WO2015006756A1 - Method of channel access control in wireless local area networks - Google Patents

Method of channel access control in wireless local area networks Download PDF

Info

Publication number
WO2015006756A1
WO2015006756A1 PCT/US2014/046452 US2014046452W WO2015006756A1 WO 2015006756 A1 WO2015006756 A1 WO 2015006756A1 US 2014046452 W US2014046452 W US 2014046452W WO 2015006756 A1 WO2015006756 A1 WO 2015006756A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
information
stations
access control
channel access
Prior art date
Application number
PCT/US2014/046452
Other languages
French (fr)
Inventor
Jianhan Liu
James June-Ming Wang
Thomas Edward Pare Jr.
Yung-Ping Hsu
Original Assignee
Mediatek Singapore Pte. Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mediatek Singapore Pte. Ltd. filed Critical Mediatek Singapore Pte. Ltd.
Priority to US14/903,596 priority Critical patent/US20160174253A1/en
Priority to EP14823871.0A priority patent/EP3008965A4/en
Publication of WO2015006756A1 publication Critical patent/WO2015006756A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/002Transmission of channel access control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Definitions

  • the disclosed embodiments relate generally to wireless network communications, and, more particularly, to channel access control methods in wireless local area networks .
  • IEEE 802.11 is a set of media access control (MAC) and physical layer (PHY) specification for implementing wireless local area network (WLAN) communication, or Wi-Fi, in the unlicensed (2.4, 3.6, 5, and 60 GHz) frequency bands.
  • MAC media access control
  • PHY physical layer
  • Wi-Fi wireless local area network
  • the standards and amendments provide the basis for wireless network products using the Wi-Fi frequency bands.
  • FIG. 1 shows the average throughput per STA in a 400 square meter region.
  • the average throughput per STA decreases at least inversely proportional to the density of the WLAN. This is because the chances of collisions of transmission signals increase. Therefore, the STA that transmits the collided signals has to back-off a certain period time and tries to re-transmit the signal again. If the collision happens again, the STA has to repeat the back-off step and tries again. This will dramatically reduce the overall throughput within the network.
  • OBSSs basic service sets
  • three APs, API 211, AP2 221, AP3 231 operate on the same frequency band or at least have one frequency band overlapped.
  • Each AP is associated with a number of STAs.
  • Each AP and STA can control its transmitter power such that the transmission range can be controlled. For example, when API 211 communicates with STA1_2 213, both API 211 and STA1_2213 transmit signals with lower power such that the transmitted signals only reach in the area circled by a dash line.
  • AP2 221 and AP3 231 are able to communicate with its own short-ranged STAs at the same time, respectively. Therefore, the total throughput of the overall network increases.
  • both API 211 and STA1_3214 need to transmit signals with higher power since the signals have to travel a much longer range.
  • AP2 221 and AP3 231 cannot communicate with any STAs due to collisions . In this case, the total throughput is low because simultaneous communications in multiple OBSSs are not possible .
  • Spatial reuse is a method proposed to improve the network throughput . If the STA within the overlapped area has knowledge of the frequencies used by the different APs, the STA can use beamforming to communicate with the AP it associates with to prevent the collision with the other AP . However, this requires the STA to have the beamforming capability which is not included in legacy devices.
  • Another method is to control the transmission power by the STA and the AP to ensure the transmission quality.
  • the services to the STAs located at the edge of the BSS are sacrificed.
  • a method to improve the area throughput of dense wireless local area networks (WLAN) by channel access control is proposed.
  • the method allows an access point to obtain information of a plurality of stations within the wireless network.
  • the access point classifies the plurality of stations into at least one group of stations and assigns a group identification (ID) according to the obtained information.
  • the group ID and channel access control parameters are sent to the stations that are classified into the certain group.
  • the stations in each of the group use the received channel access control parameters to communicate with the access point.
  • the obtained information is a range information from the stations, an overlapped basic service set (OBSS) information from another access point, or an interference map of distribution and traffic load of surrounding stations.
  • OBSS overlapped basic service set
  • the interference map can be dynamic.
  • Figure 1 illustrates an average throughput per station in a wireless local area network.
  • Figure 2 illustrates a network with multiple OBSS .
  • Figure 3 is a flow chart of channel access control accordance with one novel aspect.
  • Figure 4 is a flow chart of channel access control accordance with one novel aspect.
  • Figure 5 illustrates a frame carrying channel access information element accordance with one novel aspect.
  • Figure 6 illustrates a frame carrying possible channel access parameters accordance with one novel aspect.
  • FIG.3 is a flow chart illustrating a method for channel access control.
  • an access point obtains
  • the information can be range or location information .
