WO2014125153A1 - Sistema y método para escanear una superficie y programa de ordenador que implementa el método - Google Patents

Sistema y método para escanear una superficie y programa de ordenador que implementa el método Download PDF

Info

Publication number
WO2014125153A1
WO2014125153A1 PCT/ES2014/070108 ES2014070108W WO2014125153A1 WO 2014125153 A1 WO2014125153 A1 WO 2014125153A1 ES 2014070108 W ES2014070108 W ES 2014070108W WO 2014125153 A1 WO2014125153 A1 WO 2014125153A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
sub
sqr
detectors
redirection
Prior art date
Application number
PCT/ES2014/070108
Other languages
English (en)
French (fr)
Inventor
Jordi RIUS GRAS
Santiago Royo Royo
Original Assignee
Universitat Politècnica De Catalunya
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universitat Politècnica De Catalunya filed Critical Universitat Politècnica De Catalunya
Priority to EP14751680.1A priority Critical patent/EP2957926B1/en
Priority to CA2901100A priority patent/CA2901100C/en
Priority to US14/767,579 priority patent/US10018724B2/en
Publication of WO2014125153A1 publication Critical patent/WO2014125153A1/es

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/32Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/66Tracking systems using electromagnetic waves other than radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4817Constructional features, e.g. arrangements of optical elements relating to scanning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles

Definitions

  • the present invention concerns in general !, in a first aspect, a system for scanning a surface, comprising means for illuminating different regions of a surface to be scanned and means for receiving and detecting portions of light reflected therein that include one or more light detectors, and more particularly to a system that allows the use of tota spatial resolution! from! detector or light detectors for each of the regions of the surface to be scanned.
  • a second aspect of the invention concerns a method adapted to perform the functions carried out by the system of the first aspect.
  • a third aspect of the invention concerns a computer program that implements the method of the second aspect.
  • TOF (acronym for "Time Of Fiighf: Flight time)
  • LIDAR (acronym for” Light detection and ranging ")
  • LADAR (acronym for" Laser detection and ranging ") systems are systems that allow distance measurement by the use of a light source that illuminates the points under measure.
  • the measurable distance in TOF systems is influenced by some uncontrolled factors that depend on the environment and not on the TOF technique, such as the intensity of the backlighting, weather conditions (fog, dust, rain, etc.) or object refiectance.
  • the TOF device there are other aspects that are directly dependent on the technology and architecture of the TOF device and have a major role in determining the measurable distance of each system.
  • the most significant could be the power of the light source, the divergence of the light beam, the efficiency of the point scanning system, the sensitivity of the photodetectors, the attenuation of the optical system or the quality of backlight filtering.
  • TOF The physical principles of the TOF, LIDAR or LADAR systems state that, expressed in a very generic way, the ability to measure a point located at a certain distance is related to the ability to illuminate it with sufficient optical power to detect the beam of light reflected in The same in a light detector. This principle has a decisive influence on the measurable distance of the device and different scanning techniques have been designed for image measurements.
  • TOF There are TOF devices that can measure distances of up to dozens of kilometers and others are limited to a few meters. Normally, the illuminating beam in long distance systems has little divergence. These usually use highly collimated laser light beams with a divergence and a very small beam section. With this it is achieved that the concentration of energy per unit area in the object is much higher when compared with systems that use divergent light sources. Systems that use divergent light sources illuminate larger areas to simultaneously measure a set of points instead of just one.
  • Sequence scanning systems they form the 3D image by measuring unique points sequentially.
  • the lighting sequence is normally implemented by means of optical systems such as galvanometric mirrors, ES, acoustic-optical deflectors, etc.
  • the sequential scanning systems concentrate said power at a point of reduced size, managing to measure greater distances in comparison with the systems that expand the beam.
  • the collimation and the small size of the illuminated point makes the concentration of energy per unit area higher than in the case of divergent light sources. This high concentration of energy per unit area makes the light reflected by the object greater and, consequently, the detector that receives the light from that point also receives a greater amount of light.
  • the energy concentration effect of the sequential scanning systems maximizes the distance Measurable thanks to the use of all available optical power for a single measurement point.
  • scanning systems sequence! allow to obtain a high spatial resolution in the three-dimensional image, when the point-to-point measurement is performed, it makes the total measurement time to achieve high spatial resolution images. This limits the amount of images per second they can measure.
  • a necessary condition to carry out simultaneous measurements through a matrix of detectors implies simultaneously illuminating all those points on the object that will be measured by the group of detectors. This implies that the optical power is divided between all points. Therefore, given a source of illumination of a specific energy, the concentration of energy per unit area will be distributed among all measuring points making the energy reflected by each individual point inversely proportional to the number of measured points.
  • the "Flash LADAR" systems of the Advanced Scientific Concepts company http: /AAAAW.advancedscientifcientcon ( ⁇ pts.
  • the pulsed TOF cameras of Odos Imaging can be cited as well as the vast majority of TOF cameras based on TOF-FMCW (Time-of-Flight Frequency odulated Continuous Waveform), for example Mesa imaging cameras (w ⁇ E®! » ⁇ PM D
  • the main advantage of this system with respect to sequential scanning systems is that the measurement of points is done in parallel managing to measure a high number of points for each TOF measurement action. Instead, ios sequence scanning systems! perform a single measurement for each TOF measurement action. In a general way, it can be affirmed that, considering a given source of illumination of power and shared between the two systems, the quantity of three-dimensional images measured will be greater for systems based on arrays of detectors than on sequence measurement systems! thanks to the effect of parallel measurements.
  • the measured distance will be greater in the sequential scanning system than in the detector array system given that the energy used for the point on average it will be greater because all the power of the source is concentrated in the same average point.
  • the spatial resolution of the three-dimensional image is set by the number of detectors in the detector array.
  • Said TOF system is described in the international application WO2012123809A1, and allows increasing the spatial resolution of the three-dimensional image thanks to the inclusion and use of a grid arrangement of light switches or matrix of light switches (also as a spatial modulator of light based on micro mirrors, as in the case of a DD: "Digital icromirror Device", in a larger number than light detectors, which sequentially redirects the different portions of light to the array of light detectors light reflected on the surface to be scanned.
  • the inventors refer to this technology as "Digital Scanning” and it is considered that it is located at an intermediate step between the array-based systems of detectors and sequence scanning! since it implements both methods. However, said scanning is digitally controlled and no moving parts are involved.
  • One of the uses of the system described in the international application WO20121238G9A1 is the measurement of three-dimensional images by the TOF technique or flight time.
  • a light source illuminates the surface that needs to be measured.
  • the DMD receives said beam through an optical group and sequentially redirects the received beam towards a detector or array of detectors that have TOF measurement capability. Since the DMD is optically conjugated to the object under measure, it is capable of receiving in a controlled way the light that comes from each measurement point.
  • each light switch is conjugated with a point on the surface to be measured, therefore, each light switch is capable of rejecting or directing said portion of the total beam to the detector system. Since the DMD or switch matrix and the detector or detector matrix are optically conjugated, the DMD is capable of directing said portions of the beam, which at the same time correspond to the light reflected by the points of the object to be measured, by set of detectors in a controlled way. Through a sequential process, the DMD will receive and direct the light reflected in the object towards the detector or group of detectors so that, the DMD will simultaneously send as many portions of the beam as there are detectors in said matrix of TOF detectors. That is, a number of simultaneous TOF measurements equivalent to the number of detectors will be performed.
  • the sequential process of measurement consists in directing in a controlled way all the surface points that the DMD is optically configured to receive.
  • the resulting three-dimensional image will have as many measured points as the light switches the DMD has.
  • the resulting image will have a spatial resolution greater than the number of detectors. This characteristic means that through a small group of detectors, and in turn technically less complex and cheaper than one with a large number of detectors, TOF images of high spatial resolution and with added functionalities can be measured.
  • this system illuminates the entire surface to be scanned, making the available optical power distributed between all the surface points in each TOF measurement action and only one group Reduced points (equivalent to the number of detectors) will be measured.
  • Reduced points equivalent to the number of detectors
  • TOF three-dimensional image measurement systems have many applications and markets where these systems are useful. Only at the example level, an application of interest for which it would be interesting to use such systems belongs to the automotive field, in particular the systems for monitoring, detecting and recognizing objects in the environment of a car in order to obtain information from the space where it travels for purposes of safety, navigation or artificial intelligence in driving.
  • the measurement surface has roughly 750m 2
  • a TOF based system detector array must illuminate such surface completely in each action TOF measurement.
  • the radiometrite parameters involved in the process of lighting, reflection and detection of said beam also considering the amount of backlight and the parameters of the detectors, it is concluded that the lighting energy necessary to be able to Being detected in the detector array is potentially very high.
  • a sequential scanning system would require less illumination energy but its performance in terms of measurement speed would also be limited and may have limitations in the measurement of moving objects.
  • the law of the inverse square states that the light intensity on a surface that receives light from a point light source is inversely proportional to the square of the distance between the light source and the surface and proportional to the cosine between the light beam and the normal to the surface. This means that the intensity of illumination over a given area will decrease with distance according to a quadratic factor.
  • the surface illumination intensity decreases, decrease which occurs much faster than as the surface of the light source moves away. For example, if the illumination on a surface is 40 lux at a distance of 0.5 m from the light source, the illumination decreases to 10 lux at a distance of 1 m.
  • This phenomenon has a decisive influence on the measurable distance in a TOF system.
  • this effect may be acceptable for short distances (10 to 15 m.) Where the lighting intensity per m 2 remains high, but when measuring medium-long distances (greater than 15 m is required) .) and large areas, this phenomenon becomes a problem, since lighting sources have limited energy. According to the knowledge of the present inventors, this is a really limiting factor in terms of distance measured in systems based on detector arrays.
  • a mirror of a galvanometric system (for example MEMs type) is used, so it can be said that the US20120249999A1 system is really a combination of the two TOF systems described above.
  • the illumination beam can be varied so that it illuminates the entire field of vision of the LADAR Flash system (all pixels of the detector array) or only partially (one or several pixels of the array of detectors) depending on the application.
  • the detection is performed with a matrix of light detectors whose total resolution is adapted to the total area of the surface or scene to be scanned, so that when they illuminate the said sub-area a lower spatial resolution is obtained, it is that is, if they only illuminate 10% of the total area, they will only illuminate, that is, they will receive reflected light, 10% of the pixels of the array of light detectors, so that a spatial resolution of only 10% will be obtained of the total resolution of the matrix, which makes the system offer quite poor results in terms of spatial resolution.
  • matrix detectors that are optically conjugated to the pixels of the sub-areas that are not being illuminated cannot be used for measurement. TOF, making this underutilization of the array detector array negatively impact the spatial resolution of the TOF image compared to the case of using a light source that completely illuminates the field of view of the detector array where if the All detectors are used.
  • the present invention concerns, in a first aspect, a system for scanning a surface, comprising:
  • - lighting means configured and arranged to project on a surface to be scanned at least one beam of light with a certain divergence to illuminate a sub-area of the area constituting said surface to be scanned, which is at least partly reflective;
  • - light direction means associated with said lighting means configured to direct said light beam so that it illuminates different sub-areas of the surface to be scanned, alternately;
  • reception and detection means configured and arranged to receive and detect, alternately, corresponding portions of light, of said beam of light, reflected in each of said different sub-areas of the surface to be scanned, where said means of reception and detection comprise one or more light detectors.
  • the system proposed by the first aspect of the invention is characterized in that:
  • the reception and detection means comprise light redirection means that include a plurality of light redirection elements arranged according to a particular spatial distribution pattern, in a number greater than the number of said light detectors, which is at least one, and configured to receive the portions of reflected light, each of them in at least a part of a respective sub-pattern of said pattern;
  • the light redirection means are configured and arranged to redirect, in a sequential manner, each of the portions of reflected light received in at least said part or in all of each of said sub-patterns towards said detector of light, which is at least one.
  • the light redirection means are configured and arranged to receive each of the portions of iuz reflected in the whole of said respective sub-pattern of said determined spatial distribution pattern, and to redirect, sequentially, each of the portions of reflected light received in each of said sub-patterns towards said light detector, which is at least one.
  • said particular spatial distribution pattern constitutes a matrix, and each of said sub-patterns a sub-matrix.
  • said matrix is a grid and said sub-matrix is a sub-grid or a linear matrix.
  • the system comprises a plurality of light detectors, including said light detector, arranged in a grid or according to another kind of spatial distribution pattern, the iuz redirection means being configured and arranged to redirect, sequentially !, each of the portions of reflected light received in each of the sub-patterns of light redirection elements towards the iuz detectors arranged in a grid or according to another kind of spatial distribution pattern.
  • the plurality of light detectors are discrete detectors that are not arranged in a grid, it is say they don't form a uniform grid.
  • the iuz redirection means further comprise at least one reflective element disposed between the determined spatial distribution pattern of light redirection elements and the light detector or the grid or other distribution pattern class Spatial light detectors, which is ruthless to collaborate with the redirection elements of iuz to carry out such redirection sequence! of each of the portions of reflected light received in each of the sub-patterns towards the light detector or the light detectors arranged in a grid or according to another kind of spatial distribution pattern, by performing respective sequential optical conjugations of the portions of reflected light received in each of the sub-patterns with the light detector or the light detectors arranged in a grid or according to another kind of spatial distribution pattern.
  • the light redirection means do not comprise any reflective element, including in its place an optical element, such as a lens, or not including any substitute element.
  • the system of the first aspect of the invention comprises means for controlling the light redirection elements that control them to sequentially activate the light redirection elements of each sub-pattern, to carry out the redirection. sequence! of each of the portions of reflected light received in each of the sub-patterns towards the light detector or the light detectors arranged in a grid or according to another kind of spatial distribution pattern.
  • the light direction means are configured to direct the light beam sequentially!
  • the light direction means comprise, according to an embodiment example, at least one reflective and / or deflectant device disposed between the light beam and the surface to scan, and that it is movable to carry out said alternate direction of the light beam and / or has elements capable of performing the alternate direction of the light beam without the reflective and / or deflecting device moving.
  • the reflective and / or deflectant device is an Electro-optical Modulator or an Acousto-Optical Modulator, which, as is known, includes such elements capable of performing the alternating direction of the light beam without the entire device having to move (so it can be or remain stationary).
  • the number of light redirection elements of each of the sub-patterns is equal to the number of light detectors.
  • the number of light redirection elements of each of the sub-patterns is greater than the number of light detectors, and the system comprises control means associated with the means of redirection of light to carry out the redirection of each of the portions of reflected light received in each of the sub-patterns towards the light detectors, redirecting sub-portions of each portion of reflected light, sequentially, towards the detector or light detectors, by independent control of corresponding sub-groups of light redirection elements of each sub-pattern.
  • the reception and detection means comprise only one light detector, whereby each sub-pattern of light redirection elements includes, for a first variant, only one light redirection element that redirects the portion of reflected light received makes the light detector unique, and, for another more preferred variant, each sub-pattern includes several light redirection elements, each of which redirects to the single light detector, sequentially, a corresponding sub-portion of the portion of reflected light received in the sub-pattern.
  • the system proposed by the first aspect of the invention comprises, according to an exemplary embodiment, control means associated with the light direction means and the light redirection means for carrying out both the direction of the light beam towards the different sub-areas of the surface to be scanned, such as the redirection of each of the portions of light reflected towards the detector or light detectors, in a synchronized manner.
  • each light redirection element is formed by a variable number of light redirection microelements.
  • the determined spatial distribution pattern of light redirection elements is a pattern of light switches, and for other embodiments the determined spatial distribution pattern of light redirection elements comprises a spatial light modulator based on micro mirrors, a liquid crystal display or deformable mirrors.
  • the system of the first aspect of the invention is particularly applicable to the realization of TOF measurements, so that it comprises, in association or as part of the reception and detection means, measuring means for measuring the distance between the system and each point of the surface to be scanned by determining the flight time, thus obtaining a hybrid or intermediate system between the sequential scanning systems and ios based on detector arrays that take advantage of the advantages, in terms of concentration of the make, of the former, and parallel measurement of the latter.
  • the spatial uniformity of the measured TOF image points is guaranteed by the pattern of light redirection elements or light switch pattern, which in a preferred embodiment, is a Texas Instruments DMD or other modulator class Light space based on micro mirrors.
  • the system of the first aspect of the invention is applied to the realization of other kinds of measurements, such as intensity of light, color or photon count.
  • the mentioned measuring means are configured to obtain a three-dimensional image of topographic reconstruction (point cloud) of the surface to be scanned, according to an embodiment example.
  • At least ios light redirection elements and / or the aforementioned reflective element and / or the reflective and / or deflectant device are impiemented, according to an embodiment example, by micro-electromechanical systems (E s).
  • the system proposed by the first aspect of the invention constitutes or forms part of a three-dimensional space measurement system that, for a preferred variant, is applied in the automotive field for the detection and monitoring of objects and obstacles, such as other vehicles or pedestrians and, advantageously, for automatic or supervised vehicle navigation.
  • a second aspect of the invention concerns a method of scanning a surface, comprising: - projecting on a surface to be scanned, at least in reflective part, at least one beam of light with a certain divergence to illuminate a sub-area of the area that constitutes said surface to be scanned, directing it to illuminate different sub-areas of the surface to scan alternately; Y
  • the one proposed by the second aspect of the invention is characterized in that it comprises, prior to said reception and detection:
  • each of the portions of reflected light in at least a part of a respective sub-pattern of a particular spatial distribution pattern in which a plurality of iuz redirection elements are arranged, in a number greater than the number of said light detectors, which is at least one;
  • the method comprises receiving each of the portions of light reflected in the whole of said respective sub-pattern of said determined spatial distribution pattern, and redirecting, sequentially, each of the portions of reflected light received in each of said sub-patterns towards said light detector, which is at least one.
  • said particular spatial distribution pattern constitutes a matrix, and each of said sub-patterns a sub-matrix.
