可以是配置一个经过量化的TA。关于量化可参考方法600中的描述,此处不再赘述。
终端设备接收到服务小区或LMF配置的上行TA后,可以根据频段确定偏移量后再发送。如可以通过以下公式确定发送上行信号的上行TA:
T TA=(N TA+N TA,offset)T C
其中,T TA表示终端设备发送SRS时的TA;
N TA表示服务小区或LMF配置的TA;
T C表示时间单位,例如现有协议中可以为:T C=1/(Δf max*N f),Δf max=480.10 3Hz,N f=4096;
N TA,offset表示一个与频带相关的量,可能通过高层信令指定,如上述表1示出了N TA, offset的一种可能的取值情况。
应理解,考虑到覆盖范围区别,网络设备(如基站或定位管理设备)可以为邻小区(或邻小区)和服务小区(如服务小区)分别配一个偏移量表格,终端设备在确认邻小区的TA时使用的偏移量表格,可能与在确认服务小区的TA时使用的偏移量表格不同。
上文结合图15和图16,详细介绍了两种配置方式,下文将描述步骤750中,终端设备确定下行子帧定时的方式。
终端设备可以基于如下任一方式,确定下行子帧定时。
方式1:终端设备基于下行信号确定下行子帧定时。
其中,关于下行信号可以参考方法600中的描述,此处不再赘述。
网络设备可以指定服务小区(例如PCell)和/或邻小区的下行信号作为下行子帧定时(例如也可以称为帧定时参考),换句话说,网络设备可以告知终端设备以服务小区和/或邻小区的下行信号作为下行子帧定时。终端设备通过确定下行信号(例如下行参考信号)的子帧边界来获取下行子帧定时。上行定时信息可以由获取的下行子帧定时确认,也就是说,终端设备可以基于该下行子帧定时确定发送上行信号的时间。
网络设备可以为参考信号资源或参考信号资源集合配置对应的下行信号,以便终端设备可以通过参考信号资源或参考信号资源集合对应的下行信号的子帧边界来获取下行定时。或者,网络设备也可以为邻小区或LMU等关联对应的下行信号,以便终端设备可以通过邻小区或LMU等关联的下行信号的子帧边界来获取下行定时。
方式2:终端设备基于帧定时信息确定下行子帧定时。
网络设备可以为终端设备配置上行发送的帧定时信息,例如为小区、上行参考信号资源、或上行参考信号资源集合等,配置子帧初始时间(SFN initialization time)。网络设备还可以配置相对于服务小区或某一参考小区的定时的时间差,例如子帧初始时时间差,帧定时偏移量等。
终端设备通过上述任一方式确定下行子帧定时,继而可以根据确定的下行子帧定时和邻小区的上行TA,发送上行信号。
基于上述描述,本申请提供的方案,网络设备通过为终端设备配置邻小区的上行TA,并告知终端设备,从而不仅可以使得终端设备准确又灵活地向邻小区发送上行信号,提高终端设备和邻小区的通信性能和效率,而且可以避免终端设备发送的上行信号对邻小区造 成干扰的问题。
本文中描述的各个实施例可以为独立的方案,也可以根据内在逻辑进行组合,这些方案都落入本申请的保护范围中。
可以理解的是,上述各个方法实施例中,由终端设备实现的方法和操作,也可以由可用于终端设备的部件(例如芯片或者电路)实现,由网络设备实现的方法和操作,也可以由可用于网络设备的部件(例如芯片或者电路)实现。
应理解,上述各个方法实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
上文描述了本申请实施例提供的方法实施例,下文将描述本申请实施例提供的装置实施例。应理解,装置实施例的描述与方法实施例的描述相互对应,因此,未详细描述的内容可以参见上文方法实施例,为了简洁,这里不再赘述。
上述主要从各个网元之间交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,各个网元,例如发射端设备或者接收端设备,为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对发射端设备或者接收端设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面以采用对应各个功能划分各个功能模块为例进行说明。
图17为本申请实施例提供的通信设备1700的示意性框图。该通信设备1700包括通信单元1710和处理单元1720。
在一种可能的设计中,该通信设备1700可实现对应于上文方法实施例中的终端设备执行的步骤或者流程,例如,可以为终端设备,或者配置于终端设备中的芯片或电路。通信单元1710用于执行上文方法实施例中终端设备侧的收发相关操作,处理单元1720用于执行上文方法实施例中终端设备的处理相关操作。
在本可能的设计中,一种可能的实现方式,处理单元1720用于:获取服务小区的上行定时提前量TA;获取服务小区站与邻小区的下行信号时间差;基于服务小区的上行TA与下行信号时间差,获取邻小区的上行TA;通信单元1710用于:基于下行子帧定时和邻小区的上行TA,向邻小区发送上行信号。
可选地,在一些实施例中,邻小区的上行TA为服务小区的上行TA和下行信号时间差之和。
可选地,在一些实施例中,通信单元1710用于:接收来自网络设备的定时提前组TAG,TAG包括服务小区的上行TA;处理单元1720用于:从TAG获取服务小区的上行TA。
可选地,在一些实施例中,服务小区的上行TA为:通信设备1700接收服务小区下行子帧i的接收时间与通信设备1700向服务小区发送上行子帧i的发送时间之间的时间差,其中,i为大于0或等于0的整数。
可选地,在一些实施例中,服务小区的上行TA为:通信设备1700接收服务小区的下行信号确定的下行子帧j的接收时间与通信设备1700向服务小区发送上行信号确定的上行子帧j的发送时间之间的时间差,其中,j为大于0或等于0的整数。
可选地,在一些实施例中,服务小区的上行TA为:通信设备1700接收服务小区下行子帧k的接收时间与通信设备1700向服务小区发送上行信号确定的上行子帧k的发送时间之间的时间差;或,通信设备1700接收下行信号确定的下行子帧k的接收时间与向服务小区发送上行子帧k的发送时间之间的时间差;其中,k为大于0或等于0的整数。
可选地,在一些实施例中,通信单元1710用于:基于下行子帧定时、邻小区的上行TA、以及小区的定时偏差,向邻小区发送上行信号,其中,小区的定时偏差为服务小区与邻小区的子帧定时偏差。
