WO2014146038A1 - Low-band reflector for dual band directional antenna - Google Patents

Low-band reflector for dual band directional antenna Download PDF

Info

Publication number
WO2014146038A1
WO2014146038A1 PCT/US2014/030911 US2014030911W WO2014146038A1 WO 2014146038 A1 WO2014146038 A1 WO 2014146038A1 US 2014030911 W US2014030911 W US 2014030911W WO 2014146038 A1 WO2014146038 A1 WO 2014146038A1
Authority
WO
WIPO (PCT)
Prior art keywords
band
low
reflector element
band reflector
dual
Prior art date
Application number
PCT/US2014/030911
Other languages
French (fr)
Other versions
WO2014146038A4 (en
Inventor
Bernard Baron
Chia-Ching Lin
Victor SCHTROM
Original Assignee
Ruckus Wireless, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ruckus Wireless, Inc. filed Critical Ruckus Wireless, Inc.
Priority to EP14764406.6A priority Critical patent/EP2974045A4/en
Priority to CN201480015806.6A priority patent/CN105051975B/en
Publication of WO2014146038A1 publication Critical patent/WO2014146038A1/en
Publication of WO2014146038A4 publication Critical patent/WO2014146038A4/en
Priority to HK16107900.6A priority patent/HK1220050A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/28Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using a secondary device in the form of two or more substantially straight conductive elements
    • H01Q19/32Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using a secondary device in the form of two or more substantially straight conductive elements the primary active element being end-fed and elongated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/42Resonant antennas with feed to end of elongated active element, e.g. unipole with folded element, the folded parts being spaced apart a small fraction of the operating wavelength

Definitions

  • the present invention generally relates to dual band directional antennas.
  • the present invention more specifically relates to reflector switching between high- band and low-band patterns.
  • FIGURE 1 illustrates an exemplary meander line reflector
  • FIGURE 2 illustrates an exemplary meander line reflector including a plurality of stacked horizontal transmission lines
  • FIGURE 3 illustrates an exemplary equivalent circuit as used in a meander line reflector.
  • Embodiments of the present invention provide for a dual band directional antenna with low frequency band reflectors that form desired antenna patterns in a low frequency band while remaining transparent to a higher frequency band. As a result of such frequency transparency, pattern changes in the lower frequency bands do not affect patterns in the higher band frequencies.
  • transparency refers to a reflector in one band (e.g., the low-band) that is invisible to or will not otherwise affect the pattern of another frequency band (e.g., the high-band).
  • Embodiments of the present invention use low frequency reflectors rather than ground plane slots or otherwise inefficient reflectors such as inductively tuned short reflectors.
  • Embodiments of the presently disclosed antenna system allow for two-band independent pattern steering with minimized hardware costs and without sacrificing peak gain, front-to-back ratio, or pattern bandwidth in either band.
  • the use of a dual band array, as opposed to two separate smart antenna systems, may result in reduced size and hardware costs. Additional radio chains may also be supported in a given radio frequency (RF) environment.
  • RF radio frequency
  • Embodiments of the present invention involve the use of reflectors for dual band directional antennas in the low frequency band such that the reflectors form desired patterns yet remain transparent in the high frequency band thereby avoiding unwanted or otherwise undesirable changes to patterns in that band.
  • a directional antenna system includes a dual band driven element, a high-band reflector positioned relative the dual band driven element, and a low-band reflector element positioned relative the dual band driven element.
  • the low-band reflector element may include a meander line, for example, meander line 100 of FIGURE 1 or meander line 200 of FIGURE 2, as described below.
  • FIGURE 1 illustrates an exemplary meander line 100.
  • meander line 100 may be implemented as a trace on a dielectric substrate, on a printed circuit board (PCB), as a sheet metal part, or can be constructed from wires or bent tubing such as a copper conductor.
  • Meander line 100 includes meander feed 105, transmission lines 160 connected by vertical sections 165 of height hvert 150, and ground plane 110.
  • meander line 100 may be implemented in a low-band reflector element of a directional antenna system.
  • Reflectors for directional antennas over a ground plane are usually in the order of A/4 in height, where ⁇ denotes wavelength.
  • meander line 100 i.e., low-band reflector with meander line 100
  • the available height h, shown as 135, may be less than ⁇ /4.
  • a meander line may allow for implementation of the dual band directional antenna in space-constrictive form factors, especially with regard to restrictions on height h 135.
  • a specifically configured meander line reflector 100 may be specifically configured so that it may be used to shorten the low-band reflector while simultaneously making it transparent to high-band frequencies.
  • FIGURE 2 illustrates meander line 200.
  • meander line 200 is similar to meander line 100 of FIGURE 1.
  • Meander line 200 includes meander feed 210.
  • Meander line 200 includes horizontally stacked, short circuited transmission lines 280, which are connected by short vertical sections 220, each having a vertical height denoted hvert, shown, for example, in FIGURE 1 as 150.
  • the reactance seen between points "a” and “b” and then "c” and "d,” shown as 230, 240, 250, and 260 in FIGURE 2 (also shown as 115, 120, 125, and 130 in FIGURE 1) is given by Equation 1:
  • X n denotes the reactance of the nth transmission line at the frequency, F.
  • FIGURE 3 illustrates an exemplary equivalent circuit 300 for use in a meander line.
  • equivalent circuit 300 may be implemented with the meander line 100 of FIGURE 1 or the meander line 200 of FIGURE 2.
  • Equivalent circuit 300 includes feed 310 and ground plane 320. Equivalent circuit 300 is illustrated as including resistor 360 and any number of inductors, with exemplary inductors “xl,” “x2,” and “x3" respectively shown as 330, 340, and 350.
  • the value of the reactance of the nth transmission line X n may differ at high-band and low-band frequencies.
  • the electrical length of the transmission line, Itr (e.g., Itr 290 of FIGURE 2 and Itr 140 of FIGURE 1) may be adjusted according to Equation 3:
  • a dual band driven element may be positioned relative a 2 GHz and a 5 GHz reflector implementation. Further instances of that reflector implementation may be disposed around the dual band driven element to allow for the formation of multiple beams in different directions, for example, a 2 GHz beam in one direction and a 5 GHz beam in a different direction.

Abstract

A dual band directional antenna with low frequency band reflectors that form desired antenna patterns in a low frequency band while remaining transparent to a higher frequency band. As a result of such frequency transparency, pattern changes in the lower frequency bands do not affect patterns in the higher band frequencies.

