WO2020119598A1 - 电子装置、无线通信方法和计算机可读介质 - Google Patents

电子装置、无线通信方法和计算机可读介质 Download PDF

Info

Publication number
WO2020119598A1
WO2020119598A1 PCT/CN2019/123596 CN2019123596W WO2020119598A1 WO 2020119598 A1 WO2020119598 A1 WO 2020119598A1 CN 2019123596 W CN2019123596 W CN 2019123596W WO 2020119598 A1 WO2020119598 A1 WO 2020119598A1
Authority
WO
WIPO (PCT)
Prior art keywords
bwp
user equipment
carrier
electronic device
information
Prior art date
Application number
PCT/CN2019/123596
Other languages
English (en)
French (fr)
Inventor
侯延昭
陶小峰
朱敏
郭欣
高磊
彭召琦
Original Assignee
索尼公司
侯延昭
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 索尼公司, 侯延昭 filed Critical 索尼公司
Priority to CN201980072984.5A priority Critical patent/CN113170403B/zh
Priority to EP19896641.8A priority patent/EP3879891A4/en
Priority to JP2021533525A priority patent/JP7416068B2/ja
Priority to US17/292,722 priority patent/US20220007364A1/en
Publication of WO2020119598A1 publication Critical patent/WO2020119598A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0064Rate requirement of the data, e.g. scalable bandwidth, data priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • H04L5/0098Signalling of the activation or deactivation of component carriers, subcarriers or frequency bands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices

Definitions

  • the present disclosure generally relates to the field of wireless communication, and more particularly, to an electronic device for wireless communication, a wireless communication method, and a computer-readable medium.
  • BWP Bandwidth part
  • TS 38.211 of 3GPP Third Generation Partnership Project
  • a BWP is a continuous set of resource blocks.
  • the user can only activate one BWP configuration, and the user does not transmit or receive messages on resources other than the activated BWP.
  • BWP 1 has a width of 40 MHz and a subcarrier spacing of 15 kHz
  • BWP 2 has a width of 10 MHz and a subcarrier spacing of 15 kHz
  • BWP 3 has a width of 20 MHz And the subcarrier spacing of 60kHz.
  • an electronic device for wireless communication includes a processing circuit.
  • the processing circuit is configured to control to receive indication information from the first user equipment, the indication information relating to a through link bandwidth fragmentation (SL-BWP) for data transmission.
  • the processing circuit is further configured to perform an operation for direct link communication with the first user equipment based on the indication information
  • a wireless communication method includes the step of receiving indication information from a first user equipment. This indication information is related to the SL-BWP used for data transmission. The method further includes the step of performing an operation for direct link communication with the first user equipment based on the indication information.
  • an electronic device for wireless communication includes a processing circuit.
  • the processing circuit is configured to control to send indication information to the second user equipment, the indication information relating to the SL-BWP for data transmission.
  • the processing circuit is further configured to control to receive feedback information of the second user equipment regarding the indication information, and perform an operation for direct link communication with the second user equipment based on the feedback information.
  • a wireless communication method includes the step of sending indication information to a second user equipment.
  • This indication information is related to the SL-BWP used for data transmission.
  • the method further includes a step of receiving feedback information of the second user equipment regarding the indication information and a step of performing an operation for direct link communication with the second user equipment based on the feedback information.
  • an electronic device for wireless communication includes a processing circuit.
  • the processing circuit is configured to control to receive a request from the first user equipment regarding the SL-BWP for data transmission corresponding to the second user equipment.
  • the processing circuit is also configured to control to send feedback information about whether the first user equipment is allowed to use the SL-BWP to the first user equipment.
  • a wireless communication method includes the step of receiving a request from a first user equipment regarding an SL-BWP for data transmission corresponding to a second user equipment. The method further includes the step of sending feedback information about whether the first user equipment is allowed to use the SL-BWP to the first user equipment.
  • a computer-readable medium includes executable instructions, which when executed by an information processing device, cause the information processing device to perform the above method.
  • the embodiment of the present invention provides a coordination scheme of carrier configuration between users, so that the transmitting and receiving parties adopting different carrier configurations can perform the direct link communication.
  • FIG. 1 is a block diagram showing a configuration example of an electronic device for wireless communication according to an embodiment of the present invention
  • FIG. 2 is a flowchart illustrating an example of a process of a wireless communication method according to an embodiment of the present invention
  • FIG. 3 is a block diagram showing a configuration example of an electronic device for wireless communication according to an embodiment of the present invention.
  • FIG. 4 is a flowchart illustrating an example of a process of a wireless communication method according to an embodiment of the present invention
  • FIG. 5 is a block diagram showing a configuration example of an electronic device for wireless communication according to an embodiment of the present invention.
  • FIG. 6 is a flowchart illustrating an example of a process of a wireless communication method according to an embodiment of the present invention
  • FIG. 7 is a block diagram showing an exemplary structure of a computer that implements the method and apparatus of the present disclosure
  • FIG. 8 is a block diagram showing an example of a schematic configuration of a smartphone to which the technology of the present disclosure can be applied;
  • FIG. 9 is a block diagram showing an example of a schematic configuration of gNB to which the technology of the present disclosure can be applied;
  • FIG. 10 is a block diagram of an example of a schematic configuration of a car navigation device to which the technology of the present disclosure can be applied;
  • FIG. 11 is a schematic diagram for explaining an example of BWP configuration
  • FIG. 12 is a schematic diagram for explaining a configuration example of SL-BWP
  • FIG. 13 is a schematic diagram for explaining a configuration example of SL-BWP
  • 15 to 47 are signaling flowcharts for explaining an example process of communication between user equipments (UEs).
  • UEs user equipments
  • the electronic device 100 for wireless communication includes a processing circuit 110.
  • the processing circuit 110 may be implemented as a specific chip, a chipset, a central processing unit (CPU), or the like, for example.
  • the electronic device may be implemented on the user equipment side. More specifically, the user equipment may include a vehicle, for example.
  • the present invention is not limited to this, but can be used in various application scenarios of new radio (NR) direct link (Sidelink), such as machine type communication (MTC), device-to-device (D2D) communication, vehicles and other devices ( V2X) communication, Internet of Things (IOT) communication, etc.
  • NR new radio
  • MTC machine type communication
  • D2D device-to-device
  • V2X vehicles and other devices
  • IOT Internet of Things
  • V2X communication may include vehicle-to-vehicle (V2V) communication, vehicle-to-pedestrian (V2P) communication, and vehicle-to-infrastructure (V2I) communication.
  • V2V vehicle-to-vehicle
  • V2P vehicle-to-pedestrian
  • V2I vehicle-to-infrastructure
  • the processing circuit 110 includes a control unit 111 and an operation unit 113. It should be noted that although the control unit 111 and the operation unit 113 are shown in the form of functional blocks in the drawings, it should be understood that the functions of each unit can also be implemented by the processing circuit as a whole, and not necessarily by the processing circuit The actual components are separated. In addition, although the processing circuit is shown in a block in the figure, the electronic device may include a plurality of processing circuits, and the functions of each unit may be distributed into the plurality of processing circuits so that the plurality of processing circuits cooperate to perform these functions.
  • the control unit 111 is configured to control to receive indication information from the first user equipment, which is related to the SL-BWP for data transmission.
  • SL-BWP is a continuous set of physical resources on the through link carrier.
  • the physical resources in SL-BWP can be configured according to the given SL-BWP configuration parameters.
  • SL-BWP is configured in the pass-through carrier, and the maximum bandwidth configured for SL-BWP is smaller than the carrier bandwidth.
  • multiple resource pools can be configured/pre-configured within SL-BWP.
  • the user uses the SL-BWP configuration configured in the carrier, and the UE can only transmit/receive information within the SL-BWP, and cannot transmit/slide outside the SL-BWP. Receive information, as shown in Figure 12.
  • the SL-BWP configuration parameter may not include the SL-BWP index. If the user equipment is configured to receive/transmit information on a given carrier, the SL-BWP configuration on that carrier is used.
  • each pass-through carrier may be configured with two or more SL-BWPs, and one SL-BWP of the two or more SL-BWPs is activated.
  • the UE can only transmit/receive information within the activated SL-BWP and cannot transmit outside the activated SL-BWP /Receive information, as shown in Figure 13.
  • the system can configure n kinds of SL-BWP configurations for the user equipment in the pass-through carrier, where 1 ⁇ n ⁇ N, N is the maximum number of SL-BWP configurable by the system in the pass-through carrier, N Can be configured by the system.
  • Each SL-BWP configuration can be uniquely indicated by the SL-BWP index.
  • the system can activate/deactivate SL-BWP for users through downlink control information (DCI) or radio resource control (RRC) signaling. There is only one activated SL-BWP on each pass-through carrier, and the remaining SL-BWPs are in an inactive state. User equipment can only transmit/receive information on the SL-BWP within the carrier.
  • DCI downlink control information
  • RRC radio resource control
  • the indication information related to the SL-BWP used for data transmission may include SL-BWP configuration information.
  • the configuration information may include, for example, subcarrier spacing, cyclic prefix (CP), physical resource block offset (eg, offset relative to the starting physical resource block (PRB) within the carrier), and SL-BWP Bandwidth (such as the number of consecutive PRBs).
  • the configuration information may further include an SL-BWP index.
  • the configuration information may also include the SL-BWP validity time (for example, a timer).
  • the configuration information may be configured through system information, configured through radio resource control signaling, selected based on geographic location, or may be pre-configured.
  • the configuration information may be user equipment-specific (UE-specific), cell-specific (Cell-specific), zone-specific (Zone-specific), or carrier-specific (Carrier-specific).
  • UE-specific user equipment-specific
  • Cell-specific cell-specific
  • Zone-specific zone-specific
  • Carrier-specific carrier-specific
  • the system may configure SL-BWP for the user equipment in the RRC_CONNECTED (radio resource control signaling connection) state, and the SL-BWP configuration parameters may be configured according to user needs.
  • RRC_CONNECTED radio resource control signaling connection
  • the system may configure the SL-BWP for the user equipment in the RRC_CONNECTED state, and the SL-BWP configuration parameters may be configured according to the base station to which the user equipment is connected. That is, user equipments within the coverage of the same base station have the same SL-BWP configuration on the same through link carrier.
  • the system can obtain zone information based on the user's geographic location and perform SL-BWP configuration based on the area information obtained by the user, that is, users in the same area are on the same direct link There is the same SL-BWP configuration on the carrier.
  • the system can perform SL-BWP configuration according to the through link carrier used for user equipment transmission/reception, that is, the user has the same SL-BWP configuration method on the same through link carrier.
  • the indication information from the first user equipment may be received through SL-BWP in a carrier common to multiple user equipments (hereinafter may be referred to as a common carrier or a first carrier).
  • the SL-BWP in the common carrier is a common resource part of multiple user equipments. If the user equipment supports multi-carrier communication, the common carrier can always be in a communicable state, that is, there is no activation/inactivation on the carrier, and the SL in the carrier -BWP is available at any time, no need to configure when in use.
  • the SL-BWP configuration in the common carrier can be configured by system information, configured by RRC signaling, configured based on geographic location, or pre-configured.
  • the SL-BWP configuration in the common carrier is the same.
  • the sending user equipment can directly send direct link control information (Sidelink Control Information, SCI) to communicate with the receiving user equipment, and There is no need to send instructions separately.
  • SCI Systemlink Control Information
  • the first is that SL-BWP and SCI are sent together on a common carrier, and data is sent on a non-public carrier.
  • the second is to first send the SL-BWP configuration in the common carrier. After the SL-BWP configuration on both sides of the communication is successful, the SCI and data are sent on the non-public carrier.
  • Carriers other than the common carrier may be referred to as non-public carriers (or second carriers), which may be configured according to user equipment transmission/reception information requirements.
  • the SL-BWP configuration in the non-common carrier may be a UE-specific configuration, a Cell-specific configuration, a Zone-specific configuration, or a Carrier-specific configuration.
  • the SL-BWP in the non-common carrier can be configured through system information, through RRC signaling, geographic-based configuration or pre-configuration.
  • SL-BWP in non-common carrier can be used for broadcast, unicast or multicast communication.
  • the operation unit 113 is configured to perform an operation for direct link communication with the first user equipment based on the received indication information (hereinafter may be referred to as first indication information).
  • the operation for performing the through link communication may include determining whether the current user equipment can use the SL-BWP of the first user equipment for the through link based on the first indication information and the SL-BWP configuration of the current user equipment Communication.
  • the operation unit 113 may control the current user equipment to use the SL-BWP of the first user equipment for the through link communication with the first user equipment.
  • the operation unit 113 may control to send the information related to the SL-BWP of the current user equipment to the first user equipment ( It may be referred to as second indication information hereinafter), or may be controlled to request the SL-BWP corresponding to the SL-BWP of the first user equipment from the serving base station of the current user equipment.
  • the indication information from the first user equipment and the information related to the SL-BWP of the current user equipment may be transmitted through the SL-BWP in the common carrier (first carrier).
  • the SL-BWP in the common carrier may be used for the through link communication with the first user equipment.
  • the transmitting UE and the receiving UE complete the SL-BWP configuration process of sending and receiving dual transmission by transmitting/receiving the first indication information A on the SL-BWP in the first carrier.
  • the sending UE sends the SCI on the SL-BWP determined by both parties, and the sending UE and the receiving UE start communication.
  • the sending UE may configure the first indication information A according to the SL-BWP information configured by the higher layer for the information to be transmitted.
  • the information field of the first indication information A may contain the configuration parameters of the SL-BWP in the second carrier, for example, may include subcarrier spacing, CP, frequency location, bandwidth, pass-through carrier information, source UE identification (ID), destination UE ID (may be empty), transmission request, etc.
  • the base station can configure the SL-BWP on the pass-through carrier for the UE according to the transmission service requirements of the UE.
  • Mode-2 (no base station assisted mode) UE for example, it can autonomously select SL-BWP according to transmission service requirements and resource conditions.
  • the UE autonomously selects the transmission carrier, and then uses the SL-BWP on the carrier.
  • the UE can autonomously select the transmission carrier and the SL-BWP on it.
  • FIG. 16 shows an alternative way of sending the first indication information.
  • the sending UE sends first indication information B to the receiving UE on the SL-BWP in the first carrier.
  • the sending UE and the receiving UE start data transmission on the SL-BWP determined by dual transmission.
  • the first indication information B is the SL-BWP information and control information (SCI) configured by the UE according to the higher layer for the information to be transmitted.
  • the information field of the first indication information B may contain the configuration parameters of the SL-BWP in the second carrier, for example, may include subcarrier spacing, CP, frequency location, bandwidth, pass-through carrier frequency, source UE ID, and destination UE ID ( Can be empty), transmission request and SCI information (e.g. including transmission service priority, resource reservation, frequency domain resource location of initial transmission and retransmission, time interval of initial transmission and retransmission, modulation and coding method, retransmission index Etc.).
  • the base station can configure the SL-BWP on the pass-through carrier and the transmission resources in the SL-BWP for the UE according to the transmission service requirements of the UE; for Mode-2 UE, As mentioned above, it can autonomously select SL-BWP and the transmission resources within SL-BWP according to transmission service requirements and resource conditions.
  • the receiving user cannot receive information within the SL-BWP indicated in the first instruction information.
  • the receiving UE sends second indication information to the sending UE on the first carrier, and sends the SL-BWP configuration that the receiving UE can receive to the sending user.
  • the second indication information is sent by the receiving UE to the sending UE, and is used to indicate the specified SL-BWP configuration that the receiving UE can receive the information.
  • the information field of the second indication information may contain SL-BWP configuration parameters, which may include, for example, subcarrier spacing, CP, frequency location, bandwidth, through link carrier frequency, source UE ID, destination UE ID, and so on.
  • the data transmission of the sending UE is performed on the SL-BWP on the second carrier; for the Mode-1 UE, there is an SL-BWP configuration on n 0 carriers before receiving the first indication information, and the system Only one SL-BWP is configured on each carrier, where 0 ⁇ n 0 ⁇ N 0 , N 0 is the maximum number of carriers that can be configured; for Mode-2 users, only one SL is allowed to be configured/preconfigured on each carrier -BWP, which can be pre-configured by the base station, configured based on geographic location or pre-configured.
  • the first indication information indicates the configuration parameters of SL-BWP, including at least the pass-through carrier frequency, subcarrier spacing, CP, frequency location, bandwidth; within the SL-BWP configuration request Indicate the configuration parameters of SL-BWP, including at least the through link carrier frequency, subcarrier spacing, CP, frequency location, bandwidth; the second indication information includes at least the through link carrier frequency, subcarrier spacing, CP, frequency location, bandwidth.
  • FIGS. 18 to 27 show an example of the communication process with the participation of the base station.
  • FIG. 18 shows an example of a process for receiving UE to receive first indication information.
  • the sending UE sends the first indication information on the first carrier; next, the receiving UE listens to the first indication information on the first carrier and decodes the content of the first indication information.
  • the receiving UE compares the decoded first information indication SL-BWP configuration mode with the SL-BWP configuration mode configured on the corresponding carrier.
  • the comparison result may include the following cases: SL-BWP has been configured on the corresponding carrier, and the configured SL-BWP and the SL-BWP indicated in the first indication information have overlapping parts and meet the transmission requirements; other cases, including the corresponding carrier
  • the SL-BWP configuration is not performed on the above, and the SL-BWP on the corresponding carrier does not meet the transmission requirements.
  • FIG. 19 shows an example of the processing flow on the receiving UE side when the transmission requirements are satisfied.
  • the receiving UE feeds back SL-BWP configuration completion information on the first carrier; next, the sending UE and the receiving UE start communication on the given SL-BWP.
  • 20 and 21 show examples of the processing flow on the receiving UE side when the transmission requirements are not met, which respectively correspond to the Mode-1 receiving UE and the Mode-2 receiving UE.
  • Mode-1 receives the SL-BWP configuration request sent by the UE to the base station; if the base station agrees to the configuration request, it performs SL-BWP configuration for the receiving UE; if the base station sends a rejection configuration request, the receiving UE sends it to the sending UE Second instructions.
  • Mode-2 receiving UE directly sends second indication information to the sending UE.
  • FIG. 22 shows an example of the processing procedure after the sending UE receives the second indication information.
  • the receiving UE sends second indication information on the first carrier; the sending UE receives the second indication information on the first carrier, decodes the content of the second indication information; sends the second information indication that the UE will decode
  • the internal SL-BWP configuration method is compared with the SL-BWP configuration method configured in the corresponding carrier.
  • the comparison result can include the following two situations: the SL-BWP is configured on the corresponding carrier, the configured SL-BWP and the indication in the second indication information
  • the SL-BWP has a coincident part and meets the transmission requirements; other situations include the situation that the SL-BWP configuration is not configured on the corresponding carrier, and the configured SL-BWP does not meet the transmission.
  • the sending UE uses the first indication information A described above with reference to FIG. 15, as shown in FIG. 23 (the part without the dotted arrow), the sending UE adjusts the transmission according to the second indication information and sends a new one to the receiving UE The first indication information; after receiving the new first indication information, the UE starts to prepare for communication.
  • Mode-1 UE can send resource request information to the base station (as shown by the dashed arrow part of FIG. 23), Mode-2 UE can autonomously choose to send resources within the configured SL-BWP. If the transmission resource configuration is successful, new first indication information is sent to the receiving UE to start preparing for transmission.
  • Mode-1 sends the UE a SL-BWP configuration request to the base station; if the base station sends a configuration instruction, the sending UE sends Configure SL-BWP and perform subsequent processing to send the UE. If the base station rejects the configuration request and the first carrier SL-BWP meets the transmission service requirements, the sending UE configures transmission on the SL-BWP in the first carrier. If the base station rejects the configuration request and the first carrier SL-BWP does not meet the transmission service requirements, the sending UE feeds back the transmission completion message to the receiving UE.