可选地,在一些实施例中,下行子帧定时为以下任意一项:主小区的下行子帧定时、服务小区的下行子帧定时、或邻小区的下行子帧定时。
可选地,在一些实施例中,处理单元1720用于:获取目标邻小区的上行TA,其中,所述邻小区包括多个邻小区,所述目标邻小区为所述多个邻小区中的一个或多个;通信单元1710用于:基于下行子帧定时和目标邻小区的上行TA,向多个邻小区发送上行信号;其中,目标邻小区包括:多个邻小区中上行TA与服务小区的上行TA最接近的邻小区;或,多个邻小区中优先级最高的邻小区,或,多个邻小区中参考信号接收功率RSRP最大的邻小区;或,多个邻小区中优先级最低的邻小区,或,多个邻小区中RSRP最小的邻小区。
可选地,在一些实施例中,处理单元1720用于:对邻小区的上行TA进行求模和/或量化处理。
该通信设备1700可实现对应于根据本申请实施例的方法600中的终端设备执行的步骤或者流程,该通信设备1700可以包括用于执行图6中的方法600中的终端设备执行的方法的单元。并且,该通信设备1700中的各单元和上述其他操作和/或功能分别为了实现图6中的方法600的相应流程。
应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
在本可能的设计中,又一种可能的实现方式,处理单元1720用于:获取邻小区的上行定时提前量TA;通信单元1710用于:从定位管理设备或者服务小区接收上行参考信号的配置信息,上行参考信号为通信设备1700向邻小区发送的参考信号;基于下行子帧定时以及邻小区的上行TA,向邻小区发送上行参考信号的配置信息所指示的上行参考信号。
可选地,在一些实施例中,处理单元1720用于:预存储以下信息中的一项或多项:上行参考信号标识与邻小区的上行TA的对应关系;或者,上行参考信号集合标识与邻小区的上行TA的对应关系;或者,邻小区标识与邻小区的上行TA的对应关系;多个邻小区标识的集合与邻小区的上行TA的对应关系。
可选地,在一些实施例中,通信单元1710用于:接收以下信息中的一项或多项:上 行参考信号标识与邻小区的上行TA的对应关系;或者,上行参考信号集合标识与邻小区的上行TA的对应关系;或者,邻小区标识与邻小区的上行TA的对应关系;多个邻小区标识的集合与邻小区的上行TA的对应关系。
可选地,在一些实施例中,处理单元1720用于:根据向邻小区发送的上行参考信号,以及上行参考信号标识与邻小区的上行TA的对应关系,获取邻小区的上行TA;或者,根据向邻小区发送的上行参考信号所属的集合,以及上行参考信号集合标识与邻小区的上行TA的对应关系,获取邻小区的上行TA;或者,根据上行参考信号发送的邻小区,以及邻小区标识与邻小区的上行TA的对应关系,获取邻小区的上行TA;或者,根据上行参考信号发送的邻小区所属的集合,以及多个邻小区标识的集合与邻小区的上行TA的对应关系,获取邻小区的上行TA。
可选地,在一些实施例中,通信单元1710用于:获取下行子帧定时;其中,获取下行子帧定时,具体包括:接收下行子帧定时的信息;或,接收下行参考信号,并基于下行参考信号的时间获取下行子帧定时,下行参考信号是从服务小区或邻小区接收的。
可选地,在一些实施例中,下行子帧定时为以下任意一项:主小区的下行子帧定时、服务小区的下行子帧定时、或邻小区的下行子帧定时。
可选地,在一些实施例中,上行参考信号为用于定位的探测参考信号SRS,上行参考信号的配置信息包括以下信息中的一项或多项:SRS资源的标识、SRS资源的端口数、SRS资源关联的相位跟踪参考信号PT-RS端口号、SRS资源梳齿配置信息以及序列循环移位、SRS资源起始符号索引、SRS资源连续符号个数以及重复因子、SRS资源起始资源块RB索引、SRS资源跳频配置信息,SRS带宽、SRS资源序列的组跳和序列跳、SRS资源的周期性配置信息、SRS资源的空间滤波信息。
可选地,在一些实施例中,通信单元1710用于:从定位管理设备或者服务小区接收邻小区的标识。
该通信设备1700可实现对应于根据本申请实施例的方法700中的终端设备执行的步骤或者流程,该通信设备1700可以包括用于执行方法700中的终端设备执行的方法的单元。并且,该通信设备1700中的各单元和上述其他操作和/或功能分别为了实现方法700的相应流程。
应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
还应理解,该通信设备1700中的通信单元1710也可以为输入/输出接口。
在另一种可能的设计中,该通信设备1700可实现对应于上文方法实施例中小区(如服务小区或邻小区)所执行的动作,这时,该通信设备1700可以称为基站或网络设备。以网络设备为例,例如,可以为网络设备,或者配置于网络设备中的芯片或电路。通信单元1710用于执行上文方法实施例中小区侧的收发相关操作,处理单元1720用于执行上文方法实施例中小区侧的处理相关操作。
在本可能的设计中,一种可能的实现方式,通信单元1710用于:向定位管理设备发送上行参考信号的配置信息;处理单元1720用于:确定邻小区的上行定时提前量TA;通信单元1710用于:向终端设备发送邻小区的上行TA的指示信息;从终端设备接收上行参考信号的配置信息所指示的上行参考信号。
可选地,在一些实施例中,通信单元1710用于:向终端设备发送以下信息中的一项或多项:上行参考信号标识与邻小区的上行TA的对应关系;或者,上行参考信号集合标识与邻小区的上行TA的对应关系;或者,邻小区标识与邻小区的上行TA的对应关系;或者,多个邻小区标识的集合与邻小区的上行TA的对应关系。
可选地,在一些实施例中,通信单元1710用于:向终端设备发送下行子帧定时的信息,下行子帧定时为以下任意一项:主小区的下行子帧定时、服务小区的下行子帧定时、或邻小区的下行子帧定时。
可选地,在一些实施例中,通信单元1710用于:从定位管理设备接收测量请求消息,测量请求消息用于请求服务小区上报接收上行参考信号的时间。
可选地,在一些实施例中,处理单元1720用于:获取终端设备的位置信息,根据终端设备的位置信息,确定邻小区的上行TA;或者,基于终端设备向邻小区发送前导信息,确定邻小区的上行TA;或者,获取服务小区的上行TA和下行信号时间差,根据服务小区的上行TA和下行信号时间差,确定邻小区的上行TA,其中,下行信号时间差为服务小区的上行TA与邻小区的上行TA的下行信号时间差。
可选地,在一些实施例中,处理单元1720用于:通过GPS或E-CID方式获取终端设备的位置信息;或者,基于终端设备上报的邻小区的波束测量结果,获取终端设备的位置信息。