  • said matrix is a grid and said sub-matrix is a sub-grid, and according to another variant the matrix is a grid and the sub-matrix is a linear matrix.
  • the method proposed by the second aspect of the invention comprises redirecting, sequentially, each of the portions of reflected light received in each of the sub-patterns of light redirection elements towards a plurality of light detectors, including said iuz detector, arranged in a grid or according to another spatial distribution pattern.
  • the method proposed by the second aspect of the invention comprises, according to a preferred embodiment, carrying out the scanning of the surface to be scanned using the system of the first aspect of the invention.
  • the method of the second aspect of the The invention comprises determining and varying the degree of divergence of the light beam and / or varying the number of light redirection elements of each sub-pattern, automatically and / or under the direction of a user and / or depending on a series of local and / or remote input signals and / or from internal and / or external detectors, to increase the emission distance, in order to detect a surface at a greater distance, and / or the scanning speed, sacrificing resolution spatial, or to increase spatial resolution, sacrificing received optical power, in order to more accurately scan an object of interest.
  • the method comprises carrying out the variation of the degree of divergence of the light beam and / or the number of light redirection elements of each sub-pattern, on the fly, depending on the circumstances of operation and / or the environment and / or detections of objects made.
  • the method of the second aspect of the invention comprises, according to one embodiment, varying the number of light redirection elements of the sub-pattern or sub-patterns of light redirection elements where the light reflected in a detected object has been received. .
  • the method proposed by the second aspect of the invention comprises using algorithms for detecting and tracking fixed and / or mobile objects for the control of the scanning sequence and the determination of sub- areas to be scanned as occupied areas or to be occupied by one or more objects of interest, implying the redirection sequences of portions of the reflected beam according to said algorithms to implement detection and tracking functions of fixed and / or mobile objects.
  • the method comprises, according to a variant of said embodiment, implementing algorithms for predicting movements (eg, detection and prediction of trajectories, etc.), as well as using images captured by a 2D camera to condition the Execution of object detection and tracking algorithms.
  • algorithms for predicting movements eg, detection and prediction of trajectories, etc.
  • images captured by a 2D camera to condition the Execution of object detection and tracking algorithms.
  • a third aspect of the invention concerns a computer program that includes program instructions executable on a computer to implement at least part of the steps of the method of the second aspect, including the analysis of the output signals of the light detectors, and the variation, through the generation of corresponding control signals, of the degree of divergence of the light beam and the number of active light redirection elements of each sub-pattern.
  • Fig. 1 schematically illustrates part of the system proposed by the first aspect of the invention, for an exemplary embodiment
  • Fig. 2 shows part of the elements of the system proposed by the first aspect of the invention in a scanning situation of a sub-area of the total surface to be scanned, for an exemplary embodiment
  • Fig. 3 shows the same elements illustrated in Fig. 2, but for a situation in which another sub-area of the total surface to be scanned is being scanned, for which the reflective element Mr has been displaced to maintain optical conjugation with the array of light detectors Qd;
  • Fig. 4 is another view analogous to that of Figs. 2 and 3 for a situation in which another sub-area of the total area to be scanned is being scanned; Y
  • Fig. 5 is a view analogous to Fig. 2, but for another embodiment for which the system comprises a single light detector,
  • Fig. 6 is a flow chart representing an impiementation of the method proposed by the second aspect of the invention, for an exemplary embodiment.
  • Figs. 7 to 10 are analogous to those in Figures 2 to 4, but for another exemplary embodiment for which each area SQr forms a matrix of simultaneously activated GM elements;
  • Figure 1 is a flow chart representing an impiementation of the method proposed by the second aspect of the invention, for the impiementation of Figures 7 to 10, keeping the reflective element Mr static; Y
  • Figure 12 is a flow chart similar to that of Figure 11, referring to an impiementation analogous to that of Figures 7 to 10, but where the reflective element Mr is mobile and the flow chart includes the displacement thereof.
  • Fig. 1 part of the system proposed by the first aspect of the invention is illustrated for an exemplary embodiment for which it comprises, arranged in a housing H:
  • - lighting means that include a light source F, generally laser, and a series of optical elements arranged at the output of the light source F (divider of beam and lenses), as well as a PD photodetector for the detection of the pulse emitted by the light source F and the generation of a corresponding detection signal to be used as the start of the time count for a pulsed TOF system.
  • the lighting means are configured and arranged to project on the surface to be scanned S a beam of light Be with a certain divergence to illuminate a sub-area Si of the area constituting the surface to be scanned S;
  • - light direction means associated with the lighting means configured to direct the light beam Be so that it illuminates different sub-areas Si of the surface to be scanned S, alternately, and comprising a reflective Me device and / or deflectant disposed between the beam of light Be and the surface to be scanned S, and which is ruthless by turning, for the illustrated embodiment, with respect to two axes (X and Y) to carry out said alternate direction of the beam of light Be; for another exemplary embodiment, not illustrated, the device Me is ruthless only with respect to an axis, in order to obtain only linear images;
  • reception and detection means configured and arranged to receive and detect, alternately, corresponding portions of light Br, of said beam of light Be, reflected in each of the different sub-areas Si of the surface to be scanned S, wherein said reception and detection means comprise, for the illustrated embodiment example:
  • - light redirection means that include:
  • an array or grid Qr of GM light redirection elements such as a DMD, where GMs are groups of mirrors that are digitally controlled in the DMD, in a number greater than the number of light detectors D, to receive the portions of reflected light Br (in this case through an optical system Li and a prism P of type TIR (acronym for "Total Internal Reflection"), each of them in a respective sub- SQr grid of the Qr grid (see Figs. 2, 3 and 4), and
  • the system has not been illustrated in Figure 1, such as the control means, different kinds of electrical and electronic circuitry, etc. in order for it to have greater clarity and facilitate the understanding of the lighting functions by sub-areas Si and corresponding reception and detection carried out by it.
  • the TDC circuits (acronym for "Time to Digital Converter: Time to Digital Converter) used for the TOF measurement between the signal of the PD and D detector that will ultimately determine the distance measurement have not been represented.
  • Fig. 1 two portions Br of light reflected in the sub-area Si are illustrated, by means of two respective continuous arrow lines that are directed towards two corresponding light redirection elements G of the grid Qr that redirect them to the grid Qd of light detectors D, as well as, in dashed dashed line, a portion of light reflected in the area of the surface Si, which comes from the beam of light Be, which will stop at a GM light redirection element that the redirects towards a light absorbing element A, with e! so that it does not interfere with the signs of interest.
  • a sequential process controls which GMs direct light towards the detectors and which direct the light towards the absorber A.
  • a portion of light reflected in another area of the surface S is also represented in dashed line, and which does not come from the beam of light Be, which goes to a GM light redirection element that redirects it to the light absorber element A, also so as not to interfere with the signals of interest.
  • SiPM detectors (acronym for "Silicon Photomultiplier”: Silicon Photomultipliers) are used for a preferred embodiment, due to their high gain (> 10 6 ), high bandwidth and their ability to detect portions of reflected light Br, in the form of pulses, by means of a photon counting configuration or flank firing configuration, which allows detecting extremely weak light pulses, of the order of dozens of photons / pulse, very far from the ability to ios APD detectors (acronym for "Avalanche Photodiodes”: avalanche photodiodes) or PIN photodiodes of standard TOF units.
  • APD detectors (acronym for "Avalanche Photodiodes”: avalanche photodiodes) or PIN photodiodes of standard TOF units.
  • the system comprises a class of detectors equivalent to SiPM in non-silicon based technologies (for example InGaAs / inP) that allow light detection in the band infrared, preferably at 1550 nm, for ocular safety issues.
  • these detectors in the infrared band would have a sensitivity and gain of the same order as the SiPs, also allowing to detect amounts of light of the order of few tens of photons.
  • SiPMs are solid-state detectors that offer a gain and bandwidth comparable to that of PMTs. They are formed by a matrix of polarized avalanche photodiodes in Geiger mode on the same substrate and under the same polarization voltage. Each of the GM-APDs (acronym for "Geiger-Mode Avalanche Photodiode”: Avalanche photodiodes in Geiger mode) is activated through the absorption of a small amount of photons, obtaining a current proportional to the number of GM at the output. APDs activated, and consequently, to the number of photons received.
  • GM-APDs acronym for "Geiger-Mode Avalanche Photodiode”: Avalanche photodiodes in Geiger mode
  • the total load at its output will be proportional to the number of activated GM-APDs and therefore, will be proportional to the number of photons detected.
  • detectors are used as light detectors, such as photomultiplier tubes, APD (acronym for "Avalanche Photodiode”: Avalanche photodiode), PIN photodiodes, SPADs (acronym for "Single Photon Avalanche Diode”): Single photon avalanche diode), etc. selecting the type of light detector depending on the application.
  • Figs. 2, 3 and 4 illustrates the scanning of three respective sub-areas Si of the surface S by the system and method proposed by the present invention, for an exemplary embodiment, which has been carried out by sequential scanning of the surface S with the light beam Be, starting with the upper left sub-area (Fig. 2) following the zig-zag path indicated by the arrow lines that pass through all the sub-areas Si, represented in Fig. 3 one of the intermediate sub-areas of said path, and ending in the lower right sub-area of the surface S (Fig. 4).
  • the grid of light redirection elements Qr is optically conjugated with the entire surface to be scanned S.
  • Each of said three light redirection elements GM redirects the portions of reflected light Br received towards the reflective element Mr, after passing through the prism P and the optical system Lf, which adopts a position in which the detector grid of light Qd is optically conjugated with the sub-grid SQr, and therefore with the sub-area Si, so that the three portions of reflected light Br are received, maintaining the spatial relationship, in three corresponding light detectors D.
  • MEM mirror devices are used, according to an embodiment, which are mirrors of about 2 or 3 mm in diameter with the ability to rotate around two axes perpendicular to each other, which allows working at high frequencies (up to dozens of KHz) without suffering the inconveniences that another class of conventional reflective elements suffer (vibrations, large sizes or mechanical wear), which allows to obtain without problems scanning speeds that correspond to the image rate per second, of the order of 30 images / s with images of more than 10K points per image.
  • the Mr element allows to maintain the spatial continuity between Qr and Qd allowing to take advantage of the total number of detectors for each SQr region.
  • each region Z has been represented as formed by the same number of GM light redirection elements, in particular four, depending on the embodiment example each of these regions may include a different number of GM elements and / or each GM element can be formed by a different number of micro-mirrors (not illustrated).
  • the number of GMs will vary according to the size and number of micro-mirrors that each group, depending on its configured size (to improve the reception of energy in exchange for sacrificing spatial resolution, or vice versa). It should be noted that the size of each GM will be variable within the limits of Z, that is to say that, at most, a GM will have a size equal to that of the entire surface of a Z region, causing only one GM to fit in it.
  • each sub-grid SQr must contain divisions Z according to the number and shape distribution of the detector grid Qd.
  • a grid of detectors Qd of 3x3 detectors has generated a subdivision of the sub-grid SQr of 3x3 sub-regions Z.
  • two of the Z zones in particular the central zone and the one that occupies the lower right vertex of SQr, have received a portion of reflected light Br only in a single GM of each of these, both having been completely redirected, at one time, to corresponding light detectors D of the grid Qd, one towards the central detector and the other towards the detector that occupies the lower right vertex of Qd.
  • the zone Z located in the upper left vertex of SQr has received two sub-portions of reflected light Br, in two respective GMs, one of which, marked with a continuous line, has been redirected to a corresponding light detector D of the grid Qd, in particular the one located in the upper left vertex thereof, while the other, marked with a dashed line, has been diverted to the absorber element A.
  • the sub-portion of reflected light Br marked with a dashed line is redirected towards the light detector D of the upper left vertex of Qd, and the one marked with a continuous line is diverted to the absorber element A, thus achieving an increase in spatial resolution, since the same light detector D (or pixel of the detector array Qd) receives the portion of light Br received in several GMs, in this case in the two GMs of the Z region of the upper left vertex of Qr, in the form of a sequence of sub-portions.
  • the increase in spatial resolution is representative of a preferred embodiment, and advantageously it is also applied to the rest of regions Z that receive reflected light Br, so that the same detector D receives the portion of light Br received in several GM of each Z region, in the form of a sequence of sub-portions.
  • the GM that during the sequence process! they are not redirecting portions of light Br are diverted to the absorber element A so as not to interfere with the signals of interest.
  • SSDS process (acronym for “Semi-Sequential Digital Scanning”: Semi-sequential digital scanning) is obtained.
  • the SSDS system improves the maximum distance medibie thanks to its higher concentration of energy per unit area. High yields are maintained in scanning speed, spatial resolution or other scanning properties.
  • This improvement in measuring distance is due to the fact that the lighting beam does not need to cover the entire area to be scanned, but allows scanning by sub-regions, being able to concentrate the lighting energy in a smaller region where the points to be measured are located.
  • the use of the Mr element makes it possible to use the entire array of detectors Qd for each SQr region avoiding underutilizing detectors due to optical discontinuities between the surface points and the detection elements D.
  • Fig. 5 illustrates the basic embodiment described in a previous section, in which the system includes only a light detector D, the size of the region Z would occupy the entire sub-grid SQr. Therefore, only a GM element can redirect sub-portions of light from beam Br to detector D simultaneously.
  • the sub-portion marked with a continuous line is directed towards the single light detector D, while the two marked with dashed lines are diverted towards the absorber element A.
  • each of the three sub-portions of reflected light Br will be redirected sequentially towards the single light detector D, while the other two will be they will divert to the absorber element A.
  • the system proposed by the present invention allows to obtain intermediate results between sequential scanning systems and those based on matrix of standard detectors that illuminate the surface completely, achieving a balanced combination of their properties that make it ideal for A wide range of applications.
  • the following table shows guidance values obtained through a prototype of! SSDS system, for TOF measurements, comparing them with standard and fully indicative values of the mentioned systems. It is worth mentioning that the values shown in the table, for cases of sequential scanning and detector matrix are highly variable depending on the properties of the light source, field of view, sensitivity of the detectors, etc. However, they exemplify typical values that approximate a large number of commercial systems based on these technologies.
  • the amount of light detectors in matrix Qd limits the speed of image capture. The more detectors, the faster the measurement speed, as more simultaneous measurements can be carried out.
  • arrays of light detectors Qd of small size eg 4x4 detectors
  • These small matrices can incorporate more complex TOF measurement circuitry than large matrices (eg 128x128 detectors) used in systems based on detector matrices since their integration at the microelectronic level is much simpler.
  • the time counting circuitry can incorporate additional functions, such as those related to measurements in complex environments, impiemented in the form of circuitry optimized for, for example rain, fog, snow, dust and object detection under vegetation.
  • the divergence of the emitted beam Be can be adjusted according to the required performance, and can even be adjusted using some kind of motorized "zoom".
  • intelligent algorithms of detection and tracking of objects based on DD and SSDS are included, to control the scanning sequence so that they implement functions of detection and tracking of objects.
  • the scanning sequence may not be repetitive but may only focus on the objects identified as "objective” and dispense with the rest of the field of vision.
  • motion prediction algorithms are implemented to detect and track intelligently, and the execution of these algorithms may be conditioned by the data captured by a 2D camera external to the device, that is to say the H-housing.
  • the advantage offered by the use of the DMD by the system and the method proposed by the present invention, with respect to other systems, is that it is controlled digitally without mechanical movements, which favors the execution of the complex tracking algorithms and object detection without mechanical movement limitations of the scanning system.
  • the spatial resolution can be increased, by grouping smaller amounts of micro-mirrors in each G, to detect more precisely the objects of interest in order to distinguish, for example, pedestrians, artifacts or other objects in a more precise way.
  • the measurable distance will be less because the energy redirected by each GM will also be smaller.
  • a! augment the spatial resolution of the image you can get more information about each object or detect smaller objects.
  • the increase in resolution can be concentrated in certain areas of the field of vision identified as regions of interest. This process can be configured on the fly.
  • FIR Far infrared image
  • image analysis can lead to false alarms and incorrect interpretations of the scene.
  • a distance measurement can help make traditional detection systems more reliable.
  • FIG. 6 a flowchart depicting an implementation of the method proposed by the second aspect of the invention is illustrated in Fig. 6, for an exemplary embodiment for which it includes the following steps:
  • E5 Emission of the laser pulse.
  • E1 1 Go to the next DMD scan pattern.
  • the scanning patterns of the DMD refer, in general, to the selection of GMs that direct light towards Qd, and the reason if said pattern is changed in step E11, it is, in general, to redirect to Qd another sub-portion of a portion Br, or sub-portions of portions Br, in order to implement the embodiment example explained above in which each portion Br was redirected sequentially in sub-portions to the same light detector, although the pattern change may also have other reasons, such as the one related to the change, on the fly, of the size of each GM, in which case the pattern change It refers to the selection of micro mirrors that make up each GM. In Figs.
  • each sub-pattern SQr takes the form of a linear matrix, formed by a zone Z, each constituted by, in this case, eight GM elements, all the elements G of the linear matrix SQr being activated, which has been indicated by the reference GM ', which is the sum of all activated GMs, that is to say eight.
  • the linear matrices SQr are activated / deactivated sequentially, as can be seen in Figures 7 to 10, to receive the portions of reflected light Br at each moment.
  • the mirror Mr will remain static or inactive, because an optical system is used that keeps the detector D (or array of detectors, for another embodiment not illustrated) at all times with all the grid Qr, that is to say that it is able to focus all the light coming from the grid Qr on the surface of the detector D (or detectors of an array of detectors, if applicable).
  • the activation of all the GM elements of the linear matrix SQr is intended to be used with a very fast scanning system that causes the laser beam Be to move very quickly between the different regions Yes, which would mean that if the GM elements of the linear matrix SQr had to be activated sequentially, they would have to do so at a speed equal to or greater than that of the aforementioned scan, which is not usual by using the elements available according to current technology.
  • Figure 1 illustrates, by means of a flow chart, an implementation of the method proposed by the second aspect of the invention applied to the configuration of Figures 7 to 10, where the flow chart is applied to the use of a static Mr or that it does not need to move, because the detector D is permanently optically conjugated with the entire DMD, ie Qr.
  • the flow chart includes the following stages:
  • F1 initialization.
  • F4 Laser pulse emission.
  • F10 Position Me to direct the beam of light Be towards the next sub-area Si.
  • F13 Configure the DMD with the following DMD scan pattern, that is, deactivate the present SQr area and activate the next one (in this case the immediately lower one).
  • this illustrates, by means of a flow chart, an implementation of the method proposed by the second aspect of the invention, similar to that of Figure 11 but applied to a configuration such as that of Figures 7 to 10 but with the reflective element Mr despiazabie, including the flow chart, the displacement of Mr in order to optically conjugate the detector D with the appropriate QM at each moment, sequentially.
  • the diagram includes the following stages:
  • G4 Laser pulse emission.
  • G5 Start of the time count with the TDC.
  • G7 TDC time count stop.
  • G8 Obtaining distance value.
  • G10 Position Me and Mr to the next position, the first (Me) to direct the beam Be towards the next sub-area Si, and the second (Mr) to optically conjugate detector D with the next GM of SQr.
  • G1 1 Has the TOF scan of all sub-area Si been obtained?
  • G13 Configure the D D with the following scanning pattern of the D D, that is, deactivate the present SQr area and activate the next one (in this case the immediately lower one).