Description

LOW-BAND REFLECTOR FOR DUAL BAND DIRECTIONAL ANTENNA
CROSS-REFERENCE TO RELATED APPLICATIONS
[0001] This application claims the priority of U.S. provisional application number 61/800,854 filed March 15, 2013. The disclosures of the aforementioned application is incorporated herein by reference.
BACKGROUND OF THE INVENTION
FIELD OF THE INVENTION
[0002] The present invention generally relates to dual band directional antennas. The present invention more specifically relates to reflector switching between high- band and low-band patterns.
DESCRIPTION OF THE RELATED ART
[0003] Antennas that provide dual band coverage (for example, 2.4 GHz and 5.0 GHz) with a single feed are common. Attempting to form a directional pattern in one of the frequency bands using commonly available antennas with reflecting parasitic elements, however, will often cause unwanted changes in the patterns of the other band. Such changes complicate simultaneous operation in both frequency bands.
[0004] More specifically, changes in lower frequency band reflectors are prone to affect patterns in the higher frequency band patterns. Changes in the high frequency band reflectors typically will not affect low frequency band patterns because high frequency band reflectors are shorter with respect to the low-band wavelength. As a result, the band patterns of the lower frequencies are not affected. This is true, however, only when the frequency ratio between the high frequency band and low frequency band is sufficiently large {e.g., a frequency ratio of 2:1 or greater). When the frequency ratio between the high frequency band and low frequency band is not large enough (e.g., less than 2:1), the high frequency band may interfere with low frequency band operations.
[0005] There is a need in the art for dual band directional antennas that allow for simultaneous operation in high and low frequency bands. More specifically, there is a need for dual band directional antennas with low frequency band reflectors that form desired patterns in low frequency while remaining transparent to high frequency bands such that patterns in the high frequency are not otherwise adversely affected.
BRIEF DESCRIPTION OF THE DRAWINGS
[0006] FIGURE 1 illustrates an exemplary meander line reflector;
[0007] FIGURE 2 illustrates an exemplary meander line reflector including a plurality of stacked horizontal transmission lines; and
[0008] FIGURE 3 illustrates an exemplary equivalent circuit as used in a meander line reflector.
SUMMARY OF THE INVENTION
[0009] Embodiments of the present invention provide for a dual band directional antenna with low frequency band reflectors that form desired antenna patterns in a low frequency band while remaining transparent to a higher frequency band. As a result of such frequency transparency, pattern changes in the lower frequency bands do not affect patterns in the higher band frequencies. As used herein, transparency, with respect to a reflector, refers to a reflector in one band (e.g., the low-band) that is invisible to or will not otherwise affect the pattern of another frequency band (e.g., the high-band).
[0010] Embodiments of the present invention use low frequency reflectors rather than ground plane slots or otherwise inefficient reflectors such as inductively tuned short reflectors. Embodiments of the presently disclosed antenna system allow for two-band independent pattern steering with minimized hardware costs and without sacrificing peak gain, front-to-back ratio, or pattern bandwidth in either band. The use of a dual band array, as opposed to two separate smart antenna systems, may result in reduced size and hardware costs. Additional radio chains may also be supported in a given radio frequency (RF) environment.
DETAILED DESCRIPTION
[0011] Embodiments of the present invention involve the use of reflectors for dual band directional antennas in the low frequency band such that the reflectors form desired patterns yet remain transparent in the high frequency band thereby avoiding unwanted or otherwise undesirable changes to patterns in that band.
[0012] While reference is made to operation in the 2.4 GHz and 5.0 GHz range, these references are exemplary with respect to the operation of a dual band antenna. It will be understood that the dual band directional antennas described herein may operate in any suitable frequency bands, which may include the 2.4 GHz or 5.0 GHz frequency bands or any other suitable frequency bands. Embodiments of the present invention allow for a dual-band directional antenna with a dual-band driven element and switched high-band and low-band reflectors to be switched on or off as to the low-band reflectors without disturbing the high-band patterns.
[0013] In some embodiments, a directional antenna system includes a dual band driven element, a high-band reflector positioned relative the dual band driven element, and a low-band reflector element positioned relative the dual band driven element. The low-band reflector element may include a meander line, for example, meander line 100 of FIGURE 1 or meander line 200 of FIGURE 2, as described below.
[0014] FIGURE 1 illustrates an exemplary meander line 100. In some
embodiments, meander line 100 may be implemented as a trace on a dielectric substrate, on a printed circuit board (PCB), as a sheet metal part, or can be constructed from wires or bent tubing such as a copper conductor. Meander line 100 includes meander feed 105, transmission lines 160 connected by vertical sections 165 of height hvert 150, and ground plane 110. In some embodiments, meander line 100 may be implemented in a low-band reflector element of a directional antenna system.
[0015] Reflectors for directional antennas over a ground plane (i.e., ground plane 110) are usually in the order of A/4 in height, where λ denotes wavelength. In some embodiments, meander line 100 (i.e., low-band reflector with meander line 100) is implemented when there are restrictions on reflector height. For example, the available height h, shown as 135, may be less than λ/4. Thus, a meander line may allow for implementation of the dual band directional antenna in space-constrictive form factors, especially with regard to restrictions on height h 135. In some embodiments, a specifically configured meander line reflector 100 may be specifically configured so that it may be used to shorten the low-band reflector while simultaneously making it transparent to high-band frequencies.
[0016] FIGURE 2 illustrates meander line 200. In some embodiments, meander line 200 is similar to meander line 100 of FIGURE 1. Meander line 200 includes meander feed 210. Meander line 200 includes horizontally stacked, short circuited transmission lines 280, which are connected by short vertical sections 220, each having a vertical height denoted hvert, shown, for example, in FIGURE 1 as 150. The reactance seen between points "a" and "b" and then "c" and "d," shown as 230, 240, 250, and 260 in FIGURE 2 (also shown as 115, 120, 125, and 130 in FIGURE 1) is given by Equation 1:
(1) Xn = Z0 tan 2π ltr/λ), where Itr denotes electrical length of the transmission line 290, λ denotes
wavelength, and Xn denotes the reactance of the nth transmission line at the frequency, F. The frequency F is given by F = c/λ, wherein c denotes velocity of propagation in the transmission media.
[0017] The wavelength λ varies as a function of the frequency F, as illustrated in Equations 2a and 2b:
(2a) high = c/Fhigh
(2b) λ low = c/Flow
As used herein, Z0 denotes the characteristic impedance of the transmission line. Z0 is a function of the parameters w, shown as 155 in FIGURE 1, and sptr, shown as 145 in FIGURE 1 and 270 in FIGURE 2, and the dielectric constant of the material in which the low-band reflector element including meander line 200 is immersed. [0018] FIGURE 3 illustrates an exemplary equivalent circuit 300 for use in a meander line. In some embodiments, equivalent circuit 300 may be implemented with the meander line 100 of FIGURE 1 or the meander line 200 of FIGURE 2.
Equivalent circuit 300 includes feed 310 and ground plane 320. Equivalent circuit 300 is illustrated as including resistor 360 and any number of inductors, with exemplary inductors "xl," "x2," and "x3" respectively shown as 330, 340, and 350. The value of the reactance of the nth transmission line Xn may differ at high-band and low-band frequencies. In order to make the reflector transparent at the high- band, the electrical length of the transmission line, Itr, (e.g., Itr 290 of FIGURE 2 and Itr 140 of FIGURE 1) may be adjusted according to Equation 3:
(3) 2π ltr/λ high = 90
Adjusting the length of the transmission line according to Equation 3 results in a very large reactance Xn, if not theoretically infinite. No current flows in the reflector, and as a result, the reflector is transparent to high-band radiation. At the low-band, Xn is given by Equation 1 with λ = λ low, as defined in Equation 2b. By adjusting the number of sections and the parameter hvert, shown s 150 in FIGURE 1, the reflector can be tuned to resonance in the low-band.
[0019] While the foregoing reflector implementation is described as a single instance, multiple reflectors may be implemented to create an array of the same. For example, a dual band driven element may be positioned relative a 2 GHz and a 5 GHz reflector implementation. Further instances of that reflector implementation may be disposed around the dual band driven element to allow for the formation of multiple beams in different directions, for example, a 2 GHz beam in one direction and a 5 GHz beam in a different direction.
[0020] The foregoing detailed description has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the embodiments of the present invention as modifications and variations are possible and envisioned in light of the above teachings. The described embodiments were chosen in order to best explain the principles of the technology and its practical application to thereby allow one of skill in the art to understand how to implement the same.