可选地,在一些实施例中,上行参考信号为用于定位的探测参考信号SRS,上行参考信号的配置信息包括以下信息中的一项或多项:SRS资源的标识、SRS资源的端口数、SRS资源关联的相位跟踪参考信号PT-RS端口号、SRS资源梳齿配置信息以及序列循环移位、SRS资源起始符号索引、SRS资源连续符号个数以及重复因子、SRS资源起始资源块RB索引、SRS资源跳频配置信息,SRS带宽、SRS资源序列的组跳和序列跳、SRS资源的周期性配置信息、SRS资源的空间滤波信息。
可选地,在一些实施例中,通信单元1710用于:向终端设备发送邻小区的标识。
该通信设备1700可实现对应于根据本申请实施例的方法700中的小区(如服务小区或邻小区)执行的步骤或者流程,该通信设备1700可以包括用于执行方法700中的小区执行的方法的单元。并且,该通信设备1700中的各单元和上述其他操作和/或功能分别为了实现方法700的相应流程。
应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
在另一种可能的设计中,该通信设备1700可实现对应于上文方法实施例中定位管理设备所执行的动作,这时,该通信设备1700可以称为定位管理设备,例如,可以为定位管理设备,或者配置于定位管理设备中的芯片或电路。通信单元1710用于执行上文方法实施例中定位管理设备侧的收发相关操作,处理单元1720用于执行上文方法实施例中定位管理设备侧的处理相关操作。
在本可能的设计中,一种可能的实现方式,处理单元1720用于:确定邻小区的上行定时提前量TA;通信单元1710用于:从终端设备的服务小区接收上行参考信号的配置信息,上行参考信号为终端设备向邻小区发送的参考信号;向终端设备发送上行参考信号的配置信息以及邻小区的上行TA的指示信息。
可选地,在一些实施例中,通信单元1710用于:向终端设备发送以下信息中的一项或多项:上行参考信号标识与邻小区的上行TA的对应关系;或者,上行参考信号集合标识与邻小区的上行TA的对应关系;或者,邻小区标识与邻小区的上行TA的对应关系;或者,多个邻小区标识的集合与邻小区的上行TA的对应关系。
可选地,在一些实施例中,通信单元1710用于:向终端设备发送下行子帧定时的信息,下行子帧定时为以下任意一项:主小区的下行子帧定时、服务小区的下行子帧定时、或邻小区的下行子帧定时。
可选地,在一些实施例中,通信单元1710用于:向邻小区或服务小区发送测量请求消息,测量请求消息用于请求邻小区或服务小区上报接收上行参考信号的时间。
可选地,在一些实施例中,处理单元1720用于:获取终端设备的位置信息,根据终端设备的位置信息,确定邻小区的上行TA;或者,基于终端设备向邻小区发送前导信息,确定邻小区的上行TA;或者,获取服务小区的上行TA和下行信号时间差,根据服务小区的上行TA和下行信号时间差,确定邻小区的上行TA,其中,下行信号时间差为服务小区的上行TA与邻小区的上行TA的下行信号时间差。
可选地,在一些实施例中,处理单元1720用于:通过GPS或E-CID方式获取终端设备的位置信息;或者,基于终端设备上报的邻小区的波束测量结果,获取终端设备的位置信息。
可选地,在一些实施例中,上行参考信号为用于定位的探测参考信号SRS,上行参考信号的配置信息包括以下信息中的一项或多项:SRS资源的标识、SRS资源的端口数、SRS资源关联的相位跟踪参考信号PT-RS端口号、SRS资源梳齿配置信息以及序列循环移位、SRS资源起始符号索引、SRS资源连续符号个数以及重复因子、SRS资源起始资源块RB索引、SRS资源跳频配置信息,SRS带宽、SRS资源序列的组跳和序列跳、SRS资源的周期性配置信息、SRS资源的空间滤波信息。
可选地,在一些实施例中,通信单元1710用于:向终端设备发送邻小区的标识
该通信设备1700可实现对应于根据本申请实施例的方法700中的定位管理设备执行的步骤或者流程,该通信设备1700可以包括用于执行方法700中的定位管理设备执行的方法的单元。并且,该通信设备1700中的各单元和上述其他操作和/或功能分别为了实现方法700的相应流程。
应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
还应理解,上文实施例中的处理单元1720可以由处理器或处理器相关电路实现,通信设备1700可以由收发器或收发器相关电路实现。
图18为本申请实施例提供的通信设备1800的示意图。通信设备1800包括处理器1810、存储器1820和收发器1830,存储器1820中存储有程序,处理器1810用于执行存储器1820中存储的程序,对存储器1820中存储的程序的执行,使得处理器1810用于执行上文方法实施例中的相关处理步骤,对存储器1820中存储的程序的执行,使得处理器1810控制收发器1830执行上文方法实施例中的收发相关步骤。
作为一种实现,该通信设备1800用于执行上文方法实施例中终端设备所执行的动作,这时,对存储器1820中存储的程序的执行,使得处理器1810用于执行上文方法实施例中 终端设备侧的处理步骤,对存储器1820中存储的程序的执行,使得处理器1810控制收发器1830执行上文方法实施例中终端设备侧的接收和发送步骤。
作为另一种实现,该通信设备1800用于执行上文方法实施例中定位管理设备所执行的动作,这时,对存储器1820中存储的程序的执行,使得处理器1810用于执行上文方法实施例中定位管理设备侧的处理步骤,对存储器1820中存储的程序的执行,使得处理器1810控制收发器1830执行上文方法实施例中定位管理设备侧的接收和发送步骤。
作为另一种实现,该通信设备1800用于执行上文方法实施例中小区所执行的动作,这时,对存储器1820中存储的程序的执行,使得处理器1810用于执行上文方法实施例中小吴侧的处理步骤,对存储器1820中存储的程序的执行,使得处理器1810控制收发器1830执行上文方法实施例中小区侧的接收和发送步骤。
图19为本申请实施例提供的通信设备1900的示意图。该通信设备1900可以是终端设备也可以是芯片。该通信设备1900可以用于执行上述方法实施例中由终端设备所执行的动作。