  • the range/location information can be measured by the AP or be obtained via feedback from the STAs . Ranging/location information can be done through measuring the time of arrival and/or the angle of arrival from the STAs to the AP .
  • the methods provided in IEEE 802. llv specification can also be used to collect such range/location information.
  • the information can be a location information obtained from the packets received by the AP. If a STA receives a location information from other STAs or AP, the STA can also forwards the location information to the AP .
  • AP can also obtain OBSS information by receiving beacons from other OBSSs or by information inquiring from the APs in OBSSs, such as the flow chart shown in FiG. 4.
  • OBSS information may include the presentence of OBSSs, OBSS load and locations of OBSSs, etc .
  • OBSS load information can be obtained by checking the OBSS load information element (IE) sent by OBSS APs.
  • IE OBSS load information element
  • the information can be any information.
  • the information can be any information.
  • the interference map that is obtained based on the information of OBSSs and distribution and traffic load of surrounding STAs .
  • the interference map can be dynamic to reflect actual situation .
  • step 302 the plurality of stations are classified into at least one group according to the information obtained in step 301, such as range/location and/or interference map of each STA, or OBSS information and possibly interference map from OBSSs.
  • a group identification (ID) is then assigned to each of the group.
  • the AP When the classification is done, the AP notifies the associated STA the group ID it belongs to . Therefore, the STAs within the same group receive the same group ID.
  • the notification can be done by sending a group ID management frame .
  • the notification can also be done by respectively sending notice to each STA or by simultaneously notify the STAs within the same group.
  • An example of the applicable group ID management frame is defined in IEEE 802.11ac standard.
  • the group ID management frame may also include the channel access control information. Therefore, the STAs receiving the same group ID may also receive the same channel access control information, while the STAs with different group ID may receive different channel access control information.
  • the STAs that receive the group ID Management frame are required to send feedback frames to confirm the reception of the frame correctly. Also, the STAs can at the same time confirm whether the channel access control parameters assigned by the AP are accepted. According to another example, the channel access control information can be sent to each group of STAs in a frame other than the group ID management frame.
  • the channel access control information can be used to do channel access control in the contention-based channel access schemes.
  • AP sends each grouped STAs the specific channel access parameters.
  • An example is that AP sends out a beacon or another management frames that contain a channel access control information element (IE) as shown in FIG. 5.
  • IE channel access control information element
  • channel access control parameters are used to restrict the channel access for the different groups of STAs.
  • FIG. 6 illustrates an example of the frame that carries possible channel access control parameters.
  • channel access control parameters can include part or all of the parameters, such as channel access time, transmit opportunity (TXOP) parameters, contention window parameters, bandwidth, transmit power limit, maximum packet length and minimum MCS, or any other applicable parameters. Some examples of the parameters are further described below.
  • contention window parameters it can include aCWmin and aCWmax, which respectively specify the value of the minimum size of the contention window for the STAs in this group, the value of the maximum size of the contention window for the STAs in this.
  • TXOP parameters For Transmission opportunities parameters (TXOP parameters) , it can be a TXOP limit as defined in IEEE 802.11 standard. If the AP received a TXOP request from a STA, AP can choose to reject the request if the required TXOP exceeds the TXOP limit for that group.
  • Bandwidth is the frequency band that the STAs in the group can use. For example, in an 80MHz BSS, a group of STAs can only be allowed to use 40MHz due to interference map.
  • Transmit power limit puts a limit on the maximum power the STAs in the group can transmit.
  • Channel access control parameters can also contain the maximum packet length and the minimum MCS that the STAs in the group/class can use.
  • Channel access control can also be used in a hybrid controlled channel access schemes or point coordinated schemes.
  • AP allocates a specific time period for each group. For example, the group of STAs with long range transmissions or may affects more OBSSs is allocated with short time period, while and the group whose transmissions covers short range or affects less OBSSs is allocated with a long time period.
  • step 304 the AP and the groups of the STAs use the channel access control parameters to communicate with each other. Since different groups of STAs are assigned with different channel access control parameters, the overall throughput can be improved without sacrificing the STAs at the edge of each BSS .
  • the AP may reject the service to that certain STA. Further in another example, the AP may dynamically change the classification of the STAs according to the actual channel condition or the information from the STAs .