Claims

CLAIMS WHAT IS CLAIMED IS:
1. A directional antenna system, comprising:
a dual band driven element;
a high-band reflector positioned relative the dual band driven element; and
a low-band reflector element positioned relative the dual band driven element, wherein the low-band reflector element includes a meander line.
2. The directional antenna system of claim 1, wherein the dual band driven element operates simultaneously in two frequency bands.
3. The directional antenna system of claim 2, wherein the dual band driven element operates simultaneously at 2.4 GHz and 5.0 GHz.
4. The directional antenna system of claim 1, wherein the meander line includes a plurality of horizontally stacked short circuited transmission lines connected by vertical sections.
5. The directional antenna system of claim 4, wherein the meander line includes a number of vertical sections, each having a vertical height, such that the low-band reflector element is tuned to resonance.
6. The directional antenna system of claim 4, wherein the plurality of transmission lines have an electrical length such that the low-band reflector element is transparent to the antenna pattern emitted by the high-band reflector element.
7. The directional antenna system of claim \, wherein the low-band reflector element is transparent to an antenna pattern emitted by the high-band reflector element.
8. The directional antenna system of claim 7, wherein the low-band reflector element may be switched on and off without disturbing the antenna pattern emitted by the high-band reflector element.
9. The directional antenna system of claim 7, wherein the antenna pattern emitted by the high-band reflector element is not affected by the low-band reflector element.
10. The directional antenna system of claim 1, further comprising:
a second high-band reflector element positioned relative the dual band driven element; and
a second low-band reflector element positioned relative the dual band driven element, the second low-band reflector element having a meander line.
11. A method for implementing antenna patterns in a directional antenna system, the method comprising:
generating an antenna pattern at a high-band reflector element positioned relative a driven dual band element; and
generating an antenna pattern at a low-band reflector element positioned relative the driven dual band element, wherein the low-band reflector having a meander line.
12. The method of claim 11, wherein the dual band driven element operates simultaneously in two frequency bands.
13. The method of claim 12, wherein the dual band driven element operates simultaneously at 2.4 GHz and 5.0 GHz.
14. The method of claim 11, wherein the meander line includes a plurality of horizontally stacked short circuited transmission lines connected by vertical sections.
15. The method of claim 14, wherein the meander line includes a number of vertical sections, each having a vertical height, such that the low-band reflector element is tuned to resonance.
16. The method of claim 14, wherein the plurality of transmission lines have an electrical length such that the low-band reflector element is transparent to the antenna pattern emitted by the high-band reflector element.
17. The method of claim 11, wherein the low-band reflector element is transparent to the antenna pattern emitted by the high-band reflector element.
18. The method of claim 17, wherein the low-band reflector element may be switched on and off without disturbing the antenna pattern emitted by the high- band reflector element.
19. The method of claim 17, wherein the antenna pattern emitted by the high-band reflector element is not affected by the low-band reflector element.
20. The method of claim 11, further comprising:
generating an antenna pattern at a second high-band reflector element positioned relative the dual band driven element; and
generating an antenna pattern at a second low-band reflector element positioned relative the dual band driven element, the second low-band reflector element having a meander line.
PCT/US2014/030911 2013-03-15 2014-03-17 Low-band reflector for dual band directional antenna WO2014146038A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP14764406.6A EP2974045A4 (en) 2013-03-15 2014-03-17 Low-band reflector for dual band directional antenna
CN201480015806.6A CN105051975B (en) 2013-03-15 2014-03-17 Low-frequency band reflector for double frequency-band directional aerial
HK16107900.6A HK1220050A1 (en) 2013-03-15 2016-07-06 Low-band reflector for dual band directional antenna

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201361800854P 2013-03-15 2013-03-15
US61/800,854 2013-03-15

Publications (2)

Publication Number Publication Date
WO2014146038A1 true WO2014146038A1 (en) 2014-09-18
WO2014146038A4 WO2014146038A4 (en) 2015-01-08

Family

ID=51538172

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2014/030911 WO2014146038A1 (en) 2013-03-15 2014-03-17 Low-band reflector for dual band directional antenna

Country Status (5)

Country Link
US (1) US10230161B2 (en)
EP (1) EP2974045A4 (en)
CN (1) CN105051975B (en)
HK (1) HK1220050A1 (en)
WO (1) WO2014146038A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9407012B2 (en) 2010-09-21 2016-08-02 Ruckus Wireless, Inc. Antenna with dual polarization and mountable antenna elements
US9419344B2 (en) 2009-05-12 2016-08-16 Ruckus Wireless, Inc. Mountable antenna elements for dual band antenna
US9570799B2 (en) 2012-09-07 2017-02-14 Ruckus Wireless, Inc. Multiband monopole antenna apparatus with ground plane aperture
US10230161B2 (en) 2013-03-15 2019-03-12 Arris Enterprises Llc Low-band reflector for dual band directional antenna
US11552398B2 (en) 2014-11-18 2023-01-10 Commscope Technologies Llc Cloaked low band elements for multiband radiating arrays

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109411876B (en) 2017-08-16 2020-12-22 华为技术有限公司 Antenna and communication equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6252559B1 (en) * 2000-04-28 2001-06-26 The Boeing Company Multi-band and polarization-diversified antenna system
US6452556B1 (en) * 2000-09-20 2002-09-17 Samsung Electronics, Co., Ltd. Built-in dual band antenna device and operating method thereof in a mobile terminal
US20070030210A1 (en) 2004-09-03 2007-02-08 Murata Manufacturing Co., Ltd. Antenna apparatus
US8031129B2 (en) * 2004-08-18 2011-10-04 Ruckus Wireless, Inc. Dual band dual polarization antenna array