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

El sistema comprende: - medios para iluminar, con un haz de luz (Be), diferentes sub-áreas (Si) de una superficie (S), de manera alternada, y - medios para recibir y detectar las porciones de luz reflejada (Br) en las mismas, que incluyen: - uno o más detectores de luz (D); y - unos medios de redirección de luz que incluyen patrón de distribución espacial determinado (Qr) de elementos de redirección de luz (GM), que reciben las porciones de luz reflejada (Br) y las redirigen, de manera secuencial, hacia el detector o detectores de luz (D). El método está adaptado para realizar las funciones llevadas a cabo por el sistema de la invención. El programa de ordenador implementa el método de la invención.

Description

imp!ementa eí método
Sector de la técnica
La presente invención concierne en genera!, en un primer aspecto, a un sistema para escanear una superficie, que comprende medios para iluminar diferentes regiones de una superficie a escanear y medios para recibir y detectar las porciones de luz reflejada en las mismas que incluyen uno o más detectores de luz, y más en particular a un sistema que permite utilizar ia resolución espacial tota! de! detector o detectores de luz para cada una de las regiones de la superficie a escanear.
Un segundo aspecto de la invención concierne a un método adaptado para realizar las funciones llevadas a cabo por el sistema del primer aspecto.
Un tercer aspecto de la invención concierne a un programa de ordenador que implementa el método del segundo aspecto.
Estado de la técnica anterior
Los sistemas de medida TOF (acrónimo de "Time Of Fiighf : Tiempo de vuelo), LIDAR (acrónimo de "Light detection and ranging") o LADAR (acrónimo de "Láser detection and ranging") son sistemas que permiten la medida de distancias mediante la utilización de una fuente de luz que ilumina ios puntos bajo medida.
La distancia medíble en sistemas TOF está influenciada por algunos factores no controlados que dependen del entorno y no de la técnica de TOF, como por ejemplo la intensidad de ia iluminación de fondo, las condiciones meteorológicas (niebla, polvo, lluvia, etc.) o la refiectancia del objeto.
Por otro lado, hay otros aspectos que son directamente dependientes de la tecnología y la arquitectura del dispositivo de TOF y tienen un papel principal en la determinación de la distancia medible de cada sistema. De entre dichos aspectos, los más significativos podrían ser la potencia de la fuente de iluminación, ia divergencia del haz de luz, la eficiencia del sistema de escaneado de puntos, ia sensibilidad de los foto- detectores, la atenuación del sistema óptico o la calidad del filtrado de la luz de fondo.
Los principios físicos de los sistemas TOF, LIDAR o LADAR constatan que, expresado de forma muy genérica, ia capacidad de medir un punto ubicado a una cierta distancia está relacionada con la capacidad de iluminarlo con potencia óptica suficiente para detectar el haz de luz reflejada en el mismo en un detector de luz. Este principio tiene una influencia determinante en la distancia medible del dispositivo y sobre el se han diseñado diferentes técnicas de escaneo para realizar mediciones de imágenes TOF, Existen dispositivos TOF que pueden medir distancias de hasta docenas de kilómetros y otros se limitan a unos pocos metros. Normalmente, el haz iluminador en ios sistemas de larga distancia tiene poca divergencia. Estos suelen utilizar haces de luz láser altamente colimados con una divergencia y una sección de haz muy reducida. Con esto se consigue que la concentración de energía por unidad de superficie en el objeto sea mucho mayor si se compara con ios sistemas que utilizan fuentes de luz divergentes. Los sistemas que utilizan fuentes de luz divergentes iluminan áreas mayores para medir de forma simultánea un conjunto de puntos en lugar de uno solo.
Para realizar mediciones de imagen tridimensional mediante técnicas de TOF, LIDAR o LADAR, es necesario medir un conjunto de puntos que conformen una imagen tridimensional (o nube de puntos) y para ello es necesario iluminar la superficie que corresponde a la imagen que se pretende medir. Las tecnologías que permiten medir de forma controlada un conjunto de puntos para formar imágenes tridimensionales se dividen básicamente en dos:
- Sistemas de escaneado secuencial.
- Sistemas basados en matrices de detectores.
Los sistemas de escaneado secuencia! forman la imagen 3D midiendo puntos únicos de forma secuencial. La secuencia de iluminación es implementada normalmente mediante sistemas ópticos tales como espejos galvanométricos, E S, deflectores acusto-ópticos, etc .. Dada una potencia óptica concreta, los sistemas de escaneo secuencial concentran dicha potencia en un punto de tamaño reducido consiguiendo medir distancias mayores en comparación con los sistemas que expanden el haz. La colimación y el pequeño tamaño del punto iluminado hace que la concentración de energía por unidad de superficie sea mas elevada que en el caso de fuentes de luz divergentes. Esta alta concentración de energía por unidad de superficie hace que la luz reflejada por el objeto sea mayor y en consecuencia, el detector que recibe la luz procedente de ese punto también reciba una cantidad de luz mayor. Tendiendo en cuenta que uno de los factores principales que fija la limitación de capacidad de medida en distancia en sistemas LIDAR es la capacidad de detectar haces ópticos reflejadas de baja potencia, el efecto de concentración de energía de ios sistemas de escaneo secuencial consigue maximizar la distancia medible gracias ai aprovechamiento de toda la potencia óptica disponible para un solo punto de medida. A mayor concentración de energía por unidad de superficie, más flujo de energía es reflejado en el punto de medida y por consiguiente, más fácil es la detección. Si bien los sistemas de escaneo secuencia! permiten obtener una alta resolución espacial en la imagen tridimensional, al realizarse la medida punto a punto, hace que para conseguir imágenes de alta resolución espacial el tiempo de medida total sea elevado. Esto limita la cantidad de imágenes por segundo que pueden medir. A nivel de ejemplo, se pueden citar equipos comerciales basados en esta tecnología como los escáneres láser de Riegl ( lKB^ñ¾5áD ͧ ^onE). MDL ( ^Vw^^ 0 Faro ( ^J ^ú&JM^9IB)-
Por otro lado, existen ios sistemas basados en matrices de detectores. Estos utilizan un conjunto de detectores dispuestos en cuadrícula en la que cada uno de ellos tiene capacidad de medida TOF, ya sea basada en TOF pulsado, TOF-F CW o TOF- "Range Gated". En estos sistemas, los puntos de la imagen tridimensional son medidos de forma simultánea a través de un conjunto de detectores. Es decir, de forma sincronizada dichos detectores miden un conjunto de valores de distancia equivalente ai número de detectores de la matriz y, a la vez, ese conjunto de puntos medidos conforma una imagen tridimensional. La principal ventaja de estos sistemas reside en que se realizan multitud de medidas de forma simultánea permitiendo medir una imagen completa a través de una única acción de medida TOF. Por ejemplo, en el caso de TOF pulsado, se podrá medir una imagen tridimensional completa a través de un solo pulso de láser (no obstante, algunos equipos utilizan mas de un pulso para incrementar la calidad de la imagen a través de integración de medida sucesivas).
Una condición necesaria para realizar medidas simultaneas a través de una matriz de detectores (de forma parcial o total, es decir, utilizando la totalidad de la matriz o solo una parte de ella) implica iluminar de forma simultanea todos esos puntos en el objeto que serán medidos por el grupo de detectores. Esto implica que la potencia óptica se divide entre todos los puntos. Por lo tanto, dada una fuente de iluminación de una energía concreta, la concentración de energía por unidad de superficie será repartida entre todos los puntos de medida haciendo que la energía reflejada por cada punto individual sea inversamente proporcional ai número de puntos medidos. A nivel de ejemplo se puede citar ios sistemas "Flash LADAR" de la compañía Advanced Scientific Concepts (http:/AAAAW.advancedscientifíccon(^pts. 3m/ , las cámaras TOF pulsadas de Odos Imaging
Figure imgf000005_0001
así como la gran mayoría de cámaras TOF basadas en medida TOF-FMCW (Time-of-Flight Frequency odulated Continuous Waveform), por ejemplo las cámaras de Mesa imaging (w ^ E®!»^ PM D
Figure imgf000005_0002
La principal ventaja de este sistema respecto a los sistemas de escaneo secuencial reside en que la medida de puntos se hace en paralelo consiguiendo medir un número elevado de puntos para cada acción de medida TOF. En cambio, ios sistemas de escaneo secuencia! realizan una única medida por cada acción de medida TOF. De forma genérica se puede afirmar que, considerando una fuente de iluminación de potencia determinada y compartida entre ios dos sistemas, la cantidad de imágenes tridimensionales medidas será mayor para los sistemas basados en matrices de detectores que en los sistemas de medida secuencia! gracias al efecto de medidas en paralelo. No obstante, dado que la energía de iluminación es finita y, en este caso comparativo, igual entre los dos sistemas, la distancia medida será mayor en el sistema de escaneo secuencial que en el de matriz de detectores dado que la energía utilizada para el punto de media será mayor debido a que toda la potencia de la fuente se concentra en un mismo punto de media.
En un punto intermedio, existen equipos que están compuestos de conjuntos de detectores que miden de forma simultánea y que a la vez, realizan un escaneo secuencial. Esta técnica normalmente se utiliza para medir superficies de mayor tamaño. A modo de ejemplo, se puede destacar el sistema de la compañía Velodyne Lidar
Figure imgf000006_0001
Este sistema realiza medidas simultáneas a través de un conjunto de detectores a la vez que un cabezal mecánico giratorio escanea circularmente en un ángulo de 360° para conseguir un campo de visión circular. Se puede considerar que este tipo de sistemas concentran características de los dos métodos genéricos descritos anteriormente ya que son capaces de medir un conjunto de puntos de forma simultanea a la vez que realiza un escaneado secuencial para medir la totalidad de los puntos que conforman la imagen tridimensional final.
En la mayoría de los sistemas basados en matriz de detectores, la resolución espacial de la imagen tridimensional esta fijada por el numero de detectores de la matriz de detectores. No obstante, existe un sistema que permite obtener una resolución espacial en la imagen mayor a la de la matriz de detectores. Dicho sistema TOF se encuentra descrito en la solicitud internacional WO2012123809A1 , y permite aumentar la resolución espacial de la imagen tridimensional gracias a la inclusión y utilización de una disposición en cuadrícula de interruptores de luz o matriz de interruptores de luz (tai como un modulador espacial de luz basado en micro espejos, como es el caso de un D D: "Digital icromirror Device": Dispositivo digital de micro espejos), en un número mayor que detectores de luz, que redirecciona secuencialmente hacia la matriz de detectores de luz las diferentes porciones de luz reflejadas en la superficie a escanear. Los inventores se refieren a esa tecnología como "Escaneo Digital" y se considera que esta ubicada en un paso intermedio entre los sistemas basados en matriz de detectores y escaneo secuencia! ya que implementa los dos métodos. No obstante, dicho escaneo es controlado de forma digital y no intervienen partes móviles. Uno de los usos del sistema descrito en la solicitud internacional WO20121238G9A1 es la medida de imágenes tridimensionales mediante la técnica TOF o tiempo de vuelo. Una fuente de luz ilumina la superficie que se requiere medir. El DMD recibe dicho haz a través de un grupo óptico y de forma secuencial redirige el haz recibido hacia un detector o matriz de detectores que tienen capacidad de medida TOF. Dado a que el DMD está ópticamente conjugado con el objeto bajo medida, este es capaz de recibir de forma controlada la luz que proviene de cada punto de medida. Cada interruptor de luz esta conjugado con un punto de la superficie que se va a medir, por lo tanto, cada interruptor de luz es capaz de rechazar o dirigir dicha porción del haz total al sistema de detectores. Dado que el DMD o matriz de interruptores y el detector o matriz de detectores están ópticamente conjugados, el DMD es capaz de dirigir dichas porciones del haz, que a la vez corresponden a la luz reflejada por los puntos del objeto que se quieren medir, al conjunto de detectores de forma controlada. A través de un proceso secuencial, el DMD irá recibiendo y dirigiendo la luz reflejada en el objeto hacia el detector o grupo de detectores de manera que, el DMD enviará de forma simultánea tantas porciones del haz como detectores hay en dicha matriz de detectores TOF. Es decir, se realizaran un número de medidas TOF simultáneas equivalente el número de detectores. El proceso secuencial de medida consiste en dirigir de forma controlada la totalidad de los puntos de la superficie que el DMD esta ópticamente configurado para recibir. La imagen tridimensional resultante tendrá tantos puntos medidos como interruptores de luz tiene el DMD. Considerando que el DMD tiene un número mucho mayor de interruptores de luz que la matriz de detectores, la imagen resultante tendrá una resolución espacial mayor que el número de detectores. Esta característica hace que a través de un grupo de detectores reducido, y a su vez técnicamente menos compiejo y más económico que uno con gran cantidad de detectores, se puedan medir imágenes TOF de alta resolución espacial y con funcionalidades añadidas.
Una de las características de este sistema es que para cada acción de medida TOF es necesario iluminar la totalidad de la superficie que se pretende medir. Se entiende como la totalidad de la superficie como todo el conjunto de puntos que conformarán la imagen tridimensional que resultará de la ejecución del proceso secuencial de medida. Tal y como sucede en los sistemas basados en matrices de detectores descritos anteriormente, este sistema ilumina la totalidad de la superficie a escanear haciendo que la potencia óptica disponible se reparta entre todos ios puntos de la superficie en cada acción de medida TOF y solo un grupo reducido de puntos (equivalente al numero de detectores) serán medidos. Cuantos más detectores contiene la matriz de detectores, más energía de iluminación es aprovechada dado que el número de punios medidos simultáneamente es mayor y el número de puntos rechazados es menor. Esto repercute en ¡a energía lumínica que recibe cada punto de la superficie y, por consiguiente, perjudica la distancia de detección dado que la energía de iluminación es dividida entre todos los puntos de la superficie.
Los sistemas TOF de medición de imagen tridimensional tienen multitud de aplicaciones y mercados donde estos sistemas son de utilidad. Solo a nivel de ejemplo, una aplicación de interés para la que resultaría interesante utilizar tales sistemas pertenece ai campo de la automoción, en particular de ios sistemas de supervisión, detección y reconocimiento de objetos del entorno de un automóvil con el fin de obtener información del espacio donde este transita con fines de segundad, navegación o inteligencia artificial en la conducción.
Para tal aplicación, existen diversos requerimientos de rendimiento fundamentales que el sistema debe satisfacer para garantizar su utilidad en dicho contexto. A continuación se especifican algunos de ellos solo a modo de ejemplo:
Funcionamiento en un entorno exterior en condiciones de gran cantidad de iluminación de fondo y luz diurna.
Distancia medibie hasta 100 metros.
- Ángulo de visión: horizontal ±20°, vertical ±5°.
Medida de imágenes a tiempo real (>10Hz).
Considerando una distancia de 100 m con dichos ángulos de visión, la superficie a medir tiene de forma aproximada unos 750m2, Un sistema TOF basado en matriz de detectores deberá iluminar tal superficie de forma completa en cada acción de medida TOF. Teniendo en cuenta los parámetros radiometritos que intervienen en el proceso de iluminación, reflexión y detección de dicho haz, considerando también la cantidad de luz de fondo y ios parámetros de ios detectores, se llega a la conclusión de que la energía de iluminación necesaria para poder ser detectada en la matriz de detectores es potencialmente muy elevada. Un sistema de escaneo secuencial requeriría menos energía de iluminación pero su rendimiento en cuanto a velocidad de medida también seria limitado pudiendo presentar limitaciones en medición de objetos móviles.
Adicionalmente, la ley del cuadrado inverso establece que la intensidad luminosa en una superficie que recibe luz desde una fuente de luz puntual es inversamente proporcional al cuadrado de la distancia entre la fuente de luz y la superficie y proporcional ai coseno entre el haz de luz y la normal a la superficie. Esto significa que la intensidad de iluminación sobre un área determinada decrecerá con la distancia según un factor cuadrático. Cuando una superficie que es iluminada con una fuente de luz se aleja de la fuente de luz, la intensidad de iluminación de la superficie disminuye, disminución la cual se produce mucho más rápido que como se aleja la superficie de la fuente de luz. Por ejemplo, si la iluminación sobre una superficie es de 40 lux a una distancia de 0,5 m de la fuente de luz, la iluminación decrece hasta 10 lux a una distancia de 1 m. Este fenómeno influye de forma determinante en la distancia medible en un sistema de TOF. En los sistemas basados en matrices de detectores, este efecto puede ser aceptable para distancias cortas (10 a 15 m.) donde la intensidad de iluminación por m2 permanece alta, pero cuando se requiere medición de distancias medio-largas (mayores de 15 m.) y grandes áreas, esta fenómeno se convierte en un problema, ya que las fuentes de iluminación tienen una energía limitada. Según el conocimiento de los presentes inventores, este es un factor realmente limitativo en términos de distancia medida en los sistemas basados en matrices de detectores.
Por ello, y en base a una serie de estudios basados en simulaciones de diferentes modelos radiométricos realizados por los presentes inventores, puede decirse que la utilización de los sistemas basados en matrices de detectores para aplicaciones en el campo de la automoción, donde se requieren mediciones de al menos 100 metros, resulta claramente inviabie, debido que ello implicaría el uso de una fuente láser de una potencia enorme, las cuales son muy caras, tienen un alto consumo y son incompatibles con las reglas de seguridad para los ojos. Las cámaras TOF comerciales mencionadas anteriormente trabajan bien para ciertas aplicaciones (entornos interiores y para rangos de distancias cortas) pero presentan serias limitaciones en entornos exteriores con luz diurna y para distancias medias-largas. Debe hacerse notar que la mayoría de ellas utilizan LEDs como fuente de luz cuya potencia es sustancialmente menor en comparación de las fuentes láser usadas en los sistemas de escaneo secuencial.
Lo anterior es extrapoiabie a muchos otros campos de aplicación diferentes al de la automoción, todos ellos bajo ia comentada influencia de la ley del cuadrado inverso, aunque cada campo de aplicación tendrá sus restricciones particulares relativas a entorno de funcionamiento, distancias de medida, ángulos de visión, etc.