  • FIG. 25 shows the processing procedure of the Mode-2 transmitting UE in this case.
  • the sending UE configures transmission on the SL-BWP in the first carrier. Otherwise, the sending UE feeds back the transmission end message to the receiving UE.
  • Mode-1 sends the UE to send a SL-BWP configuration request and a resource configuration request to the base station; if the base station sends a configuration indication, then The sending UE sends new first indication information to the receiving UE according to the SL-BWP and corresponding resources configured by the base station to start communication. If the base station rejects the configuration request, but the base station indicates new transmission resources for the sending UE SL-BWP in the first carrier, the sending UE sends the SL-BWP configuration transmission in the first carrier. If the base station rejects the configuration request and the first carrier SL-BWP does not meet the transmission service requirements, the sending UE feeds back the transmission completion message to the receiving UE.
  • FIG. 27 shows the processing procedure of the Mode-2 transmitting UE in this case.
  • the sending UE autonomously selects resources within the SL-BWP of the first carrier to prepare for transmission. Otherwise, the sending UE feeds back the transmission end message to the receiving UE.
  • FIG. 28 shows an example of a process for receiving UE to receive first indication information.
  • the sending UE sends the first indication information on the first carrier; the receiving UE listens to the first indication information on the first carrier and decodes the content of the first indication information.
  • the receiving UE compares the decoded first information indication SL-BWP configuration mode with the SL-BWP configuration mode configured in the corresponding carrier.
  • the comparison result can be in the following two cases: SL-BWP has been configured on the corresponding carrier, this SL-BWP and the SL-BWP indicated in the first indication information have overlapping parts and meet the transmission requirements; other cases, including on the corresponding carrier
  • the SL-BWP configuration is not the same.
  • FIG. 29 shows an example of the processing procedure of the receiving UE in the case where the transmission requirements are satisfied.
  • the receiving UE feeds back SL-BWP configuration completion information on the first carrier; the sending UE and the receiving UE start communication on the given SL-BWP.
  • FIG. 30 shows an example of the processing procedure of the receiving UE without satisfying the transmission requirements.
  • the receiving UE directly sends the second indication information to the sending UE.
  • FIG. 31 shows an example of the processing procedure for the sending user to receive the second indication information.
  • the receiving UE sends second indication information on the first carrier; the sending UE receives the first indication information on the first carrier, and decodes the second indication information content.
  • the sending UE compares the decoded second information indication SL-BWP configuration mode with the SL-BWP configuration mode configured in the corresponding carrier.
  • the comparison result can have the following two cases: SL-BWP has been configured on the corresponding carrier, the configured SL-BWP and the SL-BWP indicated in the second indication information have overlapping parts and meet the transmission requirements; other cases, including the corresponding carrier There is no SL-BWP configuration, the configured SL-BWP does not meet the transmission and other situations.
  • FIG. 32 shows an example of the processing procedure of transmitting the UE when the transmission requirements are satisfied.
  • the sending UE uses the first indication information A described above with reference to FIG. 15, as shown in FIG. 32, the sending UE adjusts the transmission according to the second indication information and sends the new first indication information to the receiving UE; the receiving UE receives After reaching the new first instruction information, it starts to prepare for communication.
  • the sending UE uses the first indication information B described above with reference to FIG. 16, as shown in FIG. 32, the sending UE adjusts transmission according to the second indication information, and autonomously selects the transmission resource within the SL-BWP indicated by the second indication information ; If the transmission resource configuration is successful, send new first indication information to the receiving UE to start preparing for transmission.
  • the sending UE uses the first indication information A described above with reference to FIG. 15, as shown in FIG. 33, if the first carrier SL-BWP meets the transmission service requirements, the sending UE is in the first The transmission is configured on the SL-BWP in the carrier; otherwise, the sending UE feeds back the transmission end message to the receiving UE.
  • the sending UE uses the first indication information B described above with reference to FIG. 16, if the first carrier SL-BWP meets the transmission service requirements, the sending UE autonomously selects resources within the SL-BWP of the first carrier to prepare for transmission; Otherwise, the sending UE feeds back the transmission end message to the receiving UE.
  • the first indication information, the second indication information, the SL-BWP configuration request and the SL-BWP activation request information fields may be, for example:
  • the configuration information of the SL-BWP is indicated in the first indication information, which includes at least the carrier frequency of the through link, the subcarrier interval, the CP, the frequency position, the bandwidth, and the cell identifier (for example, the last three digits);
  • the configuration information of the SL-BWP is indicated in the second indication information, which includes at least the carrier frequency of the through link, the subcarrier spacing, the CP, the frequency position, the bandwidth, and the cell identifier (for example, the last three digits);
  • SL-BWP configuration request which includes at least the through link carrier frequency, subcarrier spacing, CP, frequency location, and bandwidth.
  • the cell identification of Mode-2 UE may be a default value or empty, so as to determine whether the base stations connected to the sending and receiving UE are the same.
  • the situation that the transceiving UE belongs to different cells and the situation that the transceiving UE belongs to the same cell can be determined according to the cell identity.
  • the configuration method is the same as the configuration method without the base station participation in the aforementioned UE Specific situation.
  • the configuration mode is the same as the configuration mode in which the base station participates in the foregoing UE-specific case.
  • the SL-BWP configuration request may only include the pass-through carrier information, and the remaining parameters may be set as optional.
  • FIG. 34 shows an example of the processing procedure in the case where the base station participates.
  • the sending UE sends the first indication information on the first carrier;
  • the receiving UE listens to the first indication information on the first carrier, and decodes the content of the first indication information.
  • the cell identification information of the sending UE and the receiving UE it can be divided into two cases: a UE in the same cell (mode-1 UE or both mode-2 UE) and a UE in different cells.
  • the SL-BWP coordination process between UEs in different cells is the same as that in the UE-specific case.
  • the following describes an example of the process of SL-BWP coordination between UEs in the same cell.
  • the receiving UE may determine the following two cases according to the through link carrier information in the first indication information: the receiving UE has configured the related through link carrier; the receiving UE has not configured the related through link carrier.
  • FIG. 35 shows an example of the processing procedure in the case where the receiving UE has configured the relevant through link carrier. As shown in FIG. 35, the receiving UE feeds back SL-BWP configuration completion information on the first carrier; the sending UE and the receiving UE start communication on the given SL-BWP.
  • FIG. 36 shows an example of the processing procedure in the case where the receiving UE does not configure the relevant through link carrier.
  • Mode-1 receives that the UE sends an SL-BWP configuration request to the base station; the base station can configure the relevant carrier and the intra-carrier SL-BWP for the receiving UE according to the SL-BWP configuration request sent by the receiving UE; The same process as the process shown in FIG. 35 is performed.
  • the procedure is the same as UE-Specific.
  • the process in the zone-specific case is similar to that in the cell-specific case, and the difference is that the cell identification information is changed to the zone ID information.
  • the configuration manner may be the same as the configuration manner in the case where the aforementioned Cell-specific same cell is used.
  • the configuration may be the same as the aforementioned UE-specific configuration.
  • Carrier-specific means that all UEs have the same SL-BWP configuration on the same carrier. In this case, as long as the carrier pairing is successful, the sending UE and the receiving UE can communicate.
  • the first indication information contains at least the through link carrier information, and there may be no SL-BWP configuration information.
  • the SL-BWP configuration request contains only the through link carrier information.
  • the second indication information contains at least the through link carrier information, and there may be no SL-BWP configuration information.
  • the receiving UE receives the first information indication.
  • the through link carrier information in the first indication information there are two cases: the receiving UE has configured the related through link carrier; the receiving UE has not configured the related through link carrier.
  • FIG. 37 shows an example of the processing procedure in the case where the receiving UE has configured the relevant through link carrier. As shown in FIG. 37, the receiving UE feeds back SL-BWP configuration completion information on the first carrier; the sending UE and the receiving UE start communication on the given SL-BWP.
  • FIG. 38 shows an example of the processing procedure in the case where the receiving UE does not configure the relevant through link carrier.
  • Mode-1 receives that the UE sends an SL-BWP configuration request to the base station; the base station configures the SL-BWP on the relevant carrier for the UE according to the through-link carrier information in the SL-BWP configuration request, and the receiving UE performs
  • the processing shown in FIG. 37 is the same processing.
  • the communication starts on the relevant carrier according to the configuration information of the higher layer.
  • the data transmission of the sending UE is performed on the SL-BWP on the second carrier.
  • the Mode-1 UE before receiving the first indication information, there are SL-BWP configurations on n 0 ( 0 ⁇ n 0 ⁇ N 0 ) carriers, and the system is allowed to configure multiple SL-BWPs on each carrier.
  • Mode-2 UEs multiple SL-BWPs are allowed to be configured/pre-configured on each carrier, including pre-configured by the base station, configured based on geographic location or pre-configured.
  • the SL-BWP index needs to be included in the SL-BWP configuration parameters in the first indication information, the second indication information, and the SL-BWP configuration request.
  • the processing procedure is the same as the UE-specific method, and detailed description is omitted here.
  • the SL-BWP configuration on the same carrier in the same cell is the same. Both the receiving UE and the sending UE are in mode-1 mode.
  • the first indication information and the second indication information also include a cell identity.
  • the SL-BWP activation request includes at least the through link carrier frequency and the SL-BWP index.
  • the base station feedback information may include two types of information, activation and deactivation.
  • FIG. 39 shows an example of the processing procedure in the case where the base station participates.
  • the sending UE sends the first indication information on the first carrier; next, the receiving UE listens to the first indication information on the first carrier, and decodes the content of the first indication information.
  • the cell identification information of the sending UE and the receiving UE it can be divided into two cases of UEs in the same cell and UEs in different cells. As described above, it can be judged according to the cell identity that the transceiving UE belongs to different cells and the situation that the transceiving UE belongs to the same cell.
  • the configuration method is the same as the configuration method without the base station participation in the aforementioned UE Specific situation.
  • the configuration mode is the same as the configuration mode in which the base station participates in the foregoing UE-specific case.
  • the SL-BWP coordination flow between UEs in different cells is the same as the flow in the UE-specific case, and repeated description is omitted here.
  • the receiving UE can determine the following two situations through the through link carrier information in the first indication information: the receiving UE has configured the related through link carrier, and the related carrier has been Activate the same SL-BWP as the first information indicates; the receiving UE does not configure the relevant through link carrier or the relevant SL-BWP is not activated on the relevant carrier as the first information indicates.
  • FIG. 40 shows an example of the processing procedure in the case where the relevant through link carrier has been configured.
  • the receiving UE feeds back SL-BWP configuration completion information on the first carrier; then the sending UE and the receiving UE start communication on the given SL-BWP.
  • FIG. 41 shows an example of the processing procedure in the case where the relevant pass-through carrier is not configured.
  • Mode-1 receives that the UE sends an SL-BWP activation request to the base station; the base station activates the SL-BWP on the relevant carrier for the UE according to the through-link carrier information and SL-BWP index in the SL-BWP; if the base station If the feedback information is active, the receiving UE performs subsequent operations, and if the base station reports that it is inactive, receiving the second indication information sent by the UE.
  • the SL-BWP activation request and the second indication information only need to include carrier information and SL-BWP index, and the remaining parameters are optional.
  • the base station configures the SL-BWP for the UE according to the carrier information and the SL-BWP index.
  • FIG. 42 shows an example of related processing procedures for sending UE to receive second indication information.
  • the receiving UE sends second indication information on the first carrier; the sending UE receives the first indication information on the first carrier, and decodes the content of the second indication information.
  • the sending UE compares the decoded second information indication SL-BWP configuration mode with the SL-BWP configuration mode configured in the corresponding carrier.
  • the sending UE has configured the relevant pass-through carrier and the relevant carrier has been Activate the same SL-BWP as the second information indicates; the sending UE does not configure the relevant through link carrier or the relevant SL-BWP is not activated on the relevant carrier as the second information indicates.
  • FIG. 43 shows an example of the processing procedure in the case where the transmitting UE has configured the relevant through link carrier.
  • the sending UE uses the first indication information A described above with reference to FIG. 15
  • the sending UE adjusts the transmission according to the second indication information and sends the new first indication information to the receiving UE; the receiving UE receives After reaching the new first instruction information, it starts to prepare for communication.
  • the sending UE uses the first indication information B described above with reference to FIG. 16
  • the sending UE adjusts the transmission according to the second indication information, Mode-1 UE sends resource request information to the base station; if the transmission resource configuration is successful, it sends to the receiving UE Send the new first instruction message to start preparing for transmission.
  • FIG. 44 shows an example of the processing procedure in the case where the transmitting UE does not configure the relevant through link carrier.
  • Mode-1 sends the UE a SL-BWP activation request to the base station; if the base station sends an activation instruction, the receiving UE The activated SL-BWP performs the subsequent operation of sending the UE. If the base station rejects the activation request and the first carrier SL-BWP meets the transmission service requirements, the sending UE configures transmission on the SL-BWP in the first carrier. If the base station rejects The configuration request, and the first carrier SL-BWP meets the non-transmission service requirement, the sending UE feeds back the transmission end message to the receiving UE.
  • Mode-1 sends the UE to send an SL-BWP activation request and a resource configuration request to the base station; if the base station sends an activation instruction, The receiving UE sends new first indication information to the sending UE according to the SL-BWP and corresponding resources configured by the base station to start communication; if the base station rejects the activation request, but the base station indicates a new transmission of SL-BWP in the first carrier for the sending UE Resources, the UE is sent SL-BWP configuration transmission in the first carrier; if the base station rejects the configuration request, and the first carrier SL-BWP meets the non-transmission service requirement, the sending UE feeds back the transmission completion message to the receiving UE.
  • the processing procedure without base station participation is similar to UE-specific, and repeated description is omitted here.
  • the process in the zone-specific case is the same as that in the cell-specific case.
  • One of the changes is to change the cell identification information to the zone identification information, and the other change is that when the base station is involved, one of the sending UE or the receiving UE is mode- 2 mode case.
  • Mode-1 UEs For the carrier-specific mode, Mode-1 UEs have the same SL-BWP configuration on the same carrier and multiple, and Mode-2 UEs have the same SL-BWP configuration on the same carrier and only one.
  • the carrier-specific base station participation is the same as the SL-BWP coordination process in the same cell in the cell-specific, where the change is that there is no cell identification information in the first indication information/second indication information.
  • the case where the receiving UE is in the mode-2 mode is added to the "case where the related direct link carrier is not configured" in the UE flow of the receiving end, in which case the receiving UE sends second indication information to the transmitting UE; the UE flow at the transmitting end
  • the case where the sending UE is in the mode-2 mode is added to the "case where the relevant pass-through carrier is not configured" in this case. In this case, if the sending service meets the transmission requirements on the first carrier SL-BWP, the transmission is adjusted to the first carrier SL- Within BWP, otherwise feedback stops transmitting information.
  • the embodiments of the present invention can also be applied to multicast communication.
  • a brief explanation of an example process of multicast communication is given with reference to FIGS. 46 and 47 without repeating the details described above.
  • the sending UE and the receiving UE communicate by unicast The process is coordinated until the UEs in the group have the same SL-BWP configuration on a given pass-through carrier, that is, the situation shown in FIG. 46.
  • the embodiments of the present invention can also be applied to the situation of multi-carrier SL-BWP configuration.
  • the UE supports multi-carrier communication.
  • Each UE can be configured with n 0 (1 ⁇ n 0 ⁇ N 0 ) carriers, where N 0 is the configurable maximum number of carriers, and one on each carrier can transmit/ In the received SL-BWP part, each UE has a first carrier configuration, and can receive/send information in the SL-BWP on the first carrier.
  • the UE supports the maximum number of carriers L, it can be configured by system information, RRC signaling, location-based selection, pre-configuration, etc.
  • the maximum number of carriers supported by the UE is set to M.
  • the wireless communication method includes step S210 of receiving indication information from the first user equipment.
  • This indication information is related to the SL-BWP of the through link bandwidth fragment used for data transmission.
  • the method further includes the step S220 of performing an operation for direct link communication with the first user equipment based on the indication information.
  • the wireless communication method according to this embodiment may be implemented on the receiving UE side.
  • the embodiments of the present invention also include the apparatus and method implemented on the above-mentioned "sending UE" side.
  • sending UE the apparatus and method implemented on the above-mentioned "sending UE” side.
  • the electronic device 300 for wireless communication includes a processing circuit 310.
  • the processing circuit 310 includes a transmission unit 311, a reception unit 313, and an operation unit 315.
  • the sending unit 311 is configured to control to send indication information to the second user equipment, the indication information relating to the through link bandwidth fragmentation SL-BWP for data transmission.
  • the receiving unit 313 is configured to control to receive feedback information of the second user equipment regarding the indication information.
  • the operation unit 315 is configured to perform an operation for direct link communication with the second user equipment based on the feedback information.
  • the operation unit 315 is configured to control the current user equipment to use the SL-BWP to communicate with the second user equipment when the feedback information indicates that the second user equipment can use the SL-BWP for direct link communication Direct link communication.
  • the feedback information includes information related to the SL-BWP of the second user equipment
  • the operation unit 315 is configured to determine whether the current user equipment can use the second user based on the feedback information and the SL-BWP configuration of the current user equipment
  • the SL-BWP of the device communicates through the link.
  • the operation unit 315 may be further configured to control the current user equipment to use the SL-BWP of the second user equipment to perform a through link with the second user equipment when it is determined that the SL-BWP of the second user equipment can be used for the through link communication. ⁇ Road communication.
  • the operation unit 315 may also be configured to control to request the serving base station of the current user equipment to correspond to the SL-BWP of the second user equipment if it is determined that the SL-BWP of the second user equipment cannot be used for the through link communication SL-BWP.