Family Cites Families (284)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US725605A (en) 1900-07-16 1903-04-14 Nikola Tesla System of signaling.
BE373894A (en) 1929-10-12
US2292387A (en) 1941-06-10 1942-08-11 Markey Hedy Kiesler Secret communication system
US3967067A (en) 1941-09-24 1976-06-29 Bell Telephone Laboratories, Incorporated Secret telephony
US3991273A (en) 1943-10-04 1976-11-09 Bell Telephone Laboratories, Incorporated Speech component coded multiplex carrier wave transmission
US3918059A (en) 1959-03-06 1975-11-04 Us Navy Chaff discrimination system
US3488445A (en) 1966-11-14 1970-01-06 Bell Telephone Labor Inc Orthogonal frequency multiplex data transmission system
US3577196A (en) 1968-11-25 1971-05-04 Eugene F Pereda Rollable slot antenna
US3568105A (en) 1969-03-03 1971-03-02 Itt Microstrip phase shifter having switchable path lengths
FR2196527B1 (en) 1972-08-16 1977-01-14 Materiel Telephonique
US3922685A (en) 1973-07-30 1975-11-25 Motorola Inc Antenna pattern generator and switching apparatus
US4001734A (en) 1975-10-23 1977-01-04 Hughes Aircraft Company π-Loop phase bit apparatus
US3982214A (en) 1975-10-23 1976-09-21 Hughes Aircraft Company 180° phase shifting apparatus
US4145693A (en) 1977-03-17 1979-03-20 Electrospace Systems, Inc. Three band monopole antenna
US4176356A (en) 1977-06-27 1979-11-27 Motorola, Inc. Directional antenna system including pattern control
US4193077A (en) 1977-10-11 1980-03-11 Avnet, Inc. Directional antenna system with end loaded crossed dipoles
GB1578469A (en) 1977-11-05 1980-11-05 Marconi Co Ltd Tropospheric scatter radio communications systems
FR2445036A1 (en) 1978-12-22 1980-07-18 Thomson Csf ELECTRONIC SCANNING MICROWAVE DEPHASER AND ANTENNA HAVING SUCH A PHASER
US4513412A (en) 1983-04-25 1985-04-23 At&T Bell Laboratories Time division adaptive retransmission technique for portable radio telephones
US4554554A (en) 1983-09-02 1985-11-19 The United States Of America As Represented By The Secretary Of The Navy Quadrifilar helix antenna tuning using pin diodes
US4587524A (en) 1984-01-09 1986-05-06 Mcdonnell Douglas Corporation Reduced height monopole/slot antenna with offset stripline and capacitively loaded slot
US4733203A (en) 1984-03-12 1988-03-22 Raytheon Company Passive phase shifter having switchable filter paths to provide selectable phase shift
US4814777A (en) 1987-07-31 1989-03-21 Raytheon Company Dual-polarization, omni-directional antenna system
US4845507A (en) 1987-08-07 1989-07-04 Raytheon Company Modular multibeam radio frequency array antenna system
US5095535A (en) 1988-07-28 1992-03-10 Motorola, Inc. High bit rate communication system for overcoming multipath
KR920002439B1 (en) 1988-08-31 1992-03-24 삼성전자 주식회사 Slot antenna device for portable radiophone
US5097484A (en) 1988-10-12 1992-03-17 Sumitomo Electric Industries, Ltd. Diversity transmission and reception method and equipment
ES2065409T3 (en) 1988-10-21 1995-02-16 Thomson Csf ISSUER, ISSUE PROCEDURE AND RECEIVER.
US5173711A (en) 1989-11-27 1992-12-22 Kokusai Denshin Denwa Kabushiki Kaisha Microstrip antenna for two-frequency separate-feeding type for circularly polarized waves
US5063574A (en) 1990-03-06 1991-11-05 Moose Paul H Multi-frequency differentially encoded digital communication for high data rate transmission through unequalized channels
US5203010A (en) 1990-11-13 1993-04-13 Motorola, Inc. Radio telephone system incorporating multiple time periods for communication transfer
US5291289A (en) 1990-11-16 1994-03-01 North American Philips Corporation Method and apparatus for transmission and reception of a digital television signal using multicarrier modulation
US5373548A (en) 1991-01-04 1994-12-13 Thomson Consumer Electronics, Inc. Out-of-range warning system for cordless telephone
US5132698A (en) 1991-08-26 1992-07-21 Trw Inc. Choke-slot ground plane and antenna system
US5208564A (en) 1991-12-19 1993-05-04 Hughes Aircraft Company Electronic phase shifting circuit for use in a phased radar antenna array
US5282222A (en) 1992-03-31 1994-01-25 Michel Fattouche Method and apparatus for multiple access between transceivers in wireless communications using OFDM spread spectrum
USRE37802E1 (en) 1992-03-31 2002-07-23 Wi-Lan Inc. Multicode direct sequence spread spectrum
US5220340A (en) 1992-04-29 1993-06-15 Lotfollah Shafai Directional switched beam antenna
US5507035A (en) 1993-04-30 1996-04-09 International Business Machines Corporation Diversity transmission strategy in mobile/indoor cellula radio communications
JP3442389B2 (en) 1993-05-27 2003-09-02 グリフィス・ユニヴァーシティー Antenna for portable communication device
ZA948428B (en) 1993-11-15 1995-06-30 Qualcomm Inc Method for providing a voice request in a wireless environment
US5559800A (en) 1994-01-19 1996-09-24 Research In Motion Limited Remote control of gateway functions in a wireless data communication network
ZA95797B (en) 1994-02-14 1996-06-20 Qualcomm Inc Dynamic sectorization in a spread spectrum communication system
US5802312A (en) 1994-09-27 1998-09-01 Research In Motion Limited System for transmitting data files between computers in a wireless environment utilizing a file transfer agent executing on host system
US5973601A (en) 1995-12-06 1999-10-26 Campana, Jr.; Thomas J. Method of radio transmission between a radio transmitter and radio receiver
US5532708A (en) 1995-03-03 1996-07-02 Motorola, Inc. Single compact dual mode antenna
CA2173304C (en) 1995-04-21 2003-04-29 Anthony J. Dezonno Method and system for establishing voice communications using a computer network
US5629713A (en) 1995-05-17 1997-05-13 Allen Telecom Group, Inc. Horizontally polarized antenna array having extended E-plane beam width and method for accomplishing beam width extension
US5610617A (en) 1995-07-18 1997-03-11 Lucent Technologies Inc. Directive beam selectivity for high speed wireless communication networks
US5964830A (en) 1995-08-22 1999-10-12 Durrett; Charles M. User portal device for the world wide web to communicate with a website server
GB9517241D0 (en) 1995-08-23 1995-10-25 Philips Electronics Uk Ltd Printed antenna
JPH0964639A (en) 1995-08-25 1997-03-07 Uniden Corp Diversity antenna circuit
KR0164368B1 (en) 1995-10-25 1999-02-01 김광호 Rf power combiner
US5767809A (en) 1996-03-07 1998-06-16 Industrial Technology Research Institute OMNI-directional horizontally polarized Alford loop strip antenna
US5786793A (en) 1996-03-13 1998-07-28 Matsushita Electric Works, Ltd. Compact antenna for circular polarization
US5990838A (en) 1996-06-12 1999-11-23 3Com Corporation Dual orthogonal monopole antenna system
US6006075A (en) 1996-06-18 1999-12-21 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for transmitting communication signals using transmission space diversity and frequency diversity
JPH1075116A (en) 1996-06-28 1998-03-17 Toshiba Corp Antenna, connection device, coupler and substrate lamination method
US6144711A (en) 1996-08-29 2000-11-07 Cisco Systems, Inc. Spatio-temporal processing for communication
JP3094920B2 (en) 1996-10-11 2000-10-03 日本電気株式会社 Semiconductor switch
US6052093A (en) 1996-12-18 2000-04-18 Savi Technology, Inc. Small omni-directional, slot antenna
US6018644A (en) 1997-01-28 2000-01-25 Northrop Grumman Corporation Low-loss, fault-tolerant antenna interface unit
US6097347A (en) 1997-01-29 2000-08-01 Intermec Ip Corp. Wire antenna with stubs to optimize impedance for connecting to a circuit
US6031503A (en) 1997-02-20 2000-02-29 Raytheon Company Polarization diverse antenna for portable communication devices
US6204825B1 (en) 1997-04-10 2001-03-20 Intermec Ip Corp. Hybrid printed circuit board shield and antenna
JP3220679B2 (en) 1997-06-03 2001-10-22 松下電器産業株式会社 Dual-frequency switch, dual-frequency antenna duplexer, and dual-frequency band mobile communication device using the same
JPH11163621A (en) 1997-11-27 1999-06-18 Kiyoshi Yamamoto Plane radiation element and omnidirectional antenna utilizing the element
US6133876A (en) 1998-03-23 2000-10-17 Time Domain Corporation System and method for position determination by impulse radio
US6345043B1 (en) 1998-07-06 2002-02-05 National Datacomm Corporation Access scheme for a wireless LAN station to connect an access point
US6166694A (en) 1998-07-09 2000-12-26 Telefonaktiebolaget Lm Ericsson (Publ) Printed twin spiral dual band antenna
US20020170064A1 (en) 2001-05-11 2002-11-14 Monroe David A. Portable, wireless monitoring and control station for use in connection with a multi-media surveillance system having enhanced notification functions
US6100843A (en) 1998-09-21 2000-08-08 Tantivy Communications Inc. Adaptive antenna for use in same frequency networks
US6404386B1 (en) 1998-09-21 2002-06-11 Tantivy Communications, Inc. Adaptive antenna for use in same frequency networks
US6266528B1 (en) 1998-12-23 2001-07-24 Arraycomm, Inc. Performance monitor for antenna arrays
US6442507B1 (en) 1998-12-29 2002-08-27 Wireless Communications, Inc. System for creating a computer model and measurement database of a wireless communication network
US6169523B1 (en) 1999-01-13 2001-01-02 George Ploussios Electronically tuned helix radiator choke
JP3675210B2 (en) 1999-01-27 2005-07-27 株式会社村田製作所 High frequency switch
US6356905B1 (en) 1999-03-05 2002-03-12 Accenture Llp System, method and article of manufacture for mobile communication utilizing an interface support framework
JP2001036337A (en) 1999-03-05 2001-02-09 Matsushita Electric Ind Co Ltd Antenna system
US6498589B1 (en) 1999-03-18 2002-12-24 Dx Antenna Company, Limited Antenna system
US6859182B2 (en) 1999-03-18 2005-02-22 Dx Antenna Company, Limited Antenna system
CA2270302A1 (en) 1999-04-28 2000-10-28 Superpass Company Inc. High efficiency printed antennas
US6296565B1 (en) 1999-05-04 2001-10-02 Shure Incorporated Method and apparatus for predictably switching diversity antennas on signal dropout
US6317599B1 (en) 1999-05-26 2001-11-13 Wireless Valley Communications, Inc. Method and system for automated optimization of antenna positioning in 3-D
US6493679B1 (en) 1999-05-26 2002-12-10 Wireless Valley Communications, Inc. Method and system for managing a real time bill of materials
US6892230B1 (en) 1999-06-11 2005-05-10 Microsoft Corporation Dynamic self-configuration for ad hoc peer networking using mark-up language formated description messages
US6725281B1 (en) 1999-06-11 2004-04-20 Microsoft Corporation Synchronization of controlled device state using state table and eventing in data-driven remote device control model
US6910068B2 (en) 1999-06-11 2005-06-21 Microsoft Corporation XML-based template language for devices and services
AU5728500A (en) 1999-06-11 2001-01-02 Microsoft Corporation Data driven remote device control model with general programming interface-to-network messaging adapter
JP3672770B2 (en) 1999-07-08 2005-07-20 株式会社国際電気通信基礎技術研究所 Array antenna device
US6499006B1 (en) 1999-07-14 2002-12-24 Wireless Valley Communications, Inc. System for the three-dimensional display of wireless communication system performance
US6339404B1 (en) 1999-08-13 2002-01-15 Rangestar Wirless, Inc. Diversity antenna system for lan communication system
JP2001057560A (en) 1999-08-18 2001-02-27 Hitachi Kokusai Electric Inc Radio lan system
US6292153B1 (en) 1999-08-27 2001-09-18 Fantasma Network, Inc. Antenna comprising two wideband notch regions on one coplanar substrate
SE0002617D0 (en) 1999-10-29 2000-07-11 Allgon Ab An antenna device for transmitting and / or receiving RF waves