En el presente, según el conocimiento de ios inventores, no existe ningún dispositivo TOF que cumpla todos los requerimientos aquí comentados para ser aplicado de forma masiva en el campo de la automoción cumpliendo incluso requerimientos de precio.
Para tal aplicación en el campo de ia automoción, y para muchas otras aplicaciones de interés, resultaría interesante proporcionar un sistema que combinase las ventajas de los dos métodos de generación de imágenes 3D en TOF, las del escaneo secuencia! y las de ios sistemas basados en matrices de detectores. Su objetivo seria realizar medidas sobre objetos situados a una distancia mayor que la cubierta por los sistemas basados en matrices de detectores, con una buena resolución espacial, una velocidad de medida mayor que los sistemas de escaneo secuencia! y, utilizando fuentes de luz de potencia reducida.
Por la solicitud US20120249999A1 se conoce uno de tales sistemas combinados, ya que ésta propone combinar un sistema "Flash LADAR" con uno de escaneado láser, con el fin de utilizar láseres de menor potencia si no se requiere medir el campo de visión completo. En este sistema, el componente "Flash LADAR" mide la distancia ai objeto iluminado mediante TOF y el sistema de escaneo ilumina de forma selectiva dicho objeto. Los inventores describen una serie de aplicaciones como la detección y seguimiento de objetos estáticos y/o móviles, sistemas para navegación o anticolisión basados siempre en la tecnología "Flash LADAR" patentada también por ios mismos inventores.
Mediante el sistema propuesto por US20120249999A1 se proyecta un haz de luz láser sobre una sub-área (objeto) a detectar contenido dentro del campo de visión, con una divergencia determinada para que se produzca una medida simultánea de todo dicha sub-área, que incluya uno solo o un pequeño grupo de píxeies, es decir, que se utiliza una divergencia mayor que la de ios sistemas de escaneo secuencia! y menor que la de los sistemas basados en matriz de detectores.
Para dirigir el láser hacia la sub-área a escanear se utiliza un espejo de un sistema galvanométrico (por ejemplo tipo MEMs), por lo que puede decirse que el sistema de US20120249999A1 es realmente una combinación de los dos sistemas TOF descritos anteriormente.
Se indica que en el sistema propuesto en US20120249999A1 , el haz de iluminación puede ser variado para que ilumine la totalidad del campo de visión del sistema Flash LADAR (todos los pixeles de la matriz de detectores) o solo parcialmente (uno o varios pixeles de la matriz de detectores) dependiendo de la aplicación.
En el sistema de US20120249999A1 la detección es realizada con una matriz de detectores de luz cuya resolución total está adaptada ai área total de la superficie o escena a escanear, por lo que cuando iluminan la mencionada sub-área se obtiene una resolución espacial menor, es decir, si solamente iluminan el 10% del área total, solamente se iluminarán, es decir, recibirán luz reflejada, un 10% de los píxeies de la matriz de detectores de luz, por lo que se obtendrá una resolución espacial de solamente el 10% de la resolución total de la matriz, lo cual hace que tai sistema ofrezca unos resultados bastante pobres en términos de resolución espacial. Dicho de otra forma, los detectores de la matriz que están ópticamente conjugados con ios pixeles de las sub-áreas que no están siendo iluminadas no podrán ser empleados para la medida TOF, haciendo que esta infrautilizacion del conjunto de detectores de la matriz repercuta negativamente en la resolución espacial de la imagen TOF en comparación con el caso de utilizar una fuente de luz que ilumina completamente el campo de visión de la matriz de detectores donde si que la totalidad de los detectores es empleada.
Explicación de la invención
Parece necesario ofrecer una alternativa ai estado de la técnica que supere las lagunas halladas en el mismo, y en particular que proporcione una solución a los problemas de los que adolece el sistema propuesto en US20120249999A1 , en términos de resolución espacial.
Con tal fin, la presente invención concierne, en un primer aspecto, a un sistema para escanear una superficie, que comprende:
- unos medios de iluminación configurados y dispuestos para proyectar sobre una superficie a escanear al menos un haz de luz con una divergencia determinada para iluminar una sub-área del área que constituye dicha superficie a escanear, la cual es al menos en parte reflectante;
- unos medios de dirección de luz asociados a dichos medios de iluminación configurados para dirigir dicho haz de luz para que ilumine diferentes sub-áreas de la superficie a escanear, de manera alternada; y
- unos medios de recepción y detección configurados y dispuestos para recibir y detectar, de manera alternada, correspondientes porciones de luz, de dicho haz de luz, reflejadas en cada una de dichas diferentes sub-áreas de la superficie a escanear, donde dichos medios de recepción y detección comprenden uno o más detectores de luz.
A diferencia de las propuestas conocidas, el sistema propuesto por el primer aspecto de la invención se caracteriza porque:
- los medios de recepción y detección comprenden unos medios de redirección de luz que incluyen una pluralidad de elementos de redirección de luz dispuestos según un patrón de distribución espacial determinado, en un número mayor que el número de dichos detectores de luz, que es al menos uno, y configurados para recibir las porciones de luz reflejada, cada una de ellas en al menos una parte de un respectivo sub-patrón de dicho patrón;
- y porque los medios de redirección de luz están configurados y dispuestos para redirigir, de manera secuencial, cada una de las porciones de luz reflejada recibida en al menos dicha parte o en la totalidad de cada uno de dichos sub-patrones hacia dicho detector de luz, que es al menos uno.
Según un ejemplo de realización, ios medios de redirección de luz están configurados y dispuestos para recibir cada una de las porciones de iuz reflejada en la totalidad de dicho respectivo sub-patrón de dicho patrón de distribución espacial determinado, y para redirigir, de manera secuencial, cada una de las porciones de luz reflejada recibida en cada uno de dichos sub-patrones hacia dicho detector de luz, que es al menos uno.
Para un ejemplo de realización, dicho patrón de distribución espacial determinado constituye una matriz, y cada uno de dichos sub-patrones una sub-matriz.
Según una variante de dicho ejemplo de realización, dicha matriz es una cuadrícula y dicha sub-matriz es una sub-cuadrícula o una matriz lineal.
Según un ejemplo de realización preferido, el sistema comprende una pluralidad de detectores de luz, incluyendo a dicho detector de luz, dispuestos en cuadrícula o según otra ciase de patrón de distribución espacial, estando ios medios de redirección de iuz configurados y dispuestos para redirigir, de manera secuencia!, cada una de las porciones de luz reflejada recibida en cada uno de los sub-patrones de elementos de redirección de luz hacia los detectores de iuz dispuestos en cuadrícula o según otra clase de patrón de distribución espacial.
Aunque en la mayor parte de la presente descripción se hace referencia, sobre todo, a la disposición en cuadrícula de los detectores de luz, para otros ejemplos de realización la pluralidad de detectores de luz son unos detectores discretos que no están dispuestos en cuadrícula, es decir no forman una cuadrícula uniforme. Sirva la descripción siguiente hecha (en éste y en apartados subsiguientes) con respecto a la cuadrícula de detectores de luz también como válida para estos ejemplos de realización para ios que éstos no forman una cuadrícula uniforme.
De acuerdo con un ejemplo de realización, ios medios de redirección de iuz comprenden además como mínimo un elemento reflectante dispuesto entre el patrón de distribución espacial determinado de elementos de redirección de luz y el detector de luz o la cuadrícula u otra ciase de patrón de distribución espacial de detectores de luz, que es despiazable para colaborar con los elementos de redirección de iuz para llevar a cabo dicha redirección secuencia! de cada una de las porciones de iuz reflejada recibida en cada uno de los sub-patrones hacia el detector de luz o los detectores de luz dispuestos en cuadrícula o según otra clase de patrón de distribución espacial, mediante la realización de unas respectivas conjugaciones ópticas secuenciales de las porciones de iuz reflejada recibida en cada uno de ios sub-patrones con el detector de iuz o ios detectores de luz dispuestos en cuadrícula o según otra clase de patrón de distribución espacial.
Según un ejemplo de realización alternativo, los medios de redirección de iuz comprenden a! menos un elemento reflectante (estático o que no es necesario mover) y un sistema óptico dispuestos entre el patrón de distribución espacial determinado de elementos de redirección de luz y el detector de luz o la cuadrícula u otra clase de patrón de distribución espacial de detectores de luz, donde dicho sistema óptico está configurado y dispuesto para, permaneciendo estático el elemento reflectante, conjugar ópticamente en todo momento al detector de luz o la cuadrícula u otra clase de patrón de distribución espacial de detectores de luz con todo el patrón de distribución espacial determinado de elementos de redirección de luz.
Alternativamente al ejemplo de realización descrito en el párrafo anterior, es decir el referido a la inclusión de un elemento reflectante estático o que no es necesario mover, según otro ejemplo de realización los medios de redirección de luz no comprenden ningún elemento reflectante, incluyendo en su lugar un elemento óptico, tai como una lente, o sin incluir ningún elemento sustitutorio.
Para un ejemplo de realización, el sistema del primer aspecto de la invención comprende unos medios de control de los elementos de redirección de luz que los controlan para activar secuenciaimente los elementos de redirección de luz de cada sub- patrón, para llevar a cabo la redirección secuencia! de cada una de las porciones de luz reflejada recibida en cada uno de los sub-patrones hacia el detector de luz o los detectores de luz dispuestos en cuadrícula o según otra ciase de patrón de distribución espacial.
Para un ejemplo de realización preferido, ios medios de dirección de luz están configurados para dirigir el haz de luz de manera secuencia!.
Con el fin de llevar a cabo la mencionada dirección alternada del haz de luz, los medios de dirección de luz comprenden, según un ejemplo de realización, como mínimo un dispositivo reflectante y/o deflectante dispuesto entre el haz de luz y !a superficie a escanear, y que es desplazable para llevar a cabo dicha dirección alternada del haz de luz y/o dispone de unos elementos capaces de realizar la dirección alternada del haz de luz sin que el dispositivo reflectante y/o deflectante se desplace. Para este último caso, según unos ejemplos de realización, el dispositivo reflectante y/o deflectante es un Modulador Electro-óptico o un Modulador Acusto-óptico, que, como es conocido, incluyen tales elementos capaces de realizar la dirección alternada del haz de luz sin que todo el dispositivo tenga que desplazarse (por lo que éste puede ser o permanecer estacionario).
Para un ejemplo de realización, el número de elementos de redirección de luz de cada uno de los sub-patrones es igual ai número de detectores de luz.
En cambio, para otro ejemplo de realización, en este caso preferido ya que permite aumentar aún más ¡a resolución espacial de la imagen tridimensional, el número de elementos de redirección de luz de cada uno de los sub-patrones es superior ai número de detectores de luz, y el sistema comprende unos medios de control asociados a los medios de redirección de luz para llevar a cabo la redirección de cada una de las porciones de luz reflejada recibida en cada uno de los sub-patrones hacia los detectores de luz, redirigiendo sub-porciones de cada porción de luz reflejada, de manera secuencial, hacia el detector o detectores de luz, mediante el control independiente de correspondientes sub-grupos de elementos de redirección de luz de cada sub-patrón.
Para un ejemplo de realización más básico, los medios de recepción y detección comprenden solamente un detector de luz, por lo que cada sub-patrón de elementos de redirección de luz incluye, para una primera variante, solamente un elemento de redirección de luz que redirecciona la porción de luz reflejada recibida haca el detector de luz único, y, para otra variante más preferida, cada sub-patrón incluye varios elementos de redirección de luz, cada uno de los cuales redirecciona hacia el detector de luz único, de manera secuencial, una correspondiente sub-porción de la porción de luz reflejada recibida en el sub-patrón.
El sistema propuesto por el primer aspecto de la invención comprende, según un ejemplo de realización, unos medios de control asociados a los medios de dirección de luz y a los medios de redirección de luz para llevar a cabo tanto la dirección del haz de luz hacia las diferentes sub-áreas de la superficie a escanear como la redirección de cada una de las porciones de luz reflejada hacia el detector o detectores de luz, de manera sincronizada.
Según una realización, cada elemento de redirección de luz está formado por un número variable de microelementos de redirección de luz.
Para un ejemplo de realización, el patrón de distribución espacial determinado de elementos de redirección de luz es un patrón de interruptores de luz, y para otros ejemplos de realización el patrón de distribución espacial determinado de elementos de redirección de luz comprende un modulador espacial de luz basado en micro espejos, una pantalla de cristal líquido o unos espejos deformabies.
Para un ejemplo de realización preferido, el sistema del primer aspecto de la invención es particularmente aplicable a la realización de medidas TOF, por lo que comprende, en asociación o como parte de ios medios de recepción y detección, unos medios de medida para medir la distancia entre el sistema y cada punto de la superficie a escanear mediante la determinación del tiempo de vuelo, obteniéndose así un sistema híbrido o intermedio entre ios sistemas de escaneado secuencial y ios basados en matrices de detectores que aprovecha las ventajas, en cuanto a concentración del haz, de los primeros, y la toma de medidas en paralelo de los segundos. La uniformidad espacial de ¡os puntos de ¡a imagen TOF medida es garantizada por el patrón de elementos de redirección de luz o patrón de interruptores de luz, que en un ejemplo de realización preferido, es un DMD de Texas Instruments u otra clase de modulador espacial de luz basado en micro espejos.
Para otros ejemplos de realización, el sistema del primer aspecto de la invención está aplicado a la realización de otra clase de medidas, tales como de intensidad de luz, de color o de conteo de fotones.
Los mencionados medios de medida están configurados para obtener una imagen tridimensional de reconstrucción topográfica (nube de puntos) de la superficie a escanear, de acuerdo con un ejemplo de realización.
Como mínimo ios elementos de redirección de luz y/o el mencionado elemento reflectante y/o el dispositivo reflectante y/o deflectante están impiementados, según un ejemplo de realización, mediante sistemas micro-electromecánicos ( E s).
Según un ejemplo de realización, el sistema propuesto por el primer aspecto de ¡a invención constituye o forma parte de un sistema de medida de espacio tridimensional que, para una variante preferida está aplicado en el campo de ¡a automoción para la detección y seguimiento de objetos y obstáculos, tales como otros vehículos o peatones y, ventajosamente, para la navegación automática o supervisada de vehículos.
Otras aplicaciones de interés del sistema propuesto por el primer aspecto de la invención son las incluidas en la siguiente lista, no exhaustiva:
- Video vigilancia inteligente.
- Control de zonas fronterizas.
- Visión tridimensional en sistemas de seguridad.
- Vehículos auto-guiados.
- Vídeo multimedia 3D.
- Detección y seguimiento de objetos.
- Asistencia y seguridad en ¡a conducción.
- Sistemas de transporte inteligentes.
- Detección bajo follaje.
- Mapeado.
- Visión artificial en robótica.
Un segundo aspecto de ¡a invención concierne a un método para escanear una superficie, que comprende: - proyectar sobre una superficie a escanear, al menos en parte reflectante, al menos un haz de luz con una divergencia determinada para iluminar una sub-área del área que constituye dicha superficie a escanear, dirigiéndolo para que ilumine diferentes sub-áreas de la superficie a escanear, de manera alternada; y
- recibir y detectar en al menos un detector de luz, de manera alternada, correspondientes porciones de luz, de dicho haz de iuz, reflejadas en cada una de dichas diferentes sub-áreas de la superficie a escanear.
A diferencia de ios métodos conocidos en el estado de la técnica, el propuesto por el segundo aspecto de la invención se caracteriza porque comprende, de manera previa a dicha recepción y detección:
- recibir, cada una de las porciones de luz reflejada, en al menos una parte de un respectivo sub-patrón de un patrón de distribución espacial determinado en el que se encuentran dispuestos una pluralidad de elementos de redirección de iuz, en un número mayor que el número de dichos detectores de luz, que es al menos uno; y
- redirigir, de manera secuencia!, cada una de las porciones de luz reflejada recibida en ai menos dicha parte de cada uno de dichos sub-patrones hacia dicho detector de luz, que es al menos uno.
Para un ejemplo de realización, el método comprende recibir cada una de las porciones de luz reflejada en la totalidad de dicho respectivo sub-patrón de dicho patrón de distribución espacial determinado, y redirigir, de manera secuencial, cada una de las porciones de luz reflejada recibida en cada uno de dichos sub-patrones hacia dicho detector de luz, que es al menos uno.
Para un ejemplo de realización, dicho patrón de distribución espacial determinado constituye una matriz, y cada uno de dichos sub-patrones una sub-matriz.
Según una variante de dicho ejemplo de realización dicha matriz es una cuadrícula y dicha sub-matriz es una sub-cuadrícula, y según otra variante la matriz es una cuadrícula y la sub-matriz es una matriz lineal.
De acuerdo con un ejemplo de realización, el método propuesto por el segundo aspecto de la invención comprende redirigir, de manera secuencial, cada una de las porciones de luz reflejada recibida en cada uno de los sub-patrones de elementos de redirección de luz hacia una pluralidad de detectores de luz, incluyendo a dicho detector de iuz, dispuestos en cuadrícula o según otro patrón de distribución espacial.
El método propuesto por el segundo aspecto de la invención comprende, según un ejemplo de realización preferido, llevar a cabo el escaneado de la superficie a escanear utilizando el sistema del primer aspecto de la invención.
Según otro ejemplo de realización, el método del segundo aspecto de la invención comprende determinar y variar el grado de la divergencia del haz de luz y/o variar el número de elementos de redirección de luz de cada sub-patrón, de manera automática y/o bajo indicación de un usuario y/o en función de una serie de señales de entrada locales y/o remotas y/o provenientes de detectores internos y/o externos, para aumentar la distancia de emisión, con el fin de detectar una superficie a mayor distancia, y/o la velocidad de escaneado, sacrificando resolución espacial, o para aumentar la resolución espacial, sacrificando potencia óptica recibida, con el fin de escanear con mayor precisión un objeto de interés.