  • the indication information of the current user equipment is sent to the second user equipment through the SL-BWP in the first carrier, and the feedback information is received from the second user equipment through the SL-BWP in the first carrier.
  • the operation unit 315 may be further configured to control the current user equipment to use the SL-BWP of the first carrier to perform the direct link communication with the second user equipment if it is determined that the SL-BWP of the second user equipment cannot be used for the direct link communication .
  • FIG. 4 shows a process example of the corresponding wireless communication method.
  • instruction information is sent to the second user equipment, and the instruction information is related to the SL-BWP of the through link bandwidth fragment used for data transmission; in S420, the second user equipment's instruction information is received. Feedback information; in S430, an operation for performing a direct link communication with the second user equipment is performed based on the feedback information.
  • the embodiments of the present invention also include an apparatus and method implemented on the base station side.
  • an apparatus and method implemented on the base station side Next, without repeating the details corresponding to the details described above, a description will be given of the embodiment on the base station side.
  • the electronic device 500 for wireless communication includes a processing circuit 510.
  • the processing circuit 510 includes a receiving unit 511 and a transmitting unit 513.
  • the electronic device 500 may be implemented on the base station side or the roadside device side, for example
  • the receiving unit 511 is configured to control to receive a request from the first user equipment regarding the through link bandwidth fragmentation SL-BWP for data transmission corresponding to the second user equipment.
  • the sending unit 513 is configured to control to send feedback information about whether the first user equipment is allowed to use the SL-BWP to the first user equipment.
  • the wireless communication method includes the step S610 of receiving a request from the first user equipment regarding the direct link bandwidth fragmentation SL-BWP for data transmission corresponding to the second user equipment and Step S620 of sending feedback information about whether the first user equipment is allowed to use the SL-BWP to the first user equipment.
  • embodiments of the present disclosure also include computer-readable media, which include executable instructions, which when executed by the information processing device, cause the information processing device to perform the above method.
  • each step of the above method and each constituent module and/or unit of the above device may be implemented as software, firmware, hardware, or a combination thereof.
  • a program that constitutes software for implementing the above method may be installed from a storage medium or a network to a computer with a dedicated hardware structure (such as the general-purpose computer 700 shown in FIG. 7).
  • a dedicated hardware structure such as the general-purpose computer 700 shown in FIG. 7.
  • a central processing unit (ie, CPU) 701 performs various processes according to a program stored in a read-only memory (ROM) 702 or a program loaded from a storage section 708 into a random access memory (RAM) 703.
  • ROM read-only memory
  • RAM random access memory
  • data required when the CPU 701 performs various processes and the like are also stored as necessary.
  • the CPU 701, ROM 702, and RAM 703 are linked to each other via a bus 704.
  • the input/output interface 705 is also linked to the bus 704.
  • the following components are linked to the input/output interface 705: input section 706 (including keyboard, mouse, etc.), output section 707 (including display, such as cathode ray tube (CRT), liquid crystal display (LCD), etc., and speakers, etc.) , Storage section 708 (including hard disk, etc.), communication section 709 (including network interface card such as LAN card, modem, etc.).
  • the communication section 709 performs communication processing via a network such as the Internet.
  • the driver 710 can also be linked to the input/output interface 705 as needed.
  • a removable medium 711 such as a magnetic disk, an optical disk, a magneto-optical disk, a semiconductor memory, or the like is installed on the drive 710 as needed, so that the computer program read out therefrom is installed into the storage section 708 as needed.
  • a program constituting the software is installed from a network such as the Internet or a storage medium such as a removable medium 711.
  • this storage medium is not limited to the removable medium 711 shown in FIG. 7 in which the program is stored and distributed separately from the device to provide the program to the user.
  • removable media 711 include magnetic disks (including floppy disks (registered trademark)), optical disks (including compact disk read-only memory (CD-ROM) and digital versatile disks (DVD)), and magneto-optical disks (including mini disks (MD) (registered trademark) )) and semiconductor memory.
  • the storage medium may be a ROM 702, a hard disk included in the storage section 708, or the like, in which programs are stored, and distributed to users together with devices containing them.
  • Embodiments of the present invention also relate to a program product storing machine-readable instruction codes.
  • the instruction code When the instruction code is read and executed by the machine, the above method according to the embodiment of the present invention may be executed.
  • a storage medium for carrying the above-mentioned program product storing machine-readable instruction codes is also included in the disclosure of the present invention.
  • the storage medium includes, but is not limited to, a floppy disk, an optical disk, a magneto-optical disk, a memory card, a memory stick, and so on.
  • the electronic device may be implemented as any type of gNB, evolved Node B (eNB), such as a macro eNB and a small eNB.
  • eNB evolved Node B
  • the small eNB may be an eNB covering a cell smaller than a macro cell, such as a pico eNB, a micro eNB, and a home (femto) eNB.
  • the electronic device may be implemented as any other type of base station, such as a NodeB and a base transceiver station (BTS).
  • BTS base transceiver station
  • the electronic device may include: a main body (also referred to as a base station device) configured to control wireless communication; and one or more remote wireless head ends (RRHs) provided at different places from the main body.
  • a main body also referred to as a base station device
  • RRHs remote wireless head ends
  • various types of terminals that will be described below can operate as a base station by temporarily or semi-permanently performing base station functions.
  • the electronic device When the electronic device is used on the user equipment side, it can be implemented as a mobile terminal (such as a smart phone, tablet personal computer (PC), notebook PC, portable game terminal, portable/dongle-type mobile router, and digital camera) or Vehicle-mounted terminals (such as car navigation equipment).
  • the electronic device may be a wireless communication module (such as an integrated circuit module including a single or multiple wafers) mounted on each of the above terminals.
  • FIG. 8 is a block diagram showing an example of a schematic configuration of a smartphone 2500 to which the technology of the present disclosure can be applied.
  • the smartphone 2500 includes a processor 2501, a memory 2502, a storage device 2503, an external connection interface 2504, a camera device 2506, a sensor 2507, a microphone 2508, an input device 2509, a display device 2510, a speaker 2511, a wireless communication interface 2512, one or more Antenna switch 2515, one or more antennas 2516, bus 2517, battery 2518, and auxiliary controller 2519.
  • the processor 2501 may be, for example, a CPU or a system on chip (SoC), and controls functions of the application layer and other layers of the smartphone 2500.
  • the memory 2502 includes RAM and ROM, and stores data and programs executed by the processor 2501.
  • the storage device 2503 may include a storage medium such as a semiconductor memory and a hard disk.
  • the external connection interface 2504 is an interface for connecting an external device such as a memory card and a universal serial bus (USB) device to the smartphone 2500.
  • USB universal serial bus
  • the imaging device 2506 includes an image sensor such as a charge coupled device (CCD) and a complementary metal oxide semiconductor (CMOS), and generates a captured image.
  • the sensor 2507 may include a set of sensors, such as measurement sensors, gyro sensors, geomagnetic sensors, and acceleration sensors.
  • the microphone 2508 converts the sound input to the smartphone 2500 into an audio signal.
  • the input device 2509 includes, for example, a touch sensor configured to detect a touch on the screen of the display device 2510, a keypad, a keyboard, a button, or a switch, and receives operation or information input from the user.
  • the display device 2510 includes a screen such as a liquid crystal display (LCD) and an organic light emitting diode (OLED) display, and displays an output image of the smartphone 2500.
  • the speaker 2511 converts the audio signal output from the smartphone 2500 into sound.
  • the wireless communication interface 2512 supports any cellular communication scheme (such as LTE and LTE-advanced), and performs wireless communication.
  • the wireless communication interface 2512 may generally include, for example, a baseband (BB) processor 2513 and a radio frequency (RF) circuit 2514.
  • the BB processor 2513 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform various types of signal processing for wireless communication.
  • the RF circuit 2514 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives wireless signals via the antenna 2516.
  • the wireless communication interface 2512 may be a chip module on which the BB processor 2513 and the RF circuit 2514 are integrated. As shown in FIG.
  • the wireless communication interface 2512 may include multiple BB processors 2513 and multiple RF circuits 2514.
  • FIG. 8 shows an example in which the wireless communication interface 2512 includes a plurality of BB processors 2513 and a plurality of RF circuits 2514, the wireless communication interface 2512 may also include a single BB processor 2513 or a single RF circuit 2514.
  • the wireless communication interface 2512 may support another type of wireless communication scheme, such as a short-range wireless communication scheme, a near field communication scheme, and a wireless local area network (LAN) scheme.
  • the wireless communication interface 2512 may include a BB processor 2513 and an RF circuit 2514 for each wireless communication scheme.
  • Each of the antenna switches 2515 switches the connection destination of the antenna 2516 between a plurality of circuits included in the wireless communication interface 2512 (for example, circuits for different wireless communication schemes).
  • Each of the antennas 2516 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna), and is used for the wireless communication interface 2512 to transmit and receive wireless signals.
  • the smartphone 2500 may include multiple antennas 2516.
  • FIG. 8 shows an example in which the smartphone 2500 includes multiple antennas 2516, the smartphone 2500 may also include a single antenna 2516.
  • the smartphone 2500 may include an antenna 2516 for each wireless communication scheme.
  • the antenna switch 2515 may be omitted from the configuration of the smartphone 2500.
  • the bus 2517 connects the processor 2501, memory 2502, storage device 2503, external connection interface 2504, camera device 2506, sensor 2507, microphone 2508, input device 2509, display device 2510, speaker 2511, wireless communication interface 2512, and auxiliary controller 2519 to each other connection.
  • the battery 2518 supplies power to each block of the smartphone 2500 shown in FIG. 8 via a feeder, which is partially shown as a dotted line in the figure.
  • the auxiliary controller 2519 operates the minimum necessary functions of the smartphone 2500 in the sleep mode, for example.
  • the transceiver device of the wireless communication device on the user equipment side may be implemented by the wireless communication interface 2512.
  • At least a part of the processing circuit and/or the function of each unit of the electronic device on the user equipment side or the wireless communication device according to the embodiment of the present invention may also be implemented by the processor 2501 or the auxiliary controller 2519.
  • the power consumption of the battery 2518 may be reduced by the auxiliary controller 2519 performing part of the functions of the processor 2501.
  • the processor 2501 or the auxiliary controller 2519 may execute the processing circuit and/or each unit of the electronic device or wireless communication device on the user equipment side according to an embodiment of the present invention by executing the program stored in the memory 2502 or the storage device 2503 At least part of the function.
  • the gNB 2300 includes one or more antennas 2310 and base station equipment 2320.
  • the base station device 2320 and each antenna 2310 may be connected to each other via a radio frequency (RF) cable.
  • RF radio frequency
  • Each of the antennas 2310 includes a single or multiple antenna elements (such as multiple antenna elements included in a multiple input multiple output (MIMO) antenna), and is used for the base station device 2320 to transmit and receive wireless signals.
  • gNB 2300 may include multiple antennas 2310.
  • multiple antennas 2310 may be compatible with multiple frequency bands used by gNB 2300.
  • FIG. 9 shows an example in which gNB 2300 includes multiple antennas 2310, gNB 2300 may also include a single antenna 2310.
  • the base station device 2320 includes a controller 2321, a memory 2322, a network interface 2323, and a wireless communication interface 2325.
  • the controller 2321 may be, for example, a CPU or a DSP, and operates various functions of higher layers of the base station device 2320. For example, the controller 2321 generates a data packet based on the data in the signal processed by the wireless communication interface 2325, and transfers the generated packet via the network interface 2323. The controller 2321 may bundle data from multiple baseband processors to generate bundle packets, and deliver the generated bundle packets. The controller 2321 may have a logical function of performing control such as radio resource control, radio bearer control, mobility management, admission control, and scheduling. This control can be performed in conjunction with nearby gNB or core network nodes.
  • the memory 2322 includes RAM and ROM, and stores programs executed by the controller 2321 and various types of control data (such as terminal lists, transmission power data, and scheduling data).
  • the network interface 2323 is a communication interface for connecting the base station device 2320 to the core network 2324.
  • the controller 2321 can communicate with the core network node or another gNB via the network interface 2323.
  • gNB 2300 and the core network node or other gNB may be connected to each other through logical interfaces such as S1 interface and X2 interface.
  • the network interface 2323 can also be a wired communication interface or a wireless communication interface for a wireless backhaul line. If the network interface 2323 is a wireless communication interface, the network interface 2323 can use a higher frequency band for wireless communication than the frequency band used by the wireless communication interface 2325.
  • the wireless communication interface 2325 supports any cellular communication scheme such as Long Term Evolution (LTE) and LTE-Advanced, and provides a wireless connection to terminals located in the cell of the gNB 2300 via the antenna 2310.
  • the wireless communication interface 2325 may generally include, for example, a BB processor 2326 and an RF circuit 2327.
  • the BB processor 2326 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform layers (such as L1, media access control (MAC), radio link control (RLC), and packet data aggregation protocol (PDCP)) various types of signal processing.
  • the BB processor 2326 may have some or all of the above-mentioned logic functions.
  • the BB processor 2326 may be a memory storing a communication control program, or a module including a processor configured to execute the program and related circuits.
  • the update program can change the function of the BB processor 2326.
  • the module may be a card or blade inserted into the slot of the base station device 2320. Alternatively, the module may also be a chip mounted on a card or blade.
  • the RF circuit 2327 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives wireless signals via the antenna 2310.
  • the wireless communication interface 2325 may include a plurality of BB processors 2326.
  • multiple BB processors 2326 may be compatible with multiple frequency bands used by gNB 2300.
  • the wireless communication interface 2325 may include a plurality of RF circuits 2327.
  • multiple RF circuits 2327 may be compatible with multiple antenna elements.
  • FIG. 9 shows an example in which the wireless communication interface 2325 includes multiple BB processors 2326 and multiple RF circuits 2327, the wireless communication interface 2325 may also include a single BB processor 2326 or a single RF circuit 2327.
  • the transceiver device of the wireless communication device on the base station side according to the embodiment of the present invention may be implemented by a wireless communication interface 2325.
  • At least a part of the functions of the processing circuit and/or each unit of the electronic device on the base station side or the wireless communication device according to the embodiment of the present invention may also be implemented by the controller 2321.
  • the controller 2321 may execute at least a part of the functions of the processing circuit and/or each unit of the electronic device on the base station side or the wireless communication device according to the embodiment of the present invention by executing the program stored in the memory 2322.
  • the car navigation device 2120 includes a processor 2121, a memory 2122, a global positioning system (GPS) module 2124, a sensor 2125, a data interface 2126, a content player 2127, a storage medium interface 2128, an input device 2129, a display device 2130, a speaker 2131, wireless A communication interface 2133, one or more antenna switches 2136, one or more antennas 2137, and a battery 2138.
  • GPS global positioning system
  • the processor 2121 may be, for example, a CPU or an SoC, and controls the navigation function and other functions of the car navigation device 2120.
  • the memory 2122 includes RAM and ROM, and stores data and programs executed by the processor 2121.
  • the GPS module 2124 uses GPS signals received from GPS satellites to measure the position (such as latitude, longitude, and altitude) of the car navigation device 2120.
  • the sensor 2125 may include a set of sensors, such as a gyro sensor, a geomagnetic sensor, and an air pressure sensor.
  • the data interface 2126 is connected to, for example, an in-vehicle network 2141 via a terminal not shown, and acquires data (such as vehicle speed data) generated by the vehicle.
  • the content player 2127 reproduces the content stored in a storage medium such as CD and DVD, which is inserted into the storage medium interface 2128.
  • the input device 2129 includes, for example, a touch sensor, a button, or a switch configured to detect a touch on the screen of the display device 2130, and receives operation or information input from the user.
  • the display device 2130 includes a screen such as an LCD or OLED display, and displays an image or reproduced content of a navigation function.
  • the speaker 2131 outputs the sound of the navigation function or the reproduced content.
  • the wireless communication interface 2133 supports any cellular communication scheme (such as LTE and LTE-advanced), and performs wireless communication.
  • the wireless communication interface 2133 may generally include, for example, a BB processor 2134 and an RF circuit 2135.
  • the BB processor 2134 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform various types of signal processing for wireless communication.
  • the RF circuit 2135 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives wireless signals via the antenna 2137.
  • the wireless communication interface 2133 may also be a chip module on which the BB processor 2134 and the RF circuit 2135 are integrated. As shown in FIG.
  • the wireless communication interface 2133 may include a plurality of BB processors 2134 and a plurality of RF circuits 2135.
  • FIG. 10 shows an example in which the wireless communication interface 2133 includes a plurality of BB processors 2134 and a plurality of RF circuits 2135, the wireless communication interface 2133 may also include a single BB processor 2134 or a single RF circuit 2135.
  • the wireless communication interface 2133 may support another type of wireless communication scheme, such as a short-range wireless communication scheme, a near-field communication scheme, and a wireless LAN scheme.
  • the wireless communication interface 2133 may include a BB processor 2134 and an RF circuit 2135.
  • Each of the antenna switches 2136 switches the connection destination of the antenna 2137 between a plurality of circuits included in the wireless communication interface 2133 (such as circuits for different wireless communication schemes).
  • Each of the antennas 2137 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna), and is used for the wireless communication interface 2133 to transmit and receive wireless signals.
  • the car navigation device 2120 may include a plurality of antennas 2137.
  • FIG. 10 shows an example in which the car navigation device 2120 includes multiple antennas 2137, the car navigation device 2120 may also include a single antenna 2137.
  • the car navigation device 2120 may include an antenna 2137 for each wireless communication scheme.
  • the antenna switch 2136 may be omitted from the configuration of the car navigation device 2120.
  • the battery 2138 supplies power to various blocks of the car navigation device 2120 shown in FIG. 10 via a feeder, which is partially shown as a dotted line in the figure.
  • the battery 2138 accumulates power supplied from the vehicle.
  • the transceiver device or the transceiver unit of the wireless communication device according to the embodiment of the present invention may be implemented by the wireless communication interface 2133.
  • At least a part of the processing circuit and/or the function of each unit of the electronic device or the wireless communication device according to the embodiment of the present invention may also be implemented by the processor 2121.
  • the technology of the present disclosure may also be implemented as an in-vehicle system (or vehicle) 2140 including one or more blocks in a car navigation device 2120, an in-vehicle network 2141, and a vehicle module 2142.
  • vehicle module 2142 generates vehicle data such as vehicle speed, engine speed, and failure information, and outputs the generated data to the vehicle-mounted network 2141.
  • the method of the present invention is not limited to being executed in the chronological order described in the specification, but may also be executed in other chronological order, in parallel or independently. Therefore, the execution order of the methods described in this specification does not limit the technical scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开涉及电子装置、无线通信方法和计算机可读介质。根据一个实施例的用于无线通信的电子装置包括处理电路。处理电路被配置为进行控制以接收来自第一用户设备的指示信息,该指示信息与用于数据传输的直通链路带宽分片(SL-BWP)有关。处理电路还被配置为基于指示信息进行用于与第一用户设备进行直通链路通信的操作。