SE516536C2 (en) 1999-10-29 2002-01-29 Allgon Ab Antenna device switchable between a plurality of configuration states depending on two operating parameters and associated method
US6307524B1 (en) 2000-01-18 2001-10-23 Core Technology, Inc. Yagi antenna having matching coaxial cable and driven element impedances
US6356242B1 (en) 2000-01-27 2002-03-12 George Ploussios Crossed bent monopole doublets
US6239762B1 (en) 2000-02-02 2001-05-29 Lockheed Martin Corporation Interleaved crossed-slot and patch array antenna for dual-frequency and dual polarization, with multilayer transmission-line feed network
GB0006955D0 (en) 2000-03-23 2000-05-10 Koninkl Philips Electronics Nv Antenna diversity arrangement
US6701522B1 (en) 2000-04-07 2004-03-02 Danger, Inc. Apparatus and method for portal device authentication
JP3386439B2 (en) 2000-05-24 2003-03-17 松下電器産業株式会社 Directivity switching antenna device
DE60009874T2 (en) 2000-05-26 2005-03-31 Sony International (Europe) Gmbh V-slot antenna for circular polarization
JP4501230B2 (en) 2000-05-30 2010-07-14 株式会社日立製作所 IPv4-IPv6 multicast communication method and apparatus
US6326922B1 (en) 2000-06-29 2001-12-04 Worldspace Corporation Yagi antenna coupled with a low noise amplifier on the same printed circuit board
US6356243B1 (en) 2000-07-19 2002-03-12 Logitech Europe S.A. Three-dimensional geometric space loop antenna
US6625454B1 (en) 2000-08-04 2003-09-23 Wireless Valley Communications, Inc. Method and system for designing or deploying a communications network which considers frequency dependent effects
US6531985B1 (en) 2000-08-14 2003-03-11 3Com Corporation Integrated laptop antenna using two or more antennas
US6606059B1 (en) 2000-08-28 2003-08-12 Intel Corporation Antenna for nomadic wireless modems
US6445688B1 (en) 2000-08-31 2002-09-03 Ricochet Networks, Inc. Method and apparatus for selecting a directional antenna in a wireless communication system
AU2001288934A1 (en) 2000-09-22 2002-04-02 Widcomm Inc. Wireless network and method for providing improved handoff performance
US6973622B1 (en) 2000-09-25 2005-12-06 Wireless Valley Communications, Inc. System and method for design, tracking, measurement, prediction and optimization of data communication networks
US6975834B1 (en) 2000-10-03 2005-12-13 Mineral Lassen Llc Multi-band wireless communication device and method
DE20019677U1 (en) 2000-11-20 2001-02-15 Hirschmann Electronics Gmbh Antenna system
US7171475B2 (en) 2000-12-01 2007-01-30 Microsoft Corporation Peer networking host framework and hosting API
ES2244492T3 (en) 2000-12-07 2005-12-16 Raymond Bellone ALARM SYSTEM WITH MULTIPLE SHOTS BY ISSUERS AND PORTABLE RECEIVER-VIBRATOR.
US6611230B2 (en) 2000-12-11 2003-08-26 Harris Corporation Phased array antenna having phase shifters with laterally spaced phase shift bodies
US6456245B1 (en) 2000-12-13 2002-09-24 Magis Networks, Inc. Card-based diversity antenna structure for wireless communications
JP4531969B2 (en) 2000-12-21 2010-08-25 三菱電機株式会社 Adaptive antenna receiver
KR100353623B1 (en) 2000-12-22 2002-09-28 주식회사 케이티프리텔 Applying Method for Small Group Multicast in Mobile IP
US6586786B2 (en) 2000-12-27 2003-07-01 Matsushita Electric Industrial Co., Ltd. High frequency switch and mobile communication equipment
US6424311B1 (en) 2000-12-30 2002-07-23 Hon Ia Precision Ind. Co., Ltd. Dual-fed coupled stripline PCB dipole antenna
US6400332B1 (en) 2001-01-03 2002-06-04 Hon Hai Precision Ind. Co., Ltd. PCB dipole antenna
US6888893B2 (en) 2001-01-05 2005-05-03 Microsoft Corporation System and process for broadcast and communication with very low bit-rate bi-level or sketch video
US6801790B2 (en) 2001-01-17 2004-10-05 Lucent Technologies Inc. Structure for multiple antenna configurations
US7023909B1 (en) 2001-02-21 2006-04-04 Novatel Wireless, Inc. Systems and methods for a wireless modem assembly
US6456242B1 (en) 2001-03-05 2002-09-24 Magis Networks, Inc. Conformal box antenna
US6323810B1 (en) 2001-03-06 2001-11-27 Ethertronics, Inc. Multimode grounded finger patch antenna
US6466170B2 (en) 2001-03-28 2002-10-15 Motorola, Inc. Internal multi-band antennas for mobile communications
ES2287124T3 (en) 2001-04-16 2007-12-16 Fractus, S.A. MATRIX OF DOUBLE BAND AND DOUBLE POLARIZATION ANTENNAS.
US6931429B2 (en) 2001-04-27 2005-08-16 Left Gate Holdings, Inc. Adaptable wireless proximity networking
US7916794B2 (en) 2001-04-28 2011-03-29 Microsoft Corporation System and process for broadcast and communication with very low bit-rate bi-level or sketch video
US6864852B2 (en) 2001-04-30 2005-03-08 Ipr Licensing, Inc. High gain antenna for wireless applications
US6606057B2 (en) 2001-04-30 2003-08-12 Tantivy Communications, Inc. High gain planar scanned antenna array
US7493143B2 (en) 2001-05-07 2009-02-17 Qualcomm Incorporated Method and system for utilizing polarization reuse in wireless communications
US6747605B2 (en) 2001-05-07 2004-06-08 Atheros Communications, Inc. Planar high-frequency antenna
US20040152492A1 (en) 2001-05-14 2004-08-05 Andrew Gray Antenna interface protocol
FR2825206A1 (en) 2001-05-23 2002-11-29 Thomson Licensing Sa DEVICE FOR RECEIVING AND / OR TRANSMITTING ELECTROMAGNETIC WAVES WITH OMNIDIRECTIONAL RADIATION
US8284739B2 (en) 2001-05-24 2012-10-09 Vixs Systems, Inc. Method and apparatus for affiliating a wireless device with a wireless local area network
US6414647B1 (en) 2001-06-20 2002-07-02 Massachusetts Institute Of Technology Slender omni-directional, broad-band, high efficiency, dual-polarized slot/dipole antenna element
US6781999B2 (en) 2001-07-23 2004-08-24 Airvana, Inc. Broadcasting and multicasting in wireless communication
US6741219B2 (en) 2001-07-25 2004-05-25 Atheros Communications, Inc. Parallel-feed planar high-frequency antenna
JP2003038933A (en) 2001-07-26 2003-02-12 Akira Mizuno Discharge plasma generating apparatus
US6836254B2 (en) 2001-08-10 2004-12-28 Antonis Kalis Antenna system
CN1278449C (en) 2001-09-06 2006-10-04 松下电器产业株式会社 Array antenna apparatus
US7039363B1 (en) 2001-09-28 2006-05-02 Arraycomm Llc Adaptive antenna array with programmable sensitivity
JP4135861B2 (en) 2001-10-03 2008-08-20 日本電波工業株式会社 Multi-element planar antenna
US7697523B2 (en) 2001-10-03 2010-04-13 Qualcomm Incorporated Method and apparatus for data packet transport in a wireless communication system using an internet protocol
EP1444751B1 (en) 2001-10-16 2007-06-13 Fractus, S.A. Loaded antenna
US6674459B2 (en) 2001-10-24 2004-01-06 Microsoft Corporation Network conference recording system and method including post-conference processing
US6809687B2 (en) * 2001-10-24 2004-10-26 Alps Electric Co., Ltd. Monopole antenna that can easily be reduced in height dimension
WO2003038946A1 (en) 2001-10-31 2003-05-08 Lockheed Martin Corporation Broadband starfish antenna and array thereof
US6914581B1 (en) 2001-10-31 2005-07-05 Venture Partners Focused wave antenna
WO2003041224A1 (en) 2001-11-09 2003-05-15 Tantivy Communications, Inc. A dual band phased array employing spatial second harmonics
US6774854B2 (en) 2001-11-16 2004-08-10 Galtronics, Ltd. Variable gain and variable beamwidth antenna (the hinged antenna)
US6583765B1 (en) 2001-12-21 2003-06-24 Motorola, Inc. Slot antenna having independent antenna elements and associated circuitry
US7050809B2 (en) 2001-12-27 2006-05-23 Samsung Electronics Co., Ltd. System and method for providing concurrent data transmissions in a wireless communication network
JP2003198437A (en) 2001-12-28 2003-07-11 Matsushita Electric Ind Co Ltd Multi-antenna system, receiving method and transmitting method for multi-antenna
FR2834837A1 (en) 2002-01-14 2003-07-18 Thomson Licensing Sa DEVICE FOR RECEIVING AND / OR TRANSMITTING ELECTROMAGNETIC WAVES WITH RADIATION DIVERSITY
TW512558B (en) 2002-01-16 2002-12-01 Accton Technology Corp Surface-mountable dual-band monopole antenna for WLAN application
US6888504B2 (en) 2002-02-01 2005-05-03 Ipr Licensing, Inc. Aperiodic array antenna
US6842141B2 (en) 2002-02-08 2005-01-11 Virginia Tech Inellectual Properties Inc. Fourpoint antenna
US6781544B2 (en) 2002-03-04 2004-08-24 Cisco Technology, Inc. Diversity antenna for UNII access point
US7039356B2 (en) 2002-03-12 2006-05-02 Blue7 Communications Selecting a set of antennas for use in a wireless communication system
TWI258246B (en) 2002-03-14 2006-07-11 Sony Ericsson Mobile Comm Ab Flat built-in radio antenna
US6819287B2 (en) 2002-03-15 2004-11-16 Centurion Wireless Technologies, Inc. Planar inverted-F antenna including a matching network having transmission line stubs and capacitor/inductor tank circuits
US20030184490A1 (en) 2002-03-26 2003-10-02 Raiman Clifford E. Sectorized omnidirectional antenna
US6809691B2 (en) 2002-04-05 2004-10-26 Matsushita Electric Industrial Co., Ltd. Directivity controllable antenna and antenna unit using the same
FI121519B (en) 2002-04-09 2010-12-15 Pulse Finland Oy Directionally adjustable antenna
US6753825B2 (en) 2002-04-23 2004-06-22 Broadcom Printed antenna and applications thereof
US6642889B1 (en) 2002-05-03 2003-11-04 Raytheon Company Asymmetric-element reflect array antenna
US6621464B1 (en) 2002-05-08 2003-09-16 Accton Technology Corporation Dual-band dipole antenna
TW557604B (en) 2002-05-23 2003-10-11 Realtek Semiconductor Corp Printed antenna structure
US7026993B2 (en) 2002-05-24 2006-04-11 Hitachi Cable, Ltd. Planar antenna and array antenna
JP2004064743A (en) 2002-06-05 2004-02-26 Fujitsu Ltd Adaptive antenna device
US6839038B2 (en) * 2002-06-17 2005-01-04 Lockheed Martin Corporation Dual-band directional/omnidirectional antenna
JP3835404B2 (en) 2002-06-24 2006-10-18 株式会社村田製作所 High frequency switch and electronic device using the same
US6753814B2 (en) 2002-06-27 2004-06-22 Harris Corporation Dipole arrangements using dielectric substrates of meta-materials
GB0216060D0 (en) 2002-07-11 2002-08-21 Koninkl Philips Electronics Nv Improvements in or relating to multiple transmission channel wireless communic ation systems
TW541762B (en) 2002-07-24 2003-07-11 Ind Tech Res Inst Dual-band monopole antenna
US6750813B2 (en) 2002-07-24 2004-06-15 Mcnc Research & Development Institute Position optimized wireless communication
US6876836B2 (en) 2002-07-25 2005-04-05 Integrated Programmable Communications, Inc. Layout of wireless communication circuit on a printed circuit board
US20040017860A1 (en) 2002-07-29 2004-01-29 Jung-Tao Liu Multiple antenna system for varying transmission streams
US20040036654A1 (en) 2002-08-21 2004-02-26 Steve Hsieh Antenna assembly for circuit board
US6941143B2 (en) 2002-08-29 2005-09-06 Thomson Licensing, S.A. Automatic channel selection in a radio access network
TW549613U (en) 2002-09-09 2003-08-21 Joymax Electronics Co Ltd Connector metal mask shell body improved structure with antenna
AU2002333900A1 (en) * 2002-09-10 2004-04-30 Fractus, S.A. Coupled multiband antennas
JP2004159288A (en) 2002-09-12 2004-06-03 Seiko Epson Corp Antenna assembly, printed wiring board, printed board, communication adapter, and portable electronic apparatus
US7696943B2 (en) 2002-09-17 2010-04-13 Ipr Licensing, Inc. Low cost multiple pattern antenna for use with multiple receiver systems
TW560107B (en) 2002-09-24 2003-11-01 Gemtek Technology Co Ltd Antenna structure of multi-frequency printed circuit
US6963314B2 (en) 2002-09-26 2005-11-08 Andrew Corporation Dynamically variable beamwidth and variable azimuth scanning antenna