Según un ejemplo de realización, el método comprende llevar a cabo la variación del grado de la divergencia del haz de luz y/o del número de elementos de redirección de luz de cada sub-patrón, sobre la marcha, en función de las circunstancias de funcionamiento y/o del entorno y/o de unas detecciones de objetos realizadas.
El método del segundo aspecto de la invención comprende, de acuerdo a una realización, variar el número de elementos de redirección de luz del sub-patrón o sub- patrones de elementos de redirección de luz donde se ha recibido la luz reflejada en un objeto detectado.
Al mismo tiempo, el método propuesto por el segundo aspecto de la invención, para un ejemplo de realización, comprende utilizar algoritmos de detección y seguimiento de objetos fijos y/o móviles para el control de la secuencia de escaneado y la determinación de las sub-áreas a escanear como zonas ocupadas o a ocupar por uno o más objetos de interés, impiementando las secuencias de redirección de porciones del haz reflejado según dichos algoritmos para implementar funciones de detección y seguimiento de objetos fijos y/o móviles.
Para tal fin, el método comprende, según una variante de dicho ejemplo de realización, implementar algoritmos de predicción de movimientos (ej.: detección y predicción de trayectorias, etc .), así como utilizar unas imágenes captadas por una cámara 2D para condicionar la ejecución de los algoritmos de detección y seguimiento de objetos.
Un tercer aspecto de la invención concierne a un programa de ordenador que incluye instrucciones de programa ejecutables en un ordenador para implementar al menos parte de las etapas del método del segundo aspecto, incluyendo el análisis de las señales de salida de los detectores de luz, y la variación, mediante la generación de unas correspondientes señales de control, del grado de divergencia del haz de luz y del número de elementos de redirección de luz activos de cada sub-patrón. Breve descripción de los dibujos
Las anteriores y otras ventajas y características se comprenderán más plenamente a partir de la siguiente descripción detallada de unos ejemplos de realización con referencia a los dibujos adjuntos, que deben tomarse a título ilustrativo y no limitativo, en los que:
la Fig. 1 ilustra, de manera esquemática, a parte del sistema propuesto por el primer aspecto de ia invención, para un ejemplo de realización;
ia Fig. 2 muestra a parte de ios elementos del sistema propuesto por el primer aspecto de la invención en una situación de escaneado de una sub-área de ia superficie total a escanear, para un ejemplo de realización;
ia Fig. 3 muestra los mismos elementos ilustrados en la Fig. 2, pero para una situación en que se está escaneando otra sub-área de la superficie total a escanear, para lo cual el elemento reflectante Mr se ha desplazado para mantener la conjugación óptica con la matriz de detectores de luz Qd;
la Fig. 4 es otra vista análoga a la de las Figs. 2 y 3 para una situación en que se está escaneando otra sub-área más de la superficie total a escanear; y
ia Fig.5 es una vista análoga a la Fig. 2, pero para otro ejemplo de realización para el que el sistema comprende un solo detector de luz,
ia Fig. 6 es un diagrama de flujo que representa una impiementación del método propuesto por el segundo aspecto de ia invención, para un ejemplo de realización.
las Figs. 7 a 10 son análogas a las de las Figuras 2 a 4, pero para otro ejemplo de realización para el que cada área SQr conforma una matriz de elementos GM activados simultáneamente;
ia Figura 1 es un diagrama de flujo que representa una impiementación del método propuesto por el segundo aspecto de la invención, para la impiementación de las Figuras 7 a 10, manteniendo el elemento reflectante Mr estático; y
ia Figura 12 es un diagrama de flujo similar al de la Figura 11 , referente a una impiementación análoga a la de las Figuras 7 a 10, pero donde el elemento reflectante Mr es móvil y el diagrama de flujo incluye el desplazamiento del mismo.
Descripción detallada de unos ejemplos de realización
En la Fig. 1 se ilustra parte del sistema propuesto por el primer aspecto de la invención para un ejemplo de realización para el que éste comprende, dispuestos en una carcasa H:
- unos medios de iluminación que incluyen una fuente de luz F, en general láser, y una serie de elementos ópticos dispuestos a la salida de la fuente de luz F (divisor de haz y lentes), así como un fotodetector PD para la detección del pulso emitido por la fuente de luz F y la generación de una correspondiente señal de detección a utilizar como inicio de la cuenta de tiempo para un sistema TOF pulsado. Los medios de iluminación están configurados y dispuestos para proyectar sobre la superficie a escanear S un haz de luz Be con una divergencia determinada para iluminar una sub- área Si del área que constituye la superficie a escanear S;
- unos medios de dirección de luz asociados a ios medios de iluminación configurados para dirigir el haz de luz Be para que ilumine diferentes sub-áreas Si de la superficie a escanear S, de manera alternada, y que comprenden un dispositivo Me reflectante y/o deflectante dispuesto entre el haz de luz Be y la superficie a escanear S, y que es despiazable girando, para el ejemplo de realización ilustrado, respecto a dos ejes (X e Y) para llevar a cabo dicha dirección alternada del haz de luz Be; para otro ejemplo de realización, no ilustrado, el dispositivo Me es despiazable únicamente respecto a un eje, con el fin de obtener únicamente imágenes lineales;
- unos medios de recepción y detección configurados y dispuestos para recibir y detectar, de manera alternada, correspondientes porciones de luz Br, de dicho haz de luz Be, reflejadas en cada una de las diferentes sub-áreas Si de la superficie a escanear S, donde dichos medios de recepción y detección comprenden, para el ejemplo de realización ilustrado:
- un matriz o cuadrícula Qd de detectores de luz D; y
- unos medios de redirección de luz que incluyen:
- un matriz o cuadrícula Qr de elementos de redirección de luz GM (tal como un DMD, donde los GMs son grupos de espejos que se controlan de manera digital en el DMD), en un número mayor que el número de detectores de luz D, para recibir las porciones de luz reflejada Br (en este caso a través de un sistema óptico Li y un prisma P de tipo TIR (acrónimo de "Total Internal Reflection": reflexión interna total)), cada una de ellas en una respectiva sub-cuadrícula SQr de la cuadrícula Qr (ver Figs. 2, 3 y 4), y
- un elemento reflectante Mr dispuesto entre la cuadrícula Qr de elementos de redirección de luz GM y la cuadrícula de detectores de luz Qd, que es despiazable girando respecto a dos ejes para llevar a cabo la redirección secuencia! de cada una de las porciones de luz reflejada Br recibida en cada una de las sub-cuadrícuias SQr hacia los detectores de luz D de la cuadrícula Qd (en este caso tras reflejarse en el prisma P y pasar a través de un sistema óptico Lf).
- un elemento A capaz de absorber y desechar la luz que la cuadrícula de elementos de redirección de luz Qr no dirige hacia la cuadricula de detectores de luz Qd de acuerdo con lo establecido por un proceso de escaneo secuencia!.
Algunos de ios elementos de! sistema no se han ilustrado en ia Figura 1 , tales como los medios de control, diferentes clases de circuitería eléctrica y electrónica, etc. con el fin de que ésta tenga mayor claridad y facilite el entendimiento de las funciones de iluminación por sub-áreas Si y correspondiente recepción y detección llevadas a cabo por el mismo. Por ejemplo, no se han representado ios circuitos TDC (acrónimo de "Time to Digital Converter: Convertidor de Tiempo a Digital) usados para la medida de TOF entre el señal del detector PD y D que finalmente determinará la medida de distancia.
En la Fig. 1 se ilustran dos porciones Br de luz reflejada en la sub-área Si, mediante dos respectivas líneas de flecha continuas que se dirigen hacia dos correspondientes elementos de redirección de luz G de la cuadrícula Qr que las redirigen hacia ia cuadrícula Qd de detectores de luz D, así como, en línea discontinua de trazos, una porción de luz reflejada en la zona de la superficie Si, que proviene del haz de luz Be, que va a parar a un elemento de redirección de luz GM que la redírige hacia un elemento absorbedor de luz A, con e! fin de que no interfiera con las señales de interés. Un proceso secuencial controla qué GMs dirigen luz hacia los detectores y cuales dirigen ia luz hacia el absorbedor A. También se representa en línea discontinua de puntos, una porción de luz reflejada en otra zona de la superficie S, y que no proviene del haz de luz Be, que va a parar a un elemento de redirección de luz GM que ia redirige hacia el elemento absorbedor de luz A, también con el fin de que no interfiera con las señales de interés.
Como detectores de luz D se utilizan, para un ejemplo de realización preferido, detectores SiPM (acrónimo de "Silicon Photomultiplier": Fotomuitiplicadores de Silicio), debido a su alta ganancia (>106), elevado ancho de banda y a su capacidad para detectar las porciones de luz reflejada Br, en forma de pulsos, mediante una configuración de conteo de fotones o configuración de disparo por flanco, que permite detectar pulsos de luz extremadamente débiles, del orden de docenas de fotones/pulso, muy lejos de la capacidad de ios detectores APD (acrónimo de "Avalanche Photodiodes": fotodiodos de avalancha) o fotodiodos PIN de las unidades TOF estándar.
Debido a que ios detectores basados en silicio, como ios detectores SiPM, solamente pueden detectar luz visible, para otro ejemplo de realización el sistema comprende una ciase de detectores equivalentes a los SiPM en tecnologías no basadas en silicio (por ejemplo InGaAs/inP) que permiten ia detección de luz en la banda infrarroja, preferentemente a 1550 nm, por temas de segundad ocular. De la misma forma, estos detectores en la banda infrarroja tendrían una sensibilidad y ganancia del mismo orden que los SiP permitiendo también detectar cantidades de luz del orden de pocas decenas de fotones.
Los SiPM son detectores de estado sólido que ofrecen una ganancia y un ancho de banda comparable al de los PMT. Están formados por una matriz de fotodiodos de avalancha polarizados en modo Geiger sobre un mismo substrato y bajo una misma tensión de polarización. Cada uno de ios GM-APDs (acrónimo de "Geiger-Mode Avalanche Photodiode": Fotodiodos de avalancha en modo Geiger) es activado a través de la absorción de una pequeña cantidad de fotones obteniendo en la salida una corriente proporcional al número de GM-APDs activados, y por consiguiente, a la cantidad de fotones recibidos. Teniendo en cuenta que ios ánodos de cada uno de los GM-APDs que forman el detector están unidos, la carga total a la salida de éste será proporcional al número de GM-APDs activados y por lo tanto, será proporcional a la cantidad de fotones detectados.
Para otros ejemplos de realización, se utilizan como detectores de luz otra clase de detectores, tales como tubos fotomultipiicadores, APD (acrónico de "Avalanche Photodiode": Fotodiodo de avalancha), fotodiodos PIN, SPADs (acrónimo de "Single Photon Avalanche Diode": Diodo de avalancha de fotón único), etc. seleccionándose el tipo de detector de luz en función de la aplicación.
En las Figs. 2, 3 y 4 se ilustra el escaneado de tres respectivas sub-áreas Si de la superficie S mediante el sistema y el método propuestos por la presente invención, para un ejemplo de realización, que se ha llevado a cabo mediante un barrido secuencial de la superficie S con el haz de luz Be, comenzando por la sub-área superior izquierda (Fig. 2) siguiendo la trayectoria en zig-zag indicada por las líneas de flecha que pasan por todas las sub-áreas Si, representándose en la Fig. 3 una de las sub- áreas intermedias de dicha trayectoria, y finalizando en la sub-área inferior derecha de la superficie S (Fig. 4). La cuadrícula de elementos de redirección de luz Qr se encuentra conjugada ópticamente con toda la superficie a escanear S.
Comenzando por la Fig. 2, en ella puede verse cómo las tres porciones de luz de
Br, marcadas en línea continua, reflejadas en la sub-área Si van a parar, tras pasar por el sistema óptico Li, a tres respectivos elementos de redirección de luz GM de tres respectivas regiones Z de la sub-cuadrícula SQr que, para el caso de que Qr sea un DMD, será la región de escaneado activa del DMD. Puede verse también un ejemplo de porción de luz Br (línea discontinua) reflejada en la sub-área Si que va a parar a su respectivo elemento GM a través del sistema óptico Li y éste lo redirecciona al elemento absorbente de luz A para su eliminación. Solo un elemento GM de cada región Z puede redireccionar luz del haz Br hacia un detector D (pasando por P, Lf i Mr) porque solo existe un detector D para cada región Z.
Cada uno de dichos tres elementos de redirección de luz GM redirecciona las porciones de luz reflejada Br recibidas hacia el elemento reflectante Mr, tras su paso por el prisma P y el sistema óptico Lf, el cual adopta una posición en la que la cuadrícula de detectores de luz Qd se encuentra ópticamente conjugada con la sub-cuadrícula SQr, y por tanto con la sub-área Si, de manera que las tres porciones de luz reflejada Br son recibidas, manteniendo la relación espacial, en tres correspondientes detectores de luz D.
El escaneado del resto de sub-áreas Si, las de las Figs. 3 y 4 y las del resto, se lleva a cabo de la misma manera que se ha explicado con referencia a la Fig. 2, mediante el desplazamiento del haz de luz Be para iluminar cada sub-área Si, y el correspondiente desplazamiento, de manera sincronizada, del elemento reflectante Mr para conjugar ópticamente a la cuadrícula de detectores de luz Qd con la correspondiente sub-cuadrícula de elementos de redirección de luz SQr, y recibir así las porciones de luz reflejada Br recibidas por la respectiva sub-cuadrícula SQr medíante el proceso de escaneo secuencia! apropiado.
Como dispositivo Me y elemento reflectante Mr se utilizan, según un ejemplo de realización, dispositivos de espejos MEMs, los cuales son espejos de unos 2 o 3 mm de diámetro con capacidad de giro alrededor de dos ejes perpendiculares entre sí, que permite trabajar a altas frecuencias (hasta docenas de KHz) sin sufrir los inconvenientes que otra clase de elementos reflectantes convencionales padecen (vibraciones, grandes tamaños o desgaste mecánico), lo que permite obtener sin problemas unas velocidades de escaneado que se corresponden con la tasa de imágenes por segundo, del orden de 30 imágenes/s con imágenes de mas de 10K puntos por imagen.
El elemento Mr permite mantener la continuidad espacial entre Qr y Qd permitiendo aprovechar el número total de detectores para cada región SQr.
Aunque en las Figs. 2, 3 y 4 se ha representado cada región Z como formada por un mismo número de elementos de redirección de luz GM, en particular cuatro, en función del ejemplo de realización cada una de estas regiones puede incluir un número distinto de elementos GM y/o cada elemento GM puede estar formado por un número distinto de micro-espejos (no ilustrados). El número de GMs variará según el tamaño y número de micro-espejos que agrupe cada uno, en función de su tamaño configurado (para mejorar la recepción de energía a cambio de sacrificar resolución espacial, o viceversa). Debe tenerse en cuenta que el tamaño de cada GM será variable dentro de los límites de Z, es decir que, como mucho, un GM tendrá un tamaño igual al de toda la superficie de una región Z, haciendo que en ésta solamente quepa un solo GM.
A su vez, en dichas figuras se ha representado una matriz de detectores Qd formada por 3x3 detectores. Este tamaño ha sido escogido a modo de ejemplo para este ejemplo de realización. No obstante, cada sub-cuadrícula SQr tiene que contener divisiones Z según el número y distribución de forma de la cuadrícula de detectores Qd. En este caso, una cuadricula de detectores Qd de 3x3 detectores ha generado una subdivisión de la sub-cuadrícula SQr de 3x3 sub-regiones Z.
En el ejemplo de realización ilustrado en la Fig. 2, dos de las zonas Z, en particular la zona central y la que ocupa el vértice derecho inferior de SQr, han recibido una porción de luz reflejada Br solamente en un único GM de cada una de ellas, habiendo sido ambas redireccionadas por completo, de una sola vez, hacia unos correspondientes detectores de luz D de la cuadrícula Qd, una hacia el detector central y la otra hacia el detector que ocupa el vértice derecho inferior de Qd.
En cambio, la zona Z situada en el vértice superior izquierdo de SQr ha recibido dos sub-porciones de luz reflejada Br, en dos respectivos GMs, una de las cuales, marcada con línea continua, ha sido redireccionada hacia un correspondiente detector de luz D de la cuadrícula Qd, en particular el situado en el vértice superior izquierdo de la misma, mientras que la otra, marcada con línea discontinua, se ha desviado hacia el elemento absorbedor A. En un momento posterior (no ilustrado), según un proceso secuencial, mediante actuación sobre los GMs, se redirecciona la sub-porción de luz reflejada Br marcada con línea discontinua hacia el detector de luz D del vértice superior izquierdo de Qd, y la marcada con línea continua se desvía hacia el elemento absorbedor A, consiguiendo así un aumento de la resolución espacial, ya que un mismo detector de luz D (o píxel de la matriz de detectores Qd) recibe la porción de luz Br recibida en varios GM, en este caso en los dos GM de la región Z del vértice superior izquierdo de Qr, en la forma de una secuencia de sub-porciones.
Tai aumento de la resolución espacial es representativo de un ejemplo de realización preferido, y ventajosamente se aplica también ai resto de regiones Z que reciben luz reflejada Br, de manera que un mismo detector D recibe la porción de luz Br recibida en varios GM de cada región Z, en la forma de una secuencia de sub-porciones. Los GM que durante el proceso secuencia! no están redirigiendo porciones de luz Br se desvían hacia el elemento absorbedor A con el fin de que no interfieran con las señales de interés.
Esta redirección secuencia! de sub-porciones de la porción de luz reflejada se encuentra descrita en la solicitud internacional WO2012123809A1 , aunque aplicado simultáneamente a toda la cuadrícula Qr, a diferencia de la presente invención donde se trabaja sub-cuadrícula por sub-cuadrícula SQr.
Obviamente, para un ejemplo de realización menos preferido, es posible utilizar el sistema de la invención sin realizar tai proceso de redirección secuencial de sub- porciones de luz reflejada Br.
Mediante este ejemplo de realización preferido se obtiene lo que ios presentes inventores han denominado como proceso SSDS (acrónimo de "Semi-Sequential Digital Scanning": Escaneado digital semi-secuenciai). Considerando una fuente de luz de una potencia concreta y compartida entre el SSDS y un sistema basado en matriz de detectores que ilumina la superficie bajo medida de forma completa, y un campo de visión también compartido entre ambos sistemas, el sistema SSDS mejora la distancia máxima medibie gracias a su mayor concentración de energía por unidad de superficie. Se mantienen unos rendimientos elevados en velocidad de escaneado, resolución espacial u otras propiedades de exploración. Esta mejora en distancia de medida es debido a que el haz de iluminación no necesita cubrir toda el área a escanear sino que permite escanear por subregiones pudiendo concentrar la energía de iluminación en una región más pequeña donde se encuentran los puntos que se pretenden medir. El uso del elemento Mr permite utilizar la totalidad de la matriz de detectores Qd para cada región SQr evitando infrautilizar detectores debido a discontinuidades ópticas entre los puntos de la superficie y ios elementos de detección D.