Description

电子装置、无线通信方法和计算机可读介质 技术领域
本公开一般涉及无线通信领域,更具体地,涉及用于无线通信的电子装置、无线通信方法以及计算机可读介质。
背景技术
3GPP(第三代合作伙伴项目)的TS 38.211中定义了带宽分片(bandwidth part,BWP)。BWP是一个连续资源块集合,在给定时间用户只能激活一种BWP配置,并且用户不会在激活的BWP之外的资源上传输或接收消息。作为示例,在图11所示的场景中有三个BWP被配置,其中BWP 1具有40MHz的宽度以及15kHz的子载波间隔,BWP 2具有10MHz的宽度以及15kHz的子载波间隔,BWP 3具有20MHz的宽度以及60kHz的子载波间隔。
发明内容
在下文中给出了关于本发明实施例的简要概述,以便提供关于本发明的某些方面的基本理解。应当理解,以下概述并不是关于本发明的穷举性概述。它并不是意图确定本发明的关键或重要部分,也不是意图限定本发明的范围。其目的仅仅是以简化的形式给出某些概念,以此作为稍后论述的更详细描述的前序。
根据一个实施例,提供一种用于无线通信的电子装置,其包括处理电路。处理电路被配置为进行控制以接收来自第一用户设备的指示信息,该指示信息与用于数据传输的直通链路带宽分片(SL-BWP)有关。处理电路还被配置为基于指示信息进行用于与第一用户设备进行直通链路通信的操作
根据另一个实施例,一种无线通信方法包括接收来自第一用户设备的指示信息的步骤。该指示信息与用于数据传输的SL-BWP有关。该方法还包括基于指示信息进行用于与第一用户设备进行直通链路通信的操作的步骤。
根据另一个实施例,提供一种用于无线通信的电子装置,其包括处理电路。处理电路被配置为进行控制以向第二用户设备发送指示信息,该指示信 息与用于数据传输的SL-BWP有关。处理电路还被配置为进行控制以接收第二用户设备关于指示信息的反馈信息,以及基于反馈信息进行用于与第二用户设备进行直通链路通信的操作。
根据另一个实施例,一种无线通信方法包括向第二用户设备发送指示信息的步骤。该指示信息与用于数据传输的SL-BWP有关。该方法还包括接收第二用户设备关于指示信息的反馈信息的步骤以及基于反馈信息进行用于与第二用户设备进行直通链路通信的操作的步骤。
根据另一个实施例,提供一种用于无线通信的电子装置,其包括处理电路。处理电路被配置为进行控制以从第一用户设备接收关于与第二用户设备相对应的用于数据传输的SL-BWP的请求。处理电路还被配置为进行控制以向第一用户设备发送关于是否允许第一用户设备使用SL-BWP的反馈信息。
根据另一个实施例,一种无线通信方法包括从第一用户设备接收关于与第二用户设备相对应的用于数据传输的SL-BWP的请求的步骤。该方法还包括向第一用户设备发送关于是否允许第一用户设备使用SL-BWP的反馈信息的步骤。
根据又一个实施例,提供一种计算机可读介质,其包括可执行指令,当可执行指令被信息处理设备执行时,使得信息处理设备执行上述方法。
本发明实施例提供了用户间载波配置的协调方案,使得采用不同载波配置的收发双方能够进行直通链路通信。
附图说明
本发明可以通过参考下文中结合附图所给出的描述而得到更好的理解,其中在所有附图中使用了相同或相似的附图标记来表示相同或者相似的部件。所述附图连同下面的详细说明一起包含在本说明书中并且形成本说明书的一部分,而且用来进一步举例说明本发明的优选实施例和解释本发明的原理和优点。在附图中:
图1是示出根据本发明一个实施例的用于无线通信的电子装置的配置示例的框图;
图2是示出根据本发明的一个实施例的无线通信方法的过程示例的流程图;
图3是示出根据本发明一个实施例的用于无线通信的电子装置的配置示 例的框图;
图4是示出根据本发明的一个实施例的无线通信方法的过程示例的流程图;
图5是示出根据本发明一个实施例的用于无线通信的电子装置的配置示例的框图;
图6是示出根据本发明的一个实施例的无线通信方法的过程示例的流程图;
图7是示出实现本公开的方法和设备的计算机的示例性结构的框图;
图8是示出可以应用本公开内容的技术的智能电话的示意性配置的示例的框图;
图9是示出可以应用本公开内容的技术的gNB的示意性配置的示例的框图;
图10是可以应用本公开内容的技术的汽车导航设备的示意性配置的示例的框图;
图11是用于说明BWP配置示例的示意图;
图12是用于说明SL-BWP的配置示例的示意图;
图13是用于说明SL-BWP的配置示例的示意图;
图14是用于说明SL-BWP的激活/去激活过程的信令流程图;以及
图15至图47是用于说明用户设备(UE)间的通信的示例过程的信令流程图。
具体实施方式
下面将参照附图来说明本发明的实施例。在本发明的一个附图或一种实施方式中描述的元素和特征可以与一个或更多个其它附图或实施方式中示出的元素和特征相结合。应当注意,为了清楚的目的,附图和说明中省略了与本发明无关的、本领域普通技术人员已知的部件和处理的表示和描述。
下面参照图1说明根据本公开的一个实施例的用于无线通信的电子装置的配置示例。如图1所示,根据本实施例的用于无线通信的电子装置100包括处理电路110。处理电路110例如可以实现为特定芯片、芯片组或者中央处理单元(CPU)等。
根据本实施例的电子装置可以实现在用户设备侧。更具体地,用户设备例如可以包括车辆。然而本发明不限于此,而是可以用于新无线(NR)直通链路(Sidelink)的各种应用场景,例如机器类通信(MTC)、设备至设备(D2D)通信、车辆与其他设备(V2X)通信、物联网(IOT)通信等,其中V2X通信又可以包括车辆与车辆(V2V)通信、车辆与行人(V2P)通信以及车辆与基础设施(V2I)通信等。
处理电路110包括控制单元111和操作单元113。需要指出,虽然附图中以功能块的形式示出了控制单元111和操作单元113,然而应理解,各单元的功能也可以由处理电路作为一个整体来实现,而并不一定是通过处理电路中分立的实际部件来实现。另外,虽然图中以一个框示出处理电路,然而电子装置可以包括多个处理电路,并且可以各单元的功能分布到多个处理电路中,从而由多个处理电路协同操作来执行这些功能。
控制单元111被配置为进行控制以接收来自第一用户设备的指示信息,该指示信息与用于数据传输的SL-BWP有关。
SL-BWP是直通链路载波上一段连续的物理资源集合,SL-BWP内的物理资源可以根据给定的SL-BWP配置参数进行配置。SL-BWP被配置在直通链路载波内,SL-BWP被配置的最大带宽小于载波带宽。此外,SL-BWP内可以配置/预配置多个资源池。
若每个直通链路载波上只配置有一个SL-BWP,则用户使用该载波内配置的SL-BWP配置,UE只能在SL-BWP内传输/接收信息,在SL-BWP外不能传输/接收信息,如图12所示。在这种情况下,SL-BWP配置参数内可以不包含SL-BWP索引,如果用户设备被配置在给定载波接收/传输信息,则使用该载波上的SL-BWP配置。
根据一个实施例,每个直通链路载波可以被配置有两个或更多个SL-BWP,并且两个或更多个SL-BWP中的一个SL-BWP被激活。
若每个直通链路载波上配置有多于一个SL-BWP,并激活其中一个SL-BWP配置,则UE只能在激活的SL-BWP内传输/接收信息,在激活SL-BWP外不能传输/接收信息,如图13所示。
更具体地,系统可以在直通链路载波内为用户设备配置n种SL-BWP配置,其中1<n≤N,N为在直通链路载波内系统可配置的最大SL-BWP个数,N可以由系统配置。每一种SL-BWP配置可以由SL-BWP索引唯一指示。如图14所示,系统可以通过下行链路控制信息(DCI)或无线资源控制(RRC) 信令为用户激活/去激活SL-BWP。每个直通链路载波上仅有一个激活的SL-BWP,其余的SL-BWP均处于未激活状态。用户设备只能在该载波内的SL-BWP上传输/接收信息。
根据一个实施例,与用于数据传输的SL-BWP有关的指示信息可以包括SL-BWP的配置信息。更具体地,配置信息例如可以包括子载波间隔、循环前缀(CP)、物理资源块偏移量(例如,与载波内的起始物理资源块(PRB)相对的偏移量)和SL-BWP带宽(例如连续PRB的数量)。此外,在直通链路允许配置多个SL-BWP时,配置信息还可以包括SL-BWP索引。可选地,配置信息还可以包括SL-BWP有效时间(例如定时器)。
配置信息可以通过系统信息配置、通过无线资源控制信令配置、基于地理位置选择、或者可以是预配置的。
此外,配置信息可以是特定于用户设备的(UE-specific)、特定于小区的(Cell-specific)、特定于区域的(Zone-specific)或者特定于载波的(Carrier-specific)。
更具体地,在配置信息特定于用户设备的情况下,系统可以为RRC_CONNECTED(无线资源控制信令连接)状态下的用户设备配置SL-BWP,SL-BWP配置参数可以根据用户的需求进行配置。
在配置信息特定于小区的情况下,系统可以为RRC_CONNECTED状态下的用户设备配置SL-BWP,SL-BWP配置参数可以根据用户设备连接的基站进行配置。即同一基站覆盖内的用户设备在相同直通链路载波上有相同的SL-BWP配置。
在配置信息特定于区域的情况下,系统可以根据用户的地理位置获得区域(zone)信息,并根据用户所获得的区域信息进行SL-BWP配置,即,同一区域内的用户在相同直通链路载波上有相同的SL-BWP配置方式。
在配置信息特定于载波的情况下,系统可以根据用户设备发送/接收所用的直通链路载波进行SL-BWP配置,即,用户在相同的直通链路载波上有相同的SL-BWP配置方式。
此外,来自第一用户设备的指示信息可以是通过多个用户设备共用的载波(下文中可以称为公共载波或第一载波)内的SL-BWP接收的。公共载波内SL-BWP是多个用户设备的公共资源部分,若用户设备支持多载波通信,则公共载波可以一直处于可通信状态,即载波上无激活/未激活的表示,该载波内的SL-BWP任何时间均可用,无需在使用时进行配置。
公共载波内的SL-BWP配置可以由系统信息配置、通过RRC信令配置、基于地理位置配置或预配置。对于所有用户设备,公共载波内的SL-BWP配置相同。公共载波内的SL-BWP上可能有广播、单播、组播通信。如后面参照图16说明的,对于公共载波内的通信(广播、单播、组播),发送用户设备可以直接发送直通链路控制信息(Sidelink Control Information,SCI)与接收用户设备进行通信,而无需预先单独发送指示信息。换句话说,可以采用两种SL-BWP配置方式,第一种是SL-BWP和SCI一起在公共载波中发送,数据在非公共载波内发送。第二种是首先在公共载波内发送SL-BWP配置,通信双方SL-BWP配置成功后在非公共载波上发送SCI和数据。
除了公共载波之外的载波可以被称为非公共载波(或第二载波),其可以根据用户设备的传输/接收信息需求进行配置。非公共载波内的SL-BWP配置可以为UE-specific配置、Cell-specific配置、Zone-specific配置或Carrier-specific配置。非公共载波内的SL-BWP可以通过系统信息配置、通过RRC信令配置、基于地理配置或预配置。非公共载波内的SL-BWP可以用于广播、单播或组播通信。
继续参照图1,操作单元113被配置为基于所接收的指示信息(下文中可以称为第一指示信息)进行用于与第一用户设备进行直通链路通信的操作。
根据一个实施例,用于进行直通链路通信的操作可以包括基于第一指示信息以及当前用户设备的SL-BWP配置,确定当前用户设备是否能够使用第一用户设备的SL-BWP进行直通链路通信。
在确定能够使用第一用户设备的SL-BWP进行直通链路通信的情况下,操作单元113可以控制当前用户设备使用第一用户设备的SL-BWP与第一用户设备进行直通链路通信。
另一方面,在确定不能使用第一用户设备的SL-BWP进行直通链路通信的情况下,操作单元113可以进行控制以向第一用户设备发送与当前用户设备的SL-BWP有关的信息(下文中可以称为第二指示信息),或者可以进行控制以向当前用户设备的服务基站请求与第一用户设备的SL-BWP相对应的SL-BWP。
来自第一用户设备的指示信息以及与当前用户设备的SL-BWP有关的信息可以通过公共载波(第一载波)内的SL-BWP传输。此外,在确定不能使用第一用户设备的SL-BWP进行直通链路通信的情况下,可以使用公共载波内的SL-BWP与第一用户设备进行直通链路通信。
接下来,参照图15和图16说明在用户设备间传输第一指示信息的示例过程。
如图15所示,首先,发送UE和接收UE通过在第一载波内SL-BWP上传输/接收第一指示信息A,完成收发双发的SL-BWP配置过程。接下来,发送UE在双方确定的SL-BWP上发送SCI,并且发送UE和接收UE开始通信。
发送UE可以根据高层为待传输信息配置的SL-BWP信息进行第一指示信息A的配置。第一指示信息A的信息域可以包含第二载波内的SL-BWP的配置参数,例如可以包括子载波间隔、CP、频率位置、带宽、直通链路载波信息、源UE标识(ID)、目的UE ID(可为空)、传输请求等。
关于发送UE的SL-BWP配置,对于Mode-1(基站辅助模式)UE,基站可以根据UE的传输业务需求为UE配置直通链路载波上的SL-BWP。对于Mode-2(无基站辅助模式)UE,其例如可以根据传输业务需求和资源情况等自主选择SL-BWP。对于载波上只有一个SL-BWP的情况,UE自主选择传输载波,进而使用该载波上的SL-BWP。对于一个载波上配置有多个SL-BWP的情况,UE可以自主选择传输载波和其上的SL-BWP。
图16示出了发送第一指示信息的一种替选方式。如图16所示,首先,发送UE在第一载波内SL-BWP上向接收UE发送第一指示信息B。接下来,发送UE和接收UE在双发确定的SL-BWP上开始数据传输。
第一指示信息B为发送UE根据高层为待传输信息配置的SL-BWP信息和控制信息(SCI)。第一指示信息B的信息域可以包含第二载波内的SL-BWP的配置参数,例如可以包括子载波间隔、CP、频率位置、带宽、直通链路载波频率、源UE ID、目的UE ID(可为空)、传输请求以及SCI信息(例如包含传输业务优先级、资源预留、初传和重传的频域资源位置、初传和重传的时间间隔、调制和编码方式、重传索引等信息)。
关于发送UE的SL-BWP配置,对于Mode-1 UE,基站可以根据UE的传输业务需求为UE配置直通链路载波上的SL-BWP以及SL-BWP内的传输资源;对于Mode-2 UE,如前所述,其可以根据传输业务需求和资源情况等自主选择SL-BWP以及SL-BWP内的传输资源。
接下来,参照图17说明在用户设备间传输第二指示信息的示例过程。
如图17所示,接收用户在第一指示信息内指示的SL-BWP内无法接收信息。接下来,接收UE在第一载波上向发送UE发出第二指示信息,将接收UE能进行接收的SL-BWP配置发送给发送用户。
第二指示信息由接收UE向发送UE发送,用于指示接收UE可以接收信息的指定SL-BWP配置。第二指示信息的信息域可以包含SL-BWP配置参数,其例如可以包括子载波间隔、CP、频率位置、带宽、直通链路载波频率、源UE ID、目的UE ID等。
如前所述,单个载波上可以有一个SL-BWP配置或者多个SL-BWP配置。接下来,分别针对载波上有一个SL-BWP配置以及载波上有多个SL-BWP配置的情况给出示例实施方式的说明。
具体地,将按照以下顺序进行示例实施方式的说明。
A.载波上有一个SL-BWP配置
1.UE-specific
2.Cell-specific
3.Zone-specific
4.Carrier-specific
B.载波上有多个SL-BWP配置
1.UE-specific
2.Cell-specific
3.Zone-specific
4.Carrier-specific
下面,首先说明载波上有一个SL-BWP配置的情况下的示例实施方式。
A.载波上有一个SL-BWP配置
在这种情况下,发送UE的数据传输在第二载波上的SL-BWP上进行;对于Mode-1 UE,在接收第一指示信息前在n 0个载波上有SL-BWP配置,且系统在每个载波上仅配置一个SL-BWP,其中,0≤n 0≤N 0,N 0为可配置最多载波个数;对于Mode-2用户,每个载波上仅允许配置/预配置一个SL-BWP,其可以由基站预先配置、基于地理位置配置或预配置。
1.UE-specific
在配置信息特定于用户设备的情况下:第一指示信息内指示SL-BWP的配置参数,其中至少包括直通链路载波频率、子载波间隔、CP、频率位置、带宽;SL-BWP配置请求内指示SL-BWP的配置参数,其中至少包括直通链 路载波频率、子载波间隔、CP、频率位置、带宽;第二指示信息中至少包括直通链路载波频率、子载波间隔、CP、频率位置、带宽。
对于UE-specific的情况,图18至图27示出了在有基站参与的情况下的通信过程示例。
图18示出了接收UE接收第一指示信息的过程示例。如图18所示,首先,发送UE在第一载波上发送第一指示信息;接下来,接收UE接在第一载波上监听到第一指示信息,解码第一指示信息内容。接收UE将解码的第一信息指示内SL-BWP配置方式与相应载波上配置SL-BWP配置方式进行比较。比较结果可以包括以下情况:相应载波上已配置SL-BWP,且已配置的SL-BWP和第一指示信息内指示的SL-BWP有重合部分且满足此次传输需求;其他情况,包括相应载波上未进行SL-BWP配置、相应载波上SL-BWP不满足传输需求的情况。
进一步地,图19示出了满足传输需求的情况下接收UE侧的处理流程的示例。
如图19所示,接收UE在第一载波上反馈SL-BWP配置完成信息;接下来,发送UE和接收UE在给定的SL-BWP上开始通信。
图20和图21示出了不满足传输需求的情况下接收UE侧的处理流程的示例,其分别对应于Mode-1接收UE和Mode-2接收UE。
如图20所示,Mode-1接收UE向基站发出SL-BWP配置请求;若基站同意配置请求,则为接收UE进行SL-BWP配置;若基站发拒绝配置请求,则接收UE向发送UE发送第二指示信息。
如图21所示,Mode-2接收UE直接向发送UE发送第二指示信息。
图22示出了发送UE接收到第二指示信息后的处理过程的示例。如图22所示,接收UE在第一载波上发送第二指示信息;发送UE接在第一载波上接收到第二指示信息,解码第二指示信息内容;发送UE将解码的第二信息指示内SL-BWP配置方式与相应载波内已配置SL-BWP配置方式进行比较,比较结果可以包括以下二种情况:相应载波上已配置SL-BWP,配置的SL-BWP和第二指示信息内指示的SL-BWP有重合部分且满足此次传输需求;其他情况,包括相应载波上未进行SL-BWP配置、配置的SL-BWP不满足传输等情况。
接下来,参照图23说明满足传输需求的情况下发送UE侧的处理过程的示例。