Abstract

A method to improve the area throughput of dense wireless local area networks (WLAN) by channel access control is proposed. The method allows an access point to obtain information of a plurality of stations within the wireless network. The access point classifies the plurality of stations into at least one group of stations and assigns a group identification (ID) according to the obtained information. The group ID and channel access control parameters are sent to the stations that are classified into the certain group. The stations in each of the group use the received channel access control parameters to communicate with the access point.

Description

METHOD OF CHANNEL ACCESS CONTROL IN WIRELESS LOCAL
AREA NETWORKS
CROSS REFERENCE TO RELATED APPLICATIONS
This application claims priority under 35 U. S . C . §119 from U.S. Provisional Application Number 61/845 , 694 , entitled "Methods of Location/Range Based Channel Access Control in Wireless Local Area Networks," filed on July 12, 2013, the subject matter of which is incorporated herein by reference.
TECHNICAL FIELD
The disclosed embodiments relate generally to wireless network communications, and, more particularly, to channel access control methods in wireless local area networks .
BACKGROUND
IEEE 802.11 is a set of media access control (MAC) and physical layer (PHY) specification for implementing wireless local area network (WLAN) communication, or Wi-Fi, in the unlicensed (2.4, 3.6, 5, and 60 GHz) frequency bands. The standards and amendments provide the basis for wireless network products using the Wi-Fi frequency bands.
However, the average throughput that each station (STA) can achieve in a wireless network drops significantly when the network becomes dense, i.e., when there are a lot of stations serviced by only a few access points (AP) within a given area. FIG. 1 shows the average throughput per STA in a 400 square meter region. One can see that the average throughput per STA decreases at least inversely proportional to the density of the WLAN. This is because the chances of collisions of transmission signals increase. Therefore, the STA that transmits the collided signals has to back-off a certain period time and tries to re-transmit the signal again. If the collision happens again, the STA has to repeat the back-off step and tries again. This will dramatically reduce the overall throughput within the network.
Moreover, consider a WLAN comprised of a few overlapped basic service sets (OBSSs) 210, 220, 230 as shown in FIG. 2. In this network, three APs, API 211, AP2 221, AP3 231 operate on the same frequency band or at least have one frequency band overlapped. Each AP is associated with a number of STAs. Each AP and STA can control its transmitter power such that the transmission range can be controlled. For example, when API 211 communicates with STA1_2 213, both API 211 and STA1_2213 transmit signals with lower power such that the transmitted signals only reach in the area circled by a dash line. Under this circumstance, AP2 221 and AP3 231 are able to communicate with its own short-ranged STAs at the same time, respectively. Therefore, the total throughput of the overall network increases. However, when API 211 communicates with STA1_3 214, both API 211 and STA1_3214 need to transmit signals with higher power since the signals have to travel a much longer range. During the communication between API 211 and STA1_3 214, AP2 221 and AP3 231 cannot communicate with any STAs due to collisions . In this case, the total throughput is low because simultaneous communications in multiple OBSSs are not possible .
Spatial reuse is a method proposed to improve the network throughput . If the STA within the overlapped area has knowledge of the frequencies used by the different APs, the STA can use beamforming to communicate with the AP it associates with to prevent the collision with the other AP . However, this requires the STA to have the beamforming capability which is not included in legacy devices.
Another method is to control the transmission power by the STA and the AP to ensure the transmission quality. However, the services to the STAs located at the edge of the BSS are sacrificed.
To enhance the average throughput per STA in a dense WLAN, the total throughput of the whole WLAN needs to be enhanced. Hence, there' s a need to provide a method to control channel access in wireless networks. SUMMARY
A method to improve the area throughput of dense wireless local area networks (WLAN) by channel access control is proposed.
The method allows an access point to obtain information of a plurality of stations within the wireless network. The access point classifies the plurality of stations into at least one group of stations and assigns a group identification (ID) according to the obtained information. The group ID and channel access control parameters are sent to the stations that are classified into the certain group. The stations in each of the group use the received channel access control parameters to communicate with the access point.
In one embodiment, the obtained information is a range information from the stations, an overlapped basic service set (OBSS) information from another access point, or an interference map of distribution and traffic load of surrounding stations. The interference map can be dynamic.
Other embodiments and advantages are described in the detailed description below. This summary does not purport to define the invention. The invention is defined by the claims.
BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 illustrates an average throughput per station in a wireless local area network. Figure 2 illustrates a network with multiple OBSS .
Figure 3 is a flow chart of channel access control accordance with one novel aspect.
Figure 4 is a flow chart of channel access control accordance with one novel aspect.
Figure 5 illustrates a frame carrying channel access information element accordance with one novel aspect.
Figure 6 illustrates a frame carrying possible channel access parameters accordance with one novel aspect.
DETAILED DESCRIPTION
Reference will now be made in detail to some embodiments of the invention, examples of which are
illustrated in the accompanying drawings.