La Fig. 5, ilustra el ejemplo de realización básico descrito en un apartado anterior, en el que el sistema incluye solamente un detector de luz D, el tamaño de la región Z ocuparía toda la sub-cuadrícula SQr. Por lo tanto, solo un elemento GM podrá redireccionar sub-porciones de luz del haz Br hacia el detector D de forma simultánea. En particular, según dicha Fig. 5, la sub-porción marcada con línea continua es dirigida hacia el único detector de luz D, mientras que las dos marcadas con líneas discontinuas son desviadas hacia el elemento absorbedor A.
Si para este ejemplo de realización básico de la Fig. 5 se implementa el referido proceso SSDS, cada una de las tres sub-porciones de luz reflejada Br se redirigirá de manera secuencial hacia el detector de luz único D, mientras que las otras dos se desviarán hacia el elemento absorbedor A.
Se puede decir que el sistema propuesto por la presente invención permite obtener unos resultados intermedios entre los sistemas de escaneo secuencial y los basados en matriz de detectores estándar que iluminan la superficie de forma completa, consiguiendo una combinación equilibrada de sus propiedades que lo hacen ideal para una amplia gama de aplicaciones. La siguiente tabla muestra valores orientativos obtenidos mediante un prototipo de! sistema SSDS, para medidas TOF, comparándolos con valores estándar y totalmente orientativos de los sistemas mencionados. Cabe mencionar que los valores mostrados en la tabla, para los casos de escaneo secuencial y matriz de detectores son altamente variables dependiendo de las propiedades de la fuente de luz, campo de visión, sensibilidad de los detectores, etc. No obstante, ejemplifican valores típicos que se aproximan a una gran cantidad de sistemas comerciales basados en estas tecnologías.
Figure imgf000025_0001
La cantidad de detectores de luz en matriz Qd limita la velocidad de captura de las imágenes. A más detectores, más velocidad de medida ya que más medidas simultáneas pueden llevarse a cabo. En el sistema propuesto por el primer aspecto de la invención, dado que la resolución espacial viene dada por la matriz Qr de elementos de redirección de luz GM, es posible utilizar matrices de detectores de luz Qd de pequeño tamaño (p.ej. de 4x4 detectores). Estas matrices de pequeño tamaño pueden incorporar circuitería de medida TOF más compleja que las matrices de gran tamaño (p.ej. de 128x128 detectores) utilizadas en los sistemas basados en matrices de detectores ya que su integración a nivel microelectrónico es mucho más sencilla. Por ello, la circuitería de contaje de tiempo (circuito TDC) puede incorporar funciones adicionales, tales como las relativas a medidas en entornos compiejos, impiementadas en la forma de circuitería optimizada para, por ejemplo lluvia, niebla, nieve, polvo y detección de objetos bajo vegetación. Además, la divergencia del haz emitido Be puede ser ajustada en función del rendimiento requerido, e incluso puede ajustarse utilizando alguna clase de "zoom" motorizado.
Mediante e! método y el sistema propuestos por la presente invención, además de poder modificar la resolución espacial para medir distancies, se incluyen algoritmos inteligentes de detección y seguimiento de objetos basados en D D y SSDS, para controlar la secuencia de escaneado de manera que implementen funciones de detección y seguimiento de objetos. Esto comporta que la secuencia de escaneado pueda no ser repetitiva sino que podría centrarse solo en los objetos identificados como "objetivo" y prescindir del resto de campo de visión. Para algunas realizaciones, se implementan algoritmos de predicción de movimientos para realizar detección y seguimiento de forma inteligente, pudiendo estar la ejecución de estos algoritmos condicionada por los datos captados per una cámara 2D externa al aparato, es decir a la carcasa H.
La ventaja que ofrece la utilización del DMD por parte del sistema y el método propuestos por la presente invención, con respecto a otros sistemas, es que éste se controla de forma digital sin movimientos mecánicos, lo que favorece la ejecución de ios algoritmos complejos de seguimiento y detección de objetos sin limitaciones de movimiento mecánico del sistema de escaneado.
Otra de las ventajas que ofrece el sistema y el método propuestos por la presente invención, en contraste con los sistemas tradicionales, es que, para algunos ejemplos de realización, permite variar los parámetros de escaneado en tiempo real, dependiendo de factores externos (o de cualquier señal, externa o interna, proveniente de detectores o de sistemas de comunicación locales o remotos). Esta cualidad ha sido denominada por los presentes inventores como "Escaneado Dinámico", es una consecuencia natural de la implementación digital del sistema de escaneado del primer aspecto de la invención y permite abordar un amplio rango de funcionalidades de valor añadido, además de las medidas de distancia tradicionales para imagen 3D, tales como las siguientes, relativas ai campo de la automoción:
- Capacidades de medición de distancia adaptables. Como se ha comentado anteriormente, cuanto más pequeña es la resolución espacial de la imagen que se pretende medir, mayor es la distancia que se puede medir y mayor es también la velocidad en imágenes por segundo. Esto significa que la resolución espacial se puede reducir cuando las condiciones externas requieren una medición de largo alcance. Por ejemplo, en condiciones de niebla, es preferible aumentar la energía recibida mediante el escaneado con patrones que incluyan un menor número de píxeles (es decir configurar GMs de mayor tamaño agrupando un mayor número de micro-espejos), por lo que la energía perdida por el efecto de la niebla puede ser compensada por la mejora en la recepción de energía a expensas de la pérdida de resolución espacial.
- Resolución espacial adaptable a los objetos de interés. Este es el paso inverso a! punto anterior. La resolución espacial se puede aumentar, agrupando menor cantidad de micro-espejos en cada G , para detectar con mayor precisión los objetos de interés con el fin de distinguir, por ejemplo, a ¡os peatones, artefactos u otros objetos de una manera más precisa, Al aumentar la resolución espacial, dada una misma potencia de iluminación, la distancia medible será menor debido a que la energía redirigida por cada GM también será menor. No obstante, a! augmentar la resolución espacial de la imagen, se puede obtener más información de cada objeto o detectar objetos más pequeños. El aumento de la resolución puede concentrarse en ciertas áreas del campo de visión identificadas como regiones de interés. Este proceso se puede configurar sobre la marcha.
- Escaneado dependiendo de condiciones externas. Poniendo como ejemplo la aplicación de automoción, conducir por una autopista es bastante diferente a hacerlo por ciudad. En el primer caso, los objetos de interés se encuentran a distancias más largas. En tal caso, mediante la modificación de la configuración de escaneado es posible detectar el entorno de una forma más adecuada. En el segundo caso, es preferible trabajar con una alta resolución espacial y una distancia más corta. Además, puede ser útil configurar diferentes resoluciones espaciales en algunas regiones de la imagen. Por ejemplo, las regiones laterales se pueden configurar con una alta resolución espacial debido a que los peatones generalmente vienen de las aceras. Por otra parte, las zonas superiores con menos interés se pueden escanear rápidamente configurándolas con una resolución espacial menor.
- Combinación de información 2D y datos de distancia. A veces los datos 2D en color o blanco y negro pueden ser útiles para detectar situaciones de riesgo, pero su fiabiiidad no es buena ya que la falta de información de profundidad provoca ambigüedades en los algoritmos de análisis. Mediante la combinación de datos 2D i 3D se puede obtener una herramienta mas precisa para mejorar la asistencia a la seguridad y la conducción. El escaneado digital puede complementar el análisis 2D, proporcionando la información de distancia concentrada sólo en las regiones de interés.
- La imagen por infrarrojos lejanos (FIR: "Far infared Scanning") es útil para detectar peatones en condiciones nocturnas. Sin embargo, sin la información de distancia, el análisis de imágenes puede llevar a falsas alarmas e interpretaciones incorrectas de la escena. Una medición de distancia puede contribuir a hacer que los sistemas tradicionales de detección sean más fiables. Estos son solamente algunas posibles aplicaciones del sistema y el método propuestos por la invención, pero existen un amplio campo de aplicaciones que pueden beneficiarse de la presente invención, en particular cuando incorpora el denominado escaneado dinámico. Algunas de tales aplicaciones ya han sido indicadas en un apartado anterior (video vigilancia inteligente, Vehículos auto-guiados o semi- automáticos supervisados, etc.)
Finalmente, en la Fig, 6 se ilustra un diagrama de flujo que representa una implementación del método propuesto por el segundo aspecto de la invención, para un ejemplo de realización para el que éste incluye las siguientes etapas:
E1 : Inicio.
E2: Posicionamiento del dispositivo o espejo Me en una primera posición.
E3: Posicionamiento del elemento reflectante Mr en una primera posición
E4: Generación de un primer patrón de escaneado del DMD.
E5: Emisión del pulso láser.
E6: Comienzo de la cuenta de tiempo con el TDC.
E7: Detección del pulso de luz reflejada Br en cada detector D de la matriz Qd.
E8: Detención de la cuenta de tiempo del TDC.
E9: Obtención del valor de distancia.
E10: ¿Escaneado de la sub-área Si acabado?
E1 1 : Pasar a siguiente patrón de escaneado del DMD.
E12: ¿Se ha obtenido el escaneado TOF de toda la sub-área Si?
E13: Transmisión de datos.
E14: Posicionamiento del elemento reflectante Mr para conjugarlo ópticamente con la siguiente sub-cuadrícula SQr del DMD.
E15: Posicionamiento del dispositivo o espejo Me para dirigir ai haz de luz Be hacia la siguiente sub-área Si.
Por lo que se refiere los patrones de escaneado del DMD (o de otro dispositivo que se utilice como Qr en lugar de un DMD), éstos hacen referencia, en general, a la selección de los GMs que dirigen luz hacia Qd, y la razón de ser de cambiar dicho patrón en la etapa E11 es, en general, para redirigir hacia Qd otra sub-porción de una porción Br, o sub-porciones de porciones Br, con el fin de implementar el ejemplo de realización anteriormente explicado en que cada porción Br se redirigía secuenciaimente en sub-porciones hacia un mismo detector de luz, aunque el cambio de patrón también puede tener otros motivos, como el relativo al cambio, sobre la marcha, del tamaño de cada GM, en cuyo caso el cambio de patrón hace referencia a la selección de micro- espejos que conforman cada GM. En las Figs. 7 a 10 se ilustra el escaneado de tres respectivas sub-áreas Si de la superficie S mediante el sistema y el método propuestos por la presente invención, para otro ejemplo de realización, que se ha llevado a cabo mediante un barrido secuencial de la superficie S con el haz de luz Be, comenzando por la sub-área superior izquierda (Fig. 7) siguiendo la trayectoria indicada por las líneas de flecha que pasan por todas las sub- áreas Si, representándose en las Figs. 8 y 9 diferentes sub-áreas intermedias de dicha trayectoria, y finalizando en la sub-área inferior izquierda de la superficie S (Fig. 10). La cuadrícula de elementos de redirección de luz Qr se encuentra conjugada ópticamente con toda la superficie a escanear S.
Este ejemplo de realización se diferencia del de las Figuras 2 a 4, entre otras características, en que cada sub-patrón SQr adopta la forma de una matriz lineal, formada por una zona Z, cada una de ellas constituida por, en este caso, ocho elementos GM, estando todos ios elementos G de la matriz lineal SQr activados, lo cual se ha indicado con la referencia GM', que es el sumatorio de todos los GMs activados, es decir ocho. Las matrices lineales SQr se activan/desactivan secuencialmente, según puede apreciarse en las figuras 7 a 10, para recibir las porciones de luz reflejada Br en cada momento.
Puede verse cómo la luz reflejada en otras partes de la cuadrícula Qr fuera de la sub-cuadrícula SQr, y que en general proviene de la reflexión de la luz ambiente en las correspondientes zonas conjugadas ópticamente de la superficie S, es redirigida hacia el elemento absorbente A con el fin de bloquearla. Este aspecto también aparece implementado en el ejemplo de realización de las Figuras 2 a 4, aunque para otro ejemplo de realización alternativo (y menos preferido) se podría prescindir del mismo. La función principal de esta funcionalidad es el bloqueo de luz procedente del campo de visión, de manera que el detector D solo recibirá luz procedente de los puntos de la superficie S que están ópticamente conjugados con la región SQr=Z=GM". Los elementos de redirección ubicados fuera de dicha región SQr=Z=GM' redirigen la luz al elemento A para que esta sea rechazada impidiendo que llegue al detector de manera que no interfiera en el proceso de medición. Según la relación entre la superficie de SQr=Z=GM' y la región dentro de Qr que redirige luz hacia A, se bloqueará un porcentaje más o menos elevado de la luz de fondo ("background") procedente de las zonas contenidas en S que no están siendo iluminadas por la fuente de luz F. La cuadrícula Qr es así utilizada a modo de elemento bloqueador de luz mediante la activación y desactivación de diferentes regiones lineales.
Mediante el elemento Me de dirección de luz, se iluminan diferentes regiones Si de forma secuencial. Estas regiones iluminadas Si generan un haz reflejado Br que es redirigido hacia el detector D mediante la región matriz lineal SQr=Z=GM', Tal y como se ha indicado anteriormente, la superficie de la cuadrícula Qr que permanece fuera de la región SQr=Z=G ' redirige la luz hacia el elemento A que bloquea y absorbe la luz.
En este ejemplo de realización, el espejo Mr se mantenerse estático o inactivo, debido a que se utiliza un sistema óptico que mantiene conjugado ópticamente en todo momento al detector D (o matriz de detectores, para otro ejemplo de realización no ilustrado) con toda la cuadrícula Qr, es decir que es capaz de focalizar toda la luz procedente de la cuadrícula Qr sobre la superficie del detector D (o detectores de una matriz de detectores, si es el caso).
Aunque se mantienen activados todos los elementos GM de la matriz lineal SQr, únicamente se recibe, en cada momento, la porción de luz reflejada Br correspondiente a una región Si, y lo hace en parte de la matriz lineal SQr (en este caso en un único GM) por lo que el detector de luz recibirá tal porción Br (junto con la residual que se refleje en el resto de GMs activados, pero ésta es de valor despreciable).
Tai activación de todos los elementos GM de la matriz lineal SQr, según este ejemplo de realización de las Figuras 8 a 10, tiene como fin el de poder utilizarse con un sistema de barrido muy rápido que haga que el haz láser Be se desplace muy rápidamente entre las diferentes regiones Si, lo que haría que si los elementos GM de la matriz lineal SQr se tuviesen que activar secuencialmente, tendrían que hacerlo a una velocidad igual o mayor que la del mencionado barrido, lo cual no es habitual mediante la utilización de los elementos disponibles según la tecnología actual.
Las regiones SQr=Z=GM' pueden tener formas variadas, alternativas a la ilustrada, por ejemplo, horizontales, verticales, diagonales con diferente grado de inclinación, incluso pueden estar constituidas por más de una región a lo largo de la cuadrícula Qr.
El ejemplo de realización ilustrado en las Figuras 2 a 4 podría modificarse inspirándose en el de las Figuras 7 a 10, para adaptarse a una alta velocidad de escaneado, para lo cual cada región SQr ilustrada en dichas Figuras se extendería hasta ocupar toda una línea de sub-cuadrículas.
En la Figura 1 se ilustran, mediante un diagrama de flujo, una implementación del método propuesto por el segundo aspecto de la invención aplicado a la configuración de las Figuras 7 a 10, donde el diagrama de flujo está aplicado a la utilización de un Mr estático o que no necesita desplazarse, debido a que el detector D está permanentemente conjugado ópticamente con todo el DMD, es decir Qr. El diagrama de flujo incluye las siguientes etapas:
F1 : inicialización. F2: Configurar DMD con el primer patrón SQr=Z=GM',
F3: Posicionamiento del dispositivo o espejo Me en una primera posición del correspondiente patrón SQr=Z=GM'.
F4: Emisión de pulso láser.
F5: Comienzo de la cuenta de tiempo con el TDC.
F6: Detección del pulso de luz reflejada Br en el detector D.
F7: Detención de ia cuenta de tiempo del TDC.
F8: Obtención del valor de distancia.
F9: SQr=Z=GM! terminada (es decir recepción de Br en todos los GMs de SQr) F10: Posicionar Me para dirigir al haz de luz Be hacia la siguiente sub-área Si. F11 : ¿Se ha obtenido el escaneado TOF de toda ia sub-área Si?
F12: Transmisión de datos.
F13: Configurar ei DMD con el siguiente patrón de escaneado del DMD, es decir desactivar la presente área SQr y activar la siguiente (en este caso la inmediatamente inferior).
Por lo que respecta al diagrama de la Figura 12, en ésta se ilustra, mediante un diagrama de flujo, una implementación del método propuesto por el segundo aspecto de la invención, similar a la de la Figura 11 pero aplicado a una configuración como la de las Figuras 7 a 10 pero con el elemento reflectante Mr despiazabie, incluyendo ei diagrama de flujo el desplazamiento de Mr con el fin de conjugar ópticamente ai detector D con el QM adecuado en cada momento, de manera secuencial. El diagrama incluye las siguientes etapas:
G1 : Iniciaiización.
G2: Configurar DMD con el primer patrón SQr=Z=GM'.
G3: Posicionamiento de Me y de Mr en una primera posición del correspondiente patrón SQr=Z=GM'.
G4: Emisión de pulso láser.
G5: Comienzo de la cuenta de tiempo con el TDC.
G8: Detección del pulso de luz reflejada Br en el detector D,
G7: Detención de la cuenta de tiempo del TDC.
G8: Obtención del valor de distancia.
G9: SQr=Z=GM! terminada (es decir recepción de Br en todos ios GMs de SQr). G10: Posicionar Me y Mr a la siguiente posición, el primero (Me) para dirigir al haz de luz Be hacia la siguiente sub-área Si, y el segundo (Mr) para conjugar ópticamente ai detector D con el siguiente GM de SQr. G1 1 : ¿Se ha obtenido el escaneado TOF de toda ¡a sub-área Si?
G12: Transmisión de datos.
G13: Configurar el D D con el siguiente patrón de escaneado del D D, es decir desactivar la presente área SQr y activar la siguiente (en este caso la inmediatamente inferior).
Los diagramas de flujo de las Figuras 8, 11 y 12 son implementados, para unos ejemplos de realización, por el programa de ordenador propuesto por el cuarto aspecto de la invención.
Un experto en la materia podría introducir cambios y modificaciones en los ejemplos de realización descritos sin salirse del alcance de la invención según está definido en las reivindicaciones adjuntas.