当发送UE使用前面参照图15说明的第一指示信息A的情况下,如图23(不包含虚线箭头的部分)所示,发送UE根据第二指示信息调整传输,并向接收UE发送新的第一指示信息;接收UE接收到新的第一指示信息后,开始准备通信。
另一方面,当发送UE使用前面参照图16说明的第一指示信息B的情况下,如图23所示,发送UE根据第二指示信息调整传输。Mode-1 UE可以向基站发送资源请求信息(如图23虚线箭头的部分所示),Mode-2 UE可以在配置的SL-BWP内自主选择发送资源。若传输资源配置成功,则向接收UE发送新的第一指示信息,开始准备传输。
接下来,参照图24至图27说明不满足传输需求的情况下发送UE侧的处理过程的示例。
当发送UE使用前面参照图15说明的第一指示信息A的情况下,如图24所示,Mode-1发送UE向基站发出SL-BWP配置请求;若基站发送配置指示,则发送UE根据基站配置SL-BWP,执行发送UE的后续处理。若基站拒绝配置请求,且第一载波SL-BWP满足传输业务需求,则发送UE在第一载波内的SL-BWP上配置传输。若基站拒绝配置请求,且第一载波SL-BWP不满足传输业务需求,则发送UE向接收UE反馈传输结束消息。
另外,图25示出了Mode-2发送UE在该上述情况下的处理过程。如图25所示,若第一载波SL-BWP满足传输业务需求,则发送UE在第一载波内的SL-BWP上配置传输。否则,发送UE向接收UE反馈传输结束消息。
当发送UE使用前面参照图16说明的第一指示信息B的情况下,如图26所示,Mode-1发送UE向基站发出SL-BWP配置请求和资源配置请求;若基站发送配置指示,则发送UE根据基站配置的SL-BWP和相应资源向接收UE发送新的第一指示信息,开始通信。若基站拒绝配置请求,但基站为发送UE在第一载波内SL-BWP指示新的传输资源,则发送UE在第一载波内SL-BWP配置传输。若基站拒绝配置请求,且第一载波SL-BWP不满足传输业务需求,则发送UE向接收UE反馈传输结束消息。
另外,图27示出了Mode-2发送UE在该上述情况下的处理过程。如图27所示,若第一载波SL-BWP满足传输业务需求,则发送UE在第一载波的SL-BWP内自主选择资源,准备传输。否则,发送UE向接收UE反馈传输结束消息。
接下来,参照图28至图33说明无基站参与的情况下的处理示例。
图28示出了接收UE接收第一指示信息的过程示例。如图28所示,发送UE在第一载波上发送第一指示信息;接收UE接在第一载波上监听到第一指示信息,解码第一指示信息内容。接收UE将解码的第一信息指示内SL-BWP配置方式与相应载波内已配置SL-BWP配置方式进行比较。比较结果可以为以下两种情况:相应载波上已配置SL-BWP,此SL-BWP和第一指示信息内指示的SL-BWP有重合部分且满足此次传输需求;其他情况,包括相应载波上的SL-BWP配置不相同等情况。
图29示出了满足传输需求的情况下接收UE的处理过程的示例。如图29所示,接收UE在第一载波上反馈SL-BWP配置完成信息;发送UE和接收UE在给定的SL-BWP上开始通信。
图30示出了在不满足传输需求的情况下接收UE的处理过程的示例。如图30所示,在此情况下接收UE直接向发送UE发送第二指示信息。
图31示出了发送用户接收第二指示信息的处理过程的示例。如图31所示,接收UE在第一载波上发送第二指示信息;发送UE接在第一载波上接收到第一指示信息,解码第二指示信息内容。发送UE将解码的第二信息指示内SL-BWP配置方式与相应载波内已配置SL-BWP配置方式进行比较。比较结果可以有以下二种情况:相应载波上已配置SL-BWP,配置的SL-BWP和第二指示信息内指示的SL-BWP有重合部分且满足此次传输需求;其他情况,包括相应载波上未进行SL-BWP配置、配置的SL-BWP不满足传输等情况。
图32示出了在满足传输需求的情况下发送UE的处理过程的示例。
当发送UE使用前面参照图15说明的第一指示信息A的情况下,如图32所示,发送UE根据第二指示信息调整传输,并向接收UE发送新的第一指示信息;接收UE接收到新的第一指示信息后,开始准备通信。
当发送UE使用前面参照图16说明的第一指示信息B的情况下,如图32所示,发送UE根据第二指示信息调整传输,在第二指示信息指示的SL-BWP内自主选择发送资源;若传输资源配置成功,则向接收UE发送新的第一指示信息,开始准备传输。
如果传输资源配置不成功,当发送UE使用前面参照图15说明的第一指示信息A的情况下,如图33所示,若第一载波SL-BWP满足传输业务需求,则发送UE在第一载波内的SL-BWP上配置传输;否则,发送UE向接收UE反馈传输结束消息。当发送UE使用前面参照图16说明的第一指示信息B的 情况下,若第一载波SL-BWP满足传输业务需求,则发送UE在第一载波的SL-BWP内自主选择资源,准备传输;否则,发送UE向接收UE反馈传输结束消息。
2.Cell-specific
Cell-specific是指同一小区内相同载波上的SL-BWP配置相同。在SL-BWP是Cell-specific配置情况下,第一指示信息、第二指示信息、SL-BWP配置请求和SL-BWP激活请求信息域例如可以为:
第一指示信息内指示SL-BWP的配置参数,其中至少包括直通链路载波频率、子载波间隔、CP、频率位置、带宽、小区标识(例如后三位);
第二指示信息内指示SL-BWP的配置参数,其中至少包括直通链路载波频率、子载波间隔、CP、频率位置、带宽、小区标识(例如后三位);
SL-BWP配置请求,其中至少包括直通链路载波频率、子载波间隔、CP、频率位置、带宽。
关于小区标识,需要指出的是,Mode-2 UE的小区标识可以为一个默认值或为空,以便判断收发UE相连接的基站是否相同。换句话说,可以根据小区标识判断收发UE属于不同小区的情况以及收发UE属于相同小区的情况。对于收发UE属于相同小区且无基站参与的情况,配置方式与前述UE Specific情况中无基站参与的配置方式相同。对于收发UE属于不同小区的情况,配置方式与前述UE-specific情况中有基站参与配置方式相同。
对于收发UE属于相同小区情况,SL-BWP配置请求可以仅包括直通链路载波信息即可,其余参数可以设为可选项。
图34示出了有基站参与的情况下的处理过程示例。如图34所示,发送UE在第一载波上发送第一指示信息;接收UE接在第一载波上监听到第一指示信息,解码第一指示信息内容。根据发送UE与接收UE小区标识信息可以分为同一小区内UE(收发UE都是mode-1 UE或收发UE都是mode-2 UE)和不同小区内UE两种情况。
不同小区内UE之间的SL-BWP协调流程与UE-specific情况下流程相同。下面说明在相同小区内UE之间的SL-BWP协调的过程示例。
接收UE根据第一指示信息中的直通链路载波信息可以确定以下两种情况:接收UE已配置相关直通链路载波;接收UE未配置相关直通链路载波。
图35示出了接收UE已配置相关直通链路载波的情况下的处理过程的示 例。如图35所示,接收UE在第一载波上反馈SL-BWP配置完成信息;发送UE和接收UE在给定的SL-BWP上开始通信。
图36示出了接收UE未配置相关直通链路载波的情况下的处理过程的示例。如图36所示,Mode-1接收UE向基站发出SL-BWP配置请求;基站根据基站可以根据接收UE发送的SL-BWP配置请求为接收UE配置相关载波以及载波内SL-BWP,接收UE则执行与图35所示的过程相同的过程。
对于无基站参与的情况,流程与UE-Specific相同。
3.Zone-specific
Zone-specific情况下与Cell-specific情况下流程类似,其区别在于将小区标识信息改为区域ID信息。对于相同区域内的UE通信,配置方式可以与前述Cell-specific相同小区情况中的配置方式相同。对于不同区域内的UE通信,配置方式可以与前述UE-specific配置方式相同。
4.Carrier-specific
Carrier-specific是指所有UE在相同载波上的SL-BWP配置相同。此种情况只要载波配对成功,发送UE和接收UE即可以通信。第一指示信息内至少包含直通链路载波信息,可以无SL-BWP配置信息。SL-BWP配置请求内只包含直通链路载波信息。第二指示信息内至少包含直通链路载波信息,可以无SL-BWP配置信息。
接收UE接收第一信息指示,根据第一指示信息中的直通链路载波信息,有以下两种情况:接收UE已配置相关直通链路载波;接收UE未配置相关直通链路载波。
图37示出了接收UE已配置相关直通链路载波的情况下的处理过程的示例。如图37所示,接收UE在第一载波上反馈SL-BWP配置完成信息;发送UE和接收UE在给定的SL-BWP上开始通信。
图38示出了接收UE未配置相关直通链路载波的情况下的处理过程的示例。如图38所示,Mode-1接收UE向基站发出SL-BWP配置请求;基站根据SL-BWP配置请求内的直通链路载波信息为UE配置相关载波上的SL-BWP,接收UE则执行与图37所示的处理相同的处理。对于Mode-2接收UE,根据高层的配置信息在相关载波上开始通信。
B.载波上有多个SL-BWP配置
接下来,说明载波上有多个SL-BWP配置的情况下的示例实施方式。在 这种情况下,发送UE的数据传输在第二载波上的SL-BWP上进行。对于Mode-1 UE,在接收第一指示信息前在n 0(0≤n 0≤N 0)个载波上有SL-BWP配置,且允许系统在每个载波上配置多个SL-BWP。对于Mode-2 UE,每个载波上允许配置/预配置多个SL-BWP,包括由基站预先配置、基于地理位置配置或预配置。在这种情况下,第一指示信息、第二指示信息、SL-BWP配置请求中的SL-BWP配置参数内需要包括SL-BWP索引。
1.UE-specific
对于UE-specific方式,其处理过程与UE-specific相同,在此省略详细说明。
2.Cell-specific
对于Cell-specific方式,同一小区内相同载波上的SL-BWP配置相同。接收UE和发送UE都是mode-1模式。第一指示信息和第二指示信息内除了前面提到的信息还包括小区标识。SL-BWP激活请求中至少包括直通链路载波频率和SL-BWP索引。基站反馈信息可以包括激活和不激活两种信息。
图39示出了在有基站参与的情况下的处理过程的示例。如图39所示,首先,发送UE在第一载波上发送第一指示信息;接下来,接收UE接在第一载波上监听到第一指示信息,解码第一指示信息内容。根据发送UE与接收UE小区标识信息,可以分为同一小区内UE和不同小区内UE两种情况。如前所述,可以根据小区标识判断收发UE属于不同小区的情况以及收发UE属于相同小区的情况。对于收发UE属于相同小区且无基站参与的情况,配置方式与前述UE Specific情况中无基站参与的配置方式相同。对于收发UE属于不同小区的情况,配置方式与前述UE-specific情况中有基站参与配置方式相同。
不同小区内UE之间的SL-BWP协调流程与UE-specific情况下流程相同,在此省略重复说明。
对于相同小区内UE之间的SL-BWP协调流程,接收UE通过第一指示信息中的直通链路载波信息可以确定以下两种情况:接收UE已配置相关直通链路载波,且相关载波上已激活与第一信息指示相同的SL-BWP;接收UE未配置相关直通链路载波或相关载波上未激活与第一信息指示相同的SL-BWP。
图40示出了已配置相关直通链路载波的情况下的处理过程的示例。如图40所示,接收UE在第一载波上反馈SL-BWP配置完成信息;然后发送UE和接收UE在给定的SL-BWP上开始通信。
图41示出了未配置相关直通链路载波的情况下的处理过程的示例。如图41所示,Mode-1接收UE向基站发出SL-BWP激活请求;基站根据SL-BWP内的直通链路载波信息和SL-BWP索引为UE激活相关载波上的SL-BWP;若基站反馈信息为激活,则接收UE则执行后续操作,若基站反馈为不激活则接收UE发送第二指示信息。对于相同小区内UE通信情况下,SL-BWP激活请求、第二指示信息只需要包含载波信息和SL-BWP索引,其余参数为可选项。基站根据载波信息和SL-BWP索引为UE配置SL-BWP。
图42示出了发送UE接收第二指示信息的相关处理过程示例。如图42所示,接收UE在第一载波上发送第二指示信息;发送UE接在第一载波上接收到第一指示信息,解码第二指示信息内容。发送UE将解码的第二信息指示内SL-BWP配置方式与相应载波内已配置SL-BWP配置方式进行比较,有以下二种情况:发送UE已配置相关直通链路载波,且相关载波上已激活与第二信息指示相同的SL-BWP;发送UE未配置相关直通链路载波或相关载波上未激活与第二信息指示相同的SL-BWP。
图43示出了发送UE已配置相关直通链路载波的情况下的处理过程的示例。如图43所示,在发送UE使用前面参照图15说明的第一指示信息A的情况下,发送UE根据第二指示信息调整传输,并向接收UE发送新的第一指示信息;接收UE接收到新的第一指示信息后,开始准备通信。在发送UE使用前面参照图16说明的第一指示信息B的情况下,发送UE根据第二指示信息调整传输,Mode-1 UE向基站发送资源请求信息;若传输资源配置成功,则向接收UE发送新的第一指示信息,开始准备传输。
图44示出了发送UE未配置相关直通链路载波的情况下的处理过程的示例。如图44所示,在发送UE使用前面参照图15说明的第一指示信息A的情况下,Mode-1发送UE向基站发出SL-BWP激活请求;若基站发送激活指示,则接收UE根据基站激活的SL-BWP,执行发送UE的后续操作,若基站拒绝激活请求,且第一载波SL-BWP满足传输业务需求,则发送UE在第一载波内的SL-BWP上配置传输,若基站拒绝配置请求,且第一载波SL-BWP满足不传输业务需求,则发送UE向接收UE反馈传输结束消息。
在发送UE使用前面参照图16说明的第一指示信息B的情况下,如图45所示,Mode-1发送UE向基站发出SL-BWP激活请求和资源配置请求;若基站发送激活指示,则接收UE根据基站配置的SL-BWP和相应资源,向发送UE发送新的第一指示信息,开始通信;若基站拒绝激活请求,但基站为发送UE在第一载波内SL-BWP指示新的传输资源,则发送UE在第一载 波内SL-BWP配置传输;若基站拒绝配置请求,且第一载波SL-BWP满足不传输业务需求,则发送UE向接收UE反馈传输结束消息。
无基站参与的情况下的处理过程与UE-specific类似,在此省略重复说明。
3.Zone-specific
Zone-specific情况下与Cell-specific情况下流程相同,其中改变之一是将小区标识信息改为区域标识信息,另一个改变是有基站参与的情况下包括发送UE或接收UE之一是mode-2模式的情况。
4.Carrier-specific
对于Carrier-specific方式,Mode-1 UE在相同载波上的有SL-BWP配置相同且为多个,Mode-2 UE在相同载波上的有SL-BWP配置相同且仅为一个。
Carrier-specific有基站参与的情况下与Cell-specific中同一小区内SL-BWP协调流程相同,其中改变是第一指示信息/第二指示信息内无小区标识信息。此外,在接收端UE流程的“未配置相关直通链路载波的情况”中增加接收UE为mode-2模式的情况,此情况下接收UE向发送UE发送第二指示信息;在发送端UE流程的“未配置相关直通链路载波的情况”中增加发送UE为mode-2模式的情况,此情况下若发送业务在第一载波SL-BWP上满足传输需求则调整传输到第一载波SL-BWP内,否则反馈停止传输信息。
如前所述,本发明实施例还可以应用于组播通信。接下来,在不重复前面描述过的细节的情况下参照图46和图47给出对组播通信的示例过程的简要说明。
如图46和图47所示,组播中组内有多个UE,若其中有多于一个接收UE无法配置第一指示信息内的SL-BWP,则发送UE和此接收UE按单播通信流程进行协调,直到组内UE在给定直通链路载波上有相同SL-BWP配置为止,即如图46所示的情形。
另外,本发明实施例还可以应用于多载波SL-BWP配置的情形。在这种情况下,UE支持多载波通信,每个UE可以配置n 0(1≤n 0≤N 0)个载波,其中N 0为可配置最大载波数目,每个载波上有一个能传输/接收的SL-BWP部分,每个UE都有第一载波配置,可以在第一载波上的SL-BWP内接收/发送信息。
假设UE支持最大载波数目L,其可以由系统信息、RRC信令配置、基 于位置选择、预配置等。
另外,考虑UE功率限制,假设UE支持的最大载波数目被设置为M。
以通过以下方式确定UE可配置做大载波数目N 0
若L≥M,则N 0=M;
若L<M,则N 0=L.
需要指出,上述示例仅仅是说明性的而非限制性的。
在前面关于本发明实施例的电子装置的描述中,显然也公开了一些过程和方法,接下来,在不重复前面描述过的细节的情况下给出对根据本发明实施例的无线通信方法的说明。
如图2所示,根据本实施例的无线通信方法包括接收来自第一用户设备的指示信息的步骤S210。该指示信息与用于数据传输的直通链路带宽分片SL-BWP有关。该方法还包括基于指示信息进行用于与第一用户设备进行直通链路通信的操作的步骤S220。
根据本实施例的无线通信方法可以实现在上述接收UE侧。
此外,本发明实施例还包括在上述“发送UE”侧实现的装置和方法。接下来,在不重复与前面描述过的细节相应的细节的情况下,给出“发送UE”侧的实施例的说明。
如图3所示,根据本实施例的用于无线通信的电子装置300包括处理电路310。处理电路310包括发送单元311、接收单元313和操作单元315。
发送单元311被配置为进行控制以向第二用户设备发送指示信息,该指示信息与用于数据传输的直通链路带宽分片SL-BWP有关。
接收单元313被配置为进行控制以接收第二用户设备关于指示信息的反馈信息。
操作单元315被配置为基于反馈信息进行用于与第二用户设备进行直通链路通信的操作。
根据一个实施例,操作单元315被配置为在反馈信息指示第二用户设备能够使用所述SL-BWP进行直通链路通信的情况下,控制当前用户设备使用该SL-BWP与第二用户设备进行直通链路通信。
根据一个实施例,反馈信息包括与第二用户设备的SL-BWP有关的信息,并且操作单元315被配置为基于反馈信息以及当前用户设备的SL-BWP配置 确定当前用户设备是否能够使用第二用户设备的SL-BWP进行直通链路通信。
操作单元315还可以被配置为在确定能够使用第二用户设备的SL-BWP进行直通链路通信的情况下,控制当前用户设备使用第二用户设备的SL-BWP与第二用户设备进行直通链路通信。
操作单元315还可以被配置为在确定不能使用第二用户设备的SL-BWP进行直通链路通信的情况下进行控制以向当前用户设备的服务基站请求与第二用户设备的SL-BWP相对应的SL-BWP。
根据一个实施例,通过第一载波内的SL-BWP向第二用户设备发送当前用户设备的所述指示信息,通过第一载波内的SL-BWP从第二用户设备接收所述反馈信息。