US7212499B2 (en) 2002-09-30 2007-05-01 Ipr Licensing, Inc. Method and apparatus for antenna steering for WLAN
JP2004140458A (en) 2002-10-15 2004-05-13 Toshiba Corp Electronic apparatus having radio communicating function and antenna unit for radio communication
TW569492B (en) 2002-10-16 2004-01-01 Ain Comm Technology Company Lt Multi-band antenna
US7705782B2 (en) 2002-10-23 2010-04-27 Southern Methodist University Microstrip array antenna
US6791506B2 (en) 2002-10-23 2004-09-14 Centurion Wireless Technologies, Inc. Dual band single feed dipole antenna and method of making the same
US6762723B2 (en) 2002-11-08 2004-07-13 Motorola, Inc. Wireless communication device having multiband antenna
US6950069B2 (en) 2002-12-13 2005-09-27 International Business Machines Corporation Integrated tri-band antenna for laptop applications
US6903686B2 (en) 2002-12-17 2005-06-07 Sony Ericsson Mobile Communications Ab Multi-branch planar antennas having multiple resonant frequency bands and wireless terminals incorporating the same
US7053845B1 (en) 2003-01-10 2006-05-30 Comant Industries, Inc. Combination aircraft antenna assemblies
US6961028B2 (en) 2003-01-17 2005-11-01 Lockheed Martin Corporation Low profile dual frequency dipole antenna structure
JP3843429B2 (en) 2003-01-23 2006-11-08 ソニーケミカル&インフォメーションデバイス株式会社 Electronic equipment and printed circuit board mounted with antenna
EP1441414A1 (en) * 2003-01-23 2004-07-28 Alps Electric Co., Ltd. Dual band antenna with reduced size and height
US6943749B2 (en) 2003-01-31 2005-09-13 M&Fc Holding, Llc Printed circuit board dipole antenna structure with impedance matching trace
US7009573B2 (en) 2003-02-10 2006-03-07 Calamp Corp. Compact bidirectional repeaters for wireless communication systems
US7084823B2 (en) 2003-02-26 2006-08-01 Skycross, Inc. Integrated front end antenna
JP2004282329A (en) 2003-03-14 2004-10-07 Senyu Communication:Kk Dual band omnidirectional antenna for wireless lan
US7391832B2 (en) 2003-03-17 2008-06-24 Broadcom Corporation System and method for channel bonding in multiple antenna communication systems
US7269174B2 (en) 2003-03-28 2007-09-11 Modular Mining Systems, Inc. Dynamic wireless network
US6933907B2 (en) 2003-04-02 2005-08-23 Dx Antenna Company, Limited Variable directivity antenna and variable directivity antenna system using such antennas
DE10318815A1 (en) 2003-04-17 2004-11-04 Valeo Schalter Und Sensoren Gmbh Slot-coupled radar antenna with radiation areas
SE0301200D0 (en) 2003-04-24 2003-04-24 Amc Centurion Ab Antenna device and portable radio communication device including such an antenna device
US7068234B2 (en) 2003-05-12 2006-06-27 Hrl Laboratories, Llc Meta-element antenna and array
US7302278B2 (en) 2003-07-03 2007-11-27 Rotani, Inc. Method and apparatus for high throughput multiple radio sectorized wireless cell
US20050042988A1 (en) 2003-08-18 2005-02-24 Alcatel Combined open and closed loop transmission diversity system
US7084828B2 (en) 2003-08-27 2006-08-01 Harris Corporation Shaped ground plane for dynamically reconfigurable aperture coupled antenna
CN1849765B (en) 2003-09-09 2011-04-27 株式会社Ntt都科摩 Signal transmitting method and transmitter in radio multiplex transmission system
JP4181067B2 (en) 2003-09-18 2008-11-12 Dxアンテナ株式会社 Multi-frequency band antenna
US7088299B2 (en) 2003-10-28 2006-08-08 Dsp Group Inc. Multi-band antenna structure
KR100981554B1 (en) 2003-11-13 2010-09-10 한국과학기술원 APPARATUS AND METHOD FOR GROUPING ANTENNAS OF Tx IN MIMO SYSTEM WHICH CONSIDERS A SPATIAL MULTIPLEXING AND BEAMFORMING
US7196674B2 (en) 2003-11-21 2007-03-27 Andrew Corporation Dual polarized three-sector base station antenna with variable beam tilt
US7075485B2 (en) 2003-11-24 2006-07-11 Hong Kong Applied Science And Technology Research Institute Co., Ltd. Low cost multi-beam, multi-band and multi-diversity antenna systems and methods for wireless communications
US7034769B2 (en) 2003-11-24 2006-04-25 Sandbridge Technologies, Inc. Modified printed dipole antennas for wireless multi-band communication systems
US7668939B2 (en) 2003-12-19 2010-02-23 Microsoft Corporation Routing of resource information in a network
US20050138137A1 (en) 2003-12-19 2005-06-23 Microsoft Corporation Using parameterized URLs for retrieving resource content items
DE10361634A1 (en) 2003-12-30 2005-08-04 Advanced Micro Devices, Inc., Sunnyvale Powerful low-cost monopole antenna for radio applications
US7308047B2 (en) 2003-12-31 2007-12-11 Intel Corporation Symbol de-mapping methods in multiple-input multiple-output systems
US20050146475A1 (en) 2003-12-31 2005-07-07 Bettner Allen W. Slot antenna configuration
JP4173453B2 (en) 2004-02-24 2008-10-29 株式会社国際電気通信基礎技術研究所 Antenna device
US7440764B2 (en) 2004-02-12 2008-10-21 Motorola, Inc. Method and apparatus for improving throughput in a wireless local area network
US7600113B2 (en) 2004-02-20 2009-10-06 Microsoft Corporation Secure network channel
US7053844B2 (en) 2004-03-05 2006-05-30 Lenovo (Singapore) Pte. Ltd. Integrated multiband antennas for computing devices
JP2005260592A (en) 2004-03-11 2005-09-22 Fujitsu Ltd Antenna device, directivity control method, and communication device
US20050219128A1 (en) 2004-03-31 2005-10-06 Tan Yu C Antenna radiator assembly and radio communications device
US7043277B1 (en) 2004-05-27 2006-05-09 Autocell Laboratories, Inc. Automatically populated display regions for discovered access points and stations in a user interface representing a wireless communication network deployed in a physical environment
JP2005354249A (en) 2004-06-09 2005-12-22 Matsushita Electric Ind Co Ltd Network communication terminal
JP4163659B2 (en) 2004-06-10 2008-10-08 株式会社東芝 Wireless transmission apparatus and wireless transmission method
JP4095585B2 (en) 2004-06-17 2008-06-04 株式会社東芝 Wireless communication method, wireless communication device, and wireless communication system
US7880683B2 (en) 2004-08-18 2011-02-01 Ruckus Wireless, Inc. Antennas with polarization diversity
US7292198B2 (en) 2004-08-18 2007-11-06 Ruckus Wireless, Inc. System and method for an omnidirectional planar antenna apparatus with selectable elements
US7498996B2 (en) 2004-08-18 2009-03-03 Ruckus Wireless, Inc. Antennas with polarization diversity
US7362280B2 (en) 2004-08-18 2008-04-22 Ruckus Wireless, Inc. System and method for a minimized antenna apparatus with selectable elements
US7899497B2 (en) 2004-08-18 2011-03-01 Ruckus Wireless, Inc. System and method for transmission parameter control for an antenna apparatus with selectable elements
US7965252B2 (en) 2004-08-18 2011-06-21 Ruckus Wireless, Inc. Dual polarization antenna array with increased wireless coverage
JP2006060408A (en) 2004-08-18 2006-03-02 Nippon Telegr & Teleph Corp <Ntt> Radio packet communication method and radio station
US7193562B2 (en) 2004-11-22 2007-03-20 Ruckus Wireless, Inc. Circuit board having a peripheral antenna apparatus with selectable antenna elements
US7652632B2 (en) 2004-08-18 2010-01-26 Ruckus Wireless, Inc. Multiband omnidirectional planar antenna apparatus with selectable elements
JP2006066993A (en) 2004-08-24 2006-03-09 Sony Corp Multibeam antenna
KR100754617B1 (en) 2004-10-11 2007-09-05 삼성전자주식회사 Apparatus and method for minimizing peak to average power ratio in orthogonal frequency division multiplexing communication system
US7606187B2 (en) 2004-10-28 2009-10-20 Meshnetworks, Inc. System and method to support multicast routing in large scale wireless mesh networks
US7512379B2 (en) 2004-10-29 2009-03-31 Hien Nguyen Wireless access point (AP) automatic channel selection
US20060123455A1 (en) 2004-12-02 2006-06-08 Microsoft Corporation Personal media channel
WO2007069071A2 (en) 2005-01-14 2007-06-21 Piping Hot Networks Limited Dual payload and adaptive modulation
US7646343B2 (en) 2005-06-24 2010-01-12 Ruckus Wireless, Inc. Multiple-input multiple-output wireless antennas
US7640329B2 (en) 2005-02-15 2009-12-29 Microsoft Corporation Scaling and extending UPnP v1.0 device discovery using peer groups
US7647394B2 (en) 2005-02-15 2010-01-12 Microsoft Corporation Scaling UPnP v1.0 device eventing using peer groups
TWI262342B (en) 2005-02-18 2006-09-21 Au Optronics Corp Device for fastening lighting unit in backlight module
US20060225107A1 (en) 2005-04-01 2006-10-05 Microsoft Corporation System for running applications in a resource-constrained set-top box environment
US7761601B2 (en) 2005-04-01 2010-07-20 Microsoft Corporation Strategies for transforming markup content to code-bearing content for consumption by a receiving device
US7636300B2 (en) 2005-04-07 2009-12-22 Microsoft Corporation Phone-based remote media system interaction
TWI274511B (en) 2005-04-25 2007-02-21 Benq Corp Channel selection method over WLAN
US7696940B1 (en) 2005-05-04 2010-04-13 hField Technologies, Inc. Wireless networking adapter and variable beam width antenna
FR2886770B1 (en) * 2005-06-02 2007-12-07 Radiall Sa MEANDREE ANTENNA
US7603141B2 (en) 2005-06-02 2009-10-13 Qualcomm, Inc. Multi-antenna station with distributed antennas
JP2006344716A (en) 2005-06-08 2006-12-21 Mitsumi Electric Co Ltd Antenna device and shield cover used for it
US7427941B2 (en) 2005-07-01 2008-09-23 Microsoft Corporation State-sensitive navigation aid
US7613482B2 (en) 2005-12-08 2009-11-03 Accton Technology Corporation Method and system for steering antenna beam
US7696948B2 (en) 2006-01-27 2010-04-13 Airgain, Inc. Configurable directional antenna
WO2007119316A1 (en) 2006-04-14 2007-10-25 Panasonic Corporation Polarized wave switching and directionality-variable antenna
US7639106B2 (en) 2006-04-28 2009-12-29 Ruckus Wireless, Inc. PIN diode network for multiband RF coupling
KR100802120B1 (en) * 2006-07-03 2008-02-11 삼성전자주식회사 Antenna for wireless terminal able to micro-tuning and macro-tuning
KR100883408B1 (en) 2006-09-11 2009-03-03 주식회사 케이엠더블유 Dual-band dual-polarized base station antenna for mobile communication
JP2008088633A (en) 2006-09-29 2008-04-17 Taiheiyo Cement Corp Burying type form made of polymer cement mortar
US20080266189A1 (en) 2007-04-24 2008-10-30 Cameo Communications, Inc. Symmetrical dual-band uni-planar antenna and wireless network device having the same
WO2009052153A1 (en) 2007-10-15 2009-04-23 Jaybeam Wireless Base station antenna with beam shaping structures
US7609223B2 (en) 2007-12-13 2009-10-27 Sierra Nevada Corporation Electronically-controlled monolithic array antenna
GB0901475D0 (en) 2009-01-29 2009-03-11 Univ Birmingham Multifunctional antenna
US8698675B2 (en) 2009-05-12 2014-04-15 Ruckus Wireless, Inc. Mountable antenna elements for dual band antenna
JP5316463B2 (en) 2010-03-31 2013-10-16 アイシン・エィ・ダブリュ株式会社 Information distribution center, navigation system, information distribution method and program
US9407012B2 (en) 2010-09-21 2016-08-02 Ruckus Wireless, Inc. Antenna with dual polarization and mountable antenna elements
EP2479837B1 (en) 2011-01-19 2017-08-16 BlackBerry Limited Wireless communications using multi-bandpass transmission line with slot ring resonators on the ground plane
JP5060629B1 (en) * 2011-03-30 2012-10-31 株式会社東芝 ANTENNA DEVICE AND ELECTRONIC DEVICE HAVING THE ANTENNA DEVICE
US9570799B2 (en) 2012-09-07 2017-02-14 Ruckus Wireless, Inc. Multiband monopole antenna apparatus with ground plane aperture
CN105051975B (en) 2013-03-15 2019-04-19 艾锐势有限责任公司 Low-frequency band reflector for double frequency-band directional aerial