FIG.3 is a flow chart illustrating a method for channel access control. In Step 301, an access point (AP) obtains
information from the plurality of stations within the wireless network . The information can be range or location information . The range/location information can be measured by the AP or be obtained via feedback from the STAs . Ranging/location information can be done through measuring the time of arrival and/or the angle of arrival from the STAs to the AP . In another example, the methods provided in IEEE 802. llv specification can also be used to collect such range/location information. In a further example, the information can be a location information obtained from the packets received by the AP. If a STA receives a location information from other STAs or AP, the STA can also forwards the location information to the AP .
In addition to the range/location information, AP can also obtain OBSS information by receiving beacons from other OBSSs or by information inquiring from the APs in OBSSs, such as the flow chart shown in FiG. 4. OBSS information may include the presentence of OBSSs, OBSS load and locations of OBSSs, etc . OBSS load information can be obtained by checking the OBSS load information element (IE) sent by OBSS APs.
In another example, the information can be
interference map that is obtained based on the information of OBSSs and distribution and traffic load of surrounding STAs . The interference map can be dynamic to reflect actual situation .
In step 302, the plurality of stations are classified into at least one group according to the information obtained in step 301, such as range/location and/or interference map of each STA, or OBSS information and possibly interference map from OBSSs. A group identification (ID) is then assigned to each of the group.
When the classification is done, the AP notifies the associated STA the group ID it belongs to . Therefore, the STAs within the same group receive the same group ID. The notification can be done by sending a group ID management frame . The notification can also be done by respectively sending notice to each STA or by simultaneously notify the STAs within the same group. An example of the applicable group ID management frame is defined in IEEE 802.11ac standard.
The group ID management frame may also include the channel access control information. Therefore, the STAs receiving the same group ID may also receive the same channel access control information, while the STAs with different group ID may receive different channel access control information. The STAs that receive the group ID Management frame are required to send feedback frames to confirm the reception of the frame correctly. Also, the STAs can at the same time confirm whether the channel access control parameters assigned by the AP are accepted. According to another example, the channel access control information can be sent to each group of STAs in a frame other than the group ID management frame.
The channel access control information can be used to do channel access control in the contention-based channel access schemes. In this scenario, AP sends each grouped STAs the specific channel access parameters. An example is that AP sends out a beacon or another management frames that contain a channel access control information element (IE) as shown in FIG. 5.
The channel access control parameters are used to restrict the channel access for the different groups of STAs. FIG. 6 illustrates an example of the frame that carries possible channel access control parameters. In one embodiment, channel access control parameters can include part or all of the parameters, such as channel access time, transmit opportunity (TXOP) parameters, contention window parameters, bandwidth, transmit power limit, maximum packet length and minimum MCS, or any other applicable parameters. Some examples of the parameters are further described below.
For the contention window parameters, it can include aCWmin and aCWmax, which respectively specify the value of the minimum size of the contention window for the STAs in this group, the value of the maximum size of the contention window for the STAs in this.
For Transmission opportunities parameters (TXOP parameters) , it can be a TXOP limit as defined in IEEE 802.11 standard. If the AP received a TXOP request from a STA, AP can choose to reject the request if the required TXOP exceeds the TXOP limit for that group.
Bandwidth is the frequency band that the STAs in the group can use. For example, in an 80MHz BSS, a group of STAs can only be allowed to use 40MHz due to interference map.
Transmit power limit puts a limit on the maximum power the STAs in the group can transmit.
Channel access control parameters can also contain the maximum packet length and the minimum MCS that the STAs in the group/class can use.
Channel access control can also be used in a hybrid controlled channel access schemes or point coordinated schemes. In this scenario, AP allocates a specific time period for each group. For example, the group of STAs with long range transmissions or may affects more OBSSs is allocated with short time period, while and the group whose transmissions covers short range or affects less OBSSs is allocated with a long time period.
Now referring to FIG. 3 again. In step 304, the AP and the groups of the STAs use the channel access control parameters to communicate with each other. Since different groups of STAs are assigned with different channel access control parameters, the overall throughput can be improved without sacrificing the STAs at the edge of each BSS .
In case that certain STA refuses to accept the assigned channel access control parameters, the AP may reject the service to that certain STA. Further in another example, the AP may dynamically change the classification of the STAs according to the actual channel condition or the information from the STAs .
Although the present invention has been described in connection with certain specific embodiments for
instructional purposes, the present invention is not limited thereto. Accordingly, various modifications, adaptations, and combinations of various features of the described embodiments can be practiced without departing from the scope of the invention as set forth in the claims.

Claims

CLAIMS What is claimed is:
1. A method comprising:
obtaining information of a plurality of stations by an access point within a wireless networks- classifying the plurality of stations into at least one group of stations and assigning a group identification (ID) according to the information;
sending the group ID and channel access control parameters to the at least one group of stations;
communicating with the at least one group of stations using the channel access control parameters.
2. The method of Claim 1, wherein the information is a range information obtained by feedback from the plurality of stations to the access point.
3. The method of Claim 1, wherein the information is a range information obtained by measuring a time of arrival or an angle of arrival from the plurality of station to the access point.
4. The method of Claim 1, wherein the information is an overlapped basic service set (OBSS) information from another access point.
5. The method of Claim 4, wherein the OBSS information comprises presences of OBSS, OBSS load, or locations of OBSS.
6. The method of Claim 4, wherein the OBSS information is obtained by checking an information element.
7. The method of Claim 1, wherein the information is a location information obtained from received packets.
8. The method of Claim 1, wherein the information is an interference map of distribution and traffic load of the plurality of stations.
9. The method of Claim 8, wherein the interference map is dynamically updated.
10. The method of Claim 1 , wherein the group ID and the channel access control parameters are sent in a group management frame .
11. The method of Claim 1, wherein the group ID is sent in a beacon, and the channel access control parameters are sent in a separate frame.
12. The method of Claim 1, wherein the channel access control parameters comprise, transmit opportunity, contention window parameters, bandwidth, transit power limit, maximum packet length, and/or minimum modulation and coding scheme (MCS) .
13. The method of Claim 1, wherein the channel access control parameters sent to a group of stations that is farther to the access point limit the group of stations to communicate with the access point.
PCT/US2014/046452 2013-07-12 2014-07-13 Method of channel access control in wireless local area networks WO2015006756A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/903,596 US20160174253A1 (en) 2013-07-12 2014-07-13 Method of channel access control in wireless local area networks
EP14823871.0A EP3008965A4 (en) 2013-07-12 2014-07-13 Method of channel access control in wireless local area networks

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201361845694P 2013-07-12 2013-07-12
US61/845,694 2013-07-12

Publications (1)

Publication Number Publication Date
WO2015006756A1 true WO2015006756A1 (en) 2015-01-15

Family

ID=52280657

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2014/046452 WO2015006756A1 (en) 2013-07-12 2014-07-13 Method of channel access control in wireless local area networks

Country Status (3)

Country Link
US (1) US20160174253A1 (en)
EP (1) EP3008965A4 (en)
WO (1) WO2015006756A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016179175A1 (en) * 2015-05-05 2016-11-10 Qualcomm Incorporated Techniques for dynamic sensitivity control
CN106937326A (en) * 2015-12-29 2017-07-07 上海无线通信研究中心 Method of coordinated transmission and first base station between base station
WO2017147231A1 (en) * 2016-02-23 2017-08-31 Qualcomm Incorporated Access point guided reuse
US10165398B2 (en) 2016-08-23 2018-12-25 General Electric Company Geofencing for wireless communications

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10143005B2 (en) * 2014-11-07 2018-11-27 Qualcomm Incorporated Uplink control resource allocation for dynamic time-division duplex systems
US10506595B2 (en) 2016-09-01 2019-12-10 Qualcomm Incorporated Incumbent protection consideration for intra-GAA channel assignment
EP3562214B1 (en) * 2016-12-20 2023-05-03 Sony Group Corporation Communication device and communication method
US11072311B2 (en) 2017-09-05 2021-07-27 Future Mobility Corporation Limited Methods and systems for user recognition and expression for an automobile
US10676067B2 (en) 2018-01-05 2020-06-09 Byton Limited User capture device configuration for a vehicle
US10856326B2 (en) 2018-02-12 2020-12-01 Huawei Technologies Co., Ltd. Channel access in BSS PCP/AP cluster service set
CN117939666A (en) * 2019-10-24 2024-04-26 华为技术有限公司 Communication method and device
CN111405484B (en) * 2020-03-13 2021-05-14 腾讯科技(深圳)有限公司 Network position mining method, device, equipment and storage medium