操作单元315还可以被配置为在确定不能使用第二用户设备的SL-BWP进行直通链路通信的情况下控制当前用户设备使用第一载波的SL-BWP与第二用户设备进行直通链路通信。
图4示出了相应的无线通信方法的过程示例。如图4所示,在S410,向第二用户设备发送指示信息,该指示信息与用于数据传输的直通链路带宽分片SL-BWP有关;在S420,接收第二用户设备关于指示信息的反馈信息;在S430,基于反馈信息进行用于与第二用户设备进行直通链路通信的操作。
此外,本发明实施例还包括实现在基站侧的装置和方法。接下来,在不重复与前面描述过的细节相应的细节的情况下,给出基站侧的实施例的说明。
如图5所示,根据本实施例的用于无线通信的电子装置500包括处理电路510。处理电路510包括接收单元511和发送单元513。电子装置500例如可以被实现在基站侧或路边设备侧
接收单元511被配置为进行控制以从第一用户设备接收关于与第二用户设备相对应的用于数据传输的直通链路带宽分片SL-BWP的请求。
发送单元513被配置为进行控制以向第一用户设备发送关于是否允许第一用户设备使用该SL-BWP的反馈信息。
如图6所示,根据一个实施例的无线通信方法包括从第一用户设备接收关于与第二用户设备相对应的用于数据传输的直通链路带宽分片SL-BWP的请求的步骤S610以及向第一用户设备发送关于是否允许第一用户设备使用该SL-BWP的反馈信息的步骤S620。
此外,本公开实施例还包括计算机可读介质,其包括可执行指令,当可执行指令被信息处理设备执行时,使得信息处理设备执行上述方法。
作为示例,上述方法的各个步骤以及上述装置的各个组成模块和/或单元可以实施为软件、固件、硬件或其组合。在通过软件或固件实现的情况下,可以从存储介质或网络向具有专用硬件结构的计算机(例如图7所示的通用计算机700)安装构成用于实施上述方法的软件的程序,该计算机在安装有各种程序时,能够执行各种功能等。
在图7中,中央处理单元(即CPU)701根据只读存储器(ROM)702中存储的程序或从存储部分708加载到随机存取存储器(RAM)703的程序执行各种处理。在RAM 703中,也根据需要存储当CPU 701执行各种处理等等时所需的数据。CPU 701、ROM 702和RAM 703经由总线704彼此链路。输入/输出接口705也链路到总线704。
下述部件链路到输入/输出接口705:输入部分706(包括键盘、鼠标等等)、输出部分707(包括显示器,比如阴极射线管(CRT)、液晶显示器(LCD)等,和扬声器等)、存储部分708(包括硬盘等)、通信部分709(包括网络接口卡比如LAN卡、调制解调器等)。通信部分709经由网络比如因特网执行通信处理。根据需要,驱动器710也可链路到输入/输出接口705。可拆卸介质711比如磁盘、光盘、磁光盘、半导体存储器等等根据需要被安装在驱动器710上,使得从中读出的计算机程序根据需要被安装到存储部分708中。
在通过软件实现上述系列处理的情况下,从网络比如因特网或存储介质比如可拆卸介质711安装构成软件的程序。
本领域的技术人员应当理解,这种存储介质不局限于图7所示的其中存储有程序、与设备相分离地分发以向用户提供程序的可拆卸介质711。可拆卸介质711的例子包含磁盘(包含软盘(注册商标))、光盘(包含光盘只读存储器(CD-ROM)和数字通用盘(DVD))、磁光盘(包含迷你盘(MD)(注册商标))和半导体存储器。或者,存储介质可以是ROM 702、存储部分708中包含的硬盘等等,其中存有程序,并且与包含它们的设备一起被分发给用户。
本发明的实施例还涉及一种存储有机器可读取的指令代码的程序产品。所述指令代码由机器读取并执行时,可执行上述根据本发明实施例的方法。
相应地,用于承载上述存储有机器可读取的指令代码的程序产品的存储介质也包括在本发明的公开中。所述存储介质包括但不限于软盘、光盘、磁光盘、存储卡、存储棒等等。
本申请的实施例还涉及以下电子设备。在电子设备用于基站侧的情况下,电子设备可以被实现为任何类型的gNB、演进型节点B(eNB),诸如宏eNB和小eNB。小eNB可以为覆盖比宏小区小的小区的eNB,诸如微微eNB、微eNB和家庭(毫微微)eNB。代替地,电子设备可以被实现为任何其他类型的基站,诸如NodeB和基站收发台(BTS)。电子设备可以包括:被配置为控制无线通信的主体(也称为基站设备);以及设置在与主体不同的地方的一个或多个远程无线头端(RRH)。另外,下面将描述的各种类型的终端均可以通过暂时地或半持久性地执行基站功能而作为基站工作。
电子设备用于用户设备侧的情况下,可以被实现为移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端(诸如汽车导航设备)。此外,电子设备可以为安装在上述终端中的每个终端上的无线通信模块(诸如包括单个或多个晶片的集成电路模块)。
[关于终端设备的应用示例]
图8是示出可以应用本公开内容的技术的智能电话2500的示意性配置的示例的框图。智能电话2500包括处理器2501、存储器2502、存储装置2503、外部连接接口2504、摄像装置2506、传感器2507、麦克风2508、输入装置2509、显示装置2510、扬声器2511、无线通信接口2512、一个或多个天线开关2515、一个或多个天线2516、总线2517、电池2518以及辅助控制器2519。
处理器2501可以为例如CPU或片上系统(SoC),并且控制智能电话2500的应用层和另外层的功能。存储器2502包括RAM和ROM,并且存储数据和由处理器2501执行的程序。存储装置2503可以包括存储介质,诸如半导体存储器和硬盘。外部连接接口2504为用于将外部装置(诸如存储卡和通用串行总线(USB)装置)连接至智能电话2500的接口。
摄像装置2506包括图像传感器(诸如电荷耦合器件(CCD)和互补金属氧化物半导体(CMOS)),并且生成捕获图像。传感器2507可以包括一组传感器,诸如测量传感器、陀螺仪传感器、地磁传感器和加速度传感器。麦克风2508将输入到智能电话2500的声音转换为音频信号。输入装置2509包括例如被配置为检测显示装置2510的屏幕上的触摸的触摸传感器、小键 盘、键盘、按钮或开关,并且接收从用户输入的操作或信息。显示装置2510包括屏幕(诸如液晶显示器(LCD)和有机发光二极管(OLED)显示器),并且显示智能电话2500的输出图像。扬声器2511将从智能电话2500输出的音频信号转换为声音。
无线通信接口2512支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口2512通常可以包括例如基带(BB)处理器2513和射频(RF)电路2514。BB处理器2513可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路2514可以包括例如混频器、滤波器和放大器,并且经由天线2516来传送和接收无线信号。无线通信接口2512可以为其上集成有BB处理器2513和RF电路2514的一个芯片模块。如图8所示,无线通信接口2512可以包括多个BB处理器2513和多个RF电路2514。虽然图8示出其中无线通信接口2512包括多个BB处理器2513和多个RF电路2514的示例,但是无线通信接口2512也可以包括单个BB处理器2513或单个RF电路2514。
此外,除了蜂窝通信方案之外,无线通信接口2512可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线局域网(LAN)方案。在此情况下,无线通信接口2512可以包括针对每种无线通信方案的BB处理器2513和RF电路2514。
天线开关2515中的每一个在包括在无线通信接口2512中的多个电路(例如用于不同的无线通信方案的电路)之间切换天线2516的连接目的地。
天线2516中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口2512传送和接收无线信号。如图8所示,智能电话2500可以包括多个天线2516。虽然图8示出其中智能电话2500包括多个天线2516的示例,但是智能电话2500也可以包括单个天线2516。
此外,智能电话2500可以包括针对每种无线通信方案的天线2516。在此情况下,天线开关2515可以从智能电话2500的配置中省略。
总线2517将处理器2501、存储器2502、存储装置2503、外部连接接口2504、摄像装置2506、传感器2507、麦克风2508、输入装置2509、显示装置2510、扬声器2511、无线通信接口2512以及辅助控制器2519彼此连接。电池2518经由馈线向图8所示的智能电话2500的各个块提供电力,馈线在图中被部分地示为虚线。辅助控制器2519例如在睡眠模式下操作智能电话 2500的最小必需功能。
在图8所示的智能电话2500中,根据本发明实施例的用户设备侧无线通信设备的收发装置可以由无线通信接口2512实现。根据本发明实施例的用户设备侧的电子装置或无线通信设备的处理电路和/或各单元的功能的至少一部分也可以由处理器2501或辅助控制器2519实现。例如,可以通过由辅助控制器2519执行处理器2501的部分功能而减少电池2518的电力消耗。此外,处理器2501或辅助控制器2519可以通过执行存储器2502或存储装置2503中存储的程序而执行根据本发明实施例的用户设备侧的电子装置或无线通信设备的处理电路和/或各单元的功能的至少一部分。
[关于基站的应用示例]
图9是示出可以应用本公开内容的技术的gNB的示意性配置的示例的框图。gNB 2300包括一个或多个天线2310以及基站设备2320。基站设备2320和每个天线2310可以经由射频(RF)线缆彼此连接。
天线2310中的每一个均包括单个或多个天线元件(诸如包括在多输入多输出(MIMO)天线中的多个天线元件),并且用于基站设备2320发送和接收无线信号。如图9所示,gNB 2300可以包括多个天线2310。例如,多个天线2310可以与gNB 2300使用的多个频带兼容。虽然图9示出其中gNB 2300包括多个天线2310的示例,但是gNB 2300也可以包括单个天线2310。
基站设备2320包括控制器2321、存储器2322、网络接口2323以及无线通信接口2325。
控制器2321可以为例如CPU或DSP,并且操作基站设备2320的较高层的各种功能。例如,控制器2321根据由无线通信接口2325处理的信号中的数据来生成数据分组,并经由网络接口2323来传递所生成的分组。控制器2321可以对来自多个基带处理器的数据进行捆绑以生成捆绑分组,并传递所生成的捆绑分组。控制器2321可以具有执行如下控制的逻辑功能:该控制诸如为无线资源控制、无线承载控制、移动性管理、接纳控制和调度。该控制可以结合附近的gNB或核心网节点来执行。存储器2322包括RAM和ROM,并且存储由控制器2321执行的程序和各种类型的控制数据(诸如终端列表、传输功率数据以及调度数据)。
网络接口2323为用于将基站设备2320连接至核心网2324的通信接口。控制器2321可以经由网络接口2323而与核心网节点或另外的gNB进行通 信。在此情况下,gNB 2300与核心网节点或其他gNB可以通过逻辑接口(诸如S1接口和X2接口)而彼此连接。网络接口2323还可以为有线通信接口或用于无线回程线路的无线通信接口。如果网络接口2323为无线通信接口,则与由无线通信接口2325使用的频带相比,网络接口2323可以使用较高频带用于无线通信。
无线通信接口2325支持任何蜂窝通信方案(诸如长期演进(LTE)和LTE-先进),并且经由天线2310来提供到位于gNB 2300的小区中的终端的无线连接。无线通信接口2325通常可以包括例如BB处理器2326和RF电路2327。BB处理器2326可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行层(例如L1、介质访问控制(MAC)、无线链路控制(RLC)和分组数据汇聚协议(PDCP))的各种类型的信号处理。代替控制器2321,BB处理器2326可以具有上述逻辑功能的一部分或全部。BB处理器2326可以为存储通信控制程序的存储器,或者为包括被配置为执行程序的处理器和相关电路的模块。更新程序可以使BB处理器2326的功能改变。该模块可以为插入到基站设备2320的槽中的卡或刀片。可替代地,该模块也可以为安装在卡或刀片上的芯片。同时,RF电路2327可以包括例如混频器、滤波器和放大器,并且经由天线2310来传送和接收无线信号。
如图9所示,无线通信接口2325可以包括多个BB处理器2326。例如,多个BB处理器2326可以与gNB 2300使用的多个频带兼容。如图9所示,无线通信接口2325可以包括多个RF电路2327。例如,多个RF电路2327可以与多个天线元件兼容。虽然图9示出其中无线通信接口2325包括多个BB处理器2326和多个RF电路2327的示例,但是无线通信接口2325也可以包括单个BB处理器2326或单个RF电路2327。
在图9所示的gNB 2300中,根据本发明实施例的基站侧的无线通信设备的收发装置可以由无线通信接口2325实现。根据本发明实施例的基站侧的电子装置或无线通信设备的处理电路和/或各单元的功能的至少一部分也可以由控制器2321实现。例如,控制器2321可以通过执行存储在存储器2322中的程序而执行根据本发明实施例的基站侧的电子装置或无线通信设备的处理电路和/或各单元的功能的至少一部分。
[关于汽车导航设备的应用示例]
图10是示出可以应用本公开内容的技术的汽车导航设备2120的示意性 配置的示例的框图。汽车导航设备2120包括处理器2121、存储器2122、全球定位系统(GPS)模块2124、传感器2125、数据接口2126、内容播放器2127、存储介质接口2128、输入装置2129、显示装置2130、扬声器2131、无线通信接口2133、一个或多个天线开关2136、一个或多个天线2137以及电池2138。
处理器2121可以为例如CPU或SoC,并且控制汽车导航设备2120的导航功能和另外的功能。存储器2122包括RAM和ROM,并且存储数据和由处理器2121执行的程序。
GPS模块2124使用从GPS卫星接收的GPS信号来测量汽车导航设备2120的位置(诸如纬度、经度和高度)。传感器2125可以包括一组传感器,诸如陀螺仪传感器、地磁传感器和空气压力传感器。数据接口2126经由未示出的终端而连接到例如车载网络2141,并且获取由车辆生成的数据(诸如车速数据)。
内容播放器2127再现存储在存储介质(诸如CD和DVD)中的内容,该存储介质被插入到存储介质接口2128中。输入装置2129包括例如被配置为检测显示装置2130的屏幕上的触摸的触摸传感器、按钮或开关,并且接收从用户输入的操作或信息。显示装置2130包括诸如LCD或OLED显示器的屏幕,并且显示导航功能的图像或再现的内容。扬声器2131输出导航功能的声音或再现的内容。
无线通信接口2133支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口2133通常可以包括例如BB处理器2134和RF电路2135。BB处理器2134可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路2135可以包括例如混频器、滤波器和放大器,并且经由天线2137来传送和接收无线信号。无线通信接口2133还可以为其上集成有BB处理器2134和RF电路2135的一个芯片模块。如图10所示,无线通信接口2133可以包括多个BB处理器2134和多个RF电路2135。虽然图10示出其中无线通信接口2133包括多个BB处理器2134和多个RF电路2135的示例,但是无线通信接口2133也可以包括单个BB处理器2134或单个RF电路2135。
此外,除了蜂窝通信方案之外,无线通信接口2133可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线LAN方案。在此情况下,针对每种无线通信方案,无线通信接口2133可以包括BB处理器2134和RF电路2135。
天线开关2136中的每一个在包括在无线通信接口2133中的多个电路(诸如用于不同的无线通信方案的电路)之间切换天线2137的连接目的地。
天线2137中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口2133传送和接收无线信号。如图10所示,汽车导航设备2120可以包括多个天线2137。虽然图10示出其中汽车导航设备2120包括多个天线2137的示例,但是汽车导航设备2120也可以包括单个天线2137。
此外,汽车导航设备2120可以包括针对每种无线通信方案的天线2137。在此情况下,天线开关2136可以从汽车导航设备2120的配置中省略。
电池2138经由馈线向图10所示的汽车导航设备2120的各个块提供电力,馈线在图中被部分地示为虚线。电池2138累积从车辆提供的电力。
在图10示出的汽车导航设备2120中,根据本发明实施例的无线通信设备的收发装置或收发单元可以由无线通信接口2133实现。根据本发明实施例的电子装置或无线通信设备的处理电路和/或各单元的功能的至少一部分也可以由处理器2121实现。
本公开内容的技术也可以被实现为包括汽车导航设备2120、车载网络2141以及车辆模块2142中的一个或多个块的车载系统(或车辆)2140。车辆模块2142生成车辆数据(诸如车速、发动机速度和故障信息),并且将所生成的数据输出至车载网络2141。
在上面对本发明具体实施例的描述中,针对一种实施方式描述和/或示出的特征可以用相同或类似的方式在一个或更多个其它实施方式中使用,与其它实施方式中的特征相组合,或替代其它实施方式中的特征。
应该强调,术语“包括/包含”在本文使用时指特征、要素、步骤或组件的存在,但并不排除一个或更多个其它特征、要素、步骤或组件的存在或附加。
在上述实施例和示例中,采用了数字组成的附图标记来表示各个步骤和/或单元。本领域的普通技术人员应理解,这些附图标记只是为了便于叙述和绘图,而并非表示其顺序或任何其他限定。
此外,本发明的方法不限于按照说明书中描述的时间顺序来执行,也可以按照其他的时间顺序地、并行地或独立地执行。因此,本说明书中描述的方法的执行顺序不对本发明的技术范围构成限制。
尽管上面已经通过对本发明的具体实施例的描述对本发明进行了披露, 但是,应该理解,上述的所有实施例和示例均是示例性的,而非限制性的。本领域的技术人员可在所附权利要求的精神和范围内设计对本发明的各种修改、改进或者等同物。这些修改、改进或者等同物也应当被认为包括在本发明的保护范围内。