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6252559B1 (en) * 2000-04-28 2001-06-26 The Boeing Company Multi-band and polarization-diversified antenna system
US6452556B1 (en) * 2000-09-20 2002-09-17 Samsung Electronics, Co., Ltd. Built-in dual band antenna device and operating method thereof in a mobile terminal
US8031129B2 (en) * 2004-08-18 2011-10-04 Ruckus Wireless, Inc. Dual band dual polarization antenna array
US20070030210A1 (en) 2004-09-03 2007-02-08 Murata Manufacturing Co., Ltd. Antenna apparatus

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
A. JAHANBAKHSHI, DESIGN AND SIMULATION OF DIFFERENT TYPES OF MEANDER LINE ANTENNAS WITH IMPROVED EFFICIENCY
See also references of EP2974045A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9419344B2 (en) 2009-05-12 2016-08-16 Ruckus Wireless, Inc. Mountable antenna elements for dual band antenna
US10224621B2 (en) 2009-05-12 2019-03-05 Arris Enterprises Llc Mountable antenna elements for dual band antenna
US9407012B2 (en) 2010-09-21 2016-08-02 Ruckus Wireless, Inc. Antenna with dual polarization and mountable antenna elements
US9570799B2 (en) 2012-09-07 2017-02-14 Ruckus Wireless, Inc. Multiband monopole antenna apparatus with ground plane aperture
US10230161B2 (en) 2013-03-15 2019-03-12 Arris Enterprises Llc Low-band reflector for dual band directional antenna
US11552398B2 (en) 2014-11-18 2023-01-10 Commscope Technologies Llc Cloaked low band elements for multiband radiating arrays
US11870160B2 (en) 2014-11-18 2024-01-09 Commscope Technologies Llc Cloaked low band elements for multiband radiating arrays