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050220054A1 (en) * 2002-11-26 2005-10-06 Robert Meier Wireless local area network context control protocol
US20060252443A1 (en) 2005-04-25 2006-11-09 Interdigital Technology Corporation Method and system for efficient addressing and power savings in wireless systems
US20070115868A1 (en) * 2005-11-22 2007-05-24 Wai Chen Group-header based method to organize local peer group of vehicles for inter-vehicle communication
US20070283025A1 (en) * 2003-04-03 2007-12-06 Seung June Yi Apparatus and method for controlling access to network in wireless communication system
US20080095163A1 (en) * 2006-10-23 2008-04-24 Wai Chen Method and communication device for routing unicast and multicast messages in an ad-hoc wireless network
WO2009135499A1 (en) * 2008-05-06 2009-11-12 Nokia Siemens Networks Oy Dynamic control channel structure for flexible spectrum usage
US20090279427A1 (en) 2008-05-08 2009-11-12 At&T Intellectual Property I, L.P. Control of Quality of Service in Overlapping Basic Service Sets in Wireless Local Area Networks
US20100124193A1 (en) * 2005-09-28 2010-05-20 Qualcomm Incorporated System and method for distributing wireless network access parameters
US20110092245A1 (en) * 2005-07-14 2011-04-21 Binj0100Cip3 System and Method for Detecting and Controlling Transmission Devices
US20110116487A1 (en) * 2009-11-13 2011-05-19 Interdigital Patent Holdings, Inc. Control signaling in wireless communications
US20110261708A1 (en) * 2010-04-13 2011-10-27 Interdigital Patent Holdings, Inc. Group transmissions in wireless local area networks
US20130010747A1 (en) * 2010-03-10 2013-01-10 Mohammad Azizur Rahman Method and system for coexistence between wireless communication networks
US20130045759A1 (en) * 2011-08-18 2013-02-21 Rivada Research LLC Method and System for Providing Enhanced Location Based Information for Wireless Handsets
US20130121221A1 (en) 2011-11-16 2013-05-16 Qualcomm Atheros, Inc. Reducing Power Consumption In Wireless Network Stations By Optimizing Contention Period Overhead With Station Grouping, Proxy CSMA, And TIM Monitoring
US20130155930A1 (en) 2011-12-16 2013-06-20 Stmicroelectronics, Inc. Sub-1ghz group power save

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016524377A (en) * 2013-05-03 2016-08-12 インターデイジタル パテント ホールディングス インコーポレイテッド Method for WiFi sectorized MAC enhancement

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050220054A1 (en) * 2002-11-26 2005-10-06 Robert Meier Wireless local area network context control protocol
US20070283025A1 (en) * 2003-04-03 2007-12-06 Seung June Yi Apparatus and method for controlling access to network in wireless communication system
US20060252443A1 (en) 2005-04-25 2006-11-09 Interdigital Technology Corporation Method and system for efficient addressing and power savings in wireless systems
US20110092245A1 (en) * 2005-07-14 2011-04-21 Binj0100Cip3 System and Method for Detecting and Controlling Transmission Devices
US20100124193A1 (en) * 2005-09-28 2010-05-20 Qualcomm Incorporated System and method for distributing wireless network access parameters
US20070115868A1 (en) * 2005-11-22 2007-05-24 Wai Chen Group-header based method to organize local peer group of vehicles for inter-vehicle communication
US20080095163A1 (en) * 2006-10-23 2008-04-24 Wai Chen Method and communication device for routing unicast and multicast messages in an ad-hoc wireless network
WO2009135499A1 (en) * 2008-05-06 2009-11-12 Nokia Siemens Networks Oy Dynamic control channel structure for flexible spectrum usage
US20090279427A1 (en) 2008-05-08 2009-11-12 At&T Intellectual Property I, L.P. Control of Quality of Service in Overlapping Basic Service Sets in Wireless Local Area Networks
US20130064236A1 (en) * 2008-05-08 2013-03-14 At&T Intellectual Property I, L.P. Control of Quality of Service in Overlapping Basic Service Sets in Wireless Local Area Networks
US20110116487A1 (en) * 2009-11-13 2011-05-19 Interdigital Patent Holdings, Inc. Control signaling in wireless communications
US20130010747A1 (en) * 2010-03-10 2013-01-10 Mohammad Azizur Rahman Method and system for coexistence between wireless communication networks
US20110261708A1 (en) * 2010-04-13 2011-10-27 Interdigital Patent Holdings, Inc. Group transmissions in wireless local area networks
US20130045759A1 (en) * 2011-08-18 2013-02-21 Rivada Research LLC Method and System for Providing Enhanced Location Based Information for Wireless Handsets
US20130121221A1 (en) 2011-11-16 2013-05-16 Qualcomm Atheros, Inc. Reducing Power Consumption In Wireless Network Stations By Optimizing Contention Period Overhead With Station Grouping, Proxy CSMA, And TIM Monitoring
US20130155930A1 (en) 2011-12-16 2013-06-20 Stmicroelectronics, Inc. Sub-1ghz group power save