当该通信设备1900为终端设备时,图19示出了一种简化的终端设备的结构示意图。便于理解和图示方便,图19中,终端设备以手机作为例子。如图19所示,终端设备包括处理器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对终端设备进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端设备可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图19中仅示出了一个存储器和处理器,在实际的终端设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端设备的收发单元,将具有处理功能的处理器视为终端设备的处理单元。
如图19所示,终端设备包括收发单元1910和处理单元1920。收发单元1910也可以称为收发器、收发机、收发装置等。处理单元1920也可以称为处理器,处理单板,处理模块、处理装置等。可选地,可以将收发单元1910中用于实现接收功能的器件视为接收单元,将收发单元1910中用于实现发送功能的器件视为发送单元,即收发单元1910包括接收单元和发送单元。收发单元有时也可以称为收发机、收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。
例如,在一种实现方式中,收发单元1910还用于执行图6中所示的步骤640中终端 设备侧的发送操作,和/或收发单元1910还用于执行终端设备侧的其他收发步骤。处理单元1920,用于执行本申请实施例中终端设备侧的处理步骤,例如,步骤610至步骤630。
再例如,在一种实现方式中,收发单元1910还用于执行图13中所示的步骤430中终端设备侧的接收操作,收发单元1910还用于执行终端设备侧的其他收发步骤。
应理解,图19仅为示例而非限定,上述包括收发单元和处理单元的终端设备可以不依赖于图19所示的结构。
当该通信设备1900为芯片时,该芯片包括收发单元和处理单元。其中,收发单元可以是输入输出电路或通信接口;处理单元可以为该芯片上集成的处理器或者微处理器或者集成电路。
本申请实施例还提供一种通信设备2000,该通信设备2000可以是网络设备也可以是芯片。该通信设备2000可以用于执行上述方法实施例中由小区或定位管理设备所执行的动作。
当该通信设备2000为网络设备时,例如为基站。图20示出了一种简化的基站结构示意图。基站包括2010部分以及2020部分。2010部分主要用于射频信号的收发以及射频信号与基带信号的转换;2020部分主要用于基带处理,对基站进行控制等。2010部分通常可以称为收发单元、收发机、收发电路、或者收发器等。2020部分通常是基站的控制中心,通常可以称为处理单元,用于控制基站执行上述方法实施例中网络设备侧的处理操作。
2010部分的收发单元,也可以称为收发机或收发器等,其包括天线和射频单元,其中射频单元主要用于进行射频处理。可选地,可以将2010部分中用于实现接收功能的器件视为接收单元,将用于实现发送功能的器件视为发送单元,即2010部分包括接收单元和发送单元。接收单元也可以称为接收机、接收器、或接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
2020部分可以包括一个或多个单板,每个单板可以包括一个或多个处理器和一个或多个存储器。处理器用于读取和执行存储器中的程序以实现基带处理功能以及对基站的控制。若存在多个单板,各个单板之间可以互联以增强处理能力。作为一种可选的实施方式,也可以是多个单板共用一个或多个处理器,或者是多个单板共用一个或多个存储器,或者是多个单板同时共用一个或多个处理器。
例如,在一种实现方式中,2010部分的收发单元用于执行图13中步骤730中网络设备侧的发送操作,和/或2010部分的收发单元还用于执行本申请实施例中网络设备侧的其他收发步骤。2020部分的处理单元用于执行本申请实施例中网络设备侧的处理步骤。
再例如,在另一种实现方式中,2010部分的收发单元用于执行图13中步骤440、步骤450、步骤460中小区侧的收发操作,和/或2010部分的收发单元还用于执行本申请实施例中小区侧的其他收发步骤。2020部分的处理单元用于执行图15中步骤410、步骤420、步460中的处理步骤。
应理解,图20仅为示例而非限定,上述包括收发单元和处理单元的网络设备可以不依赖于图20所示的结构。
当该通信设备2000为芯片时,该芯片包括收发单元和处理单元。其中,收发单元可以是输入输出电路、通信接口;处理单元为该芯片上集成的处理器或者微处理器或者集成 电路。
本申请实施例还提供一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被计算机执行时使得该计算机实现上述方法实施例中终端设备侧的方法或网络设备侧的方法。
本申请实施例还提供一种包含指令的计算机程序产品,该指令被计算机执行时使得该计算机实现上述方法实施例中终端设备侧的方法或网络设备侧的方法。
本申请实施例还提供一种系统,其包括前述的一个或多个终端设备以及一个或多个网络设备。
上述提供的任一种通信设备中相关内容的解释及有益效果均可参考上文提供的对应的方法实施例,此处不再赘述。
在本申请实施例中,终端设备或网络设备包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。并且,本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是终端设备或网络设备,或者,是终端设备或网络设备中能够调用程序并执行程序的功能模块。
另外,本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
应理解,本申请实施例中提及的处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random  Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)集成在处理器中。
应注意,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各种说明性逻辑块(illustrative logical block)和步骤(step),能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (33)

  1. 一种通信方法,其特征在于,包括:
    获取服务小区的上行定时提前量TA;
    获取所述服务小区与邻小区的下行信号时间差;
    基于所述服务小区的上行TA与所述下行信号时间差,获取所述邻小区的上行TA;
    基于下行子帧定时和所述邻小区的上行TA,向所述邻小区发送上行信号。
  2. 根据权利要求1所述的方法,其特征在于,所述邻小区的上行TA为:
    所述服务小区的上行TA和所述服务小区与邻小区的下行信号时间差之和。
  3. 根据权利要求1或2所述的方法,其特征在于,所述获取服务小区的上行TA,包括:
    接收来自网络设备的定时提前组TAG,所述TAG包括所述服务小区的上行TA;
    从所述TAG获取所述服务小区的上行TA。
  4. 根据权利要求1或2所述的方法,其特征在于,所述服务小区的上行TA为以下任意一项:
    终端设备接收所述服务小区下行子帧i的时间与所述终端设备向所述服务小区发送上行子帧i的时间的时间差,其中,i为大于0或等于0的整数;或者,
    所述终端设备接收所述服务小区的下行信号确定的下行子帧j的时间与所述终端设备向所述服务小区发送上行信号确定的上行子帧j的时间的时间差,其中,j为大于0或等于0的整数;或者,
    所述终端设备接收所述服务小区下行子帧k的时间与所述终端设备向所述服务小区发送上行信号确定的上行子帧k的时间的时间差,其中,k为大于0或等于0的整数;或者,
    所述终端设备接收所述下行信号确定的下行子帧k的时间与向所述服务小区发送上行子帧k的时间的时间差。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述基于下行子帧定时和所述邻小区的上行TA,向所述邻小区发送上行信号,包括:
    基于所述下行子帧定时、所述邻小区的上行TA、以及小区的定时偏差,向所述邻小区发送上行信号;
    其中,所述小区的定时偏差为所述服务小区与所述邻小区的子帧定时偏差。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述下行子帧定时为以下任意一项:
    主小区的下行子帧定时、所述服务小区的下行子帧定时、或所述邻小区的下行子帧定时。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述获取邻小区的上行TA,包括:
    获取目标邻小区的上行TA,其中,所述邻小区包括多个邻小区,所述目标邻小区为所述多个邻小区中的一个或多个;
    所述基于下行子帧定时和所述邻小区的上行TA,向所述邻小区发送上行信号,包括:
    基于所述下行子帧定时和所述目标邻小区的上行TA,向多个邻小区发送上行信号,
    其中,所述目标邻小区包括:
    所述多个邻小区中上行TA与所述服务小区的上行TA最接近的邻小区;或
    所述多个邻小区中优先级最高的邻小区,或,所述多个邻小区中参考信号接收功率RSRP最大的邻小区;或
    所述多个邻小区中优先级最低的邻小区,或,所述多个邻小区中RSRP最小的邻小区。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,
    所述基于下行子帧定时和所述邻小区的上行TA,向所述邻小区发送上行信号之前,包括:
    对所述邻小区的上行TA进行求模和/或量化处理。
  9. 一种通信方法,其特征在于,包括:
    获取邻小区的上行定时提前量TA;
    从定位管理设备或者服务小区接收上行参考信号的配置信息,所述上行参考信号为终端设备向所述邻小区发送的参考信号;
    基于下行子帧定时以及所述邻小区的上行TA,向所述邻小区发送所述上行参考信号的配置信息所指示的上行参考信号。
  10. 根据权利要求9所述的方法,其特征在于,所述方法还包括:
    接收或者预存储以下信息中的一项或多项:
    上行参考信号标识与邻小区的上行TA的对应关系;或者,
    上行参考信号集合标识与邻小区的上行TA的对应关系;或者,
    邻小区标识与邻小区的上行TA的对应关系;
    多个邻小区标识的集合与邻小区的上行TA的对应关系。
  11. 根据权利要求10所述的方法,其特征在于,所述获取邻小区的上行TA,包括:
    根据向所述邻小区发送的上行参考信号,以及所述上行参考信号标识与邻小区的上行TA的对应关系,获取所述邻小区的上行TA;或者,
    根据向所述邻小区发送的上行参考信号所属的集合,以及所述上行参考信号集合标识与邻小区的上行TA的对应关系,获取所述邻小区的上行TA;或者,
    根据所述上行参考信号发送的所述邻小区,以及所述邻小区标识与邻小区的上行TA的对应关系,获取所述邻小区的上行TA;或者,
    根据所述上行参考信号发送的所述邻小区所属的集合,以及所述多个邻小区标识的集合与邻小区的上行TA的对应关系,获取所述邻小区的上行TA。
  12. 根据权利要求9至11中任一项所述的方法,其特征在于,所述方法还包括:
    接收所述下行子帧定时的信息;或,
    接收下行参考信号,并基于所述下行参考信号的时间获取所述下行子帧定时,所述下行参考信号是从服务小区或邻小区接收的。
  13. 根据权利要求9至12中任一项所述的方法,其特征在于,所述下行子帧定时为以下任意一项:
    主小区的下行子帧定时、服务小区的下行子帧定时、或邻小区的下行子帧定时。
  14. 根据权利要求9至13中任一项所述的方法,其特征在于,
    所述上行参考信号为用于定位的探测参考信号SRS,所述上行参考信号的配置信息包括以下信息中的一项或多项:
    所述SRS资源的标识、所述SRS资源的端口数、所述SRS资源关联的相位跟踪参考信号PT-RS端口号、所述SRS资源梳齿配置信息以及序列循环移位、所述SRS资源起始符号索引、所述SRS资源连续符号个数以及重复因子、所述SRS资源起始资源块RB索引、所述SRS资源跳频配置信息,所述SRS带宽、所述SRS资源序列的组跳和序列跳、所述SRS资源的周期性配置信息、所述SRS资源的空间滤波信息。
  15. 根据权利要求9至14中任一项所述的方法,其特征在于,所述方法还包括:
    从所述定位管理设备或者所述服务小区接收所述邻小区的标识。
  16. 一种通信设备,其特征在于,包括:处理单元和通信单元,
    所述处理单元用于:获取服务小区的上行定时提前量TA;
    所述处理单元还用于:获取所述服务小区与邻小区的下行信号时间差;
    所述处理单元还用于:基于所述服务小区的上行TA与所述下行信号时间差,获取所述邻小区的上行TA;
    所述通信单元用于:基于下行子帧定时和所述邻小区的上行TA,向所述邻小区发送上行信号。
  17. 根据权利要求16所述的设备,其特征在于,所述邻小区的上行TA为所述服务小区的上行TA和所述下行信号时间差之和。
  18. 根据权利要求16或17所述的设备,其特征在于,
    所述通信单元用于:接收来自网络设备的定时提前组TAG,所述TAG包括所述服务小区的上行TA;
    所述处理单元用于:从所述TAG获取所述服务小区的上行TA。
  19. 根据权利要求16或17所述的设备,其特征在于,所述服务小区的上行TA为以下任意一项:
    所述通信设备接收所述服务小区下行子帧i的接收时间与所述通信设备向所述服务小区发送上行子帧i的发送时间之间的时间差,其中,i为大于0或等于0的整数;或者,