Claims

Resvindícacjones
1. - Sistema para escanear una superficie, que comprende:
- unos medios de iluminación configurados y dispuestos para proyectar sobre una superficie a escanear (S) al menos un haz de luz (Be) con una divergencia determinada para iluminar una sub-área (Si) de! área que constituye dicha superficie a escanear (S), la cual es al menos en parte reflectante;
- unos medios de dirección de luz asociados a dichos medios de iluminación configurados para dirigir dicho haz de luz (Be) para que ilumine diferentes sub-áreas de ¡a superficie a escanear (S), de manera alternada; y
- unos medios de recepción y detección configurados y dispuestos para recibir y detectar, de manera alternada, correspondientes porciones de luz (Br), de dicho haz de luz (Be), reflejadas en cada una de dichas diferentes sub-áreas (Si) de la superficie a escanear (S), donde dichos medios de recepción y detección comprenden ai menos un detector de luz (D);
estando el sistema caracterizado porque:
dichos medios de recepción y detección comprenden unos medios de redirección de luz que incluyen una pluralidad de elementos de redirección de luz (GM) dispuestos según un patrón de distribución espacial determinado (Qr), en un número mayor que el número de dichos detectores de luz (D), que es ai menos uno, y configurados para recibir las porciones de luz reflejada (Br), cada una de ellas en al menos una parte de un respectivo sub-patrón (SQr) de dicho patrón de distribución espacial determinado (Qr); y porque dichos medios de redirección de luz están configurados y dispuestos para redirigir, de manera secuencia!, cada una de las porciones de luz reflejada (Br) recibida en ai menos dicha parte de cada uno de dichos sub-patrones (SQr) hacia dicho detector de luz (D), que es a! menos uno,
2. - Sistema según la reivindicación 1 , caracterizado porque dichos medios de redirección de luz están configurados y dispuestos para recibir cada una de las porciones de luz reflejada (Br) en la totalidad de dicho respectivo sub-patrón (SQr) de dicho patrón de distribución espacial determinado (Qr), y para redirigir, de manera secuencial, cada una de las porciones de luz reflejada (Br) recibida en cada uno de dichos sub-patrones (SQr) hacia dicho detector de luz (D), que es al menos uno.
3. - Sistema según la reivindicación 1 ó 2, caracterizado porque dicho patrón de distribución espacial determinado (Qr) constituye una matriz, y cada uno de dichos sub- patrones (SQr) una sub-matriz.
4. - Sistema según la reivindicación 3, caracterizado porque dicha matriz es una cuadrícula (Qr) y dicha sub-matriz es una sub-cuadrícula (SQr).
5,- Sistema según ia reivindicación 3, caracterizado porque dicha matriz es una cuadrícula (Qr) y dicha sub-matriz es una matriz lineal (SQr).
8.- Sistema según una cualquiera de las reivindicaciones anteriores, caracterizado porque comprende una pluralidad de detectores de luz (D), incluyendo a dicho detector de luz, dispuestos en cuadrícula (Qd) o según otra clase de patrón de distribución espacial, estando los medios de redirección de luz configurados y dispuestos para redirigir, de manera secuencial, cada una de las porciones de luz reflejada (Br) recibida en cada uno de los sub-patrones (SQr) de elementos de redirección de luz (GM) hacia los detectores de luz (D) dispuestos en cuadrícula (Qd) o según otra clase de patrón de distribución espacial.
7. - Sistema según una cualquiera de las reivindicaciones anteriores, caracterizado porque dichos medios de redirección de luz comprenden además ai menos un elemento reflectante (Mr) dispuesto entre el patrón de distribución espacial determinado (Qr) de elementos de redirección de luz (GM) y el detector de luz (D) o la cuadrícula u otra clase de patrón de distribución espacial de detectores de luz (Qd), que es despiazable para colaborar en llevar a cabo dicha redirección secuencial de cada una de las porciones de luz reflejada (Br) recibida en cada uno de los sub-patrones (SQr) hacia el detector de luz (D) o los detectores de luz (D) dispuestos en cuadrícula (Qd) o según otra ciase de patrón de distribución espacial, mediante unas respectivas conjugaciones ópticas secuenciaies de las porciones de luz reflejada (Br) recibida en cada uno de los sub-patrones (SQr) con el detector de luz (D) o los detectores de luz (D) dispuestos en cuadrícula (Qd) o según otra clase de patrón de distribución espacial.
8. - Sistema según una cualquiera de las reivindicaciones 1 a 6, caracterizado porque dichos medios de redirección de luz comprenden ai menos un elemento reflectante (Mr) y un sistema óptico dispuestos entre el patrón de distribución espacial determinado (Qr) de elementos de redirección de luz (GM) y el detector de luz (D) o la cuadrícula u otra clase de patrón de distribución espacial de detectores de luz (Qd), donde dicho sistema óptico está configurado y dispuesto para, permaneciendo estático el elemento reflectante (Mr), conjugar ópticamente en todo momento al detector de luz (D) o la cuadrícula u otra clase de patrón de distribución espacial de detectores de luz (Qd) con todo el patrón de distribución espacial determinado (Qr) de elementos de redirección de luz (GM).
9. - Sistema según la reivindicación 7 u 8, caracterizado porque comprende unos medios de control de los elementos de redirección de luz (GM) que los controlan para activar secuencialmente los elementos de redirección de luz (GM) de cada sub-patrón (SQr), para llevar a cabo la redirección secuencial de cada una de las porciones de luz reflejada (Br) recibida en cada uno de los sub-patrones (SQr) hacia el detector de luz (D) o los detectores de luz (D) dispuestos en cuadrícula (Qd) o según otra clase de patrón de distribución espacial.
10. - Sistema según una cualquiera de las reivindicaciones anteriores, caracterizado porque dichos medios de dirección de luz están configurados para dirigir el haz de luz (Be) de manera secuencial.
11. - Sistema según una cualquiera de las reivindicaciones anteriores, caracterizado porque los medios de dirección de luz comprenden al menos un dispositivo (Me) reflectante y/o deflectante dispuesto entre el haz de luz (Be) y la superficie a escanear (S), y que es desplazable para llevar a cabo dicha dirección alternada del haz de luz (Be) y/o dispone de unos elementos capaces de realizar la dirección alternada del haz de luz (Be) sin que el dispositivo (Me) reflectante y/o deflectante se desplace.
12. - Sistema según una cualquiera de las reivindicaciones anteriores, caracterizado porque el número de elementos de redirección de luz (GM) de cada una de las sub-cuadrícuias (SQr) es igual ai número de detectores de luz (D).
13. - Sistema según una cualquiera de las reivindicaciones 1 a 11 , caracterizado porque el número de elementos de redirección de luz (GM) de cada uno de los sub- patrones (SQr) es superior al número de detectores de luz (D), y porque comprende unos medios de control asociados a ios medios de redirección de luz para llevar a cabo la redirección de cada una de las porciones de luz reflejada (Br) recibida en cada uno de los sub-patrones (SQr) hacia los detectores de luz (D), redirigiendo sub-porciones de cada porción de luz reflejada (Br), de manera secuencial, hacia el detector o detectores de luz (D), mediante el control independiente de correspondientes sub-grupos de elementos de redirección de luz (GM) de cada sub-patrón (SQr).
14. - Sistema según una cualquiera de las reivindicaciones anteriores, caracterizado porque comprende unos medios de control asociados a los medios de dirección de luz y a ios medios de redirección de luz para llevar a cabo tanto la dirección del haz de luz (Be) hacia las diferentes sub-áreas (Si) de la superficie a escanear (S) como la redirección de cada una de las porciones de luz reflejada (Br) hacia el detector o detectores de luz (D), de manera sincronizada.
15. - Sistema según una cualquiera de las reivindicaciones anteriores, caracterizado porque cada elemento de redirección de luz (GM) está formado por un número variable de microelementos de redirección de luz,
16. - Sistema según una cualquiera de las reivindicaciones anteriores, caracterizado porque el patrón de distribución espacial determinado (Qr) de elementos de redirección de luz (GM) es un patrón de interruptores de luz,
17. - Sistema según la reivindicación 15, caracterizado porque el patrón de distribución espacial determinado (Qr) de elementos de redirección de luz (GM) comprende un modulador espacial de luz basado en micro espejos, una pantalla de cristal líquido o unos espejos deformables.
18. - Sistema según una cualquiera de las reivindicaciones anteriores, caracterizado porque comprende, en asociación o como parte de ios medios de recepción y detección, unos medios de medida para medir la distancia entre el sistema y cada punto de la superficie a escanear (S) mediante la determinación del tiempo de vuelo.
19. - Sistema según la reivindicación 18, caracterizado porque dichos medios de medida están configurados para obtener una imagen tridimensional de reconstrucción topográfica mediante nube de puntos de la superficie a escanear (S).
20. - Sistema según una cualquiera de las reivindicaciones anteriores, caracterizado porque constituye o forma parte de ai menos unos de los siguientes sistemas:
- sistema de evitación de colisiones;
- sistema de detección y seguimiento de objetos estáticos o móviles;
- sistema de video vigilancia inteligente;
- sistema de control de zonas fronterizas;
- sistema de visión tridimensional en sistemas inteligentes de seguridad;
- sistema de navegación para vehículo auto-guiado o semi-guiado supervisado;
- sistema de vídeo multimedia 3D;
- sistema de asistencia y seguridad en la conducción;
- sistema de transporte inteligente;
- sistema de detección bajo follaje;
- sistema de mapeado;
- sistema de visión artificial en robótica.
21 . - Sistema según una cualquiera de las reivindicaciones anteriores, caracterizado porque al menos dichos elementos de redirección de luz (GM) y/o dicho elemento reflectante (Mr) y/o dicho dispositivo (Me) reflectante y/o deflectante están implementados mediante sistemas micro electromecánicos.
22. - Método para escanear una superficie, que comprende:
- proyectar sobre una superficie a escanear (S), al menos en parte reflectante, al menos un haz de luz (Be) con una divergencia determinada para iluminar una sub-área (Si) del área que constituye dicha superficie a escanear (S), dirigiéndolo para que ilumine diferentes sub-áreas (Si) de la superficie a escanear (S), de manera alternada; y
- recibir y detectar en al menos un detector de luz (D), de manera alternada, correspondientes porciones de luz (Br), de dicho haz de luz (Be), reflejadas en cada una de dichas diferentes sub-áreas (Si) de la superficie a escanear (S);
estando el método caracterizado porque comprende, de manera previa a dicha recepción y detección:
- recibir, cada una de las porciones de luz reflejada (Br), en al menos una parte de un respectivo sub-patrón (SQr) de un patrón de distribución espacial determinado (Qr) en el que se encuentran dispuestos una pluralidad de elementos de redirección de luz (GM), en un número mayor que el número de dichos detectores de luz (D), que es al menos uno; y
- redirigir, de manera secuencia!, cada una de las porciones de luz reflejada (Br) recibida en ai menos dicha parte de cada uno de dichos sub-patrones (SQr) hacia dicho detector de luz (D), que es al menos uno.
23. - Método según la reivindicación 22, caracterizado porque comprende recibir cada una de las porciones de luz reflejada (Br) en la totalidad de dicho respectivo sub- patrón (SQr) de dicho patrón de distribución espacial determinado (Qr), y redirigir, de manera secuencial, cada una de las porciones de luz reflejada (Br) recibida en cada uno de dichos sub-patrones (SQr) hacia dicho detector de luz (D), que es ai menos uno.
24. - Método según la reivindicación 22 ó 23, caracterizado porque dicho patrón de distribución espacial determinado (Qr) constituye una matriz, y cada uno de dichos sub-patrones (SQr) una sub-matriz.
25. - Método según la reivindicación 24, caracterizado porque dicha matriz es una cuadrícula (Qr) y dicha sub-matriz es una sub-cuadrícuia (SQr).
26. - Método según la reivindicación 24, caracterizado porque dicha matriz es una cuadrícula (Qr) y dicha sub-matriz es una matriz lineal (SQr).
27. - Método según una cualquiera de las reivindicaciones 22 a 28, caracterizado porque comprende redirigir, de manera secuencial, cada una de las porciones de luz reflejada (Br) recibida en cada uno de los sub-patrones (SQr) de elementos de redirección de luz (GM) hacia una pluralidad de detectores de luz (D), incluyendo a dicho detector de luz, dispuestos en cuadrícula (Qd) o según otro patrón de distribución espacial.
28. - Método según una cualquiera de las reivindicaciones 22 a 26, caracterizado porque comprende llevar a cabo el escaneado de dicha superficie a escanear (S) utilizando el sistema según una cualquiera de las reivindicaciones 1 a 21.
29. - Método según la reivindicación 28, caracterizado porque comprende determinar y variar el grado de la divergencia del haz de luz (Be) y/o variar el número de elementos de redirección de luz (GM) de cada sub-patrón (SQr), de manera automática y/o bajo indicación de un usuario y/o en función de una serie de señales de entrada locales y/o remotas y/o provenientes de detectores internos y/o externos, para aumentar la distancia de emisión, con el fin de detectar una superficie a mayor distancia, y/o la velocidad de escaneado, sacrificando resolución espacial, o para aumentar la resolución espacial, sacrificando potencia óptica recibida, con el fin de escanear con mayor precisión un objeto de interés.
30.- Método según la reivindicación 29, caracterizado porque comprende llevar a cabo dicha variación del grado de la divergencia del haz de luz (Be) y/o del número de elementos de redirección de luz (GM) de cada sub-patrón (SQr), sobre la marcha, en función de las circunstancias de funcionamiento y/o del entorno y/o de unas detecciones de objetos realizadas.
31 Método según la reivindicación 30, caracterizado porque comprende variar el número de elementos de redirección de luz (GM) del patrón de distribución espacial determinado (SQr) o sub-patrones (SQr) de elementos de redirección de luz (GM) donde se ha recibido la luz reflejada (Br) en un objeto detectado.
32. - Método según una cualquiera de las reivindicaciones 22 a 31 , caracterizado porque comprende utilizar algoritmos de detección y seguimiento de objetos para el control de la secuencia de escaneado y la determinación de las sub-áreas (Si) a escanear (S) como zonas ocupadas o a ocupar por uno o más objetos de interés.
33. - Método según la reivindicación 32, caracterizado porque dichos algoritmos de detección y seguimiento incluyen algoritmos de predicción de movimientos.
34. - Método según la reivindicación 33, caracterizado porque comprende utilizar unas imágenes captadas por una cámara 2D para condicionar la ejecución de dichos algoritmos de detección y seguimiento de objetos.
35. - Programa de ordenador que incluye instrucciones de programa ejecutables en un ordenador para impiementar ai menos parte de las etapas del método según una cualquiera de las reivindicaciones 22 a 34, incluyendo el análisis de las señales de salida de los detectores de luz, y la variación, mediante la generación de unas correspondientes señales de control, del grado de divergencia del haz de luz y del número de elementos de redirección de luz activos de cada sub-cuadrícula.
PCT/ES2014/070108 2013-02-13 2014-02-13 Sistema y método para escanear una superficie y programa de ordenador que implementa el método WO2014125153A1 (es)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP14751680.1A EP2957926B1 (en) 2013-02-13 2014-02-13 System and method for scanning a surface and computer program implementing the method
CA2901100A CA2901100C (en) 2013-02-13 2014-02-13 System and method for scanning a surface and computer program implementing the method
US14/767,579 US10018724B2 (en) 2013-02-13 2014-08-21 System and method for scanning a surface and computer program implementing the method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201330185A ES2512965B2 (es) 2013-02-13 2013-02-13 Sistema y método para escanear una superficie y programa de ordenador que implementa el método
ESP201330185 2013-02-13

Publications (1)

Publication Number Publication Date
WO2014125153A1 true WO2014125153A1 (es) 2014-08-21

Family

ID=51353510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2014/070108 WO2014125153A1 (es) 2013-02-13 2014-02-13 Sistema y método para escanear una superficie y programa de ordenador que implementa el método

Country Status (5)

Country Link
US (1) US10018724B2 (es)
EP (1) EP2957926B1 (es)
CA (1) CA2901100C (es)
ES (1) ES2512965B2 (es)
WO (1) WO2014125153A1 (es)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10018724B2 (en) 2013-02-13 2018-07-10 Universitat Politecnica De Catalunya System and method for scanning a surface and computer program implementing the method
EP3428686A1 (en) 2017-07-14 2019-01-16 Veoneer Sweden AB A vision system and method for a vehicle
EP3428677A1 (en) 2017-07-14 2019-01-16 Veoneer Sweden AB A vision system and a vision method for a vehicle
EP3428687A1 (en) 2017-07-14 2019-01-16 Veoneer Sweden AB A vision system and vision method for a vehicle
EP3428678A1 (en) 2017-07-14 2019-01-16 Veoneer Sweden AB A vision system and method for a vehicle
EP3588140A1 (en) 2018-06-28 2020-01-01 Veoneer Sweden AB A vision system and vision method for a vehicle
EP3591436A1 (en) 2018-07-03 2020-01-08 Veoneer Sweden AB Lidar system and lidar method for a motor vehicle
EP3839553A1 (en) 2019-12-20 2021-06-23 Veoneer Sweden AB Lidar imaging apparatus for a motor vehicle