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3008965A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016179175A1 (en) * 2015-05-05 2016-11-10 Qualcomm Incorporated Techniques for dynamic sensitivity control
CN107535005A (en) * 2015-05-05 2018-01-02 高通股份有限公司 Technology for dynamic sensitivity control
CN106937326A (en) * 2015-12-29 2017-07-07 上海无线通信研究中心 Method of coordinated transmission and first base station between base station
CN106937326B (en) * 2015-12-29 2020-04-14 上海无线通信研究中心 Method for coordinating transmission among base stations and first base station
WO2017147231A1 (en) * 2016-02-23 2017-08-31 Qualcomm Incorporated Access point guided reuse
CN108702792A (en) * 2016-02-23 2018-10-23 高通股份有限公司 The reuse of access point guidance
CN108702792B (en) * 2016-02-23 2022-02-01 高通股份有限公司 Access point directed reuse
US10165398B2 (en) 2016-08-23 2018-12-25 General Electric Company Geofencing for wireless communications

Also Published As

Publication number Publication date
EP3008965A1 (en) 2016-04-20
US20160174253A1 (en) 2016-06-16
EP3008965A4 (en) 2016-11-16

Similar Documents

Publication Publication Date Title
US20160174253A1 (en) Method of channel access control in wireless local area networks
US10271377B2 (en) Method and apparatus for triggering uplink data in wireless LAN
EP3968724A1 (en) Frame transmission method and device using multiple random backoff operation in broadband wireless communication network
CN107637005B (en) Wireless communication terminal and wireless communication method for multi-user uplink transmission
US9538555B2 (en) Method and apparatus for accessing channel in wireless LAN
US20190239152A1 (en) Wi-fi contention reduction
US9544916B2 (en) Method and apparatus for initial access over wireless LAN
US9560576B2 (en) Method and device for performing channel access in wireless LAN
US9380602B2 (en) Method and station for accessing channel in wireless LAN
US9521694B2 (en) Method and apparatus for initial access distribution over wireless LAN
US10165596B2 (en) Method and apparatus for transmitting frame in wireless local area network
CN115379459A (en) Wireless communication method and wireless communication terminal for spatial reuse of overlapping basic service sets
EP3017642B1 (en) Performing measurements in wireless network
US9432854B2 (en) Interference avoidance between overlapping wireless networks
WO2010096029A1 (en) Distributed channel selection method for wireless networks
CN110999508B (en) Method for transmitting frame based on multiple channelized channels in wireless LAN system and wireless terminal using the same
CN114830570A (en) Method and apparatus for channel access in a multi-link wireless system
US20220132370A1 (en) Wireless communicatoin system, and wireless communication method
US10038543B2 (en) Many to one communications protocol
US10285201B2 (en) Transmitting and receiving wireless devices and respective methods performed thereby for transmission of data in a contention based wireless network
KR20230054770A (en) Radio communication system and radio communication method
US7974257B2 (en) Communications system using frame structure for different wireless communications protocols and related methods
US10959264B2 (en) Method for transmitting frame in wireless LAN system and wireless terminal using same
TW202329746A (en) Multi-link communication method, apparatus, and a readable storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14823871

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014823871

Country of ref document: EP