    所述通信设备接收所述服务小区的下行信号确定的下行子帧j的接收时间与所述通信设备向所述服务小区发送上行信号确定的上行子帧j的发送时间之间的时间差,其中,j为大于0或等于0的整数;或者,
    所述通信设备接收所述服务小区下行子帧k的接收时间与所述通信设备向所述服务小区发送上行信号确定的上行子帧k的发送时间之间的时间差,其中,k为大于0或等于0的整数;或者,
    所述通信设备接收所述下行信号确定的下行子帧k的接收时间与向所述服务小区发送上行子帧k的发送时间之间的时间差。
  20. 根据权利要求16至19中任一项所述的设备,其特征在于,
    所述处理单元用于:基于所述下行子帧定时、所述邻小区的上行TA、以及小区的定时偏差,向所述邻小区发送上行信号,
    其中,所述小区的定时偏差为所述服务小区与所述邻小区的子帧定时偏差。
  21. 根据权利要求16至20中任一项所述的设备,其特征在于,所述下行子帧定时为以下任意一项:
    主小区的下行子帧定时、所述服务小区的下行子帧定时、或所述邻小区的下行子帧定时。
  22. 根据权利要求16至21中任一项所述的设备,其特征在于,
    所述处理单元用于:获取目标邻小区的上行TA;其中,所述邻小区包括多个邻小区,所述目标邻小区为所述多个邻小区中的一个或多个;
    所述通信单元用于:基于所述下行子帧定时和所述目标邻小区的上行TA,向多个邻小区发送上行信号;
    其中,所述目标邻小区包括:
    所述多个邻小区中上行TA与所述服务小区的上行TA最接近的邻小区;或
    所述多个邻小区中优先级最高的邻小区,或,所述多个邻小区中参考信号接收功率RSRP最大的邻小区;或
    所述多个邻小区中优先级最低的邻小区,或,所述多个邻小区中RSRP最小的邻小区。
  23. 根据权利要求16至22中任一项所述的设备,其特征在于,
    所述处理单元还用于:在所述通信单元基于下行子帧定时和所述邻小区的上行TA,向所述邻小区发送上行信号之前,对所述邻小区的上行TA进行求模和/或量化处理。
  24. 一种通信设备,其特征在于,包括:处理单元和通信单元,
    所述处理单元用于:获取邻小区的上行定时提前量TA;
    所述通信单元用于:从定位管理设备或者服务小区接收上行参考信号的配置信息,所述上行参考信号为终端设备向所述邻小区发送的参考信号;
    所述通信单元还用于:基于下行子帧定时以及所述邻小区的上行TA,向所述邻小区发送所述上行参考信号的配置信息所指示的上行参考信号。
  25. 根据权利要求24所述的设备,其特征在于,
    所述处理单元用于预存储,或者,所述通信单元用于接收,以下信息中的一项或多项:
    上行参考信号标识与邻小区的上行TA的对应关系;或者,
    上行参考信号集合标识与邻小区的上行TA的对应关系;或者,
    邻小区标识与邻小区的上行TA的对应关系;
    多个邻小区标识的集合与邻小区的上行TA的对应关系。
  26. 根据权利要求25所述的设备,其特征在于,所述获取邻小区的上行TA,所述处理单元用于:
    根据向所述邻小区发送的上行参考信号,以及所述上行参考信号标识与邻小区的上行TA的对应关系,获取所述邻小区的上行TA;或者,
    根据向所述邻小区发送的上行参考信号所属的集合,以及所述上行参考信号集合标识与邻小区的上行TA的对应关系,获取所述邻小区的上行TA;或者,
    根据所述上行参考信号发送的所述邻小区,以及所述邻小区标识与邻小区的上行TA的对应关系,获取所述邻小区的上行TA;或者,
    根据所述上行参考信号发送的所述邻小区所属的集合,以及所述多个邻小区标识的集合与邻小区的上行TA的对应关系,获取所述邻小区的上行TA。
  27. 根据权利要求24至26中任一项所述的设备,其特征在于,所述通信单元用于:
    接收所述下行子帧定时的信息;或,
    接收下行参考信号,并基于所述下行参考信号的时间获取所述下行子帧定时,所述下行参考信号是从服务小区或邻小区接收的。
  28. 根据权利要求24至27中任一项所述的设备,其特征在于,所述下行子帧定时为以下任意一项:
    主小区的下行子帧定时、服务小区的下行子帧定时、或邻小区的下行子帧定时。
  29. 根据权利要求24至28中任一项所述的设备,其特征在于,
    所述上行参考信号为用于定位的探测参考信号SRS,所述上行参考信号的配置信息包括以下信息中的一项或多项:
    所述SRS资源的标识、所述SRS资源的端口数、所述SRS资源关联的相位跟踪参考信号PT-RS端口号、所述SRS资源梳齿配置信息以及序列循环移位、所述SRS资源起始符号索引、所述SRS资源连续符号个数以及重复因子、所述SRS资源起始资源块RB索引、所述SRS资源跳频配置信息,所述SRS带宽、所述SRS资源序列的组跳和序列跳、所述SRS资源的周期性配置信息、所述SRS资源的空间滤波信息。
  30. 根据权利要求24至29中任一项所述的设备,其特征在于,所述通信单元用于:
    从所述定位管理设备或者所述服务小区接收所述邻小区的标识。
  31. 一种通信设备,其特征在于,包括:
    存储器,包括计算机指令;
    处理器,用于执行所述存储器中存储的计算机指令,并且,对所述计算机指令的执行,使得所述处理器执行:如权利要求1至8中任一项所述的方法,或,如权利要求9至15中任一项所述的方法。
  32. 一种计算机存储介质,其特征在于,其上存储有计算机程序,所述计算机程序被计算机执行时使得,所述计算机执行:如权利要求1至8中任一项所述的方法,或,如权利要求9至15中任一项所述的方法。
  33. 一种通信系统,包括定位管理单元、服务基站、和/或邻基站,以及终端设备,其中,终端设备包括如权利要求16至23中任一项所述的设备,或者,终端设备包括如权利要求24至30中任一项所述的设备。
PCT/CN2020/074871 2019-02-15 2020-02-12 通信方法和通信设备 WO2020164514A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20755455.1A EP3923501A4 (en) 2019-02-15 2020-02-12 COMMUNICATION PROCESS AND COMMUNICATION DEVICE
KR1020217029625A KR102557553B1 (ko) 2019-02-15 2020-02-12 통신 방법 및 통신 디바이스
US17/403,221 US20210377892A1 (en) 2019-02-15 2021-08-16 Communication method and communication device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910118299.3 2019-02-15
CN201910118299.3A CN111585732B (zh) 2019-02-15 2019-02-15 通信方法和通信设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/403,221 Continuation US20210377892A1 (en) 2019-02-15 2021-08-16 Communication method and communication device

Publications (1)

Publication Number Publication Date
WO2020164514A1 true WO2020164514A1 (zh) 2020-08-20

Family

ID=72045113

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/074871 WO2020164514A1 (zh) 2019-02-15 2020-02-12 通信方法和通信设备

Country Status (5)

Country Link
US (1) US20210377892A1 (zh)
EP (1) EP3923501A4 (zh)
KR (1) KR102557553B1 (zh)
CN (1) CN111585732B (zh)
WO (1) WO2020164514A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022212973A1 (en) * 2021-03-30 2022-10-06 Qualcomm Incorporated Signaling and procedures for supporting reference location devices
WO2023014705A1 (en) * 2021-08-03 2023-02-09 Idac Holdings, Inc. Performing propagation delay compensation
WO2023202420A1 (zh) * 2022-04-19 2023-10-26 华为技术有限公司 一种通信方法及相关装置
EP4210387A4 (en) * 2020-09-29 2024-01-24 Huawei Tech Co Ltd RESOURCE ALLOCATION METHOD AND ASSOCIATED DEVICE
EP4304120A4 (en) * 2021-03-31 2024-05-01 Huawei Tech Co Ltd METHOD AND APPARATUS FOR CONFIGURING AN UPLINK POSITIONING REFERENCE SIGNAL RESOURCE

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020167023A1 (ko) * 2019-02-14 2020-08-20 엘지전자 주식회사 무선 통신 시스템에서 측위 방법 및 이를 지원하는 장치
US11937137B2 (en) * 2020-01-24 2024-03-19 Qualcomm Incorporated Physical layer measurement without reporting for user equipment mobility
US11877299B2 (en) * 2020-03-05 2024-01-16 Qualcomm Incorporated Control channel resources for group-feedback in multi-cast
US11863488B2 (en) * 2020-04-27 2024-01-02 Qualcomm Incorporated Single reference signal timing information for measurements of multiple reference signals of multiple cells
CN116889070A (zh) * 2021-01-15 2023-10-13 苹果公司 用于新空口的未授权频谱中的目标数据测量的参考定时
CN115942437A (zh) * 2021-08-13 2023-04-07 华为技术有限公司 通信处理方法和通信处理装置
CN114026907B (zh) * 2021-09-28 2024-01-30 北京小米移动软件有限公司 一种上行波束的测量方法及其装置
WO2023080706A1 (ko) * 2021-11-04 2023-05-11 엘지전자 주식회사 무선 통신 시스템에서 상향링크 송수신 방법 및 장치
WO2023137222A1 (en) * 2022-01-14 2023-07-20 Ofinno, Llc Uplink transmission with a base station in energy saving state
CN114258128A (zh) * 2022-03-01 2022-03-29 四川创智联恒科技有限公司 一种基于nr-5g小基站的接入优化方法
WO2024026806A1 (en) * 2022-08-05 2024-02-08 Qualcomm Incorporated Implicitly updating timing advance in l1/l2 mobility
WO2024049274A1 (ko) * 2022-09-02 2024-03-07 한국전자통신연구원 송신 타이밍 에러를 회피하는 방법 및 장치

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102550097A (zh) * 2009-10-09 2012-07-04 高通股份有限公司 用于切换时的定位连续性的方法和装置
CN103609177A (zh) * 2011-06-16 2014-02-26 瑞典爱立信有限公司 用于定位支持的基站和方法
CN103917887A (zh) * 2011-11-04 2014-07-09 瑞典爱立信有限公司 基于虚拟参考测量的用户设备的定位
CN104583803A (zh) * 2012-08-13 2015-04-29 瑞典爱立信有限公司 用发送定时调整信息来增强定位
US20160095092A1 (en) * 2014-09-25 2016-03-31 Intel Corporation Resource allocation and use for device-to-device assisted positioning in wireless cellular technologies
CN106576330A (zh) * 2014-09-01 2017-04-19 杜塞尔多夫华为技术有限公司 用于管理设备到设备通信的无线资源的方法和基站

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102084609A (zh) * 2009-09-18 2011-06-01 高通股份有限公司 便于为在td-scdma系统中移交而进行的测量的共用信道配置
KR101770209B1 (ko) * 2009-12-03 2017-08-22 엘지전자 주식회사 무선 통신 시스템에서 셀간 간섭 저감 방법 및 장치
CN102143586B (zh) * 2010-02-01 2015-06-03 中兴通讯股份有限公司 一种回程链路上行控制信道的处理方法和系统
CN102088763B (zh) * 2010-08-11 2014-04-02 电信科学技术研究院 中继定时调整方法、系统和设备
WO2012077971A2 (ko) * 2010-12-07 2012-06-14 엘지전자 주식회사 무선 통신 시스템에서 단말 간의 통신 방법 및 장치
WO2012119626A1 (en) * 2011-03-08 2012-09-13 Panasonic Corporation Propagation delay difference reporting for multiple component carriers
CN102340797B (zh) * 2011-09-30 2014-07-09 电信科学技术研究院 一种辅小区上定时时间差的测量方法和设备
US9001780B2 (en) * 2012-01-27 2015-04-07 Qualcomm Incorporated Physical layer issues related to multi-TA group support
US9572123B2 (en) * 2012-03-14 2017-02-14 Fujitsu Limited Multiple time advance for radio access networks
US20150373660A1 (en) * 2013-02-13 2015-12-24 Telefonaktiebolaget L M Ericsson (Publ) A Radio Base Station and Method Therein for Transmitting Time Alignment Configuration to a User Equipment
WO2015034301A1 (en) * 2013-09-04 2015-03-12 Lg Electronics Inc. Method and apparatus for aggregation of frequency division duplex and time division duplex
KR102270662B1 (ko) * 2014-02-11 2021-06-29 엘지전자 주식회사 무선으로 상향링크 전력을 제어하기 위한 방법 및 장치
US10009925B2 (en) * 2014-10-03 2018-06-26 Qualcomm Incorporated Physical layer procedures for LTE in unlicensed spectrum
US11122531B2 (en) * 2016-06-09 2021-09-14 Google Llc Mitigating interference between neighboring cellular communications
CN107872856B (zh) * 2016-09-28 2020-10-02 中国移动通信有限公司研究院 一种降低切换时延的方法及装置
CN108289334B (zh) * 2017-01-10 2020-11-27 华为技术有限公司 一种信息接收、发送方法及设备
US10779252B2 (en) * 2017-08-10 2020-09-15 Ofinno, Llc Radio resource configuration synchronization
CN109495961B (zh) * 2017-09-11 2020-11-10 电信科学技术研究院 一种时间提前量指示方法、基站、终端及装置
KR102414677B1 (ko) * 2017-12-14 2022-06-29 삼성전자주식회사 무선통신시스템에서 신호를 송수신하는 방법 및 장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102550097A (zh) * 2009-10-09 2012-07-04 高通股份有限公司 用于切换时的定位连续性的方法和装置
CN103609177A (zh) * 2011-06-16 2014-02-26 瑞典爱立信有限公司 用于定位支持的基站和方法
CN103917887A (zh) * 2011-11-04 2014-07-09 瑞典爱立信有限公司 基于虚拟参考测量的用户设备的定位
CN104583803A (zh) * 2012-08-13 2015-04-29 瑞典爱立信有限公司 用发送定时调整信息来增强定位
CN106576330A (zh) * 2014-09-01 2017-04-19 杜塞尔多夫华为技术有限公司 用于管理设备到设备通信的无线资源的方法和基站
US20160095092A1 (en) * 2014-09-25 2016-03-31 Intel Corporation Resource allocation and use for device-to-device assisted positioning in wireless cellular technologies

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3923501A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4210387A4 (en) * 2020-09-29 2024-01-24 Huawei Tech Co Ltd RESOURCE ALLOCATION METHOD AND ASSOCIATED DEVICE
WO2022212973A1 (en) * 2021-03-30 2022-10-06 Qualcomm Incorporated Signaling and procedures for supporting reference location devices
EP4304120A4 (en) * 2021-03-31 2024-05-01 Huawei Tech Co Ltd METHOD AND APPARATUS FOR CONFIGURING AN UPLINK POSITIONING REFERENCE SIGNAL RESOURCE
WO2023014705A1 (en) * 2021-08-03 2023-02-09 Idac Holdings, Inc. Performing propagation delay compensation
WO2023202420A1 (zh) * 2022-04-19 2023-10-26 华为技术有限公司 一种通信方法及相关装置

Also Published As

Publication number Publication date
US20210377892A1 (en) 2021-12-02
KR20210125573A (ko) 2021-10-18
EP3923501A1 (en) 2021-12-15
KR102557553B1 (ko) 2023-07-19
EP3923501A4 (en) 2022-07-06
CN111585732B (zh) 2022-02-25
CN111585732A (zh) 2020-08-25

Similar Documents

Publication Publication Date Title
WO2020164514A1 (zh) 通信方法和通信设备
EP4037226A1 (en) Signal transmission method and device
CN110268737B (zh) 基于ue功率等级确定报告配置的方法
US20160028533A1 (en) Adaptive uplink-downlink switching time for half duplex operation
EP3753356B1 (en) Time resource assignment signaling mechanism for msg3 transmission
US11324052B2 (en) Timing advance range adaptation in new radio
US20220060302A1 (en) Communication method and communications apparatus
WO2020135417A1 (zh) 由用户设备执行的方法以及用户设备
EP3627943B1 (en) Control information transmission method and device
JP2022553577A (ja) 測位基準信号(prs)用の下層(dciまたはmac ce)dlパンクチャリングインジケータ
KR102466982B1 (ko) 자원 할당 방법, 단말 장치와 네트워크 장치
CN116018762A (zh) 上行链路探测参考信号载波聚合
CN113271582A (zh) 无线电网络节点及其操作方法
US20220022072A1 (en) Ssb-based measurement method and apparatus
US20230137907A1 (en) Wireless communication method, terminal device, and network device
US20220078745A1 (en) Methods for detecting and managing bidirectional timing measurements in nr
WO2020220839A1 (zh) 获取时间提前量的方法与装置
TWI751235B (zh) 無線通信的方法和裝置
US10333635B2 (en) Performing and reporting relative radio measurements
WO2019119375A1 (zh) 一种信息传输的方法、装置及计算机存储介质
JP7293383B2 (ja) 非同期デバイスおよび時間フレーム構造なしのデバイスにおける信号検出のためのシステムおよび方法
CN108886765A (zh) 传输上行控制信号的方法和装置
WO2020134897A1 (zh) 随机接入方法、装置、系统及存储介质
CN114073146A (zh) 一种发送波束失败恢复请求的方法及装置
WO2024108757A1 (en) Positioning enhancement methods

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20755455

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020755455

Country of ref document: EP

Effective date: 20210906

ENP Entry into the national phase

Ref document number: 20217029625

Country of ref document: KR

Kind code of ref document: A