Claims (29)

  1. 一种用于无线通信的电子装置,其包括处理电路,所述处理电路被配置为:
    进行控制以接收来自第一用户设备的指示信息,所述指示信息与用于数据传输的直通链路带宽分片SL-BWP有关;以及
    基于所述指示信息进行用于与所述第一用户设备进行直通链路通信的操作。
  2. 根据权利要求1所述的电子装置,其中,所述操作包括:
    基于所述指示信息以及当前用户设备的SL-BWP配置,确定所述当前用户设备是否能够使用所述第一用户设备的SL-BWP进行直通链路通信。
  3. 根据权利要求2所述的电子装置,其中,所述操作还包括:
    在确定能够使用所述第一用户设备的SL-BWP进行直通链路通信的情况下,控制所述当前用户设备使用所述第一用户设备的SL-BWP与所述第一用户设备进行直通链路通信。
  4. 根据权利要求2所述的电子装置,其中,所述操作还包括:
    在确定不能使用所述第一用户设备的SL-BWP进行直通链路通信的情况下,进行控制以向所述第一用户设备发送与所述当前用户设备的SL-BWP有关的信息。
  5. 根据权利要求2所述的电子装置,其中,所述操作还包括:
    在确定不能使用所述第一用户设备的SL-BWP进行直通链路通信的情况下,进行控制以向所述当前用户设备的服务基站请求与所述第一用户设备的SL-BWP相对应的SL-BWP。
  6. 根据权利要求4所述的电子装置,其中,所述处理电路被配置为:
    通过第一载波内的SL-BWP接收来自所述第一用户设备的所述指示信息;并且/或者
    通过所述第一载波内的SL-BWP发送与所述当前用户设备的SL-BWP有关的信息。
  7. 根据权利要求6所述的电子装置,其中,所述操作还包括:
    在确定不能使用所述第一用户设备的SL-BWP进行直通链路通信的情况下,进行控制以使用所述第一载波内的SL-BWP与所述第一用户设备进行直通链路通信。
  8. 根据权利要求6所述的电子装置,其中,所述第一载波内的SL-BWP是多个用户设备共用的。
  9. 根据权利要求6所述的电子装置,其中,所述第一载波内的SL-BWP是通过以下方式中的一项或更多项配置的:
    通过系统信息配置;
    通过无线资源控制信令配置;
    基于地理位置选择;以及
    预配置。
  10. 根据权利要求1至9中任一项所述的电子装置,其中,所述指示信息包括所述SL-BWP的配置信息。
  11. 根据权利要求10所述的电子装置,其中,所述配置信息包括子载波间隔、循环前缀、物理资源块偏移量和SL-BWP带宽。
  12. 根据权利要求11所述的电子装置,其中,所述配置信息还包括SL-BWP索引和/或SL-BWP有效时间。
  13. 根据权利要求10所述的电子装置,其中,所述配置信息是通过以下方式中的一项或更多项配置的:
    通过系统信息配置;
    通过无线资源控制信令配置;
    基于地理位置选择;以及
    预配置。
  14. 根据权利要求10所述的电子装置,其中,所述配置信息是特定于用户设备的、特定于小区的、特定于区域的或者特定于载波的。
  15. 根据权利要求10所述的电子装置,其中,每个直通链路载波被配置有两个或更多个SL-BWP,并且所述两个或更多个SL-BWP中的一个SL-BWP被激活。
  16. 根据权利要求1至9中任一项所述的电子装置,其中,所述第一 用户设备包括车辆。
  17. 一种无线通信方法,包括:
    接收来自第一用户设备的指示信息,所述指示信息与用于数据传输的直通链路带宽分片SL-BWP有关;以及
    基于所述指示信息进行用于与所述第一用户设备进行直通链路通信的操作。
  18. 一种用于无线通信的电子装置,其包括处理电路,所述处理电路被配置为:
    进行控制以向第二用户设备发送指示信息,所述指示信息与用于数据传输的直通链路带宽分片SL-BWP有关;
    进行控制以接收所述第二用户设备关于所述指示信息的反馈信息;以及
    基于所述反馈信息进行用于与所述第二用户设备进行直通链路通信的操作。
  19. 根据权利要求18所述的电子装置,其中,所述操作包括:
    在所述反馈信息指示所述第二用户设备能够使用所述SL-BWP进行直通链路通信的情况下,控制当前用户设备使用所述SL-BWP与所述第二用户设备进行直通链路通信。
  20. 根据权利要求18所述的电子装置,其中,所述反馈信息包括与所述第二用户设备的SL-BWP有关的信息,并且所述操作包括:
    基于所述反馈信息以及当前用户设备的SL-BWP配置,确定所述当前用户设备是否能够使用所述第二用户设备的SL-BWP进行直通链路通信。
  21. 根据权利要求20所述的电子装置,其中,所述操作包括:
    在确定能够使用所述第二用户设备的SL-BWP进行直通链路通信的情况下,控制所述当前用户设备使用所述第二用户设备的SL-BWP与所述第二用户设备进行直通链路通信。
  22. 根据权利要求20所述的电子装置,其中,所述操作包括:
    在确定不能使用所述第二用户设备的SL-BWP进行直通链路通信的情况下,进行控制以向所述当前用户设备的服务基站请求与所述第二用户设备的SL-BWP相对应的SL-BWP。
  23. 根据权利要求20所述的电子装置,其中,所述处理电路被配置为:
    通过第一载波内的SL-BWP向所述第二用户设备发送当前用户设备的所述指示信息;并且/或者
    通过所述第一载波内的SL-BWP从所述第二用户设备接收所述反馈信息。
  24. 根据权利要求23所述的电子装置,其中,所述操作包括:
    在确定不能使用所述第二用户设备的SL-BWP进行直通链路通信的情况下,控制所述当前用户设备使用所述第一载波的SL-BWP与所述第二用户设备进行直通链路通信。
  25. 一种无线通信方法,包括:
    向第二用户设备发送指示信息,所述指示信息与用于数据传输的直通链路带宽分片SL-BWP有关;
    接收所述第二用户设备关于所述指示信息的反馈信息;以及
    基于所述反馈信息进行用于与所述第二用户设备进行直通链路通信的操作。
  26. 一种用于无线通信的电子装置,其包括处理电路,所述处理电路被配置为:
    进行控制以从第一用户设备接收关于与第二用户设备相对应的用于数据传输的直通链路带宽分片SL-BWP的请求;以及
    进行控制以向所述第一用户设备发送关于是否允许所述第一用户设备使用所述SL-BWP的反馈信息。
  27. 根据权利要求26所述的电子装置,其被实现在基站侧或路边设备侧。
  28. 一种无线通信方法,包括:
    从第一用户设备接收关于与第二用户设备相对应的用于数据传输的直通链路带宽分片SL-BWP的请求;以及
    向所述第一用户设备发送关于是否允许所述第一用户设备使用所述SL-BWP的反馈信息。
  29. 一种计算机可读介质,其包括可执行指令,当所述可执行指令被信息处理设备执行时,使得所述信息处理设备执行根据权利要求17、25 或28所述的方法。
PCT/CN2019/123596 2018-12-13 2019-12-06 电子装置、无线通信方法和计算机可读介质 WO2020119598A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980072984.5A CN113170403B (zh) 2018-12-13 2019-12-06 电子装置、无线通信方法和计算机可读介质
EP19896641.8A EP3879891A4 (en) 2018-12-13 2019-12-06 ELECTRONIC DEVICE, WIRELESS COMMUNICATION METHOD, AND COMPUTER READABLE MEDIUM
JP2021533525A JP7416068B2 (ja) 2018-12-13 2019-12-06 電子装置、無線通信方法及びコンピュータ読み取り可能な媒体
US17/292,722 US20220007364A1 (en) 2018-12-13 2019-12-06 Electronic device, wireless communication method, and computer readable medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811524640.7A CN111327408A (zh) 2018-12-13 2018-12-13 电子装置、无线通信方法和计算机可读介质
CN201811524640.7 2018-12-13

Publications (1)

Publication Number Publication Date
WO2020119598A1 true WO2020119598A1 (zh) 2020-06-18

Family

ID=71077137

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/123596 WO2020119598A1 (zh) 2018-12-13 2019-12-06 电子装置、无线通信方法和计算机可读介质

Country Status (5)

Country Link
US (1) US20220007364A1 (zh)
EP (1) EP3879891A4 (zh)
JP (1) JP7416068B2 (zh)
CN (2) CN111327408A (zh)
WO (1) WO2020119598A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11818748B2 (en) * 2018-12-18 2023-11-14 Lg Electronics Inc. Method and device for performing BWP switching in wireless communication system
WO2020148264A1 (en) * 2019-01-18 2020-07-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Nr v2x resource pool definitions within a band width part
CN117062023A (zh) * 2019-03-28 2023-11-14 华为技术有限公司 一种通信方法和装置
US11849459B2 (en) * 2019-07-08 2023-12-19 Qualcomm Incorporated Bandwidth part configuration for sidelink communication
CN113727440A (zh) * 2020-05-25 2021-11-30 华为技术有限公司 一种无线通信方法、介质及系统
US11737096B2 (en) * 2021-08-02 2023-08-22 Qualcomm Incorporated Sidelink bandwidth parts with sidelink carrier aggregation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107018564A (zh) * 2017-06-01 2017-08-04 重庆邮电大学 一种丢失覆盖场景中的d2d终端发送功率控制方法
CN107135526A (zh) * 2016-02-29 2017-09-05 中兴通讯股份有限公司 一种确定d2d中继节点的方法、基站

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106717091A (zh) * 2014-09-04 2017-05-24 华为技术有限公司 用于针对d2d传送资源分配的系统和方法
WO2016108679A1 (ko) * 2015-01-02 2016-07-07 엘지전자 주식회사 무선 통신 시스템에서 d2d 신호 전송 방법 및 상기 방법을 이용하는 단말
JP6934588B2 (ja) * 2016-12-27 2021-09-15 5ジー アイピー ホールディングス エルエルシー 帯域幅部分インジケータをシグナリングする方法及びそれを用いた無線通信装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107135526A (zh) * 2016-02-29 2017-09-05 中兴通讯股份有限公司 一种确定d2d中继节点的方法、基站
CN107018564A (zh) * 2017-06-01 2017-08-04 重庆邮电大学 一种丢失覆盖场景中的d2d终端发送功率控制方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
3GPP TSGRAN: "3rd Generation Partnership Project; Technical Specification Group Radio Access Network; NR; Study on Vehicle-to-Everything (Release 16)", 3GPP STANDARD; TECHNICAL REPORT; 3GPP TR 38.885,, no. V1.0.0, 29 November 2018 (2018-11-29), XP051590956 *
HUAWEI ET AL.: "Bandwidth Parts and Resource Pools for V2X sidelink", 3GPP TSG RAN WG1 MEETING #95 R1-1813555, 3 November 2018 (2018-11-03), XP051479893, DOI: 20200224122348Y *
HUAWEI ET AL.: "Bandwidth Parts and Resource Pools for V2X sidelink", 3GPP TSG RAN WG1 MEETING #95 R1-1813555, 3 November 2018 (2018-11-03), XP051479893, DOI: 20200226124405X *
See also references of EP3879891A4 *
ZTE ET AL.: "Discussion on Uu based resource allocation/configuration for NR V2X", 3GPP TSG RAN WG1 MEETING #95 R1-1813179, 3 November 2018 (2018-11-03), XP051479456, DOI: 20200224122723A *

Also Published As

Publication number Publication date
CN113170403B (zh) 2024-01-19
CN113170403A (zh) 2021-07-23
JP2022512396A (ja) 2022-02-03
JP7416068B2 (ja) 2024-01-17
US20220007364A1 (en) 2022-01-06
CN111327408A (zh) 2020-06-23
EP3879891A4 (en) 2021-12-22
EP3879891A1 (en) 2021-09-15

Similar Documents

Publication Publication Date Title
US11456789B2 (en) Electronic device, wireless communication method and computer-readable medium
WO2020119598A1 (zh) 电子装置、无线通信方法和计算机可读介质
CN106452705B (zh) 无线通信系统中的电子设备和无线通信方法
US11997716B2 (en) Electronic device for wireless communication system, method and storage medium
CN108605198B (zh) 电子装置、信息处理设备和信息处理方法
CN106303900B (zh) 无线通信设备和无线通信方法
WO2021139669A1 (zh) 用于无线通信系统的电子设备、方法和存储介质
US11569902B2 (en) Electronic equipment, user equipment, wireless communication method, and storage medium
WO2020063525A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2019154387A1 (zh) 电子设备、无线通信方法和计算机可读存储介质
US20190166613A1 (en) Electronic device and radio communication method
US20190174278A1 (en) User equipment and chipset
CN110447199B (zh) 电子装置和无线通信方法
WO2019029215A1 (zh) 无线通信系统中的电子设备以及无线通信方法
JPWO2015045860A1 (ja) ユーザ端末及びネットワーク装置
US20230300798A1 (en) Electronic device, method, and storage medium for wireless communication
US20230403626A1 (en) Method and apparatus for relay communication
US20160165426A1 (en) Mobile communication system, user terminals and network devices
WO2016002332A1 (ja) 装置、方法及びプログラム
US9628985B2 (en) Protocol version indication
US10383088B2 (en) Apparatus and method for scheduling a plurality of component carriers
WO2015125686A1 (ja) ユーザ端末及び通信制御方法
CN117730602A (zh) 用于无线通信的管理电子设备、成员电子设备以及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19896641

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021533525

Country of ref document: JP

Kind code of ref document: A

Ref document number: 2019896641

Country of ref document: EP

Effective date: 20210607

NENP Non-entry into the national phase

Ref country code: DE