Families Citing this family (150)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9551575B2 (en) 2009-03-25 2017-01-24 Faro Technologies, Inc. Laser scanner having a multi-color light source and real-time color receiver
US9529083B2 (en) * 2009-11-20 2016-12-27 Faro Technologies, Inc. Three-dimensional scanner with enhanced spectroscopic energy detector
DE102010020925B4 (de) 2010-05-10 2014-02-27 Faro Technologies, Inc. Verfahren zum optischen Abtasten und Vermessen einer Umgebung
US9036603B2 (en) 2012-08-03 2015-05-19 Intel Corporation Network assistance for device-to-device discovery
WO2014022776A1 (en) 2012-08-03 2014-02-06 Intel Corporation Method and system for enabling device-to-device communication
US9191828B2 (en) 2012-08-03 2015-11-17 Intel Corporation High efficiency distributed device-to-device (D2D) channel access
CN104471876B (zh) 2012-08-03 2018-08-10 英特尔公司 包含设备触发重呼/替换特征的3gpp/m2m方法和设备
US8913518B2 (en) 2012-08-03 2014-12-16 Intel Corporation Enhanced node B, user equipment and methods for discontinuous reception in inter-ENB carrier aggregation
US9513107B2 (en) 2012-10-05 2016-12-06 Faro Technologies, Inc. Registration calculation between three-dimensional (3D) scans based on two-dimensional (2D) scan data from a 3D scanner
DE102012109481A1 (de) 2012-10-05 2014-04-10 Faro Technologies, Inc. Vorrichtung zum optischen Abtasten und Vermessen einer Umgebung
US10067231B2 (en) 2012-10-05 2018-09-04 Faro Technologies, Inc. Registration calculation of three-dimensional scanner data performed between scans based on measurements by two-dimensional scanner
DE102013217827A1 (de) * 2013-09-06 2015-03-12 Robert Bosch Gmbh Verfahren und Steuergerät zum Erkennen eines Objekts in einer Bildinformation
DE102014103010A1 (de) * 2014-03-06 2015-09-10 Skidata Ag Digitalkamera
KR20230042386A (ko) 2014-08-15 2023-03-28 에이아이, 아이엔씨. 레이더 전송을 위한 방법 및 시스템
US9674415B2 (en) * 2014-12-22 2017-06-06 Google Inc. Time-of-flight camera system with scanning illuminator
US10527726B2 (en) 2015-07-02 2020-01-07 Texas Instruments Incorporated Methods and apparatus for LIDAR with DMD
US10557939B2 (en) 2015-10-19 2020-02-11 Luminar Technologies, Inc. Lidar system with improved signal-to-noise ratio in the presence of solar background noise
CN108369274B (zh) 2015-11-05 2022-09-13 路明亮有限责任公司 用于高分辨率深度映射的具有经改进扫描速度的激光雷达系统
US10591600B2 (en) 2015-11-30 2020-03-17 Luminar Technologies, Inc. Lidar system with distributed laser and multiple sensor heads
DE102015122844A1 (de) 2015-12-27 2017-06-29 Faro Technologies, Inc. 3D-Messvorrichtung mit Batteriepack
US10509110B2 (en) * 2015-12-29 2019-12-17 The Boeing Company Variable resolution light radar system
US10754015B2 (en) 2016-02-18 2020-08-25 Aeye, Inc. Adaptive ladar receiver
US10042159B2 (en) 2016-02-18 2018-08-07 Aeye, Inc. Ladar transmitter with optical field splitter/inverter
US9933513B2 (en) 2016-02-18 2018-04-03 Aeye, Inc. Method and apparatus for an adaptive ladar receiver
US10908262B2 (en) 2016-02-18 2021-02-02 Aeye, Inc. Ladar transmitter with optical field splitter/inverter for improved gaze on scan area portions
US11300666B2 (en) 2016-04-13 2022-04-12 Oulun Yliopisto Distance measuring device and transmitter, receiver and method thereof
US10761195B2 (en) 2016-04-22 2020-09-01 OPSYS Tech Ltd. Multi-wavelength LIDAR system
US10823825B2 (en) 2016-05-02 2020-11-03 3Deo, Inc System and method for wide-area surveillance
US11237251B2 (en) 2016-05-11 2022-02-01 Texas Instruments Incorporated Lidar scanning with expanded scan angle
US11106030B2 (en) 2016-05-11 2021-08-31 Texas Instruments Incorporated Optical distance measurement system using solid state beam steering
US10429496B2 (en) 2016-05-27 2019-10-01 Analog Devices, Inc. Hybrid flash LIDAR system
US20170357000A1 (en) * 2016-06-09 2017-12-14 Texas Instruments Incorporated Processing techniques for lidar receiver using spatial light modulators
EP4194888A1 (en) * 2016-09-20 2023-06-14 Innoviz Technologies Ltd. Lidar systems and methods
US10451714B2 (en) 2016-12-06 2019-10-22 Sony Corporation Optical micromesh for computerized devices
US10536684B2 (en) 2016-12-07 2020-01-14 Sony Corporation Color noise reduction in 3D depth map
US10181089B2 (en) 2016-12-19 2019-01-15 Sony Corporation Using pattern recognition to reduce noise in a 3D map
US10178370B2 (en) 2016-12-19 2019-01-08 Sony Corporation Using multiple cameras to stitch a consolidated 3D depth map
US10942257B2 (en) 2016-12-31 2021-03-09 Innovusion Ireland Limited 2D scanning high precision LiDAR using combination of rotating concave mirror and beam steering devices
CN110268282B (zh) 2017-01-24 2023-11-14 美国亚德诺半导体公司 从动态位置提供接收光的动态视场
JP6754706B2 (ja) * 2017-02-14 2020-09-16 京セラ株式会社 電磁波検出装置、プログラム、および情報取得システム
US10495735B2 (en) 2017-02-14 2019-12-03 Sony Corporation Using micro mirrors to improve the field of view of a 3D depth map
US10185028B2 (en) 2017-02-17 2019-01-22 Aeye, Inc. Method and system for ladar pulse deconfliction using delay code selection
JP6893797B2 (ja) * 2017-02-23 2021-06-23 京セラ株式会社 電磁波検出装置、プログラム、および電磁波検出システム
US10795022B2 (en) 2017-03-02 2020-10-06 Sony Corporation 3D depth map
KR102326493B1 (ko) 2017-03-13 2021-11-17 옵시스 테크 엘티디 눈-안전 스캐닝 lidar 시스템
US9810775B1 (en) 2017-03-16 2017-11-07 Luminar Technologies, Inc. Q-switched laser for LIDAR system
US9905992B1 (en) 2017-03-16 2018-02-27 Luminar Technologies, Inc. Self-Raman laser for lidar system
US9810786B1 (en) 2017-03-16 2017-11-07 Luminar Technologies, Inc. Optical parametric oscillator for lidar system
JP6894268B2 (ja) 2017-03-17 2021-06-30 京セラ株式会社 電磁波検出装置、プログラム、および電磁波検出システム
US9869754B1 (en) 2017-03-22 2018-01-16 Luminar Technologies, Inc. Scan patterns for lidar systems
JP6850173B2 (ja) 2017-03-24 2021-03-31 京セラ株式会社 電磁波検出装置、プログラム、および電磁波検出システム
US10732281B2 (en) 2017-03-28 2020-08-04 Luminar Technologies, Inc. Lidar detector system having range walk compensation
US10007001B1 (en) 2017-03-28 2018-06-26 Luminar Technologies, Inc. Active short-wave infrared four-dimensional camera
US10267899B2 (en) 2017-03-28 2019-04-23 Luminar Technologies, Inc. Pulse timing based on angle of view
US10254388B2 (en) 2017-03-28 2019-04-09 Luminar Technologies, Inc. Dynamically varying laser output in a vehicle in view of weather conditions
US10121813B2 (en) 2017-03-28 2018-11-06 Luminar Technologies, Inc. Optical detector having a bandpass filter in a lidar system
US10139478B2 (en) 2017-03-28 2018-11-27 Luminar Technologies, Inc. Time varying gain in an optical detector operating in a lidar system
US10209359B2 (en) 2017-03-28 2019-02-19 Luminar Technologies, Inc. Adaptive pulse rate in a lidar system
US11119198B2 (en) 2017-03-28 2021-09-14 Luminar, Llc Increasing operational safety of a lidar system
US10061019B1 (en) 2017-03-28 2018-08-28 Luminar Technologies, Inc. Diffractive optical element in a lidar system to correct for backscan
US10114111B2 (en) 2017-03-28 2018-10-30 Luminar Technologies, Inc. Method for dynamically controlling laser power
US10545240B2 (en) 2017-03-28 2020-01-28 Luminar Technologies, Inc. LIDAR transmitter and detector system using pulse encoding to reduce range ambiguity
US10641874B2 (en) 2017-03-29 2020-05-05 Luminar Technologies, Inc. Sizing the field of view of a detector to improve operation of a lidar system
US11002853B2 (en) 2017-03-29 2021-05-11 Luminar, Llc Ultrasonic vibrations on a window in a lidar system
US10088559B1 (en) 2017-03-29 2018-10-02 Luminar Technologies, Inc. Controlling pulse timing to compensate for motor dynamics
US10983213B2 (en) 2017-03-29 2021-04-20 Luminar Holdco, Llc Non-uniform separation of detector array elements in a lidar system
US11181622B2 (en) 2017-03-29 2021-11-23 Luminar, Llc Method for controlling peak and average power through laser receiver
US10254762B2 (en) 2017-03-29 2019-04-09 Luminar Technologies, Inc. Compensating for the vibration of the vehicle
US10976417B2 (en) 2017-03-29 2021-04-13 Luminar Holdco, Llc Using detectors with different gains in a lidar system
US10191155B2 (en) 2017-03-29 2019-01-29 Luminar Technologies, Inc. Optical resolution in front of a vehicle
US10663595B2 (en) 2017-03-29 2020-05-26 Luminar Technologies, Inc. Synchronized multiple sensor head system for a vehicle
US10969488B2 (en) 2017-03-29 2021-04-06 Luminar Holdco, Llc Dynamically scanning a field of regard using a limited number of output beams
US10684360B2 (en) 2017-03-30 2020-06-16 Luminar Technologies, Inc. Protecting detector in a lidar system using off-axis illumination
US10295668B2 (en) 2017-03-30 2019-05-21 Luminar Technologies, Inc. Reducing the number of false detections in a lidar system
US10241198B2 (en) 2017-03-30 2019-03-26 Luminar Technologies, Inc. Lidar receiver calibration
US9989629B1 (en) 2017-03-30 2018-06-05 Luminar Technologies, Inc. Cross-talk mitigation using wavelength switching
US10401481B2 (en) 2017-03-30 2019-09-03 Luminar Technologies, Inc. Non-uniform beam power distribution for a laser operating in a vehicle
US11022688B2 (en) 2017-03-31 2021-06-01 Luminar, Llc Multi-eye lidar system
US20180284246A1 (en) 2017-03-31 2018-10-04 Luminar Technologies, Inc. Using Acoustic Signals to Modify Operation of a Lidar System
US10979687B2 (en) 2017-04-03 2021-04-13 Sony Corporation Using super imposition to render a 3D depth map
JP6925844B2 (ja) * 2017-04-06 2021-08-25 京セラ株式会社 電磁波検出装置、プログラム、および電磁波検出システム
US10677897B2 (en) 2017-04-14 2020-06-09 Luminar Technologies, Inc. Combining lidar and camera data
US10698108B2 (en) * 2017-05-25 2020-06-30 Texas Instruments Incorporated Receive signal beam steering and detector for an optical distance measurement system
JP6640149B2 (ja) * 2017-05-25 2020-02-05 京セラ株式会社 電磁波検出装置および情報取得システム
DE102017209294A1 (de) * 2017-06-01 2018-12-06 Robert Bosch Gmbh Lidarsensor
JP2018205187A (ja) * 2017-06-06 2018-12-27 京セラ株式会社 電磁波検出装置、電磁波検出システム、およびプログラム
FR3067817B1 (fr) * 2017-06-15 2019-12-27 Thales Systeme d'observation embarque comprenant un lidar pour l'obtention d'images tridimentionnelles haute resolution
CN110914702B (zh) * 2017-07-28 2022-06-28 欧普赛斯技术有限公司 具有小角发散度的vcsel阵列lidar发送器
EP3682308B1 (en) 2017-09-15 2024-04-10 Aeye, Inc. Intelligent ladar system with low latency motion planning updates
US10211593B1 (en) 2017-10-18 2019-02-19 Luminar Technologies, Inc. Optical amplifier with multi-wavelength pumping
US10484667B2 (en) 2017-10-31 2019-11-19 Sony Corporation Generating 3D depth map using parallax
CN111356934B (zh) 2017-11-15 2024-03-12 欧普赛斯技术有限公司 噪声自适应固态lidar系统
US10310058B1 (en) 2017-11-22 2019-06-04 Luminar Technologies, Inc. Concurrent scan of multiple pixels in a lidar system equipped with a polygon mirror
US10451716B2 (en) 2017-11-22 2019-10-22 Luminar Technologies, Inc. Monitoring rotation of a mirror in a lidar system
US11493601B2 (en) 2017-12-22 2022-11-08 Innovusion, Inc. High density LIDAR scanning
JP7260966B2 (ja) * 2018-02-19 2023-04-19 京セラ株式会社 電磁波検出装置
US11808888B2 (en) 2018-02-23 2023-11-07 Innovusion, Inc. Multi-wavelength pulse steering in LiDAR systems
CN112292608A (zh) 2018-02-23 2021-01-29 图达通爱尔兰有限公司 用于lidar系统的二维操纵系统
CN111919137A (zh) 2018-04-01 2020-11-10 欧普赛斯技术有限公司 噪声自适应固态lidar系统
US10324170B1 (en) 2018-04-05 2019-06-18 Luminar Technologies, Inc. Multi-beam lidar system with polygon mirror
US11029406B2 (en) 2018-04-06 2021-06-08 Luminar, Llc Lidar system with AlInAsSb avalanche photodiode
JP7068904B2 (ja) * 2018-04-13 2022-05-17 京セラ株式会社 電磁波検出装置および情報取得システム
CN112020662A (zh) 2018-04-28 2020-12-01 深圳市大疆创新科技有限公司 具有光学器件和固态探测器的光探测和测距传感器以及相关联的系统和方法
JP7091131B2 (ja) * 2018-05-08 2022-06-27 京セラ株式会社 電磁波検出装置及び情報取得システム
JP6908556B2 (ja) * 2018-05-08 2021-07-28 京セラ株式会社 電磁波検出装置及び情報取得システム
JP6974251B2 (ja) * 2018-05-15 2021-12-01 京セラ株式会社 電磁波検出装置および情報取得システム
JP6974252B2 (ja) * 2018-05-15 2021-12-01 京セラ株式会社 電磁波検出装置および情報取得システム
US10348051B1 (en) 2018-05-18 2019-07-09 Luminar Technologies, Inc. Fiber-optic amplifier
US10549186B2 (en) 2018-06-26 2020-02-04 Sony Interactive Entertainment Inc. Multipoint SLAM capture
US10591601B2 (en) 2018-07-10 2020-03-17 Luminar Technologies, Inc. Camera-gated lidar system
US10627516B2 (en) 2018-07-19 2020-04-21 Luminar Technologies, Inc. Adjustable pulse characteristics for ground detection in lidar systems
JP2020016622A (ja) * 2018-07-27 2020-01-30 京セラ株式会社 電磁波検出装置および情報取得システム
JP2020016602A (ja) * 2018-07-27 2020-01-30 京セラ株式会社 電磁波検出装置および情報取得システム
JP7257751B2 (ja) * 2018-07-27 2023-04-14 京セラ株式会社 電磁波検出装置
JP7191570B2 (ja) * 2018-07-27 2022-12-19 京セラ株式会社 電磁波検出装置
US10551501B1 (en) 2018-08-09 2020-02-04 Luminar Technologies, Inc. Dual-mode lidar system
US10340651B1 (en) 2018-08-21 2019-07-02 Luminar Technologies, Inc. Lidar system with optical trigger
DE102018214182A1 (de) * 2018-08-22 2020-02-27 Robert Bosch Gmbh LIDAR-Vorrichtung mit einer beschleunigten Laufzeitanalyse
JP7246151B2 (ja) * 2018-09-26 2023-03-27 京セラ株式会社 電磁波検出装置
JP7004632B2 (ja) * 2018-10-05 2022-01-21 京セラ株式会社 電磁波検出装置
US11313968B2 (en) * 2018-12-14 2022-04-26 Texas Instruments Incorporated Interference signal rejection in LIDAR systems
US11774561B2 (en) 2019-02-08 2023-10-03 Luminar Technologies, Inc. Amplifier input protection circuits
US11442150B2 (en) * 2019-02-13 2022-09-13 Luminar, Llc Lidar system with spatial light modulator
DE102019106213A1 (de) * 2019-03-12 2020-10-01 Valeo Schalter Und Sensoren Gmbh Verfahren zur Bestimmung wenigstens einer Positionsinformation wenigstens eines Objekts in einem Überwachungsbereich mit einer optischen Detektionsvorrichtung und optische Detektionsvorrichtung
EP3953727A4 (en) 2019-04-09 2023-01-04 Opsys Tech Ltd. SOLID STATE LIDAR TRANSMITTER WITH LASER CONTROL
US11846728B2 (en) 2019-05-30 2023-12-19 OPSYS Tech Ltd. Eye-safe long-range LIDAR system using actuator
KR102637658B1 (ko) 2019-06-10 2024-02-20 옵시스 테크 엘티디 눈-안전 장거리 고체 상태 lidar 시스템
JP2021039069A (ja) * 2019-09-05 2021-03-11 株式会社東芝 光検出装置、電子装置及び光検出方法
EP4034914A4 (en) * 2019-09-27 2022-11-23 Pointcloud Inc. DYNAMIC RECONFIGURATION OF LIDAR AREAS
JP2020073895A (ja) * 2019-12-25 2020-05-14 京セラ株式会社 電磁波検出装置および情報取得システム
JP2020073894A (ja) * 2019-12-25 2020-05-14 京セラ株式会社 電磁波検出装置および情報取得システム
US20210208251A1 (en) * 2020-01-07 2021-07-08 Continental Automotive Systems, Inc. Lidar system including scanning field of illumination
CN116113851A (zh) * 2020-07-20 2023-05-12 麦格纳电子欧洲有限责任无限贸易公司 用于测试激光雷达模块的设备和用于测试的方法
JPWO2022071332A1 (es) * 2020-10-02 2022-04-07
JP2024501078A (ja) * 2020-12-14 2024-01-10 サマー ロボティックス インコーポレイテッド 表面の検出および表面の動きの検出に基づく対象物の知覚
US20220206119A1 (en) * 2020-12-28 2022-06-30 Beijing Voyager Technology Co., Ltd. Mems actuated alvarez lens for tunable beam spot size in lidar
US11604264B2 (en) 2021-03-26 2023-03-14 Aeye, Inc. Switchable multi-lens Lidar receiver
US11686845B2 (en) 2021-03-26 2023-06-27 Aeye, Inc. Hyper temporal lidar with controllable detection intervals based on regions of interest
US11635495B1 (en) 2021-03-26 2023-04-25 Aeye, Inc. Hyper temporal lidar with controllable tilt amplitude for a variable amplitude scan mirror
US20220308187A1 (en) 2021-03-26 2022-09-29 Aeye, Inc. Hyper Temporal Lidar Using Multiple Matched Filters to Determine Target Retro-Reflectivity
US20220317249A1 (en) 2021-03-26 2022-10-06 Aeye, Inc. Hyper Temporal Lidar with Switching Between a Baseline Scan Mode and a Pulse Burst Mode
US11630188B1 (en) 2021-03-26 2023-04-18 Aeye, Inc. Hyper temporal lidar with dynamic laser control using safety models
US11460553B1 (en) 2021-03-26 2022-10-04 Aeye, Inc. Hyper temporal lidar with dynamic laser control using different mirror motion models for shot scheduling and shot firing
EP4348293A1 (en) * 2021-06-02 2024-04-10 Fastree3D SA 3d image detection and related 3d imaging sensors
JP7310859B2 (ja) * 2021-07-28 2023-07-19 株式会社リコー 光検出器および測距装置
WO2023009755A1 (en) 2021-07-29 2023-02-02 Summer Robotics, Inc. Dynamic calibration of 3d acquisition systems
US11808857B2 (en) 2021-08-27 2023-11-07 Summer Robotics, Inc. Multi-sensor superresolution scanning and capture system
WO2023149537A1 (ja) * 2022-02-07 2023-08-10 パナソニックIpマネジメント株式会社 投影撮像光学系及び投写型映像表示装置
US11785200B1 (en) 2022-03-14 2023-10-10 Summer Robotics, Inc. Stage studio for immersive 3-D video capture
US11974055B1 (en) 2022-10-17 2024-04-30 Summer Robotics, Inc. Perceiving scene features using event sensors and image sensors

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110176146A1 (en) * 2008-09-02 2011-07-21 Cristina Alvarez Diez Device and method for measuring a surface
US20120050750A1 (en) * 2009-04-21 2012-03-01 Michigan Aerospace Corporation Atmospheric measurement system
WO2012123809A1 (en) 2011-03-17 2012-09-20 Universitat Politècnica De Catalunya System, method and computer program for receiving a light beam
US20120249999A1 (en) 2005-12-08 2012-10-04 Roger Stettner Laser ranging tracking and designation using 3-d focal planes

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080147253A1 (en) * 1997-10-22 2008-06-19 Intelligent Technologies International, Inc. Vehicular Anticipatory Sensor System
US7532311B2 (en) * 2005-04-06 2009-05-12 Lockheed Martin Coherent Technologies, Inc. Efficient lidar with flexible target interrogation pattern
DE102005049471B4 (de) * 2005-10-13 2007-09-13 Ingenieurbüro Spies GbR (vertretungsberechtigte Gesellschafter: Hans Spies, Martin Spies, 86558 Hohenwart) Entfernungssensor mit Einzelflächenabtastung
US8917395B2 (en) * 2010-04-19 2014-12-23 Florida Atlantic University MEMS microdisplay optical imaging and sensor systems for underwater scattering environments
ES2512965B2 (es) 2013-02-13 2015-11-24 Universitat Politècnica De Catalunya Sistema y método para escanear una superficie y programa de ordenador que implementa el método

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120249999A1 (en) 2005-12-08 2012-10-04 Roger Stettner Laser ranging tracking and designation using 3-d focal planes
US20110176146A1 (en) * 2008-09-02 2011-07-21 Cristina Alvarez Diez Device and method for measuring a surface
US20120050750A1 (en) * 2009-04-21 2012-03-01 Michigan Aerospace Corporation Atmospheric measurement system
WO2012123809A1 (en) 2011-03-17 2012-09-20 Universitat Politècnica De Catalunya System, method and computer program for receiving a light beam

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2957926A4

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10018724B2 (en) 2013-02-13 2018-07-10 Universitat Politecnica De Catalunya System and method for scanning a surface and computer program implementing the method
EP3428686A1 (en) 2017-07-14 2019-01-16 Veoneer Sweden AB A vision system and method for a vehicle
EP3428677A1 (en) 2017-07-14 2019-01-16 Veoneer Sweden AB A vision system and a vision method for a vehicle
EP3428687A1 (en) 2017-07-14 2019-01-16 Veoneer Sweden AB A vision system and vision method for a vehicle
EP3428678A1 (en) 2017-07-14 2019-01-16 Veoneer Sweden AB A vision system and method for a vehicle
WO2019012087A1 (en) 2017-07-14 2019-01-17 Veoneer Sweden Ab VISUALIZATION SYSTEM AND METHOD FOR VEHICLE
WO2019012081A1 (en) 2017-07-14 2019-01-17 Veoneer Sweden Ab VISION SYSTEM AND VISION METHOD FOR A VEHICLE
WO2019012086A1 (en) 2017-07-14 2019-01-17 Veoneer Sweden Ab SYSTEM AND METHOD FOR VISION FOR A VEHICLE
WO2019012085A1 (en) 2017-07-14 2019-01-17 Veoneer Sweden Ab SYSTEM AND METHOD FOR VISION FOR A VEHICLE
EP3588140A1 (en) 2018-06-28 2020-01-01 Veoneer Sweden AB A vision system and vision method for a vehicle
WO2020002148A1 (en) 2018-06-28 2020-01-02 Veoneer Sweden Ab A vision system and vision method for a vehicle
EP3591436A1 (en) 2018-07-03 2020-01-08 Veoneer Sweden AB Lidar system and lidar method for a motor vehicle
EP3839553A1 (en) 2019-12-20 2021-06-23 Veoneer Sweden AB Lidar imaging apparatus for a motor vehicle
WO2021121880A1 (en) 2019-12-20 2021-06-24 Veoneer Sweden Ab Lidar imaging apparatus for a motor vehicle

Also Published As

Publication number Publication date
CA2901100A1 (en) 2014-08-21
EP2957926B1 (en) 2021-09-01
CA2901100C (en) 2021-05-11
EP2957926A1 (en) 2015-12-23
EP2957926A4 (en) 2016-11-02
US10018724B2 (en) 2018-07-10
US20150378023A1 (en) 2015-12-31
ES2512965B2 (es) 2015-11-24
ES2512965A1 (es) 2014-10-24

Similar Documents

Publication Publication Date Title
ES2512965B2 (es) Sistema y método para escanear una superficie y programa de ordenador que implementa el método
JP7478281B2 (ja) Lidarシステム及び方法
KR102656399B1 (ko) 구조화된 광 조명기가 있는 비행-시간 센서
CN112236685A (zh) 具有内部光校准的激光雷达系统和方法
ES2401785T3 (es) Generador de luz estructurada
US20220075027A1 (en) Resonant laser driver for a lidar system
KR20230067621A (ko) 가변 분해능 멀티-빔 스캐닝 기능이 있는 lidar 시스템
US11561284B2 (en) Parallax compensating spatial filters
KR20210059591A (ko) 옵틱 및 그 제작 방법
US11172108B2 (en) Imaging device
CN114008483A (zh) 用于飞行时间光学感测的系统和方法
KR20210066906A (ko) 가열 요소를 갖는 전기 광학 시스템
US11971488B2 (en) LIDAR system with variable resolution multi-beam scanning
JP2020076718A (ja) 距離測定装置及び移動体
US20230393245A1 (en) Integrated long-range narrow-fov and short-range wide-fov solid-state flash lidar system
US20220397647A1 (en) Multibeam spinning lidar system
US20220342047A1 (en) Systems and methods for interlaced scanning in lidar systems
US20220206121A1 (en) Mems actuated vibratory risley prism for lidar
US20220163633A1 (en) System and method for repositioning a light deflector
CN115989427A (zh) 在确保眼睛安全的同时进行多个同时激光束的发射和照明
CN114174868A (zh) 用于人眼安全激光雷达的系统和方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14751680

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2901100

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14767579

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014751680

Country of ref document: EP