Also Published As

Publication number Publication date
CN105051975A (en) 2015-11-11
EP2974045A4 (en) 2016-11-09
HK1220050A1 (en) 2017-04-21
US10230161B2 (en) 2019-03-12
US20140285391A1 (en) 2014-09-25
EP2974045A1 (en) 2016-01-20
CN105051975B (en) 2019-04-19
WO2014146038A4 (en) 2015-01-08

Similar Documents

Publication Publication Date Title
US10819032B2 (en) Cloaked low band elements for multiband radiating arrays
US10230161B2 (en) Low-band reflector for dual band directional antenna
US8497808B2 (en) Ultra-wideband miniaturized omnidirectional antennas via multi-mode three-dimensional (3-D) traveling-wave (TW)
WO2016206388A1 (en) Antenna element for signals with three polarizations
US8477073B2 (en) Internal wide band antenna using slow wave structure
EP3678260B1 (en) Multiple-input multiple-output antenna device for terminal and method for realizing transmission of antenna signal
EP3221926B1 (en) Dual band multi-layer dipole antennas for wireless electronic devices
AU2006257238B2 (en) Wideband structural antenna operating in the HF range, particularly for naval installations
US7839344B2 (en) Wideband multifunction antenna operating in the HF range, particularly for naval installations
US10141645B2 (en) Multiband antenna
US7505011B2 (en) Antenna apparatus
US9774090B2 (en) Ultra-wide band antenna
KR20150142189A (en) Ultra-wideband tapered slot antenna
KR20080026720A (en) Multiband planar monopole antenna with self-similar sectoral slots
EP4044369A1 (en) Printed antenna for receiving and/or transmitting radio frequency signals
JP7138556B2 (en) wireless communication device
JP5280973B2 (en) antenna
KR20220122070A (en) Antenna module and antenna device having the same
KR20220052615A (en) Antenna device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480015806.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14764406

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014764406

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE