WO2012009644A2 - Methods to identify synthetic and natural rna elements that enhance protein translation - Google Patents

Methods to identify synthetic and natural rna elements that enhance protein translation Download PDF

Info

Publication number
WO2012009644A2
WO2012009644A2 PCT/US2011/044198 US2011044198W WO2012009644A2 WO 2012009644 A2 WO2012009644 A2 WO 2012009644A2 US 2011044198 W US2011044198 W US 2011044198W WO 2012009644 A2 WO2012009644 A2 WO 2012009644A2
Authority
WO
WIPO (PCT)
Prior art keywords
seq
nucleic acid
rna
polynucleotide
library
Prior art date
Application number
PCT/US2011/044198
Other languages
French (fr)
Other versions
WO2012009644A3 (en
Inventor
John Chaput
Sudhir Kumar
Bertram Jacobs
Original Assignee
Arizona Board Of Regents
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arizona Board Of Regents filed Critical Arizona Board Of Regents
Priority to US13/703,561 priority Critical patent/US20130230884A1/en
Publication of WO2012009644A2 publication Critical patent/WO2012009644A2/en
Publication of WO2012009644A3 publication Critical patent/WO2012009644A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1034Isolating an individual clone by screening libraries
    • C12N15/1062Isolating an individual clone by screening libraries mRNA-Display, e.g. polypeptide and encoding template are connected covalently
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1034Isolating an individual clone by screening libraries
    • C12N15/1051Gene trapping, e.g. exon-, intron-, IRES-, signal sequence-trap cloning, trap vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/67General methods for enhancing the expression

Definitions

  • Ribosomal initiation constitutes a critical step in the protein translation process, allowing the ribosome to locate the correct AUG start site in the RNA message and initiate the transfer of genetic information from RNA into proteins via the genetic code.
  • recruitment of the 40S ribosomal subunit to the RNA message occurs by recognition of a 7-methylguanosine cap located at the 5 ' end of the mRNA strand.
  • Ribosomal recruitment can also occur by a less common cap- independent mechanism, an example of which is the internal ribosomal entry site (IRES).
  • the recruitment site is located some distance upstream of the initiation codon, which poses the question of how the ribosome is able to bypass the intervening sequence.
  • TIEs translation initiation elements
  • TEEs translation enhancing elements
  • the present invention provides nucleic acid libraries comprising a plurality of linear recombinant double stranded DNA constructs, wherein each double stranded DNA construct comprises
  • a heterologous cross-linking region downstream of the coding region downstream of the coding region;
  • a heterologous polynucleotide sequence of between 20-500 base pairs in length located downstream of the promoter and upstream of the coding region; and
  • a first PCR primer binding site and a second PCR primer binding site wherein the first PCR primer binding site is upstream of the polynucleotide sequence and the second PCR primer site is downstream of the polynucleotide sequence; wherein at least 10 13 different polynucleotide sequences are represented in the plurality of double stranded nucleic acid constructs, and wherein the first PCR primer and the second PCR primer are the same for each construct in the plurality of double stranded nucleic acid constructs.
  • the present invention provides mRNA pools, comprising mRNA transcripts resulting from transcription of the nucleic acid libraries of the first aspect of the invention.
  • the present invention provides methods for identifying translational enhancing elements (TEEs), comprising
  • RNA from the double stranded nucleic acid constructs resulting in an RNA expression product
  • RNA-polypeptide fusion products (d) isolating RNA-polypeptide fusion products; (e) converting the isolated RNA-polypeptide fusion products to cDNA by reverse transcription-PCR using a primer to the 3 ' end of the isolated RNA- polypeptide fusion products;
  • the present invention provides isolated polynucleotides, comprising a nucleic acid sequence according to any one of SEQ ID NOS: 1-5 and 7- 645. These polynucleotides have been identified as TEEs using the methods of the present invention.
  • the present invention provides expression vectors comprising
  • TEE comprises a polynucleotide according to the fourth aspect of the invention.
  • a cloning site suitable for cloning of an protein-encoding nucleic acid of interest located upstream of the TEE, and downstream of the promoter.
  • the present invention provides recombinant host cells comprising the expression vector of the fifth aspect of the invention.
  • the present invention provides methods for protein expression, comprising contacting an expression vector of the fifth aspect of the invention with reagents and under conditions suitable for promoting expression of a polypeptide cloned into the cloning site.
  • Figure 1 In vitro selection and characterization of RNA elements that mediate cap-independent.
  • Human genomic DNA fragments were inserted into a DNA cassette containing all of the sequence information necessary to perform an mRNA display selection. For each selection round, the dsDNA pool was in vitro transcribed into ssRNA, conjugated to a DNA-puromycin linker, and translated in vitro.
  • Uncapped mRNA sequences that initiate translation of an intact ORF become covalently linked to a His-6 protein affinity tag encoded in the RNA message.
  • RNA-protein fusion molecule by the natural peptidyl transferase activity of the ribosome, which catalyzes the formation of a non-hydrolyzable amide bond between puromycin and the polypeptide chain.
  • C The selection progress was monitored by measuring the fraction of S 35 -labeled mRNA-peptide fusions that bound to an oligo-dT column and a Ni-NTA affinity column. Chromosomal distribution of in vitro selected sequences with 100% sequence similarity to the human reference genome (D) and their evolutionary conservation compared to the starting library (round 0) (E).
  • D Chromosomal distribution of in vitro selected sequences with 100% sequence similarity to the human reference genome
  • E The starting library
  • F The distribution of individual repeat families in the starting library, random genomic sequences, and the in vitro selected sequences.
  • FIG. 1 Functional analysis of top nine sequences in human cells.
  • a luciferase reporter plasmid carrying an insert and a promoter sequence specific to the vaccinia virus is transfected into HeLa cells that are immediately infected with vaccinia virus.
  • Virus-infected cells synthesize a vaccinia RNA polymerase that enables cytoplasmic transcription of the reporter plasmid into RNA.
  • the mRNA transcripts are translated by endogenous ribosomes and the cells are assayed for bioluminescence activity after 6 hours of infection.
  • FIG. 3 Functional analysis of the top nine sequences in the hairpin plasmid.
  • A The sequences were inserted into a firefly reporter plasmid (F-luc-hp) containing a stable stem-loop structure.
  • B The translation efficiency of the controls with no insert in vitro and in cell-based assays with and without the stable stem-loop structure.
  • Figure 4 Translation initiation efficiency of AUG triplet patterns.
  • A In vitro translation efficiency of selected sequences with in-frame and out-of-frame AUG triplets.
  • B Gel image illustrating start site usage of sequences in rabbit and human cell lysate.
  • C In vitro translation efficiency of HGL6.877 and an unselected sequence (HGL0.53) with various combinations of AUG triplets.
  • the present invention provides nucleic acid libraries comprising a plurality of linear recombinant double stranded DNA constructs, wherein each double stranded DNA construct comprises
  • the nucleic acid libraries according to the present invention can be used, for example, in the methods of the invention for performing in vitro selection for the isolation of RNA elements (TEEs, including internal ribosome entry sites (IRESs)) that can mediate cap-independent protein translation.
  • TEEs RNA elements
  • IRESs internal ribosome entry sites
  • the libraries comprise a series of linear constructs, which, when used in in vitro selection methods as described herein, permit use of a library diversity of at least 10 13 different polynucleotide sequences.
  • the inventors have used the libraries of the present invention to identify a large number of novel TEEs, including a number of IRESs.
  • a "library” is a collection of linear double stranded nucleic acid constructs.
  • heterologous means that none of the promoter, coding region, genomic fragment, and cross-linking region are normally associated with each other (ie: they are not part of the same gene in vivo), but are recombinantly combined in the construct.
  • a "promoter” is any DNA sequence that can be used to help drive RNA expression of a DNA sequence downstream of the promoter. Suitable promoters include, but are not limited to, the T7 promoter, SP6 promoter, CMV promoter, and vaccinia virus synthetic-late promoter. As will be understood by those of skill in the art, a given double stranded DNA construct may contain more than one promoter, as appropriate for a given proposed use.
  • a "coding region” is any DNA sequence encoding a polypeptide product.
  • a "detectable polypeptide” is any polypeptide whose expression can be detected, including but not limited to a fluorescent polypeptide (GFP, BFP, etc.), a member of a binding pair, an affinity tag, etc. The ability to detect the polypeptide greatly facilitates the methods of the invention.
  • detectable polypeptides include affinity tags, protein DX (Smith et al.
  • MBP maltose-binding protein
  • GST glutathionine S-transferase
  • FLAG affinity tag flagellar protein FlaG
  • Myc affinity tag myelocytomatosis and viral oncogene homologs
  • a "cross linking region” is any nucleic acid sequence that can be expressed as RNA, where the expressed RNA can serve as a site for
  • expressed RNA from the cross-linking region can serve as a site for ligation to a linker containing a 3 '-puromycin residue.
  • the expressed RNA from the cross-linking region can serve as a site for photo-ligation of a psoralen-DNA-puromycin linker (5'-psoralen- (oligonucleotide complementary to linker)-(PEGg)?-Ai ⁇ i-ACC-puromvcin).
  • the linker is a DNA linker, and the mRNA expressed from the cross linking region is complementary to the DNA linker sequence to be used.
  • the polynucleotide sequence can be any suitable length, such as between 20- 1000 base pairs. In a preferred embodiment, the polynucleotide sequence is between 20-500 base pairs, and may comprise genomic fragments, such as a representation of an entire or partial genome from an organism of interest, or may comprise synthetic sequences. In embodiments where genomic fragments are used, the genomic fragments may be generated by any appropriate means, including restriction enzyme digestion, shearing, polynucleotide synthesis, etc. Genomic fragments from any suitable organism of interest may be used, including but not limited to human, mammal, fish, reptile, plant, yeast, insect, prokaryotic, bacterial (E.coli, etc.), viral, fungal, and pathogenic organism genomic fragments. In another preferred embodiment, such genomic fragments are obtained from plurality of individual organisms of a single species; in a further embodiment, the plurality of individual organisms of a single species differ in ancestry, age, gender, and/or other characteristics.
  • the primer binding sites provide regions of known sequence around the polynucleotide sequence of unknown sequence to be tested for TEE activity.
  • primer binding sites provide a way to amplify only the
  • polynucleotide sequence back out of the construct as desired.
  • any suitable sequence can be used as a primer binding site so long as it can be used to bind a primer of interest.
  • the primer binding site may be immediately adjacent to the polynucleotide sequence, or there may be additional nucleotides present between the primer binding site and the polynucleotide sequence as deemed appropriate for a given purpose.
  • At least 10 13 different polynucleotide sequences are represented in the plurality of double stranded nucleic acid constructs.
  • the library in its entirety, contains at least 10 13 different polynucleotide sequences that can be tested for TEE activity, while each different double stranded nucleic acid construct contains only a single polynucleotide sequence.
  • at least 10 14 different polynucleotide sequences or at least 10 15 different polynucleotide sequences are represented in the plurality of double stranded nucleic acid constructs.
  • the constructs of the invention may comprise further nucleotide elements as appropriate for a given intended use.
  • the double stranded nucleic acid constructs further comprise one or more unique restriction sites upstream of the polynucleotide sequence and downstream of the promoter, and one or more unique restriction sites downstream of the polynucleotide sequence.
  • This embodiment provides a further means by which to isolate polynucleotide sequences of interest from the constructs.
  • the constructs do not include sequences encoding a 3 ' poly(A) tail, or sequences that promote formation of a 5 ' cap on the resulting transcript.
  • the second (3 ') primer binding site is immediately upstream of the coding region in the double stranded nucleic acid construct.
  • the 3' primer binding site abuts the coding region when the polynucleotide sequence is upstream of the promoter.
  • the present invention provides an mRNA pool resulting from transcription of the library of any embodiment of the first aspect of the invention.
  • mRNA pools can be used, for example, in the methods of the invention below.
  • Any suitable technique for RNA transcription can be used.
  • the double stranded DNA constructs each comprise a T7 RNA polymerase promoter, and the library is transcribed in vitro using T7 RNA polymerase, using standard techniques. It will be clear to those of skill in the art how to optimize transcription conditions in terms of buffers, nucleotides, salt conditions, etc., based on the general knowledge of in vitro transcription techniques in the art.
  • the resulting mRNA pools will comprise single stranded RNA from all/almost all the double stranded DNA constructs in the library.
  • the transcripts in the pooled mRNA comprise a DNA linker, containing a 3' puromycin residue, ligated at the 3 'end of the transcript.
  • the invention provides pooled mRNA-peptide fusion molecules resulting from in vitro translation of the pooled mRNA. Methods for in vitro translation of RNA transcripts are well known to those of skill in the art.
  • the methods comprise incubating the pooled mRNA with rabbit reticulocyte lysate and 35 S- methionine for a suitable time.
  • the method may further comprise incubating the mixture overnight in the presence of suitable amounts of KC1 and MgCi2 to promote fusion formation.
  • TEE such as an IRES
  • transcripts that contain a TEE (such as an IRES) in their 5' UTR would initiate translation and produce an mRNA-peptide fusion molecule; thus, modifying TEE-containing RNAs with a selectable tag.
  • the chemical bond forming step of mRNA display is due to the natural peptidyl transferase activity of the ribosome, which catalyzes the formation of a non- hydrolyzable amide bond between puromycin and the polypeptide chain (Fig. IB).
  • mRNA-peptide fusion molecules can be isolated by affinity purification, reverse- transcribed, and amplified to regenerate the pool of DNA for another selection cycle.
  • the present invention provides in vitro methods for identifying translational enhancing elements (TEEs), comprising
  • each double stranded DNA construct comprises
  • the heterologous polynucleotide sequences are randomly digested fragments (in various non-limiting embodiments, ranging between 20-1000 nts, 20-750 nts, 20-500nts; or about 150 nts) of total human DNA. Since the heterologous polynucleotide sequence is located downstream of the promoter and upstream of the coding region.
  • step (f) amplifying the cDNA by PCR using primers to the 5' and 3' end of the cDNA serves to add sequence information that was lost in steps (a) and (e).
  • primers to add a promoter such as a T7 promoter
  • the cross-linking region such as a photo-crosslinking site (3 ' end) back onto the DNA library are after each round of selection.
  • the sequence of these PCR primers may vary depending on how each library is constructed.
  • the result of this PCR is the fully constructed double stranded nucleic acid construct, which can be used to repeat steps (a)-(f) as desired.
  • RNA expression product with reagents for ligating a linker containing a puromycin residue to the 3 ' end of the RNA expression product, resulting in a labeled RNA expression product, can be carried out via any suitable method, including photo-crosslinking or Moore-Sharp splint-directed ligation.
  • linker comprises a DNA linker complementary to the transcribed single stranded RNA.
  • the DNA linker may comprise any suitable modifications, including but not limited non- natural residues and pegylation, as can be used in mRNA display.
  • the polynucleotide sequences in the library comprise genomic fragments; in a further preferred embodiment the starting pool of constructs used in the methods contains at least a 5X-1000X coverage of the genome of interest.
  • RNA transcripts are preferably devoid of a 5' cap and 3' poly(A) tail. As will be apparent to those of skill in the art, this can be accomplished, for example, by not including polyT sequences in the DNA template (to avoid poly(A) tail production) and by not providing capping enzymes required for 5' cap production.
  • transcripts that contain a TEE in their 5' UTR initiate translation and produce an mRNA-peptide fusion molecule; thus, modifying TEE-containing RNAs with a selectable tag.
  • the chemical bond forming step of mRNA display is due to the natural peptidyl transferase activity of the ribosome, which catalyzes the formation of a non-hydrolyzable amide bond between puromycin and the polypeptide chain (Fig. IB).
  • mRNA-peptide fusion molecules can then be isolated by affinity purification, reverse-transcribed, and amplified to regenerate the pool of DNA for another selection cycle.
  • the dsDNA library was transcribed with an RNA polymerase suitable for the promoter being used, photo-ligated to a psoralen-DNA-puromycin linker (5 '-psoralen-oligonucleotide complementary to linker)-(PEG 9 )2-Ai5-ACC-puromycin), and translated in vitro by incubating the library with rabbit reticulocyte lysate and 35 S-methionine under suitable conditions.
  • a psoralen-DNA-puromycin linker (5 '-psoralen-oligonucleotide complementary to linker)-(PEG 9 )2-Ai5-ACC-puromycin
  • mRNA-peptide fusion molecules are reverse transcribed, and can be purified by any suitable means, including but not limited to a two-step procedure on oligo (dT)-cellulose beads (NEB) and Ni-NTA agarose affinity resin (Qiagen).
  • Functional TEEs are recovered by any suitable technique, including but not limited to eluting the column with imidazole, dialyzing the sample into water, and amplifying the cDNA by PCR. The selection progress can be monitored using any suitable technique, including but not limited to determining the fraction of S 35 -labeled mRNA- peptide fusions that remained on the oligo (dT)/Ni-NTA affinity columns. After a desired number of rounds of selection and amplification, the TEEs can be identified by any suitable means, including but not limited to cloning and sequencing of the amplified DNA constructs.
  • step (a)-(f)) can be carried out any suitable number of times deemed appropriate to identify TEEs, such as 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more times.
  • at least three selection cycles are carried out, such that step (g) comprises repeating steps (a)-(f) at least two more times, and even more preferably at least 3, 4, 5, 6, 7, 8, 9, or more times.
  • the method further comprises testing polynucleotide sequences identified as TEEs for TEE activity in vivo using, for example, the vaccinia system described herein. Any suitable system may be used.
  • a plasmid-based reporter assay that allows coupled transcription and translation to occur in the cytoplasm of human cells was developed (Fig. 2A), to test sequences under conditions that are not subject to nuclear processing. This system is based on an EMCV-driven system that relies on vaccinia virus (VACV) to circumvent nuclear expression (25).
  • TEE candidate sequences are cloned into a monocistronic firefly luciferase reporter plasmid (F-luc-mono) containing a VACV-specific promoter.
  • F-luc-mono firefly luciferase reporter plasmid
  • Transfected HeLa cells are infected with VACV, and after a brief incubation, cells are lysed and assayed for luciferase activity. Plasmids carrying no- insert or a randomly chosen sequence from the starting pool provided a basal level of activity.
  • TEE candidate sequences are tested for the ability to initiate internal translation initiation. Any suitable assay for testing internal translation initiation can be used, including but not limited to those disclosed herein.
  • the present invention provides isolated polynucleotides, comprising a nucleic acid sequence according to any one of SEQ ID NOS: 1-5 and 7- 645.
  • the isolated polynucleotides comprise or consist of a sequence according to one or more of SEQ ID NO: 7-645, listed in Table 1.
  • the isolated polynucleotides listed in the recited tables were all identified as TEEs by the methods of the invention; all are human genomic sequences, and thus can be used, for example, in designing expression vectors for improved translational efficiency of one or more proteins encoded by the vector.
  • the isolated polynucleotides are between 13-180, 13-170, 13-160, 13-150, 13-140, 13- 130, 13-120, 13-110, 13-100, 13-90, 13-80, 13-70, 13-60, 13-50, 13-40, 13-30, or 13- 20 nucleotides in length.
  • the isolated polynucleotides consist of the recited sequence.
  • the isolated polynucleotides comprise the sequence of SEQ ID NO:4 (A/-)(A/G)ATC(A/G)(A/G)TAAA(T/C)G, wherein the isolated polynucleotides is between 13-200 nucleotides in length.
  • SEQ ID NO:4 is a consensus sequence found within a number of the TEES (Clones 985 (SEQ ID NO:448), 1092 (SEQ ID NO:495), 1347 (SEQ ID NO:623), 906 (SEQ ID NO:408), 12 (SEQ ID NO: 12), 1200 (SEQ ID NO:553), 958 (SEQ ID NO:434), 1011 (SEQ ID NO:458), 459 (SEQ ID NO:214) in Table 1) identified using the methods of the invention.
  • the isolated polynucleotides comprise the sequence of SEQ ID NO: 5 5 ' -AAATCAATAAATG-3 ' , which is a conserved sequence found in the top-performing TEEs as described in the examples that follow.
  • the isolated polynucleotides are between 13-180, 13-170, 13-160, 13-150, 13-140, 13-130, 13-120, 13-110, 13-100, 13-90, 13-80, 13- 70, 13-60, 13-50, 13-40, 13-30, or 13-20 nucleotides in length.
  • the polynucleotide is selected from the group consisting of SEQ ID NO:583 (clone 1267), SEQ ID NO:397 (clone 877), SEQ ID NO:54 (clone 100), SEQ ID NO:401 (clone 884), SEQ ID NO:471 (clone 1033), SEQ ID NO:327 (clone 733), SEQ ID NO:398 (clone 878), SEQ ID NO:301 (clone 675), and SEQ ID NO:310 (clone 694). These sequences have been identified as IRESs using the methods disclosed herein.
  • the present invention provides isolated polynucleotides comprising a nucleic acid sequence according to SEQ ID NO: 1.
  • This sequence represents a consensus sequence of a subset of 733 (SEQ ID NO:327), 877 (SEQ ID NO:397), 1033 (SEQ ID NO:471), and 1267 (SEQ ID NO: 583), and thus is strongly correlated with activity.
  • the isolated polynucleotides comprise a nucleic acid sequence according to SEQ ID NO:2 or SEQ ID NO:3, which are longer portions of the consensus sequence between 733 (SEQ ID NO:327), 877 (SEQ ID NO:397), 1033 (SEQ ID NO:471), 1267 (SEQ ID NO:583.
  • SEQ ID NO:2 5 , -(A/-)(A/-)(G/A/-)(C T/-)(G/-)(G/-)(A/-)(A/-)(T/-)(T/a-)(-/A/G)(-
  • the present invention provides expression constructs comprising:
  • TEE heterologous translational initiation element downstream of the promoter, where the TEE comprises or consists of a sequence according to any one of SEQ ID NO: 1-5 and 7-645;
  • the invention provides constructs comprising the TEEs of the invention that are positioned relative to the polylinker (ie: one or more unique restriction sites to facilitate cloning) to increase translational efficiency of any polynucleotide coding region cloned into the polylinker.
  • the TEE is between 13-500 nucleotides in length; in a more preferred embodiment, between 13 and 200 nucleotides in length.
  • the polylinker is located downstream of the TEE. Any suitable coding region for which an increase in translational efficiency is desired can be cloned into the vector.
  • the construct comprises a polynucleotide coding region cloned into the polylinker.
  • the TEE comprises or consists of the sequence of any one or more of SEQ ID NOS: 1-5, 448, 495, 623, 408, 12, 553, 434, 458, 214, 327, 397, 471, and 583.
  • the TEE comprises or consists of the sequence of any one or more of 583 (clone 1267), SEQ ID NO:397 (clone 877), SEQ ID NO:54 (clone 100), SEQ ID NO:401 (clone 884), SEQ ID NO:471 (clone 1033), SEQ ID NO:327 (clone 733), SEQ ID NO:398 (clone 878), SEQ ID NO:301 (clone 675), and SEQ ID NO:310 (clone 694). These sequences have been identified as IRESs using the methods disclosed herein.
  • Suitable promoters include, but are not limited to, the T7 promoter, SP6 promoter, CMV promoter, and vaccinia virus synthetic-late promoter.
  • the constructs in this aspect of the invention may be linear constructs, or may be part of an expression vector, such as a plasmid or viral-based expression vector as are known in the art. As will be apparent to those of skill in the art, the constructs may contain any other components as desired by a user, such as origins of replication, selection markers, etc.
  • the present invention provides recombinant host cell comprising an expression vector of any embodiment or combination of embodiments of the fifth aspect of the invention.
  • host cells can be used, for example, to prepare large amounts of the expression vector and to provide for expression of the encoded proteins in the host cells.
  • Any suitable host cell may be used, including but not limited to bacterial and eukaryotic host cells, including but not limited to mammalian and human cells.
  • the present invention provides methods for protein expression, comprising contacting an expression construct according to any embodiment or combination of embodiments of the fifth aspect of the invention, wherein the construct comprises a polynucleotide coding region cloned into the polylinker, with reagents and under conditions suitable for promoting expression of the polypeptide encoded by the polynucleotide coding region. It is within the level of skill in the art to choose appropriate reagents and conditions for RNA expression from the expression construct, followed by translation of the encoded polypeptide.
  • IRESs Internal ribosomal entry sites
  • Initiation is a critical step in protein translation, allowing the ribosome to locate the translation start site in the RNA message and initiate the transfer of genetic information from RNA into protein via the genetic code.
  • the 43 S ribosomal pre-initiation complex PIC
  • PIC 43 S ribosomal pre-initiation complex
  • IIC 43 S ribosomal pre-initiation complex
  • IRC 43 S ribosomal pre-initiation complex
  • a subset of leader sequences known as internal ribosomal entry sites (IRESs) can bypass the 5' cap structure by recruiting the ribosome to internal positions in the 5' untranslated region (5' UTR) (3-7).
  • IRESs play an important role in gene regulation by allowing essential proteins to be synthesized when normal cap-dependent translation is compromised (8). This can occur during regular cellular processes like mitosis and apoptosis (9, 10), as well as during hypoxia (11), viral infection (12), or during states of cellular dysregulation (13).
  • Ribosomal profiling a technique that combines polysome fractioning with DNA microarrays, has been employed to profile cellular translation under conditions that impede normal cap-dependent translation (14).
  • Data from these studies suggest that the human genome likely contains many more IRESs than previously thought; however, only a few human IRESs have been characterized in detail.
  • These studies further suggest that cellular systems may possess mechanisms to support the coordinated regulation of specific IRES subtypes, as different physiological conditions gave rise to different IRES subsets.
  • this approach suffers from limited resolution and sequence accuracy, as well as an inability to distinguish stalled ribosomes from actively translating ribosomes. While continued technological advancement could circumvent some of these problems, thorough investigation of the human genome would require exhaustive sampling of countless conditions and cell types. This limitation has created a need for new molecular tools that can be used to identify human IRESs on a genome-wide scale (15).
  • RNA transcripts composed of randomly digested fragments (-150 nts) of total human DNA was inserted into the 5' UTR of a DNA cassette containing an open reading frame (ORF) encoding a peptide affinity tag.
  • the library also contained all of the genetic information required for mRNA display.
  • the library was converted to single-stranded RNA by in vitro transcription and photo-ligated at the 3' end to a DNA linker containing a 3' puromycin residue. To favor the selection of RNA elements that enhance ribosomal recruitment via a cap-independent mechanism, the pool of RNA transcripts was deprived of a 5' cap and 3' poly(A) tail.
  • transcripts that contain an IRES in their 5' UTR would initiate translation and produce an mRNA-peptide fusion molecule; thus, modifying IRES-containing RNAs with a selectable tag.
  • the chemical bond forming step of mRNA display is due to the natural peptidyl transferase activity of the ribosome, which catalyzes the formation of a non-hydro lyzable amide bond between puromycin and the polypeptide chain (Fig. IB) (17).
  • mRNA-peptide fusion molecules could then be isolated by affinity purification, reverse-transcribed, and amplified to regenerate the pool of DNA for another selection cycle.
  • RNA-DNA-puromycin library that contained >10 13 sequences, which provided 100-1000-fold coverage of the human genome.
  • mRNA-peptide fusions were isolated from the crude lysate by affinity purification on an oligo-(dT) resin, and the elution fractions were applied to Ni-NTA agarose beads.
  • RNA-peptide fusions that remained bound to the column were selectively eluted with imidazole, exchanged into buffer, reverse- transcribed, and amplified by PCR to reinitiate the selection cycle described above.
  • the abundance of mRNA-peptide fusions increased up to round 5 and plateaued in round 6, indicating that the library became dominated by RNA elements that could enhance cap- independent translation (Fig. 1C).
  • HGL6.1305 shows high sequence similarity to the platypus and opossum genomes. This sequence is located in the intron of a neuronal PAS domain protein— a transcription factor expressed primarily in mammalian forebrains.
  • Plasmids carrying no- insert or a randomly chosen sequence from the starting pool provided a basal level of activity.
  • Plasmids carrying no- insert or a randomly chosen sequence from the starting pool provided a basal level of activity.
  • luciferase activity was due to cytoplasmic expression by showing that uninfected cells have luciferase values equivalent to untreated cells.
  • Plasmids carrying the selected sequences provided a range of activity (Fig.
  • HGL6.884 and HGL6.733 retain activity in VACV infected cells, indicating that a portion of their activity was due to monocistronic RNA that arose from a cryptic VACV promoter site. This prediction was confirmed by assaying HGL6.884 and HGL6.733 in uninfected cells, which yielded luciferase values equivalent to untreated cells (Fig. 3E). Direct transfection of the R A-hairpin constructs into the cytoplasm of HeLa cells further corroborated our finding that all nine in vitro selected sequences mediate internal translation initiation (Fig. 3F).
  • IRESs contain AUG triplets in their 5' UTR that are expected to impede ribosomal scanning (2).
  • human in vitro selected sequences identified in round 6 also have an abundance of AUG triplets. How is it then that a given AUG codon is selected as a start site when multiple options are present? One might expect a priori that AUGs in good sequence context would lead to more efficient translation initiation; however, only 1 out of 657 AUG codons observed in the 229 sequences contains a Kozak motif (Fig. S2) (27).
  • Fig. S2 Kozak motif
  • the human DNA library was provided by the Szostak laboratory 18 . This library was modified by PCR to add the genetic information necessary for performing mRNA display 31 .
  • the dsDNA library was transcribed with T7 RNA polymerase, photo-ligated to a psoralen-DNA-puromycin linker (5'- psoralen-TAGCCGGTG-(PEG 9 )2-A 15 -ACC-puromycin) (SEQ ID NO:6), and translated in vitro by incubating the library (1 nmol) with rabbit reticulocyte lysate and 35 S-methionine for 1 hour at 30 °C.
  • mRNA-peptide fusion molecules were reverse transcribed, and purified by a two-step procedure on oligo (dT)-cellulose beads (NEB) and Ni-NTA agarose affinity resin (Qiagen). Functional TEEs were recovered by eluting the column with imidazole, dialyzing the sample into water, and amplifying the cDNA by PCR. The selection progress was monitored by determining the fraction of S 35 -labeled mRNA- peptide fusions that remained on the oligo (dT) Ni-NTA affinity columns. After 6 rounds of selection and amplification, the dsDNA library was cloned and sequenced.
  • a monocistronic luciferase reporter vector (pT7_v_ ⁇ TEE>_FLuc) that contains both a T7 and a vaccinia virus synthetic late promoter was constructed by modifying a pT3_R-luc ⁇ IRES>F-luc(pA) 6 2 luciferase reporter plasmid provided by the Doudna laboratory (Gilbert et al, 2007)' 32 .
  • HeLa and HEK-293 cells were seeded at a density of 15,000 cells per well in white 96-well plates 18 hours prior to transfection.
  • Cells were transfected with a complex of the reporter plasmid (200 ng) and Lipofectamine 2000 (0.5 ⁇ ) in Opti-MEM (Invitrogen), and immediately infected with the Copenhagen strain (VC-2) of WT vaccinia virus at a multiplicity of infection (m.o.i) of 5 PFU/cell (Fig 4). Cells were lysed (6.5 hours post-infection) in the 96- well plates and the luciferase activity was measured using the Promega Luciferase Assay System with a Glomax microplate luminometer (Promega). Cell-free characterization of the top TEEs was performed using the Human In Vitro Protein Expression Kit (Pierce). Luciferase expression was achieved following
  • RNA samples used in the transfect- infect study were separately lysed to evaluate the quality of the cellular RNA.
  • Isolated RNA was reverse transcribed with Superscript II (Invitrogen), and realtime PCR was used to determine the mRNA levels of luciferase relative to the housekeeping gene hypoxanthine-guanine phospho- ribosyltransferase (HPRT).
  • HPRT hypoxanthine-guanine phospho- ribosyltransferase
  • HPRT hypoxanthine-guanine phospho- ribosyltransferase
  • the amount of luciferase mRNA was normalized to HPRT mRNA levels.
  • the length of luciferase mRNA was determined using PCR to analyze the relative proportion of the 5'- and 3 '- ends of representative cDNA molecules .
  • the 13-nucleotide core motif was assayed for activity by constructing five luciferase reporter constructs in which the 13-mer motif was either added to the 5' end of a low activity TEE (clones 499, 646 and 347) or deleted from the 5' end of a high activity TEE (clones 1092 and 1347).
  • HGL sequences 1092 and 1347 were regenerated with the 13 -nucleotide deletion by Klenow DNA polymerase extension followed by a restriction enzyme digest with BamHl and Ncol. The digested fragments were then ligated into the luciferase reporter plasmid pT7_v_ ⁇ TEE>_FLuc.
  • the insertion constructs were generated by overlap PCR, and then digested and ligated into the reporter plasmid. Translation enhancement of the modified sequences was assessed using the transfect/infect assay in HeLa cells. Sequences 1347 and 499 were additionally characterized in BSC40, RK13, BHK and 129SV cells. Bioinformatics analysis
  • Bioinformatics analysis was used to analyze 143 sequences from the naive library, and 709 sequences isolated after six rounds of in vitro selection.
  • the genomic locations of all non-redundant sequences were determined using the BLAT webtool to map each sequence to the human reference genome (hgl8) 21 .
  • This analysis revealed that 75 sequences from the naive pool and 227 sequences from the round 6 pool matched with perfect sequence identity to the human reference genome.
  • the program RepeatMasker was used to classify the selected sequences into specific repeat families 33 . By randomly selecting 10,000 genomic locations, we generated the null expectation for the fraction of sequence motifs of length 200 nucleotides to overlap a repeat family. This number was 45.7% and was not statistically-significantly different from that observed for Round-0 sequences. However, the null hypothesis for TEEs is rejected at P ⁇ 10-6 indicating that TEEs are significantly enriched in their involvement with repeat families.
  • ATGTTGATTCC SEQ ID NO: 86
  • ATCATCATCGAATGGAAATGAAAGGAGTCATC (SEQ ID NO: 89)
  • ATCACACAGGACCAGAAAGCAATTTAGACCAT (SEQ ID NO: 93)
  • AATCAAAGAGAATCATCGAATGGACC (SEQ ID NO: 94)
  • HGL6.1353 AACCACATTTTAGCATCCTGGCCGAGTATTCATCA (SEQ ID NO: 103)
  • AGAGAATCATCGAATGGACC (SEQ ID NO: 120)
  • CATCGAATGGACC SEQ ID NO: 150
  • GGAATAGAATAGACGGCAATGGAATGGACTCG (SEQ ID NO: 162) 157 HGL6.347 AGCCTATCAAAAAGTGGGCTAAGAATATGAATACACAATTCTCAAAAGAAGATA TACAAATGGGCAACAAACATATGAAAACATACTCAACATCACTAATGATCAGGG AAATG (SEQ ID NO: 163)
  • AAACCATTTGATCACTTCAATCGATGATGAAAAAGCA (SEQ ID NO: 190)
  • AGAATCATCGAATGGACC (SEQ ID NO: 267)
  • AACACATTCACACACCAC (SEQ ID NO: 290)
  • CAGAAAGTCCATGTATATAGCTAATTGGCCTGGTTGT SEQ ID NO: 298)
  • AAATGT SEQ ID NO: 426)
  • AGAGAATCATCGAATGGACC (SEQ ID NO: 460)

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

The present invention provides reagents and methods for identifying translation enhancing elements, as well as isolated translation enhancing elements and their use in protein expression reagents and methods.

Description

Methods to Identify Synthetic and Natural RNA Elements that Enhance Protein
Translation
Cross-Reference
This application claims priority to U.S. Provisional Patent Application Serial No. 61/365133 filed July 16, 2010, incorporated by reference herein in its entirety.
Statement of U.S. Government Interest
This work was funded in part by NIH Eureka Award GM085530. The U.S. government has certain rights in the invention. Background
Ribosomal initiation constitutes a critical step in the protein translation process, allowing the ribosome to locate the correct AUG start site in the RNA message and initiate the transfer of genetic information from RNA into proteins via the genetic code. In eukaryotes, recruitment of the 40S ribosomal subunit to the RNA message occurs by recognition of a 7-methylguanosine cap located at the 5 ' end of the mRNA strand. Ribosomal recruitment can also occur by a less common cap- independent mechanism, an example of which is the internal ribosomal entry site (IRES). In many cases, the recruitment site is located some distance upstream of the initiation codon, which poses the question of how the ribosome is able to bypass the intervening sequence. While linear scanning is the dominant model used to explain this process, emerging evidence suggests that transient mRNA-rRNA base pairing may play an important role in the initiation of certain mRNAs. This possibility, and the fact that the genome is routinely and pervasively transcribed into RNA, raise many interesting questions about the role of RNA inside cells and the potential for many unknown protein coding regions.
Discovering translation initiation elements (TIEs), also known as translation enhancing elements (TEEs) in human and other higher order genomes is a challenging problem as computational methods are unable to locate these sequences at the DNA level. This limitation has created a pressing need for new functional tools that can be used to identify and map these sequences in known genomes. Summary of the Invention
In a first aspect, the present invention provides nucleic acid libraries comprising a plurality of linear recombinant double stranded DNA constructs, wherein each double stranded DNA construct comprises
(a) a promoter;
(b) a heterologous coding region downstream from the promoter, wherein the coding region encodes a detectable polypeptide;
(c) a heterologous cross-linking region downstream of the coding region; (d) a heterologous polynucleotide sequence of between 20-500 base pairs in length located downstream of the promoter and upstream of the coding region; and (e) a first PCR primer binding site and a second PCR primer binding site, wherein the first PCR primer binding site is upstream of the polynucleotide sequence and the second PCR primer site is downstream of the polynucleotide sequence; wherein at least 1013 different polynucleotide sequences are represented in the plurality of double stranded nucleic acid constructs, and wherein the first PCR primer and the second PCR primer are the same for each construct in the plurality of double stranded nucleic acid constructs.
In a second aspect, the present invention provides mRNA pools, comprising mRNA transcripts resulting from transcription of the nucleic acid libraries of the first aspect of the invention.
In a third aspect, the present invention provides methods for identifying translational enhancing elements (TEEs), comprising
(a) contacting the nucleic acid library of the first aspect of the invention with reagents for RNA transcription under conditions to promote transcription of
RNA from the double stranded nucleic acid constructs, resulting in an RNA expression product;
(b) contacting the RNA expression product with reagents for ligating a linker containing a puromycin residue to the 3 ' end of the RNA expression product, resulting in a labeled RNA expression product;
(c) contacting the labeled RNA expression product with reagents for protein expression under conditions to promote protein translation from the labeled RNA expression product, resulting in a RNA-polypeptide fusion product;
(d) isolating RNA-polypeptide fusion products; (e) converting the isolated RNA-polypeptide fusion products to cDNA by reverse transcription-PCR using a primer to the 3 ' end of the isolated RNA- polypeptide fusion products;
(f) amplifying the cDNA by PCR using primers to the 5' and 3 ' end of the cDNA; and
(g) repeating steps (a)-(f) a desired number of times, wherein the amplified polynucleotide sequence fragments comprise TEEs.
In a fourth aspect, the present invention provides isolated polynucleotides, comprising a nucleic acid sequence according to any one of SEQ ID NOS: 1-5 and 7- 645. These polynucleotides have been identified as TEEs using the methods of the present invention.
In a fifth aspect, the present invention provides expression vectors comprising
(a) a promoter;
(b) a heterologous TEE downstream of the promoter, where the TEE comprises a polynucleotide according to the fourth aspect of the invention; and
(c) a cloning site suitable for cloning of an protein-encoding nucleic acid of interest located upstream of the TEE, and downstream of the promoter.
In a sixth aspect, the present invention provides recombinant host cells comprising the expression vector of the fifth aspect of the invention.
In a seventh aspect, the present invention provides methods for protein expression, comprising contacting an expression vector of the fifth aspect of the invention with reagents and under conditions suitable for promoting expression of a polypeptide cloned into the cloning site. Description of the Figures
Figure 1. In vitro selection and characterization of RNA elements that mediate cap-independent. (A) Human genomic DNA fragments were inserted into a DNA cassette containing all of the sequence information necessary to perform an mRNA display selection. For each selection round, the dsDNA pool was in vitro transcribed into ssRNA, conjugated to a DNA-puromycin linker, and translated in vitro.
Uncapped mRNA sequences that initiate translation of an intact ORF become covalently linked to a His-6 protein affinity tag encoded in the RNA message.
Functional molecules are recovered, reverse transcribed, and amplified by PCR to generate the input for the next round of selection. (B) Generation of RNA-protein fusion molecule by the natural peptidyl transferase activity of the ribosome, which catalyzes the formation of a non-hydrolyzable amide bond between puromycin and the polypeptide chain. (C) The selection progress was monitored by measuring the fraction of S35-labeled mRNA-peptide fusions that bound to an oligo-dT column and a Ni-NTA affinity column. Chromosomal distribution of in vitro selected sequences with 100% sequence similarity to the human reference genome (D) and their evolutionary conservation compared to the starting library (round 0) (E). (F) The distribution of individual repeat families in the starting library, random genomic sequences, and the in vitro selected sequences.
Figure 2. Functional analysis of top nine sequences in human cells. (A) Schematic diagram showing the individual steps of a coupled transcription-translation assay for cytoplasmic RNA expression and analysis. A luciferase reporter plasmid carrying an insert and a promoter sequence specific to the vaccinia virus is transfected into HeLa cells that are immediately infected with vaccinia virus. Virus-infected cells synthesize a vaccinia RNA polymerase that enables cytoplasmic transcription of the reporter plasmid into RNA. The mRNA transcripts are translated by endogenous ribosomes and the cells are assayed for bioluminescence activity after 6 hours of infection. The translation efficiency of the top nine sequences identified in the cell-based screen in
(B) HeLa cells and (C) in vitro in HeLa cell lysate.
Figure 3. Functional analysis of the top nine sequences in the hairpin plasmid. (A) The sequences were inserted into a firefly reporter plasmid (F-luc-hp) containing a stable stem-loop structure. (B) The translation efficiency of the controls with no insert in vitro and in cell-based assays with and without the stable stem-loop structure.
(C) The translation efficiency of the top nine sequences in vitro relative to the no insert control.
(D) The translation efficiency of the top nine sequences in HeLa cells relative to the no insert control after normalization for mRNA (E) No infection assay in HeLa cells demonstrating that HGL6.877, HGL6.1033, and HGL6.733 have weak promoter activity that is specific to vaccinia virus infection. No activity is observed for these sequences in the absense of the vaccinia virus (inset).
Figure 4. Translation initiation efficiency of AUG triplet patterns. (A) In vitro translation efficiency of selected sequences with in-frame and out-of-frame AUG triplets. (B) Gel image illustrating start site usage of sequences in rabbit and human cell lysate. (C) In vitro translation efficiency of HGL6.877 and an unselected sequence (HGL0.53) with various combinations of AUG triplets.
Detailed Description of the Invention
In a first aspect, the present invention provides nucleic acid libraries comprising a plurality of linear recombinant double stranded DNA constructs, wherein each double stranded DNA construct comprises
(a) a promoter;
(b) a heterologous coding region downstream from the promoter, wherein the coding region encodes a detectable polypeptide;
(c) a heterologous cross-linking region downstream of the coding region;
(d) a heterologous polynucleotide sequence of between 20-500 base pairs in length located downstream of the promoter and upstream of the coding region; and
(e) a first PCR primer binding site and a second PCR primer binding site, wherein the first PCR primer binding site is upstream of the polynucleotide sequence and the second PCR primer site is downstream of the polynucleotide sequence;
wherein at least 1013 different polynucleotide sequences are represented in the plurality of double stranded nucleic acid constructs, and wherein the first PCR primer and the second PCR primer are the same for each construct in the plurality of double stranded nucleic acid constructs.
The nucleic acid libraries according to the present invention can be used, for example, in the methods of the invention for performing in vitro selection for the isolation of RNA elements (TEEs, including internal ribosome entry sites (IRESs)) that can mediate cap-independent protein translation. The libraries comprise a series of linear constructs, which, when used in in vitro selection methods as described herein, permit use of a library diversity of at least 1013 different polynucleotide sequences. As described in detail below, the inventors have used the libraries of the present invention to identify a large number of novel TEEs, including a number of IRESs. As used herein, a "library" is a collection of linear double stranded nucleic acid constructs.
As used herein, "heterologous" means that none of the promoter, coding region, genomic fragment, and cross-linking region are normally associated with each other (ie: they are not part of the same gene in vivo), but are recombinantly combined in the construct. As used herein, a "promoter" is any DNA sequence that can be used to help drive RNA expression of a DNA sequence downstream of the promoter. Suitable promoters include, but are not limited to, the T7 promoter, SP6 promoter, CMV promoter, and vaccinia virus synthetic-late promoter. As will be understood by those of skill in the art, a given double stranded DNA construct may contain more than one promoter, as appropriate for a given proposed use.
As used herein, a "coding region" is any DNA sequence encoding a polypeptide product. As used herein, a "detectable polypeptide" is any polypeptide whose expression can be detected, including but not limited to a fluorescent polypeptide (GFP, BFP, etc.), a member of a binding pair, an affinity tag, etc. The ability to detect the polypeptide greatly facilitates the methods of the invention. Non- limiting examples of such detectable polypeptides include affinity tags, protein DX (Smith et al. (2007) PLoS ONE 2, e467), maltose-binding protein (MBP), streptavadin, glutathionine S-transferase (GST), flagellar protein FlaG (FLAG affinity tag), and myelocytomatosis and viral oncogene homologs (Myc affinity tag).
As used herein, a "cross linking region" is any nucleic acid sequence that can be expressed as RNA, where the expressed RNA can serve as a site for
ligation/binding to a linker to form a stable complex between mRNA-ribosome- protein. In a preferred embodiment, expressed RNA from the cross-linking region can serve as a site for ligation to a linker containing a 3 '-puromycin residue. In a non- limiting embodiment, the expressed RNA from the cross-linking region can serve as a site for photo-ligation of a psoralen-DNA-puromycin linker (5'-psoralen- (oligonucleotide complementary to linker)-(PEGg)?-Ai<i-ACC-puromvcin). In a preferred embodiment, the linker is a DNA linker, and the mRNA expressed from the cross linking region is complementary to the DNA linker sequence to be used.
The polynucleotide sequence can be any suitable length, such as between 20- 1000 base pairs. In a preferred embodiment, the polynucleotide sequence is between 20-500 base pairs, and may comprise genomic fragments, such as a representation of an entire or partial genome from an organism of interest, or may comprise synthetic sequences. In embodiments where genomic fragments are used, the genomic fragments may be generated by any appropriate means, including restriction enzyme digestion, shearing, polynucleotide synthesis, etc. Genomic fragments from any suitable organism of interest may be used, including but not limited to human, mammal, fish, reptile, plant, yeast, insect, prokaryotic, bacterial (E.coli, etc.), viral, fungal, and pathogenic organism genomic fragments. In another preferred embodiment, such genomic fragments are obtained from plurality of individual organisms of a single species; in a further embodiment, the plurality of individual organisms of a single species differ in ancestry, age, gender, and/or other characteristics.
The primer binding sites provide regions of known sequence around the polynucleotide sequence of unknown sequence to be tested for TEE activity.
Additionally the primer binding sites provide a way to amplify only the
polynucleotide sequence back out of the construct as desired. As will be understood by those of skill in the art, any suitable sequence can be used as a primer binding site so long as it can be used to bind a primer of interest. The primer binding site may be immediately adjacent to the polynucleotide sequence, or there may be additional nucleotides present between the primer binding site and the polynucleotide sequence as deemed appropriate for a given purpose.
As used herein, "at least 1013 different polynucleotide sequences are represented in the plurality of double stranded nucleic acid constructs" means that the library, in its entirety, contains at least 1013 different polynucleotide sequences that can be tested for TEE activity, while each different double stranded nucleic acid construct contains only a single polynucleotide sequence. In various embodiments, at least 1014 different polynucleotide sequences or at least 1015 different polynucleotide sequences are represented in the plurality of double stranded nucleic acid constructs.
It will be understood by those of skill in the art that the constructs of the invention may comprise further nucleotide elements as appropriate for a given intended use. In one preferred embodiment, the double stranded nucleic acid constructs further comprise one or more unique restriction sites upstream of the polynucleotide sequence and downstream of the promoter, and one or more unique restriction sites downstream of the polynucleotide sequence. This embodiment provides a further means by which to isolate polynucleotide sequences of interest from the constructs. In a further embodiment, the constructs do not include sequences encoding a 3 ' poly(A) tail, or sequences that promote formation of a 5 ' cap on the resulting transcript.
In another preferred embodiment, the second (3 ') primer binding site is immediately upstream of the coding region in the double stranded nucleic acid construct. In this embodiment, the 3' primer binding site abuts the coding region when the polynucleotide sequence is upstream of the promoter.
In a second aspect, the present invention provides an mRNA pool resulting from transcription of the library of any embodiment of the first aspect of the invention. Such mRNA pools can be used, for example, in the methods of the invention below. Any suitable technique for RNA transcription can be used. In one non-limiting embodiment, the double stranded DNA constructs each comprise a T7 RNA polymerase promoter, and the library is transcribed in vitro using T7 RNA polymerase, using standard techniques. It will be clear to those of skill in the art how to optimize transcription conditions in terms of buffers, nucleotides, salt conditions, etc., based on the general knowledge of in vitro transcription techniques in the art. The resulting mRNA pools will comprise single stranded RNA from all/almost all the double stranded DNA constructs in the library. In a further embodiment, the transcripts in the pooled mRNA comprise a DNA linker, containing a 3' puromycin residue, ligated at the 3 'end of the transcript. In a further aspect, the invention provides pooled mRNA-peptide fusion molecules resulting from in vitro translation of the pooled mRNA. Methods for in vitro translation of RNA transcripts are well known to those of skill in the art. In one non-limiting embodiment, the methods comprise incubating the pooled mRNA with rabbit reticulocyte lysate and 35S- methionine for a suitable time. The method may further comprise incubating the mixture overnight in the presence of suitable amounts of KC1 and MgCi2 to promote fusion formation. When the pool of RNA is translated in vitro, transcripts that contain a TEE (such as an IRES) in their 5' UTR would initiate translation and produce an mRNA-peptide fusion molecule; thus, modifying TEE-containing RNAs with a selectable tag. The chemical bond forming step of mRNA display is due to the natural peptidyl transferase activity of the ribosome, which catalyzes the formation of a non- hydrolyzable amide bond between puromycin and the polypeptide chain (Fig. IB). mRNA-peptide fusion molecules can be isolated by affinity purification, reverse- transcribed, and amplified to regenerate the pool of DNA for another selection cycle.
In a third aspect, the present invention provides in vitro methods for identifying translational enhancing elements (TEEs), comprising
(a) contacting the nucleic acid library of any embodiment or combination of embodiments of the first aspect of the invention with reagents for RNA transcription under conditions to promote transcription of RNA from the double stranded nucleic acid constructs, resulting in an RNA expression product;
(b) contacting the RNA expression product with reagents for ligating a linker containing a puromycin residue to the 3 ' end of the RNA expression product, resulting in a labeled RNA expression product;
(c) contacting the labeled RNA expression product with reagents for protein expression under conditions to promote protein translation from the labeled RNA expression product, resulting in a RNA-polypeptide fusion product;
(d) isolating RNA-polypeptide fusion products;
(e) converting the isolated RNA-polypeptide fusion products to cDNA by reverse transcription-PCR using a primer to the 3 ' end of the isolated RNA- polypeptide fusion products;
(f) amplifying the cDNA by PCR using primers to the 5' and 3' end of the cDNA; and
(g) repeating steps (a)-(f) a desired number of times, wherein the amplified polynucleotide sequence fragments comprise TEEs.
The methods of this aspect of the present invention serve to isolate RNA elements that could mediate cap-independent translation (ie: TEEs, including but not limited to IREs). The mechanism-based approach of mRNA display provides an efficient method to systematically and comprehensively survey nucleic acid sequences for all of the possible RNA elements that could initiate translation of uncapped mRNA transcripts. Since IRESs function by a cap-independent mechanism, this selection serves to identify IRESs as well as TEEs that promote cap-independent translation but do not initiate internally. All terms used in this third aspect have the same meaning as used elsewhere herein; similarly, all embodiments of the nucleic acid libraries and components thereof that are disclosed above, and combinations thereof, can be used in the methods of the invention. Thus, for example, each double stranded DNA construct comprises
(a) a promoter;
(b) a heterologous coding region downstream from the promoter, wherein the coding region encodes a detectable polypeptide;
(c) a heterologous cross-linking region downstream of the coding region; (d) a heterologous polynucleotide sequence of between 20-1000 base pairs in length located downstream of the promoter and upstream of the coding region; and
(e) a first PCR primer binding site and a second PCR primer binding site, wherein the first PCR primer binding site is upstream of the polynucleotide sequence and the second PCR primer site is downstream of the polynucleotide sequence. In one non-limiting embodiment, the heterologous polynucleotide sequences are randomly digested fragments (in various non-limiting embodiments, ranging between 20-1000 nts, 20-750 nts, 20-500nts; or about 150 nts) of total human DNA. Since the heterologous polynucleotide sequence is located downstream of the promoter and upstream of the coding region.
In the method, step (f) amplifying the cDNA by PCR using primers to the 5' and 3' end of the cDNA serves to add sequence information that was lost in steps (a) and (e). In one embodiment, primers to add a promoter (such as a T7 promoter) to the 5' end and the cross-linking region (such as a photo-crosslinking) site (3 ' end) back onto the DNA library are after each round of selection. The sequence of these PCR primers may vary depending on how each library is constructed. The result of this PCR is the fully constructed double stranded nucleic acid construct, which can be used to repeat steps (a)-(f) as desired.
Contacting the RNA expression product with reagents for ligating a linker containing a puromycin residue to the 3 ' end of the RNA expression product, resulting in a labeled RNA expression product, can be carried out via any suitable method, including photo-crosslinking or Moore-Sharp splint-directed ligation.
Any suitable linker may be used. In a preferred embodiment the linker comprises a DNA linker complementary to the transcribed single stranded RNA. The DNA linker may comprise any suitable modifications, including but not limited non- natural residues and pegylation, as can be used in mRNA display.
In one preferred embodiment, the polynucleotide sequences in the library comprise genomic fragments; in a further preferred embodiment the starting pool of constructs used in the methods contains at least a 5X-1000X coverage of the genome of interest.
General conditions for in vitro transcription and translation, PCR, reverse transcription, and mRNA display techniques (including contacting an RNA expression product with reagents for ligating a linker containing a puromycin residue to the 3' end of the RNA expression product), are well known to those of skill in the art. Exemplary such conditions are described above and in the examples that follow. To favor the selection of RNA elements that enhance ribosomal recruitment via a cap- independent mechanism, the pool of RNA transcripts is preferably devoid of a 5' cap and 3' poly(A) tail. As will be apparent to those of skill in the art, this can be accomplished, for example, by not including polyT sequences in the DNA template (to avoid poly(A) tail production) and by not providing capping enzymes required for 5' cap production.
When the pool of RNA is translated in vitro, transcripts that contain a TEE in their 5' UTR initiate translation and produce an mRNA-peptide fusion molecule; thus, modifying TEE-containing RNAs with a selectable tag. The chemical bond forming step of mRNA display is due to the natural peptidyl transferase activity of the ribosome, which catalyzes the formation of a non-hydrolyzable amide bond between puromycin and the polypeptide chain (Fig. IB). mRNA-peptide fusion molecules can then be isolated by affinity purification, reverse-transcribed, and amplified to regenerate the pool of DNA for another selection cycle.
In one non-limiting embodiment, for each round of selection, the dsDNA library was transcribed with an RNA polymerase suitable for the promoter being used, photo-ligated to a psoralen-DNA-puromycin linker (5 '-psoralen-oligonucleotide complementary to linker)-(PEG9)2-Ai5-ACC-puromycin), and translated in vitro by incubating the library with rabbit reticulocyte lysate and 35S-methionine under suitable conditions. mRNA-peptide fusion molecules are reverse transcribed, and can be purified by any suitable means, including but not limited to a two-step procedure on oligo (dT)-cellulose beads (NEB) and Ni-NTA agarose affinity resin (Qiagen). Functional TEEs are recovered by any suitable technique, including but not limited to eluting the column with imidazole, dialyzing the sample into water, and amplifying the cDNA by PCR. The selection progress can be monitored using any suitable technique, including but not limited to determining the fraction of S35-labeled mRNA- peptide fusions that remained on the oligo (dT)/Ni-NTA affinity columns. After a desired number of rounds of selection and amplification, the TEEs can be identified by any suitable means, including but not limited to cloning and sequencing of the amplified DNA constructs.
The selection process (steps (a)-(f)) can be carried out any suitable number of times deemed appropriate to identify TEEs, such as 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more times. In one preferred embodiment, at least three selection cycles are carried out, such that step (g) comprises repeating steps (a)-(f) at least two more times, and even more preferably at least 3, 4, 5, 6, 7, 8, 9, or more times.
In one embodiment, the method further comprises testing polynucleotide sequences identified as TEEs for TEE activity in vivo using, for example, the vaccinia system described herein. Any suitable system may be used. In one non-limiting embodiment, a plasmid-based reporter assay that allows coupled transcription and translation to occur in the cytoplasm of human cells was developed (Fig. 2A), to test sequences under conditions that are not subject to nuclear processing. This system is based on an EMCV-driven system that relies on vaccinia virus (VACV) to circumvent nuclear expression (25). TEE candidate sequences are cloned into a monocistronic firefly luciferase reporter plasmid (F-luc-mono) containing a VACV-specific promoter. Transfected HeLa cells are infected with VACV, and after a brief incubation, cells are lysed and assayed for luciferase activity. Plasmids carrying no- insert or a randomly chosen sequence from the starting pool provided a basal level of activity.
In a further embodiment, TEE candidate sequences are tested for the ability to initiate internal translation initiation. Any suitable assay for testing internal translation initiation can be used, including but not limited to those disclosed herein. In one non- limiting embodiment, TEE candidate sequences are inserted into a firefly reporter plasmid (F-luc-hp) containing a stable stem-loop structure (AG = -58 kcal/mol) to prevent ribosomal scanning (Fig. 3A) (26).
In a fourth aspect, the present invention provides isolated polynucleotides, comprising a nucleic acid sequence according to any one of SEQ ID NOS: 1-5 and 7- 645. In another embodiment, the isolated polynucleotides comprise or consist of a sequence according to one or more of SEQ ID NO: 7-645, listed in Table 1. The isolated polynucleotides listed in the recited tables were all identified as TEEs by the methods of the invention; all are human genomic sequences, and thus can be used, for example, in designing expression vectors for improved translational efficiency of one or more proteins encoded by the vector. In various preferred embodiments, the isolated polynucleotides are between 13-180, 13-170, 13-160, 13-150, 13-140, 13- 130, 13-120, 13-110, 13-100, 13-90, 13-80, 13-70, 13-60, 13-50, 13-40, 13-30, or 13- 20 nucleotides in length. In a preferred embodiment, the isolated polynucleotides consist of the recited sequence. In a further embodiment, the isolated polynucleotides comprise the sequence of SEQ ID NO:4 (A/-)(A/G)ATC(A/G)(A/G)TAAA(T/C)G, wherein the isolated polynucleotides is between 13-200 nucleotides in length. SEQ ID NO:4 is a consensus sequence found within a number of the TEES (Clones 985 (SEQ ID NO:448), 1092 (SEQ ID NO:495), 1347 (SEQ ID NO:623), 906 (SEQ ID NO:408), 12 (SEQ ID NO: 12), 1200 (SEQ ID NO:553), 958 (SEQ ID NO:434), 1011 (SEQ ID NO:458), 459 (SEQ ID NO:214) in Table 1) identified using the methods of the invention. In a preferred embodiment, the isolated polynucleotides comprise the sequence of SEQ ID NO: 5 5 ' -AAATCAATAAATG-3 ' , which is a conserved sequence found in the top-performing TEEs as described in the examples that follow. In various preferred embodiments, the isolated polynucleotides are between 13-180, 13-170, 13-160, 13-150, 13-140, 13-130, 13-120, 13-110, 13-100, 13-90, 13-80, 13- 70, 13-60, 13-50, 13-40, 13-30, or 13-20 nucleotides in length.
In one embodiment, the polynucleotide is selected from the group consisting of SEQ ID NO:583 (clone 1267), SEQ ID NO:397 (clone 877), SEQ ID NO:54 (clone 100), SEQ ID NO:401 (clone 884), SEQ ID NO:471 (clone 1033), SEQ ID NO:327 (clone 733), SEQ ID NO:398 (clone 878), SEQ ID NO:301 (clone 675), and SEQ ID NO:310 (clone 694). These sequences have been identified as IRESs using the methods disclosed herein. In a further embodiment, the present invention provides isolated polynucleotides comprising a nucleic acid sequence according to SEQ ID NO: 1. This sequence represents a consensus sequence of a subset of 733 (SEQ ID NO:327), 877 (SEQ ID NO:397), 1033 (SEQ ID NO:471), and 1267 (SEQ ID NO: 583), and thus is strongly correlated with activity. In further embodiments, the isolated polynucleotides comprise a nucleic acid sequence according to SEQ ID NO:2 or SEQ ID NO:3, which are longer portions of the consensus sequence between 733 (SEQ ID NO:327), 877 (SEQ ID NO:397), 1033 (SEQ ID NO:471), 1267 (SEQ ID NO:583.
SEQ ID NO:l:
5'AT(C/G)GAAT(C/G)(G/A)AA(G/T)(A/G/C)GAATGGA(A/T)(A/T)(C/A/G)(A/G) AA(T/A)GGAAT(G/A)GAAT(T/G)(G/A)AATGGAATGGAA(T/A)(T/G)GA(A/T)T (G/C)GAATG-3 '
SEQ ID NO:2: 5,-(A/-)(A/-)(G/A/-)(C T/-)(G/-)(G/-)(A/-)(A/-)(T/-)(T/a-)(-/A/G)(-
/A)AT(C/G)
GAAT(C/G)(G/A)AA(G/T)(A/G/C)GAATGGA(AT)(A/T)(C/A/G)(A/G)AA(T/A)G GAAT(G/A)GAAT(T/G)(G/A)AATGGAATGGAA(T/A)(T/G)GA(A/T)T(G/C)GAA TG-3'
SEQ ID NO;3
5'-(A/--)(A/--)(A/--)(G/C/--)(A/--)(G/--)(A/--)(^
(A/-)(A/-)(G/A/-)(C/T/-)(G/-)(G/-)(A/-)(A/-)(T/-)(T/C/-)(-/A/G)(- /A)AT(C/G)
GAAT(C/G)(G/A)AA(G/T)(A/G/C)GAATGGA(AT)(A/T)(C/A/G)(A/G)AA(T/A)G
GAAT(G/A)GAAT(T/G)(G/A)AATGGAATGGAA(T/A)(T/G)GA(A/T)T(G/C)GAA
TG-3' In a fifth aspect, the present invention provides expression constructs comprising:
(a) a promoter;
(b) a heterologous translational initiation element (TEE) downstream of the promoter, where the TEE comprises or consists of a sequence according to any one of SEQ ID NO: 1-5 and 7-645; and
(c) a polylinker suitable for cloning of an open reading frame of interest located upstream or downstream of the TEE, and downstream of the promoter.
In this aspect, the invention provides constructs comprising the TEEs of the invention that are positioned relative to the polylinker (ie: one or more unique restriction sites to facilitate cloning) to increase translational efficiency of any polynucleotide coding region cloned into the polylinker. In a preferred embodiment, the TEE is between 13-500 nucleotides in length; in a more preferred embodiment, between 13 and 200 nucleotides in length. In a preferred embodiment, the polylinker is located downstream of the TEE. Any suitable coding region for which an increase in translational efficiency is desired can be cloned into the vector. Thus, in a further embodiment, the construct comprises a polynucleotide coding region cloned into the polylinker. In a further preferred embodiment, the TEE comprises or consists of the sequence of any one or more of SEQ ID NOS: 1-5, 448, 495, 623, 408, 12, 553, 434, 458, 214, 327, 397, 471, and 583. In a further preferred embodiment, the TEE comprises or consists of the sequence of any one or more of 583 (clone 1267), SEQ ID NO:397 (clone 877), SEQ ID NO:54 (clone 100), SEQ ID NO:401 (clone 884), SEQ ID NO:471 (clone 1033), SEQ ID NO:327 (clone 733), SEQ ID NO:398 (clone 878), SEQ ID NO:301 (clone 675), and SEQ ID NO:310 (clone 694). These sequences have been identified as IRESs using the methods disclosed herein. Suitable promoters include, but are not limited to, the T7 promoter, SP6 promoter, CMV promoter, and vaccinia virus synthetic-late promoter. The constructs in this aspect of the invention may be linear constructs, or may be part of an expression vector, such as a plasmid or viral-based expression vector as are known in the art. As will be apparent to those of skill in the art, the constructs may contain any other components as desired by a user, such as origins of replication, selection markers, etc.
In a sixth aspect, the present invention provides recombinant host cell comprising an expression vector of any embodiment or combination of embodiments of the fifth aspect of the invention. Such host cells can be used, for example, to prepare large amounts of the expression vector and to provide for expression of the encoded proteins in the host cells. Any suitable host cell may be used, including but not limited to bacterial and eukaryotic host cells, including but not limited to mammalian and human cells.
In a seventh aspect, the present invention provides methods for protein expression, comprising contacting an expression construct according to any embodiment or combination of embodiments of the fifth aspect of the invention, wherein the construct comprises a polynucleotide coding region cloned into the polylinker, with reagents and under conditions suitable for promoting expression of the polypeptide encoded by the polynucleotide coding region. It is within the level of skill in the art to choose appropriate reagents and conditions for RNA expression from the expression construct, followed by translation of the encoded polypeptide.
Exemplary reagents and conditions are described in the examples that follow. The methods of this aspect of the invention may be carried out in vitro or in vivo.
Unless clearly dictated otherwise by the context, all embodiments of any aspect of the invention may be combined with other embodiments of the same and different aspects. Example 1. Genome- Wide Identification of Human Cap-Independent
Translation Initiation Elements
Internal ribosomal entry sites (IRESs) are RNA elements located in the untranslated region of mRNA transcripts that initiate protein synthesis independent of the canonical 5' cap. To date, only a handful of IRESs have been identified in higher order genomes. Here, we have applied a mechanism-based approach to search the entire human genome for RNA sequences with IRES activity. Starting from a library of >1013 human RNA fragments, we performed iterative cycles of mRNA display to capture leader sequences that mediate cap-independent translation. The selected sequences are distributed throughout the genome, and often occur in repetitive regions with high conservation to mammals. We observed strong cis-regulatory activity for more than 200 sequences tested in a monocistronic translation-enhancing assay. The most active sequences function as potent IRESs in vitro and in human cells. These results demonstrate the power of mRNA display as a genome-wide tool for identifying functional IRESs.
Initiation is a critical step in protein translation, allowing the ribosome to locate the translation start site in the RNA message and initiate the transfer of genetic information from RNA into protein via the genetic code. In eukaryotes, the 43 S ribosomal pre-initiation complex (PIC) is recruited to the RNA message by recognition of the eIF4F cap-binding complex bound to a 7-methylguanosine cap located at the 5' end of the mRNA strand (1, 2). A subset of leader sequences known as internal ribosomal entry sites (IRESs) can bypass the 5' cap structure by recruiting the ribosome to internal positions in the 5' untranslated region (5' UTR) (3-7). IRESs play an important role in gene regulation by allowing essential proteins to be synthesized when normal cap-dependent translation is compromised (8). This can occur during regular cellular processes like mitosis and apoptosis (9, 10), as well as during hypoxia (11), viral infection (12), or during states of cellular dysregulation (13).
Ribosomal profiling, a technique that combines polysome fractioning with DNA microarrays, has been employed to profile cellular translation under conditions that impede normal cap-dependent translation (14). Data from these studies suggest that the human genome likely contains many more IRESs than previously thought; however, only a few human IRESs have been characterized in detail. These studies further suggest that cellular systems may possess mechanisms to support the coordinated regulation of specific IRES subtypes, as different physiological conditions gave rise to different IRES subsets. Despite a wealth of useful information gained by ribosomal profiling, this approach suffers from limited resolution and sequence accuracy, as well as an inability to distinguish stalled ribosomes from actively translating ribosomes. While continued technological advancement could circumvent some of these problems, thorough investigation of the human genome would require exhaustive sampling of countless conditions and cell types. This limitation has created a need for new molecular tools that can be used to identify human IRESs on a genome-wide scale (15).
To identify IRESs encoded in the human genome, we devised an in vitro selection strategy for the isolation of RNA elements that could mediate cap- independent translation. We reasoned that the mechanism-based approach of mRNA display provided an efficient method to systematically and comprehensively survey the entire human genome for all of the possible RNA elements that could initiate translation of uncapped mRNA transcripts (16). Since IRESs function by a cap- independent mechanism, it was hypothesized that this selection would lead to the discovery of human IRESs as well as human translation enhancing elements that promote cap-independent translation but do not initiate internally. In this scheme (Fig. 1A), a genomic library composed of randomly digested fragments (-150 nts) of total human DNA was inserted into the 5' UTR of a DNA cassette containing an open reading frame (ORF) encoding a peptide affinity tag. The library also contained all of the genetic information required for mRNA display. The library was converted to single-stranded RNA by in vitro transcription and photo-ligated at the 3' end to a DNA linker containing a 3' puromycin residue. To favor the selection of RNA elements that enhance ribosomal recruitment via a cap-independent mechanism, the pool of RNA transcripts was deprived of a 5' cap and 3' poly(A) tail. When the pool of RNA is translated in vitro, transcripts that contain an IRES in their 5' UTR would initiate translation and produce an mRNA-peptide fusion molecule; thus, modifying IRES-containing RNAs with a selectable tag. The chemical bond forming step of mRNA display is due to the natural peptidyl transferase activity of the ribosome, which catalyzes the formation of a non-hydro lyzable amide bond between puromycin and the polypeptide chain (Fig. IB) (17). mRNA-peptide fusion molecules could then be isolated by affinity purification, reverse-transcribed, and amplified to regenerate the pool of DNA for another selection cycle.
We started the selection with an RNA-DNA-puromycin library that contained >1013 sequences, which provided 100-1000-fold coverage of the human genome. We translated the library for 1 hour at 30°C in nuclease treated reticulocyte lysate and fusion formation was promoted by incubating the mixture overnight at -20°C in the presence of 600 mM KC1 and 75 mM MgC^. mRNA-peptide fusions were isolated from the crude lysate by affinity purification on an oligo-(dT) resin, and the elution fractions were applied to Ni-NTA agarose beads. The Ni-NTA beads were thoroughly washed to remove RNA sequences that did not form mRNA-peptide fusions or did not initiate in the correct reading frame. mRNA-peptide fusions that remained bound to the column were selectively eluted with imidazole, exchanged into buffer, reverse- transcribed, and amplified by PCR to reinitiate the selection cycle described above. We monitored the selection progress by following the proportion of S35-labeled mRNA-peptide fusions that remained in the pool after purification. The abundance of mRNA-peptide fusions increased up to round 5 and plateaued in round 6, indicating that the library became dominated by RNA elements that could enhance cap- independent translation (Fig. 1C).
We cloned and sequenced 712 members from round 6. Of these, 639 were non-redundant, indicating that the library contained significant sequence diversity even after six rounds of mRNA display (Table SI). Each non-redundant sequence was aligned to the human reference genome (hgl8) using the UCSC BLAT web-tool (18). A subset of 229 sequences showed 100% identity to 1814 genomic locations. These sites are distributed across all 24 human chromosomes with -34% occurring in the intronic regions of known genes (Fig. ID). The remaining 410 sequences have high homology (85-99% identity) to genomic sites, but contain small degrees of sequence variation that include single nucleotide polymorphisms in addition to small and large insertions and deletions. This level of variation is expected for individuals in a population (19), and it is known that gene regulatory sequences can differ between individual genomes (20). Since we could not distinguish between mutations that arose during the selection and those that occur naturally, we focused the remainder of our study on the set of 229 perfectly matched sequences.
We examined their evolutionary conservation using the 44-species UCSC alignments (Fig. IE) (18). Of the 229 sequences, 82.5% are conserved in the chimpanzee genome (Pan troglodytes) and 43.2% are conserved in the genomes of other placental mammals (i.e., dogs, horses, and mice). The degree of sequence similarity ranged from 97-100% for chimpanzee and 96-100% for placental mammals. Sometimes significant sequence similarities (E-value < 9e-13) were also observed in lower vertebrate genomes. For example, HGL6.634 homologs are found in lizards (Anolis carolinensii) and fish (Xenopus tropicalis and Gasterosteus aculeatus). This sequence overlaps the intron-exon junction for a chromatin modification-related protein. Similarly, HGL6.1305 shows high sequence similarity to the platypus and opossum genomes. This sequence is located in the intron of a neuronal PAS domain protein— a transcription factor expressed primarily in mammalian forebrains.
Because many of the perfectly matched sequences mapped to multiple genomic locations, we compared the distribution of repetitive elements found in the starting library to that of all round 6 sequences. The distribution of repetitive elements in the starting library is similar to the distribution obtained by random computational sampling (Fig. IF). This is expected because our starting library contained an unbiased representation of the human genome (21-23). In contrast, round 6 was enriched in sequences that align to repetitive regions of the human genome. Of the 639 non-redundant sequences, most align to regions of LINE-1 (LI) retrotransposons and satellite DNA (25% and 45%, respectively). This distribution is comparable to what we observed for the set of 229 perfectly matched sequences with the difference that LI elements are overrepresented at the expense of satellite DNA. This difference is not unexpected, as satellite DNA is known to contain large numbers of point mutations, which preclude their ability to map with 100% identity to the human reference genome (23).
We chose the set of 229 perfectly matched sequences and a set of 15 high homology sequences for functional characterization in human cells. Testing large numbers of sequences in cells presents a challenging problem as traditional assays are often complicated by splicing events that can occur during nuclear transcription and export (24). To test sequences under conditions that are not subject to nuclear processing, we developed a plasmid-based reporter assay that allows coupled transcription and translation to occur in the cytoplasm of human cells (Fig. 2A). We were inspired by an EMCV-driven system that relies on vaccinia virus (VACV) to circumvent nuclear expression (25). We inserted the sequences into a monocistronic firefly luciferase reporter plasmid (F-luc-mono) containing a VACV-specific promoter. Transfected HeLa cells were infected with VACV, and after a brief incubation, cells were lysed and assayed for luciferase activity. Plasmids carrying no- insert or a randomly chosen sequence from the starting pool provided a basal level of activity. We confirmed with no infection controls that luciferase activity was due to cytoplasmic expression by showing that uninfected cells have luciferase values equivalent to untreated cells. Plasmids carrying the selected sequences provided a range of activity (Fig. SI); the most active sequences enhanced translation ~ 100-fold relative to the basal level after normalization for RNA (Fig. 2B). Analysis of the isolated RNA after six hours of expression demonstrated that the transcripts were intact and full-length. The top 9 sequences were validated in vitro in HeLa cell lysate to control for the strong capping mechanism associated with VACVs. The cell-free assay recapitulated the cell-based assay, confirming that activity did not depend on a 5' cap or VACV infection (Fig. 2C).
To test whether the selected sequences were capable of internal translation initiation, we inserted the top 9 sequences from the monocistronic assay into a firefly reporter plasmid (F-luc-hp) containing a stable stem-loop structure (AG = -58 kcal/mol) to prevent ribosomal scanning (Fig. 3A) (26). Hairpin transcripts with no insert are poorly translated in vitro and in cells, yielding 0.3% and 1.5% of the respective activity observed for unobstructed transcripts after normalization for RNA (Fig. 3B). We confirmed that the RNA was stable in cells and in cell lysate, indicating that differences in activity were not due to selective degradation. We examined the top 9 sequences for IRES activity by first testing the reporter constructs in HeLa cell lysate. All nine sequences promote cap-independent translation initiation at levels consistent with known cellular IRESs (Fig. 3C) (26). We then examined the sequences in HeLa cells using cytoplasmic expression to avoid any possibility of nuclear splicing. In agreement with the in vitro assay, all of the sequences exhibit potent IRES activity (~ 100-600-fold) when compared to the no insert control after normalization for RNA (Fig. 3D). To test for possible cryptic promoter activity, we repeated the cytoplasmic expression assay using a knock-out plasmid (F-luc-hp-ko) that deleted the VACV promoter. Under these conditions, HGL6.884 and HGL6.733 retain activity in VACV infected cells, indicating that a portion of their activity was due to monocistronic RNA that arose from a cryptic VACV promoter site. This prediction was confirmed by assaying HGL6.884 and HGL6.733 in uninfected cells, which yielded luciferase values equivalent to untreated cells (Fig. 3E). Direct transfection of the R A-hairpin constructs into the cytoplasm of HeLa cells further corroborated our finding that all nine in vitro selected sequences mediate internal translation initiation (Fig. 3F).
Many well-characterized IRESs contain AUG triplets in their 5' UTR that are expected to impede ribosomal scanning (2). Likewise, the human in vitro selected sequences identified in round 6 also have an abundance of AUG triplets. How is it then that a given AUG codon is selected as a start site when multiple options are present? One might expect a priori that AUGs in good sequence context would lead to more efficient translation initiation; however, only 1 out of 657 AUG codons observed in the 229 sequences contains a Kozak motif (Fig. S2) (27). To investigate this question, we selected ten sequences with a range of monocistronic activity and AUG triplet patterns, and examined their relative translation initiation efficiency and start site usage in vitro. This analysis revealed a number of striking observations (Fig. 4, A and B, and table S2). First, sequences with similar thermodynamic stability and no AUG codons can initiate translation with different levels of efficiency (HGL6.738 vs. HGL6.140). Second, out-of- frame start sites can be just as effective at translation initiation as in-frame start sites (HGL6.928 vs. HGL6.338). Third, AUG triplets near the 5' end of the sequence are often bypassed in favor of downstream AUGs (e.g., HGL6.512, HGL6. 962, and HGL6.1155). Last, ribosomes that initiate translation at out-of- frame AUG codons can shift back into frame before reaching the designated ORF (e.g., HGL6.338, and HGL6.1155). Taken together, this data suggests that human cap-independent translation involves cis-regulatory elements in the 5' UTR that function as ribosomal recruitment sites. This prediction is supported by the observation that many cellular IRESs have noncontiguous segments that retain IRES activity on their own (5, 28, 29).
To determine what role, if any, upstream AUG codons could play in ribosomal recruitment, we removed the in- frame, out-of- frame, and all AUG triplets from a high activity sequence (HGL6.877). Mutation of the AUG triplets had a strong negative impact on the translation initiation efficiency of all HGL6.877 variants (Fig. 4C). Even HGL6.877Aall devoid of all AUGs was less efficient than the parent sequence, indicating that AUGs can have a profound functional role in ribosomal recruitment. To determine whether translation initiation was due to the AUG codons or the surrounding sequence, we inserted the AUGs from HGL6.877 into an unselected sequence (HGL0.53) at the same locations that they appear in HGL6.877. Both HGL6.877 and HGL0.53 are identical in length, but HGL0.53 did not otherwise contain any AUG codons. HGL0.53 nor any of its AUG variants were capable of efficient translation initiation. This result demonstrates, at least for HG6.877, that presence of AUG triplets alone is not sufficient to initiate translation, but instead requires the ribosomal recruitment site in which the AUGs are imbedded for function.
Our results represent the first example of mRNA display as a genome-wide tool for identifying cap-independent translation initiation elements in the human genome. The in vitro selected IRESs characterized here represent novel regulatory elements that were previously hidden in the human genome. The general scheme used to identify these seuqences is readily adaptable to other organisms and translation initiation mechanisms, and the versatility of the in vitro protocol makes it possible to explore ribosomal translation under a variety of conditions. We suggest that further discovery of additional cis-regulatory elements will advance our understanding of genome structure and function, and the biological role that IRESs play in the human genome. Materials and Methods
Library assembly and mRNA display selection
The human DNA library was provided by the Szostak laboratory18. This library was modified by PCR to add the genetic information necessary for performing mRNA display 31. For each round of selection, the dsDNA library was transcribed with T7 RNA polymerase, photo-ligated to a psoralen-DNA-puromycin linker (5'- psoralen-TAGCCGGTG-(PEG9)2-A15-ACC-puromycin) (SEQ ID NO:6), and translated in vitro by incubating the library (1 nmol) with rabbit reticulocyte lysate and 35S-methionine for 1 hour at 30 °C. Fusion formation was promoted by incubating the mixture overnight at -20 °C in the presence of KC1 (600 mM) and MgCl2 (75 mM). The mRNA-peptide fusion molecules were reverse transcribed, and purified by a two-step procedure on oligo (dT)-cellulose beads (NEB) and Ni-NTA agarose affinity resin (Qiagen). Functional TEEs were recovered by eluting the column with imidazole, dialyzing the sample into water, and amplifying the cDNA by PCR. The selection progress was monitored by determining the fraction of S35-labeled mRNA- peptide fusions that remained on the oligo (dT) Ni-NTA affinity columns. After 6 rounds of selection and amplification, the dsDNA library was cloned and sequenced.
Luciferase reporter assay
A monocistronic luciferase reporter vector (pT7_v_<TEE>_FLuc) that contains both a T7 and a vaccinia virus synthetic late promoter was constructed by modifying a pT3_R-luc<IRES>F-luc(pA)62 luciferase reporter plasmid provided by the Doudna laboratory (Gilbert et al, 2007)'32. HeLa and HEK-293 cells were seeded at a density of 15,000 cells per well in white 96-well plates 18 hours prior to transfection. Cells were transfected with a complex of the reporter plasmid (200 ng) and Lipofectamine 2000 (0.5 μΐ) in Opti-MEM (Invitrogen), and immediately infected with the Copenhagen strain (VC-2) of WT vaccinia virus at a multiplicity of infection (m.o.i) of 5 PFU/cell (Fig 4). Cells were lysed (6.5 hours post-infection) in the 96- well plates and the luciferase activity was measured using the Promega Luciferase Assay System with a Glomax microplate luminometer (Promega). Cell-free characterization of the top TEEs was performed using the Human In Vitro Protein Expression Kit (Pierce). Luciferase expression was achieved following
manufacturer's protocols using 300 ng of linear template for a two-hour transcription at 32°C followed by a 90 min translation at 30°C.
RNA characterization
A portion of the cells used in the transfect- infect study was separately lysed to evaluate the quality of the cellular RNA. Isolated RNA was reverse transcribed with Superscript II (Invitrogen), and realtime PCR was used to determine the mRNA levels of luciferase relative to the housekeeping gene hypoxanthine-guanine phospho- ribosyltransferase (HPRT). Using the AACt method, the amount of luciferase mRNA was normalized to HPRT mRNA levels. In addition, the length of luciferase mRNA was determined using PCR to analyze the relative proportion of the 5'- and 3 '- ends of representative cDNA molecules .
Mutagenesis study.
The 13-nucleotide core motif was assayed for activity by constructing five luciferase reporter constructs in which the 13-mer motif was either added to the 5' end of a low activity TEE (clones 499, 646 and 347) or deleted from the 5' end of a high activity TEE (clones 1092 and 1347). HGL sequences 1092 and 1347 were regenerated with the 13 -nucleotide deletion by Klenow DNA polymerase extension followed by a restriction enzyme digest with BamHl and Ncol. The digested fragments were then ligated into the luciferase reporter plasmid pT7_v_<TEE>_FLuc. The insertion constructs were generated by overlap PCR, and then digested and ligated into the reporter plasmid. Translation enhancement of the modified sequences was assessed using the transfect/infect assay in HeLa cells. Sequences 1347 and 499 were additionally characterized in BSC40, RK13, BHK and 129SV cells. Bioinformatics analysis
Bioinformatics analysis was used to analyze 143 sequences from the naive library, and 709 sequences isolated after six rounds of in vitro selection. The genomic locations of all non-redundant sequences were determined using the BLAT webtool to map each sequence to the human reference genome (hgl8)21. This analysis revealed that 75 sequences from the naive pool and 227 sequences from the round 6 pool matched with perfect sequence identity to the human reference genome. The program RepeatMasker was used to classify the selected sequences into specific repeat families33. By randomly selecting 10,000 genomic locations, we generated the null expectation for the fraction of sequence motifs of length 200 nucleotides to overlap a repeat family. This number was 45.7% and was not statistically-significantly different from that observed for Round-0 sequences. However, the null hypothesis for TEEs is rejected at P < 10-6 indicating that TEEs are significantly enriched in their involvement with repeat families.
Table 1.
Clones sequenced for characterization after six rounds of mRNA display selection.
Figure imgf000026_0001
HGL6.52 HGL6.496, ATCGAATGGAATCAACATCAAACGGAAAAAAACGGAATTATCGAATGGAATCGA HGL6.881, AGAGAATCATCGAATGGACC (SEQ ID NO: 33)
HGL6.1207
HGL6.57 CAATCAGAGCGGACACAAACAAATTGCATGGGAAGAATCAATATCGTGAAAATG
GCC (SEQ ID NO: 34)
HGL6.59 AGACCTTTCTCAGAAGACACACAAATTGCCAACAGGTATATGAAAAAATGTTCA
ATATCACTAATCATCAGGGCGATGCC (SEQ ID NO: 35)
HGL6.61 CATGGAATCGAATGGAATTATCATCGAATGGAATCGAATGGTACCAACACCAAA
CGGAAAAAAACGGAATTATCGAATGGAATCGAAGAGAATCTTCGAACGGACC
(SEQ ID NO: 36)
HGL6.63 GAACGATTTATCACTGAAAATTAATACTCATGCAAGTAGTAAACGAATGTAATG
ACCATGATAAGGAGACGGACGGTGGTGATAGT (SEQ ID NO: 37)
HGL6.65 AAAGATCAANGNNCAAAAATCAGCAGCATTTCTATAAACCAACAATGTCCAGGC
TGAGAGNGAAATCAAGAAANCAATTC (SEQ ID NO: 38)
HGL6.66 ACACACATACCAACAGAACATGACAAAAGAACAAAACCAGCCGCATGCATACTC
GATGGAGACAAAGGTAACACTGCAGAATGGTGAAGGAAGAACAGTCATTTTAAT GACAGTGTTGGCT (SEQ ID NO: 39)
HGL6.67 HGL6.463, AATGGAATCAACATCAAACGGAAAAAAACGGAATTATCGAATGGAATCGAAGA
HGL6.775, GAATCATCGAATGGACC (SEQ ID NO: 40)
HGL6.936
HGL6.68 ATCAAAAGGAACGGAATGGAATGGAATGGAATGGAATGGAATGGAATGGAATG
GAATGAAATCAACCCGAATGGAATGGATTGGCATAGAGTGGAATGG (SEQ ID NO: 41)
HGL6.70 HGL6.71 TAAAGAAAAACAAACAAACAGAAATCAATGAAAATCCCATTCAAAGGTCAGCA
ACCTCAAAGACTGAAGGTAGATAAGCCCACAAGGATG (SEQ ID NO: 42)
HGL6.73 AAACGGAAAAAAACGGAATTATCGAATGGAATCGAATAGAATCATCGAATGGA
CC (SEQ ID NO: 43)
HGL6.74 GGAATCAACTCGATTGCAATGGAATGCAATGGAAAGGAATGGAATGCAATTAAA
GCGAATAGAATGGAATGGAATGGAATGGAACGGAATGGAATG (SEQ ID NO: 44)
HGL6.76 GAAGAAGAAAAAACATGGATATACAATGTCAACAGAAATCAAGGAGAAACGGA
ATTTCACCAATCAATTTAGTGATCTGGGTT (SEQ ID NO: 45)
HGL6.82 TGGAATCATCTAATGGAATGGAATGGAATAATCCATGGACTCGAATGCAATCAT
CATAAAATGGAATCGAATGGAATCAACATCAAATGGAATCAAATGGGATCATTG AACGGAATTGAATGGAATCGTCAT (SEQ ID NO: 46)
HGL6.83 TGAACAGAGAATTGGACAAAACGCACAAAGTAAAGAAAAAGAATGAAGCAACA
AAAGCAGAGATTTATTGAAAACAAAAGTACACACCACACAGGGTGGGAGTGG
(SEQ ID NO: 47)
HGL6.85 HGL6.980, GGAATCAACATCAAACGGAAAAAAACGGAATTATCGAATGGAATCGAAGAGAA
HGL6.1002 TCATCGAATGGACC (SEQ ID NO: 48)
HGL6.88 AACACGACTTTGAGAAGAGTAAGTGATTGTTAATTAAAGCAAGAGAATTATTGA
TGTATCACAGTCATGAGAAATATTGGAAGGAATATGGTCCATAC (SEQ ID NO: 49)
HGL6.91 TGAAAAGAAGAATGACCATAAGCAAGCAGATGAAAAACAAAACAGAATTTTTA
CAGACGTCTTGGACTGATATCTTGGGC (SEQ ID NO: 50)
HGL6.92 AATCAATAAATGTAAACCAGCATATAAACAGAACCAACGACAAAAACCACATGA
TTATCTCAATAGATGCAGAAAAGGCC (SEQ ID NO: 51)
HGL6.95 CAACATCAAACGGAATCAAACGGAATTATCGAATGGAATCGAAGAGAATCATCG
AATGGACTCGAATGGAATCATCTAATGGAATGGAATGGAAG (SEQ ID NO: 52)
HGL6.96 AATGGAAGGGAATGGAATGGAATCGAATCGAATGGAACAGAATTCAATGGAAT
GGAATGGAATGGAATGGAATCGAATGGAATGG (SEQ ID NO: 53)
HGL6.100 AAAGACTTAAACATAAGACCTAAAACCATAAAAACCACAGAAGAAAACATAGG
CAATGCCATTCAGGACATAGGCATGGGCAAAGACTTC (SEQ ID NO: 54)
HGL6.101 AGACTTGAAAAGCACAGACAACGAAAGCAAAAATGGACAAATGGAATCACATC
AAGCTAAAAGGTTTTGCATGGCAAAGG (SEQ ID NO: 55)
HGL6.112 HGL6.952, AGCAACTTCAGCAAAGTCTCAGGATACAAAATCAATGTGCAAAAATCACAAGCA
HGL6.955 TTCTTATACACCAACAACAGACAAACAGAGAGCC (SEQ ID NO: 56)
HGL6.113 TGAATGCTATAGAGCAGTAAAAACAAATAAATGAACTACATTACAGCTACTTAC
AACCATATGAAAGAATATAACCATAACAATGATGAGTGGACAAAAGCTAAGTGT GAAAGAATGCATAGTGCTACAGCAGCCAACATTTACAGC (SEQ ID NO: 57)
HGL6.115 AACAAAATTGAACAACATGCAAAGAAACATAAACGAAGCAATGAAAGTGTGCA
GATCCACTGAAATGAAAGTGCTGTCCAGAGTGGGAGCCAGCTCGAGA (SEQ ID NO: 58)
HGL6.116 TGGAATTATCGTCGAATAGAATCGAATGGTATCAACATCAAACGGAAAAAAACG
GAATTATCGAATGGAATCGAAGAGAATCATCGAACGGACTCGAATGGAATCATC TAATGGAATGGAATGGAATAATCCATGG (SEQ ID NO: 59)
HGL6.117 AGATAAGTGGATGAACAGATGGACAGATGGATGGATGGATGGATGGATGGATG
GATGCCTGGAAGAAAGAAGAATGGATAGTAAGCTGGGTATA (SEQ ID NO: 60)
HGL6.119 AATCAAAGAATTGAATCGAATGGAATCATCTAATGTACTCGAATGGAATCACCA
T (SEQ ID NO: 61)
HGL6.121 AATGGAATCGAACGGAATCATCATCAAACGGAACCGAATGGAATCATTGAATGG
AATCAAAGGCAATCATGGTCGAATG (SEQ ID NO: 62)
HGL6.122 AGGAATCTATAATACAGCTGTTTATAGCCAAGCACTAAATCATATGATACAGAA
AACAAATGCAGATGGTTTGAAGGGTGGG (SEQ ID NO: 63)
HGL6.125 AACGGAAAAAAACGGAATTATCGAATGGAATCGAAGAGAATCATCGAATGGAC
C (SEQ ID NO: 64) HGL6.126 TGAGAAAATGATGGAAAAGAGGAATAANACGAAACAAAACCACAGGAACACAG GTGCATGTGAATGTGCACAGACAAAGATACAGGGCGGACTGGGAAGGAAGTTTC TGCACCAGAATTTGGGG (SEQ ID NO: 65)
HGL6.132 AATGGAATCGAAGAGAATGGAAACAAATGGAATGGAATTGAATGGAATGGAAT
TGAATGGAATGGGAAGGAATGGAGTG (SEQ ID NO: 66)
HGL6.134 AATGTCAAGTGGAATCGAGTGGAATCATCGAAAGAAATCGAATGGAATCGAAGG
GAATCATTGGATGGGCTCAAAT (SEQ ID NO: 67)
HGL6.137 AAACAATGGAAGATAATGGAAAGATATCGAATGGAATAGAATGGAATGGAATG
GACTCAAATGGAATGGACTTTAATGGAATGG (SEQ ID NO: 68)
HGL6.138 GAACAATCAATGGAAGCAGAAACAAATAAACCAAGGTGTGCATCAAGGAATAC
ATTCACGCATGATGGCTGTATGAGTAAAATG (SEQ ID NO: 69)
HGL6.139 AAACCGAATGGAATGGAATGGACGCAAAATGAATGGAATGGAAGTCAATGGAC
TCGAAATGAATGGAATGGAATGGAATGGAATG (SEQ ID NO: 70)
HGL6.140 AGGATACAAAATCAAAGTGCAAAAATCACAAGCATTCTTATACACCAATAACAG
ACAAACAGAGAGCC (SEQ ID NO: 71)
HGL6.147 GGAATCGAATGGAATCAACATCAAACGGAAAAAAACAGAATTATCGTATGGAAT
CGAATAGAATCATCGAATGGACC (SEQ ID NO: 72)
HGL6.148 CAACCCGAGTGGAATAAAATGGAATGGAATGGAATGAAATGGAATGGATCGGA
ATGGAATCCAATGGAATCAACTGGAATGGAATGGAATGGAATG (SEQ ID NO: 73)
HGL6.149 TATCATCGAATGGAATCGAATGGAATCAACATCAAACGGAAAAAAACGGAATTA
TCGAATGGAATCGAAGAGAATCATCGAATGGACC (SEQ ID NO: 74)
HGL6.150 CGGAATAATCATTGAACGGAATCGAATGGAATCATCATCGGATGGAAACGAATG
GAATCATCATCGAATGGAAATGAAAGGAGTCATC (SEQ ID NO: 75)
HGL6.151 CAACACACAGAGATTAAAACAAACAAACAAACAATCCAGCCCTGACATTTATGA
GTTTACAGACTGGTGGAGAGGCAGAGAAG (SEQ ID NO: 76)
HGL6.152 GGAATGGAATGAACACGAATGTAATGCAACCCAATAGAATGGAATCGAATGGCA
TGGAATATAAAGAAATGGAATCGAAGAGAATGGAAACAAATGGAATGGAATTG
(SEQ ID NO: 77)
HGL6.153 CACTACAAACCACGCTCAAGGCAATAAAAGAACACAAACAAATGGAAAAACAT
TCCATGCTCATGGATGGG (SEQ ID NO: 78)
HGL6.158 AATCGAATGGAATTAACATCAAACGGAAAAAAACGGAATTATCGAATGGAATCG
AAGAGAATCATCGAATGGACC (SEQ ID NO: 79)
HGL6.161 TGGAAAAGAATCAAATTGAATGGCATCGAACGGAATGGGATGGAATGGAATAG
ACCCAGATGTAATGGACTCGAATGGAATG (SEQ ID NO: 80)
HGL6.163 AATCAGTCTAGATCTTAAAGGAACACCAGAGGGAGTATTTAAATGTGCCCAATA
AGCAAGAATTATGGTGATGTGGAAGTA (SEQ ID NO: 81)
HGL6.164 CCATAACACAATTAAAAACAACCTAAATGTCTAATAGAAGAACACTGTTCAGAC
CGGGCATGGTGGCTTATACC (SEQ ID NO: 82)
HGL6.165 GACTAATATTCAGAATATACAAGGAACTCAAACAACTCAACAGTAGAAAAAAAA
ACCTGAATAGACATTTCTCAAAAGAAGACATACAAATGGCC (SEQ ID NO: 83)
HGL6.171 HGL6.1149 AACAGACCATAAATAAACACAGAAGACACACGAGTGTAAAGTCAGTGCCCCGCT
GCGAATTAAATCGGGGTGATGTGATGGCGAGTGAGTGGGTAGTT (SEQ ID NO: 84)
HGL6.174 ATCATTGAATGCAATCACATGGAATCATCACAGAATGGAATCGTACGGAATCAT
CATCGAATGGAATTGAATGGAATCATCAATTGGACTCGAATGGAAACATCAAAT GGAATCGATTGGAAGTGTCGAATGGACTCG (SEQ ID NO: 85)
HGL6.175 GGTCCATTCGATGATTCTCTTCGATTCCATTCGATAATTCCGTTTTTTCCCGTTTG
ATGTTGATTCC (SEQ ID NO: 86)
HGL6.178 AGCAACTTCAGTAAAGTGTCAGGATACAAAATCAATGTGCAAAAATCACAAGCA
TTCTTATACATCAATAACAGACAAACAGAGAGCCAAA (SEQ ID NO: 87)
HGL6.180 AGCAACTTCAGCAAAGTCTCAGGATACAAAATCAATGTGCAAAAATCACAAGCA
TTCCTATACACCAACAACAGACAAACAGAGAGCC (SEQ ID NO: 88)
HGL6.181 GAATAATCATTGAACGGAATCGAATGGAATCATCATCGGATGGAAACGAATGGA
ATCATCATCGAATGGAAATGAAAGGAGTCATC (SEQ ID NO: 89)
HGL6.182 HGL6.902 TAATCATCTTCGAATTGAAAACAAAGCAATCATTAAATGTACTCTAACGGAATCA
TCGAATGGACC (SEQ ID NO: 90)
HGL6.184 HGL6.1215 GGAATCGAATGGAATCAACATCAAACGGAAAAAAACGGAATTATCGAATGGAA
TCGAAGAGAATCATCGAATGGACC (SEQ ID NO: 91)
HGL6.186 GATCAGCTTAGAATACAATGGAACAGAACAGATTAGAACAATGTGATTTTATTA
GGGGCCACAGCACTGTTGACTCAAGTACAAGTTCTGACTCATGTAGAACTAACA CTTTT (SEQ ID NO: 92)
HGL6.187 AGAGAAAAGATGATCATGTAACCATTGAAAAGACAATGTACAAAACTAATACTA
ATCACACAGGACCAGAAAGCAATTTAGACCAT (SEQ ID NO: 93)
HGL6.190 AATGGAATCGAATGGAATCAACATCAAACGGAAAAAACGGAATTATCGAATGG
AATCAAAGAGAATCATCGAATGGACC (SEQ ID NO: 94)
HGL6.191 AATGGAATTATCATCGAATGGAATCGAATGGAATCAACATCAAACGGAAAAAAA
CGGAATTATCGAATGGAATCGAAGAGAATCATCGAATGGACC (SEQ ID NO: 95)
HGL6.197 GTCAACACAGGACCAACATAGGACCAACACAGGGTCAACACAGGACCAACATA
GGACCAACACAGGGTCAACACAAGACCAACATGGGACCAACACAGGGTCAACA TAGGACCAACATGGGACCAACACAGGGTCAACACAGGACCAAC (SEQ ID NO: 96)
HGL6.198 TATAGTTGAATGAACACACATACACACACACATGCCACAAAACAAAAACAAAGT
TATCCTCACACACAGGATAGAAACCAAACCAAATCCCAACACATGGCAAGATGA
T (SEQ ID NO: 97) 92 HGL6.206 GAATCAACTCGATTGCAATCGAATGGAATGGAATGGTATTAACAGAATAGAATG GAATGGAATGGAATGGAACGGAACG (SEQ ID NO: 98)
93 HGL6.208 AATGGAATGGAATAATCGACGGACCCGAATGCAATCATCATCGTACAGAATCGA
ATGGAATCATCGAATGGACTGGAATGGAATGG (SEQ ID NO: 99)
94 HGL6.210 AATACAAACCACTGCTCAACGAAATAAAAGAGGATACAAACAAATGGAAGAAC
ATTCTATGCTCATGGGTAGGATGAATTCATATCGTGAAAATGGCCATACTGCC
(SEQ ID NO: 100)
95 HGL6.215 AAACACGCAAACACACACACAAGCACACTACCACACAAGCGGACACACATGCA
AACACGCGAACACACACACATATACACACAAGCACATTACAAAACACAAGCAA ACACCAGCAGACACACAAACACACAAACATACATGG (SEQ ID NO: 101)
96 HGL6.219 AATCGAACGGAATCAACATCAAACGGAAAAAAAACGGAATTATCGAATGGAAT
CGAAGAGAATCATCGAATGGACC (SEQ ID NO: 102)
97 HGL6.220 HGL6.301, ACACATTTCAAGGAAGGAAACAAGAACAGACAGAAACACAACATACTTCATGA
HGL6.1353 AACCACATTTTAGCATCCTGGCCGAGTATTCATCA (SEQ ID NO: 103)
98 HGL6.222 GGATACAAAATCAATGTACAAAAATCACAAGCATTCTTATACACCAATAACAGA
CAAACAGAGAGCC (SEQ ID NO: 104)
99 HGL6.223 TAATTGATTCGAATGGAATGGAATAGAATGGAATTGAATGGAATGGACCATAAT
GGATTGGACTTTAATAGAAAGGGCATG (SEQ ID NO: 105)
100 HGL6.225 AGCAACTTCAGCAAAGTCTCAGGATACAAAATCAATGTACAAAAGTCACAAGCA
TTCTTATACACCAACAAAAGACAAACAGAGAGCC (SEQ ID NO: 106)
101 HGL6.228 ACATCAAACGGAAAAAAAAAACAAAACGGAATTATCGAATGGAATCGAAGAGA
ATCATCGAATGGACC (SEQ ID NO: 107)
102 HGL6.229 ACATCTCACTTTTAGTAATGAACAGATCATTCAGACAGAAAATTAGCAAAGAAA
CATCAGAGTTAAACTACACTCTAAACCAAATGGACCTA (SEQ ID NO: 108)
103 HGL6.231 GAAGAAAGCATTCATTCAAGACATCTAACTCGTTGATATAATGCATACAGTTCAA
AATGATTACACTATCATTACATCTAGGGCTTTC (SEQ ID NO: 109)
104 HGL6.232 GCAAAAGAAACAATCAGTAGAGTAAACAGACAACTCATAGAATGCAAGAAAAT
CATCGCAATCTGTACATCCAACAAAGGGCT (SEQ ID NO: 110)
105 HGL6.235 ACACACACATTCAAAGCAGCAATATTTACAACAGCCAAAAGGTGGAAACAATTG
AGCAATTG (SEQ ID NO: 111)
106 HGL6.237 ATCATCGAATAGAATCGAATGGTATCAACACCAAACGGAAAAAAACGGAATTAT
CGAATGGAATCGAAGAGAATCTTCGAACGGACC(SEQ ID NO: 112)
107 HGL6.238 TGAAAATACAAATGACCATGCAAGTAATTCCGCAGGGAGAGAGCGGATATGAAC
AAACAGAAGAAATCAGATGGGATAGTGCTGGCGGGAAGTCA (SEQ ID NO: 113)
108 HGL6.239 AATCGAAAGGAATGTCATCGAATGGAATGGACTCAAATGGAATAGAATCGGATG
GAATGGCATCGAATGGAATGGAATGGAATTGGATGGAC (SEQ ID NO: 114)
109 HGL6.241 AACATGAACAGTGGAACAATCAGTGAACCAATACAAGGGTTAAATAAGCTAGCA
ATTAAAAGCTGTATCACTGGTCTAAAGATAGAAGATCAAGTAGAAAATCAGCGC AAGAGGAAAGATATACGAAAACTAATGGCC (SEQ ID NO: 115)
110 HGL6.243 CGAATGGAATCATTATGGAATGGAATGAAATGGAATAATCAAATGGAATTGAAT
GGAATCATCGAATGGAATCGAACAAAATCCTCTTTGAATGGAATAAGATGGAAT CACCAAATGGAATTG (SEQ ID NO: 116)
111 HGL6.246 AAACGGAATCAAACGGAATTATCGAATGGAATCGAAGAGAATCATCGAACGGA
CTCGAATGGAATCATCTAATGGAATGGAATGGAAGAATCCATGGACT (SEQ ID NO: 117)
112 HGL6.247 GCTAGTTCAACATATGCAAATCAATAAACGTAATCCATCACATAAACAGAACCA
ATGACAAAAACCACGATTATCTCAATAGATGCAGAAAAGGCC (SEQ ID NO: 118)
113 HGL6.256 ACCAATCAAGAAAACAATGCAACCCACAGAGAATGGACAAAAGCAAGGCAGGA
CAATGGCT (SEQ ID NO: 119)
114 HGL6.26 ATCGAATGGAATCAACATCAGACGGAAAAAAACGGAATTATCAAATGGAATCGA
AGAGAATCATCGAATGGACC (SEQ ID NO: 120)
115 HGL6.260 ATGGAATCAACATCAAACGGAAAAAAAAACGGAATTATCGAATGGAATCGAAG
AGAATCATCGAATGGACCAGAATGGAATCATCTAATGGAATGGAATGG (SEQ ID NO: 121)
116 HGL6.261 HGL6.1088 AATGGAATCATCATCGAATGGAATCGAATGGAATCATGGAATGGAATCAAATGG
AATCAAATGGAATCGAATGGAATGGAATGGAATG (SEQ ID NO: 122)
117 HGL6.262 AACGGAATCAAACGGAATTACCGAATGGAATCGAATAGAATCATCGAACGGACT
CGAATGGAATCATCTAATGGAATGGAATGGAAG (SEQ ID NO: 123)
118 HGL6.263 AAACGGAATCAAACGGAATTATCGAATGGAATCGAAAAGAATCATCGAACGGA
CTCGAATGGAATCATCTAATGGAATGGAATGGAAGAATCCATGG (SEQ ID NO: 124)
119 HGL6.266 AGCAACTTCAGCAAAGTCTCAGGATACAAAATCAATGTACAAAAATCACAAGCA
TTCTTATACACCAATAACAGACAAACAGAGAGCC (SEQ ID NO: 125)
120 HGL6.267 GAATGATACGGANTANNNNGNAATGGAACGAAATGAAATGGAATGGAATGGAA
TGGAATGGAATGGAATGG (SEQ ID NO: 126)
121 HGL6.268 AATGGACTCGAATGGATTAATCATTGAACGGAATCGAATGGAATCATCATCGGA
TGGTAATGAATGGAATCATCATCGAATGGAATCGG (SEQ ID NO: 127)
122 HGL6.271 GAATGGAATCGAAAGGAATGTCATCGAATGGAATGGAATGGAACGGAATGGAA
TCGAATGGAATGGACTCGAATGGAATAGAATCGAATGCAATGGCATCG (SEQ ID NO: 128)
123 HGL6.274 HGL6.466, GAATAGAATAGAATGGAATCATCGAATGGAATCGAATGGAATCATCATGATATG
HGL6.883 GAATTGAGTGGAATC (SEQ ID NO: 129)
124 HGL6.276 TAAGCCGATAAGCAACTTCAGCAAAGTCTCAGGAGACAAAATCAATGTGCAAAA
AATCACAAGCATTCTTATACACTAATAACAGACAAACAGAGAGCCAAATCATG (SEQ ID NO: 130)
125 HGL6.277 AGCAACTTCAGCAAAGTCTCAGGATACAAAATCAATGTGCAAAAATCAAAAGCA
TTCTTATGCACCAATAACAGACACAGAGCCAAAT (SEQ ID NO: 131)
126 HGL6.278 AGGAAAGTTTTCAATATGAGAAAGATACAAACCAACAGAATAAGCAAACTGGAT
AAACAGAAAATACAGAGAGAGCCAAGG (SEQ ID NO: 132)
127 HGL6.280 AATGGAATGGAACGCAATTGAATGGAATGGAATGGAACGGAATCAACCTGAGTC
AAATGGAATGGAATGGAATGGAATG (SEQ ID NO: 133)
128 HGL6.289 AGGAAAATGCAAATCAGAACGACTATAACACACCATCTCAAACTCGTTAGGATG
GCTATTATCAAAAAGTCAAGAGATAACAAATGTGGGCAAGGG (SEQ ID NO: 134)
129 HGL6.290 GGAACGAAATCGAATGGAACGGAATAGAATAGACTCGAATGTCATGGATTGCTA
TGTAATTGATTGGAATGGAATGGAATCG (SEQ ID NO: 135)
130 HGL6.291 GAATTGAAAGGAATGTATTGGAATAAAATGGAATCGAATAGGTTGAAATACCAT
AGGTTCGAATTGAATGGAATGGGAGGGACACCAATGGAATTG (SEQ ID NO: 136)
131 HGL6.292 AACAAAACAAAAACCCAACTCAATAACAAGAAGACAAACAACCCAATTTAAAA
TGAGCAAAGAACTTGATAAACATGTCTCCAAAGAAGATACGGCCAAAGAGCAC
(SEQ ID NO: 137)
132 HGL6.295 ATGGTTAAAACTCAACAATGAAAACACAAACAGCGCAATTTAAAAATGGGCAAA
ATGACAGGCCAGACCCAGTGGCTCATGCG (SEQ ID NO: 138)
133 HGL6.300 AAGCAACTTCAGCAAAGTCTCGGGATACAAAATCAATGTGCAAAAATCACAAGC
ATTCTTATACACCACTAACAGACAAATGGAGAGTC (SEQ ID NO: 139)
134 HGL6.302 GAATGGAATCAACATCAAACGGAAAAAAACGGAATTATCGAATGGAATCGAAG
AGAATCATCGAATGGACCAGAATGGAATCATCTAATGGAATGGAATGGAATAAT CCATGG (SEQ ID NO: 140)
135 HGL6.305 TAGAAGGAATTTGATACATGCTCAGAAATACAGGCAAAGGAAGTAGGTGCCTGC
CAGTGAACACAGGGGAACTATGGCTCCTA (SEQ ID NO: 141)
136 HGL6.310 GGAATCGAATGGAATCAACATCAAACGGAAAAAAACGGAATTATCGAATGGAA
TCGAAGAGAATCATCGAATGGACC (SEQ ID NO: 142)
137 HGL6.311 AACTAAGACAACAGATTGATTTACACTACTATTTTCACACAGCCAAAAATATCAC
TATGGCAATCGTCAAAAGGTCAATTCAAAGATGGGACAGT (SEQ ID NO: 143)
138 HGL6.315 AAAAGCAATTGGACTGATTTTAAATATACGTGGCAACAAGGATAAACTGCTAAT
GATGGGTTTGCAAATACAGATCG (SEQ ID NO: 144)
139 HGL6.317 HGL6.1189 AATGGAATCAACATCGAACGGAAAAAAACGGAATTATCGAATGGAATCGAAGA
GAATCATCGAATGGACC (SEQ ID NO: 145)
140 HGL6.319 TGCAAGATAACACATTTTAGTTGACACCATTGAAAACAGTTTTAACCAAGAATAT
TAGAACCAATGAAGCAGAGAAATCAAAAGGGTGGATGGAACTGCCAAAGGATG
(SEQ ID NO: 146)
141 HGL6.321 TAGAACAGAATTGAATGGAATGGCATCAAATGGAATGGAAACGAAAGGAATGG
AATTGAATGGACTCAAATGTTATGGAATCAAAGGGAATGGACTC (SEQ ID NO: 147)
142 HGL6.323 AAGAGAATCATCGAATGGAATCGAATGGAATCAACATCAAACGGAAAAAAACG
GAATTATCGAATGGAATCGAAGAGAATCATCGAATGGACC (SEQ ID NO: 148)
143 HGL6.324 HGL6.431, ATCAACATCAAACGGAAAAAAACGGAATTATCGAATGGAATCGAAGAGAATCAT
HGL6.1071 CGAATGGACC (SEQ ID NO: 149)
144 HGL6.326 GAATCAACATCAAACGGAAAAAAACCGAATTATCGAATGGAATCGAAGAGAAT
CATCGAATGGACC (SEQ ID NO: 150)
145 HGL6.327 ATCAACATCAAACGGAATCAAACGGAATTATCGAATGGAATCGAAGAGAATCAT
CAAATGGACTCGAATGGAATCATCTAATGGAATGGAATGGAAGAATCCATGG
(SEQ ID NO: 151)
146 HGL6.330 HGL6.1005 AAACAGTTCAAAAATTATTGCAACAAAATGAGAGAGATGAGTTTATCTTGCAAA
CTAATGGATGGTAGCAGTGACAGTGGCAAAACGTGGTTTGATTCT (SEQ ID NO: 152)
147 HGL6.334 ATCGAATGGAATCATTGAATGGAAAGGAATGGAATCATCATGGAATGGAAACGA
ATGGAATCACTGAATGGACTCGAATGGGATCATCA (SEQ ID NO: 153)
148 HGL6.335 ATTCAGCCTTTAAAAAAAGAAGACAGTCCTGTCATTTGTGACAATATGAATGAA
ACAGACATCACATTAAATGAAATGAGCCAGGCGCAG (SEQ ID NO: 154)
149 HGL6.336 AGGAGAATAGCAGTAGAATGACAAAATTAGATTTTCACATGAAACTTGATGACA
GTGTAGGAAATGGACTGAAAGGACAAGAC (SEQ ID NO: 155)
150 HGL6.337 HGL6.1095, AACCCACAAAGACAACAGAAGAAAAGACAACAGTAGACAAGGATGTCAACCAC
HGL6.1367 ATTTTGGAAGAGACAAGTAATCAAACACATGGCA (SEQ ID NO: 156)
151 HGL6.338 GAAAATGAACAATATGAACAAACAAACAAAATTACTACCCTTACGAAAGTACGT
GCATTCTAGTATGGTGACAAAAAGGAAAG (SEQ ID NO: 157)
152 HGL6.339 AACATCAAACGGAATCAAACGGAATTATCGAATGGAATCGAAGAGAATCATCGA
ACGGACTCGAATGGAATCATCTAATGGAATGGAATGGAAGAATCCATGGACTCG AATGCAATCATCATCGAATGAAATCGAATGGAATCATCGAATGGACTCG (SEQ ID NO: 158)
153 HGL6.340 ACCAACATAAGACAAAGAAACATCCAGCAGCTGCCTATGGCAAAAGATTACAAT
GTGTCAAACAAGAGGGCAATG (SEQ ID NO: 159)
154 HGL6.342 ATGGAATTCAATGGAATGGACATGANTGNAATGNACTTCAATGGAATGGNATCN
AATGGAATGNAATTCANT (SEQ ID NO: 160)
155 HGL6.343 TATGACTTTCACAAATTACAGAAAAAGACACCCATTTGACAAGGGAACTGAAGG
TGGTGAAGACATACTGGCAGGCTAC (SEQ ID NO: 161)
156 HGL6.344 AATGGAAAGGAATCGAATGGAAGGGAATGAAATTGAATCAACAGGAATGGAAG
GGAATAGAATAGACGGCAATGGAATGGACTCG (SEQ ID NO: 162) 157 HGL6.347 AGCCTATCAAAAAGTGGGCTAAGAATATGAATACACAATTCTCAAAAGAAGATA TACAAATGGGCAACAAACATATGAAAACATACTCAACATCACTAATGATCAGGG AAATG (SEQ ID NO: 163)
158 HGL6.352 HGL6.710 AGCAACTTCAGCAAAGTATCAGGATACAAAATCAATGTACAAAAATCCCAAGCA
TTCTTATACACCAACAACAGACAAACAGAGAGCC (SEQ ID NO: 164)
159 HGL6.353 AAAGACAATATACAAATGGCCAATAAGCACATGAAAAGACGCTCAACATCCTTA
GTCGTTAAGGCAATGCAAATCAAAACCACAATG (SEQ ID NO: 165)
160 HGL6.354 AGCAACTTCAGCAAAGTCTCAGGATACAAAATCGATGTGCAAAAATCACAAGCA
TTCTTATACACCAACAACAGATAAACAGAGAGCC (SEQ ID NO: 166)
161 HGL6.356 AACGGAAAAAAAACGGAATTATCGAATGGAATCGAAGAGAATCATCGAATGGA
CCAGAATGGAATCATCTAATGGAATGGAATGGAATAATCCATGGACTCGAATG
(SEQ ID NO: 167)
162 HGL6.357 AACAGCAATAGACACAAAGTCAGCACTTACAGTACAAAAACTAATGGCAAAAGC
ACATGAAGTGGGACAT (SEQ ID NO: 168)
163 HGL6.358 GGAATCAAACGGAATTATCGAATGGAATCGAAGAGAATCATAGAACGGACTCAA
ATGGAATCATCTAATGGAATGGAATGGGAGAATCCATGGACTCGAATG (SEQ ID NO: 169)
164 HGL6.360 HGL6.1105 AATGGAATCAATATCAAACGGAAAAAAACGGAATTATCGAATGGAATCGAAGA
GAATCATCGAATGGACC (SEQ ID NO: 170)
165 HGL6.362 AAAATGATCATGAGAAAATTCAGCAACAAAACCATGAAATTGCAAAGATATTAC
TTTTGGGATGGAACAGAGCTGGAAGGCAAAGAG (SEQ ID NO: 171)
166 HGL6.364 AACGGAATCAAACGGAATTATCGAATGGAATCGAAAAGAATCATCGAACGGACT
CGAATGGAATCATCTAATGGAATGGAATGGAAGAATCCATGG (SEQ ID NO: 172)
167 HGL6.367 AAACGGAATTATCGAANGGAATCAAAGAGAATCATCGAANNNNNACGAATGGA
ATCATATAATGGAATGGAATGGAATAATCCATGGACC (SEQ ID NO: 173)
168 HGL6.369 AATGGAATCGAATGGATTGATATCAAATGGAATGGAATGGAAGGGAATGGAATG
GAATGGAATTGAACCAAATGTAATGGATTTG (SEQ ID NO: 174)
169 HGL6.371 TAAAAGACGGAACAGATAGAAAGCAGAAAGGAAAGGTGAATTGCATTACCACT
ATTCATACTGCCACACACATGACATTAGGCCAAGTC (SEQ ID NO: 175)
170 HGL6.372 ACAAACAATCCAATTCGAAAATGGGCAAGATATTTCACCAAAGACATGAGCTGA
TATTTCAC (SEQ ID NO: 176)
171 HGL6.373 AATGGAATCGAATGGAACAATCAAATGGACTCCAATGGAGTCATCTAATGGAAT
CGAGTGGAATCATCGAATGGACTCG (SEQ ID NO: 177)
172 HGL6.374 TAACACATAAACAAACACAGAGACAAAATCTCCGAGATGTTAATCTGCTCCAGC
AATACAGAACAATTTCTATTACCAACAGAATGCTTAATTTTTCTGCCT (SEQ ID NO: 178)
173 HGL6.379 GGAATCGAATGGAATCAACATCAAACGGAAAAAAACGGAATTATCGAATGGAA
TCAAAGAGAATCATCGAATGGACC (SEQ ID NO: 179)
174 HGL6.382 AGAATGGAAAGGAATCGAAACGAAAGGAATGGAGACAGATGGAATGGAATG
(SEQ ID NO: 180)
175 HGL6.383 GAATGGAATGGAAAGGAATCGAAACGAAAGGAATGGAGACAGATGGAATGGAA
TGGAACAGAGAGCAATGG (SEQ ID NO: 181)
176 HGL6.387 GAATCATCATAAAATGGAATCGAATGGAATCAACATCAAATGGAATCAAATGGT
CTCGAATGGAATCATCTTCAAATGGAATGGAATGG (SEQ ID NO: 182)
177 HGL6.389 AACAACAATGACAAACAAACAACAACGACAAAGACATTTATTTGGTTCACAAAT
CTCCAGGGTGTACAAGAAGCATGGTGCCAGCATCTGCTCAGCTTCTGATGAGGG CTCTGGGAAGCTTTTACTC (SEQ ID NO: 183)
178 HGL6.390 AACGGACTCGAACGGAATATAATGGAATGGAATGGATTCGAAAGGAATGGAAT
GGAATGGACAGGAAAAGAATTGAATGGGATTGGAATGGAATCG (SEQ ID NO: 184)
179 HGL6.393 AGGAAATAAAAGAAGACACAAACAAATGGAAGAACATTCCATGCTTATGGATA
GGGAGAATCAGTATCGTGAAAATGGCCATACT (SEQ ID NO: 185)
180 HGL6.394 HGL6.1136 AACATCAAACGAAATCAAACGGAATTATCAAATTGAATCGAAGAGAATCATCGA
ATTGCCACGAATGCAATCATCTAATGGTATGGAATGGAATAATCCATGGACCCA GATG (SEQ ID NO: 186)
181 HGL6.395 AGAAATTAACAGCAAAAGAAGGATGCAGTGCAACTCAGGACAACACATACAATT
CAAGCAACAAATGTATAGTGGCTGGGCACCAAGGATACAG (SEQ ID NO: 187)
182 HGL6.396 GCAATAAAATCGACTCAGATAGAGAAGAATGCAATGGAATGGAATGGAATGGA
ATGGAATGGGATGGAATGGTATGGAATGG (SEQ ID NO: 188)
183 HGL6.397 CCACATAAAACAAAACTACAAGACAATGATAAAGTTCACAACATTAACACAATC
AGTAATGGAAAAGCCTAGTCAATGGCAG (SEQ ID NO: 189)
184 HGL6.399 GGACAACATACACAAATCAGTCAAGATACATCATTTCAACAGAATGAAAGACAA
AAACCATTTGATCACTTCAATCGATGATGAAAAAGCA (SEQ ID NO: 190)
185 HGL6.400 GAAATCATCATCAAACGGAATCGAATGGAATCATTGAATGGAATGGAATGGAAT
CATCATGGAATGGAAACG (SEQ ID NO: 191)
186 HGL6.405 TGGAATGGANTGGAATGNAATCNAATCNNNTGGTAATGAATCAAATGGAATCAA
ATCGAATGGNAATAATGGAATCNANNGGAAACGAATGGNATCGAATTGCACTGA TTCTACTGACTTCGAGGAAAATGAAATGAAATGCGGTGAAGTGGAATGG (SEQ ID NO: 192)
187 HGL6.409 AGCAACTTCAGCAAAGTCTCAGGATACAAAATCAATGGGAAAAAATCACAAGCA
TTCCTATACATCAATAACAGACAAACAGAGAGCC (SEQ ID NO: 193)
188 HGL6.410 GAATGTTATGAAATCAACTCGAACGGAATGCAATAGAATGGAATGGAATGGAAT
GGAATGGAATGGAATGG (SEQ ID NO: 194)
189 HGL6.412 AGTAGAATTGCAATTGCAAATTTCACACATATACTCACACACAAGTACACACATC CACTTTTACAACTAAAAAAACTAGCACCCAGGACAGGTGCAGTGGCT (SEQ ID NO: 195)
190 HGL6.416 GGAATCAACATCAAACGGAAAAAAAACGGAATTATCGAATGGAATCGAAGAGA
ATCATCGAATGGACC (SEQ ID NO: 196)
191 HGL6.420 GGAATAATCATCATCAAACAGAACCAAATGGAATCATTGAATGGAATCAAAGGC
AATCATGGTCGAATG (SEQ ID NO: 197)
192 HGL6.422 ACTCAGGAAAAATAACGAATCCAACTCACAGGAGAAAGAAGTACAAACCAGAA
ACCAATTTCAAATTACAAGGACCAGAATACTCATGTTGGCTGGCCAGT (SEQ ID NO: 198)
193 HGL6.424 AAACGCACAAACAAAGCAAGGAAAGAATGAAGCAACAAAAGCAGAGATTTATT
GAAAATGAAAAATACACTCCACAGGGTGGG (SEQ ID NO: 199)
194 HGL6.429 GCATAGAATCGAATGGAATTATCATTGAATGGAATCGAATGGAATCAACATCAA
ACGGAAAAAAACGGAATTATCGAATGGAATCGAAGAGAATCATCGAATGGACC
C (SEQ ID NO: 200)
195 HGL6.430 AATGGAATCGAANAGAATCATCGAACGGACTCGAATGGAATCATCTAATGGAAT
GGAATGGAATAATCCATGGACCCGAATG (SEQ ID NO: 201)
196 HGL6.433 AAATGAATCGAATGGAATTGAATGGAATCAAATAGAACAAATGGAATCGAAATG
AATCAAATGGAATCGAATCGAATGGAATTGAATGGCATGGAATTG (SEQ ID NO: 202)
197 HGL6.436 NTCACAATCACACAACACATTGCACATGNNNANNATGCACTCACAATACACACA
CAACACATACACAACACACATGCAATACAACACAAAACGCAACACAACATATAC ACNACACACAGCACACANATGCC (SEQ ID NO: 203)
198 HGL6.442 GAATGGAATCAAATCGAATGAAATGGAATGGAATAGAAAGGAATGGAATGAAA
TGGAATGGAAAGGATTCGAAT (SEQ ID NO: 204)
199 HGL6.445 AAAGACTTAAACGTTAGACCTAAAACCATAAAAACCCTAGAGGAAAACCTAGGC
ATTACCATTCAGGACTTAGGCATGGGCAAGGAC (SEQ ID NO: 205)
200 HGL6.446 GTTTACAGTCAAGTGTACAAACAGAATATAAGCAAACAAAAGAGAACATATACT
TACAAACTATGCTAAGTGCCATGAAGGAAAAG (SEQ ID NO: 206)
201 HGL6.447 AAAGTCCAAAGATGAACAAAATATCCAGAAGGAAAACAAATGCACTTGGGGAG
TGGGAAAGAAAACCAAGACTGAGCAATGCGTCAAGCTCAGACGTGCCTCACTAC
G (SEQ ID NO: 207)
202 HGL6.448 AAACGGAATCAAACGGAATTATCGAATGGAGTCGAAAAGAATCATCGAACGGA
CTCGAATGGAATCATCTAATGGAATGGAATGGAAGAATCCATGG (SEQ ID NO: 208)
203 HGL6.450 HGL6.1296 AATTGATTCGAAATTAATGGAATTGAATGGAATGCAATCAAATGGAATGGAATG
TAATGCAATGGAATGTAATAGAATGGAAAGCAATGGAATG (SEQ ID NO: 209)
204 HGL6.453 TACAGAACACATGACTCAACAACAGCAGAAAGCATATTCTTTTCAAATGCACAT
GAAACATTATCATGATGGACCAAAT (SEQ ID NO: 210)
205 HGL6.454 TAAGACACATAGAAAACATAAAGCAAAATGGCAGATGTAAATGCAACCTATCAA
TCAAAACATTACGAATGGCTT (SEQ ID NO: 211)
206 HGL6.456 GGAACAAAATGAAATCGAACGGTAGGAATCATACAGAACAGAAAGAAATGGAA
CGGAATGGAATG (SEQ ID NO: 212)
207 HGL6.457 AACGGAAAAAACGGAATTATCGAATGGAATCGAAGAGAATCATCGAATGGAAT
CGAATGGAGTCATCG (SEQ ID NO: 213)
208 HGL6.459 HGL6.806 AACATACGAAAATCAATAAACGTAATCCAGCATATAAACAGAACCAAAGACAA
AAACCACATGATTATCTCAATAGATGCAGAAAAGGCCTTT (SEQ ID NO: 214)
209 HGL6.460 HGL6.1163 AATCGAACGGAATCAACATCAAACGGAAAAAAACGGAATTATCGAATGGAATC
GAAGAGAATCATCGAATGGACC (SEQ ID NO: 215)
210 HGL6.461 AGAATGGAATGCAATAGAATGGAATGCAATGGAATGGAGTCATCCGTAATGGAA
TGGAAAGGAATGCAATGGAATGGAATGGAATGG (SEQ ID NO: 216)
211 HGL6.462 GGAATAAAACGGACTCAATAGTAATGGATTGCAATGTAATTGATTCGATTTCGA
ATGGAATCGCATGGAATGTAATGGAATGGAATGGAATGGAAGGC (SEQ ID NO: 217)
212 HGL6.467 AGCAACTTCAGCAAAGTCTCAGGATACAAAATCAATGTACAAAAATCACAAGCA
TTCTTATACACCAACAACAGACAAACAGAGAGCC (SEQ ID NO: 218)
213 HGL6.476 TAAGCAGAGAAAATATCAACACGAAAATAATGCAAGGAGAAAAATACAGAACA
ATCCAAAATGTGGCC (SEQ ID NO: 219)
214 HGL6.487 AATGGAATCAACATCAAACGGAAAAAAACGGAATTATCGTATGGAATCGAAAA
GAATTATCGAATGGACC (SEQ ID NO: 220)
215 HGL6.489 HGL6.587 TCAAACGGAAAAAAACGGAATTATCGAATGGAATCGAAGAGAATCATCGAATG
GACC (SEQ ID NO: 221)
216 HGL6.490 AACTTCAGCAAATTCTCAGGATACAAAATCAATGTGCAAAAACCACAAGCATTC
CTATACACCAATAATAGACAGTGAGCCAAAT (SEQ ID NO: 222)
217 HGL6.494 HGL6.1131 ACATCAAACGGAATCAAACGGAATTATCGAATGGAATCGAAAAGAATCATCGAA
CGGACTCGAATGGAATCATCTAATGGAATGGAATGGAAGAATCCATGGACTCGA ATG (SEQ ID NO: 223)
218 HGL6.497 AATGGAATCGAATGCAATCATCGAACGGAATCGAATGGCATCACCGAATGGAAT
GGAATGGAATGGAATGGAATGG (SEQ ID NO: 224)
219 HGL6.499 AATCCAGCATATAAACAGAACCAAAGACAAAAACCACATGATTATCTCAATAGA
TGCAGAAAAGGCC (SEQ ID NO: 225)
220 HGL6.500 TGACTAAACAGAGTTGAACAAGAACAAAAAGCAAATTTGCAGAAATGAAATAC
ATACTAATTGAAAGTCCATGGACAGGCTCAACAGATGATATAGATACAGCTAAA GAGATAATTAGTGAAATGGATCAG (SEQ ID NO: 226)
221 HGL6.501 GATCATCAGAGAAACAGAGAAATGCAAATTAAAACCACAATGAGATACTATCTC CACACAAGTCAGAATGGCTAT (SEQ ID NO: 227)
222 HGL6.503 AGGATACAAAATCAATGTACAAAAATCACAAACATTCTTATACACCAACAACAG
ACAAACAGAGAGCCAAATCATGGGTG (SEQ ID NO: 228)
223 HGL6.505 TAAGCAACTTCAGCAAAGTCTCAGGATACAAAATCAATGTACAAAAATCACAAG
CATTCTTATACACCAACAACAGACAAACAAGAGTGCCAAATCATG (SEQ ID NO: 229)
224 HGL6.506 AGAATTGATTGAATCCAAGTGGAATTGAATGGAATGGAATGGATTAGAAAGGAA
TGGAATGGATTGGAATGGATTGGAATGGAAAGG (SEQ ID NO: 230)
225 HGL6.508 AATGGAATGCAATCGAATGGAATGGAATCGAACGGAATGGAATAAAATGGAAG
AAAACTGGCAAGAAATGGAATCG (SEQ ID NO: 231)
226 HGL6.509 AACTGCATCAACTAACAGGCAAAATAACCAGCTAATATCATAATGACAGGATTA
AATTCACAAATGACAATATTAACCGTAAATGTAAATGGGCTA (SEQ ID NO: 232)
227 HGL6.510 TACAAAGAACTCAAACAAATCAGCAAGAACAAAAACAATCCCAACAAAATGTTG
GACAAAGACATGAATAGACAATTCTCGAAAGAAGATGTACAAATGGCT (SEQ ID NO: 233)
228 HGL6.512 AGAGAAATGCAAATCAAAACCACAATGGAATACCATCTCACGCCAGTCAGAATG
GCAATTATTAAAAAATCACAACAATTAATGATGGCAAGGCTGTGG (SEQ ID NO: 234)
229 HGL6.513 GTAAACAAACAATCAAGCAAGTAAGAACAGAAATAACAGCATTTGGCTTTTGAG
TTAATGACAAGAACACTCGGCATGGGAGCCTGGGTGAGCAAATCACAGATCTTC
(SEQ ID NO: 235)
230 HGL6.514 GAATCAACCCGAGCGGAAAGGAATGGAATGGAATGGAATCAACACGAATGGAA
TGGAACGGAATGGAATGGGATGGGATGAAATGGAATGG (SEQ ID NO: 236)
231 HGL6.516 AGCAACTTCAGCAAAGTCTCAGGAGACAAAATCAATGTACAAAAATCACAAGCA
TTCTTATACACCAATAACAGACAAACAGAGAGCC (SEQ ID NO: 237)
232 HGL6.520 AAGAAATGGAATCGAAGAGAATGGAAACAAACGGAATGGAATTGAATGGAATG
GAATTGAATGGAATGGGA (SEQ ID NO: 238)
233 HGL6.522 GACATGCAAACACAACACACAGCACACATGGAACATGCATCAGACATGCAAACA
CAACACACATACCACACATGGCATATGCATCAGACGTGCCTCACTAC (SEQ ID NO: 239)
234 HGL6.528 TACAGATAAGAAAATTGAGACTCAAGAGTATTACATAAATTGTTTCAGCTACCAC
AGCAAAAAATGGTATGGTTGGGAATCAAGCTCAGGG (SEQ ID NO: 240)
235 HGL6.529 AAAGGAATGCACTCGAATGGAATGGACTTGAATGGAATGTCTCCGAATGGAACA
GACTCGTATGAAATGGAATCGAATGGAATGGAATCAAATGGAATTGATTTGAGT GAAATGGAATCAAATGGAATGGCAACG (SEQ ID NO: 241)
236 HGL6.530 TGAAACAAATGATAATGAAAATACAACATACCAAACATACGAGATACAGTAAAA
GCAGTACTAAGATGCAAGTATATATTGCTACAAGTGCCTAC (SEQ ID NO: 242)
237 HGL6.531 GGAACAAAATGAAATCGAACGGTAGGAATCGTACAGAACGGAAAGAAATGGAA
CGGAATGGAATGCACTCGAATGGAAAGGAGTCCAAT (SEQ ID NO: 243)
238 HGL6.532 AAATTGATTGAAATCATCATAAAATGGAATCGAAGGGAATCAACATCAAATGGA
ATCAAATGGAATCATTGAACGGAATTGAATGGAATCGTCAT (SEQ ID NO: 244)
239 HGL6.533 AGAAAGGATTCGAATGGAATGAAAAAGAATTGAATGGAATAGAACAGAATGGA
ATCAAATCGAATGAAATGGAATGGAATAGAAAGGAATGGAATG (SEQ ID NO: 245)
240 HGL6.534 AGAATGGAAAGCAATAGAATGGAACGCACTGGATTCGAGTGCAATGGAATCAAT
TGGAATGGAATCGAATGGAATGGATTGGCA (SEQ ID NO: 246)
241 HGL6.535 AACACCAAACGGAAAAAAACGGAATTATCGAATGGAATCGAAGAGAATCTTCG
AACGGACCCGAATGGGATCATCTAATGGAATGGAATGGAATAATCCATGG (SEQ ID NO: 247)
242 HGL6.536 AATGGAGACTAATGTAATAGAATCAAATGGAATGGCATCGAATGGAATGGACTG
GAATGGAATGTGCATGAATGGAATGGAATCGAATGGATTG (SEQ ID NO: 248)
243 HGL6.539 TGGGATATGGGTGAAAGAACAAGTTTGCAGAAAAGATACAGTGAATTATGGACC
ATGAGTTCGGGAAAGAAGGGTAGGACTGCG (SEQ ID NO: 249)
244 HGL6.540 AAATCGAATGGAACGCAATAGAATAGACTCGAATGTAATGGATTGCTATGTAAT
TGATTCGAATGGAATGGAATCGACTGGAATGCAATCCAATGGAATGGAATGCAA TGCAATGGAATGGAATCGAACGGAATGCAGTGGAAGGGAATGG (SEQ ID NO: 250)
245 HGL6.541 AATCAACAAGGAACTGAAACAAGTAAACAAGAAAACAAATAACACCATAAAAC
ATGGGCAAAGGACATAAACAGACATTTTTCAAAAAAGACATACAAATGGCCGAG
(SEQ ID NO: 251)
246 HGL6.542 AATGGAATCAACATCAAACGGAAAAAAACGGAATTATCGAATGGAATCGAAGA
GAATCATCGAATGGACCCAGGCTGGTCTTGAACTCC (SEQ ID NO: 252)
247 HGL6.545 ATTGAATGGGCTAGAATGGAATCATCTTTGAACGGAATCAAAGGGAATCATCAT
CGAATGGAATCGAATGGAAATGTCAACG (SEQ ID NO: 253)
248 HGL6.547 AATGGACTCGAATGGAATCAACATCAAATGGAATCAAGCGGAATTATCGAATGA
AATCGAAGAGAATCATCGAATGGACTCGAAAGGAATCATCTAATGGAATGGAAT GGAATAATCCATGGACTCGAATGCAATCATCATCG (SEQ ID NO: 254)
249 HGL6.549 ACAGACAGAGATTTAAAACAATAAACAAGCAGTAAGCAAACACAGATAACAAA
ATGACATGATCCAACAAATACTCAGAAGGAGACTTAGAAATGAATTGAGGGTC
(SEQ ID NO: 255)
250 HGL6.553 AATGTAATCCAGCATATAAACAGAGCCAAAGACAAAAACCACATGATTATCTCA
ATAGATGCAGAAAAAGCCTTTGACAAAATTCAACAACCCTTCATGCTAAAAACT CTCAATAAATTAGGTATTGATGGGACG (SEQ ID NO: 256)
251 HGL6.555 AAACGGAAAAAAACGGAATTATTGAATGGAATCGAAGAGAATCTTCGAACGGA CCCGAATGGAATCATCTAATGGAATGGAATGGAATAATCCATGG (SEQ ID NO:
257)
252 HGL6.557 HGL6.1238 GCTCAAGGAAATAAAATAGGACACAAAGAAATGGAAAAACATTCCATACTCATG
GATAGAAAGAATCAATATCATGAAATGGCC (SEQ ID NO: 258)
253 HGL6.560 ACTCGAGTGGAATTGACTGTAACAAAATGGAAAGTAACGGATTGGAATCGAATG
GAACGGAATGGAATGGAATGGACAT (SEQ ID NO: 259)
254 HGL6.561 TACAAACTTTAAAAAATGATCAACAGATACACAGTTAGCAAGAAAGAATTGAGG
GCAAAGAATATGCCAGACAAACTCAAGAGGAAGATGATGGTAGAGATAGGTCA CATTGGAGTGTCA (SEQ ID NO: 260)
255 HGL6.562 HGL6.154, GGAATCGAATGGAATCAATATCAAACGGAAAAAAACGGAATTATCGAATGGAAT
HGL6.114 CGAAGAGAATCATCGAATGGACC (SEQ ID NO: 261)
256 HGL6.564 AACGGAATCAAACGGAATTATCGAATGGAATCGAAAAGAATCATCGAACGGACT
CGAATGGAATCATCTAATGTAATGGAATGGAAGAATCCATGGACTCGAATG
(SEQ ID NO: 262)
257 HGL6.565 GGAAATAACAGAGAACACAAACAAATGGGAAAACATTCCATGTTCATGGATAGG
AAGAATCAATATTGTGAAAATGGCCATACT (SEQ ID NO: 263)
258 HGL6.570 AACGGAAAAAAACGGAATTATCGAATGGAATCGAAGAGAATCATCGAATGGAC
CAGAATGGAATCATCTAATGGAATGGAATGGAATAATCCATGGACTCGAATG
(SEQ ID NO: 264)
259 HGL6.581 CAACATCAAACGGAAAAAAACGGAATTATGGAATGGAATCGAAGAGAATCATC
GAATGGACCCGAATGGAATCATCTGAAATATAATAGACTCGAAAGGAATG (SEQ ID NO: 265)
260 HGL6.589 ATGGAATCGAATGGAATGGACTGGAATGGAATGGATTCGAATGGAATCGAATGG
AACAATATGGAATGGTACCAAATG (SEQ ID NO: 266)
261 HGL6.595 HGL6.1293 GAATGGAATCAACATCAAACGGAAAAAAACGGAATTATCGAATGGAATCGAAG
AGAATCATCGAATGGACC (SEQ ID NO: 267)
262 HGL6.606 AAGGAATTTAAGCAAATCAACAAGCAAAACCAAAATAATCCCATTAAAAAGTGG
GTAAAGGACATGAATACACACTTGTCAATAGAGGACATTCAAGTGGCCAAC
(SEQ ID NO: 268)
263 HGL6.608 AAATGGACTCGAATGGAATCATCATAGAATGGAATCGAATGCAATGGAATGGAA
TCTTCCGGAATGGAATGGAATGGAATGGAATGGAG (SEQ ID NO: 269)
264 HGL6.609 GAATCANCNNNNNNNGGAATCGAATGGAATCAACATCAAATGGAATCAAATGG
AATCATTGAACGGAATTGAATGGAATCGTCAT (SEQ ID NO: 270)
265 HGL6.610 AGCAACTTCAGCAAAGTCTCAGGATACAAAATCAATGTACAAAAATCACAAGCA
TTCTTATACACCAATAACAGACAAACAGAGAGCCAAAA (SEQ ID NO: 271)
266 HGL6.611 TATGCAAATCAATAAACATAATCCATCACATAAACAGAAACAAAGACAAAATGA
CATGATTATCTCAATAGATGCAGAAAAGGCC (SEQ ID NO: 272)
267 HGL6.615 AGTAAATCACCATAAAGAAGGTAAGAGTTCATTCACAAAAACAACAAACTGAAG
AATCAGGCCATAGTA (SEQ ID NO: 273)
268 HGL6.617 AGAAACAGAAAACAGTCAAACCAATGGGCAATCCATATCAGATGCAGTATTATG
AACAGAAGTGTAAAGAATGCACCAGGCACAATGGC (SEQ ID NO: 274)
269 HGL6.619 AGGAAAAACAACAACAACAACAGGAAAACAACCTCAGTATGAAGACAAGTACA
TTGATTTATTCAACATTTACTGATCACTTTTCAGGTGGTAGGCAG (SEQ ID NO: 275)
270 HGL6.623 GATTGGAACGAAATCGAATGGAACGGAATAGAATAGACTCGAATGTAATGGATT
GCTATGTAATTGATTCGAATGGAATGGAATCGAATGGAATGCAATCCAATGGAA TGGAATGCAATGCAATGGAATGG (SEQ ID NO: 276)
271 HGL6.624 AACATATGGAAAAAAACTCAACATCACTGATCATTAGAGAAATGCAAATCAAAA
CCACAATGAGATACCATCTCACGCCAGTCAGAATGGCG (SEQ ID NO: 277)
272 HGL6.625 ATGGAATGGAATAATCAACGTACTCGAATGCAATCATCATCGTATAGAATCGAA
TGGAATCATCGAATGGACTCGAATGGAATAATCATTGAACGGAGTCGAATGGAA TCATCATCGGATGGAAAC (SEQ ID NO: 278)
273 HGL6.627 AAANAANTCNAATGGAATCNNTGNCGAATGGAATGGAATGGAATCGAANAATT
GAATTGNNNANAATCNNANGNAANCNTTGNATGGGCTCAAAT (SEQ ID NO: 279)
274 HGL6.629 AGAAAAGATAACTCGATTAACAAATGAACAAACACCTGAATACACAAGTCTCAA
AAGAAGACATAAAAATGGCCAAC (SEQ ID NO: 280)
275 HGL6.632 ATGGAATCAACATCAAACGGAATCACACGGAATTATCGAATGGAATCGAAAAGA
ATCATCGAACGGACTCGAATGGAATCATCTAATGGAATGGAATGGAAG (SEQ ID NO: 281)
276 HGL6.633 HGL6.1135 AATGGAATCAACATCAAACGGAATCAAGCGAAATTATCGAATGGAATCGAAGAG
AATCATCGAATGGACTCGAATGGAATCATCTAATGGAATGGAATGGGAT (SEQ ID NO: 282)
277 HGL6.634 AAACACAGTACAAATACTAATTCAAATCAAACTTACTCAAAGTCATAATCAAAC
ATGCCAGACGGGCTGAGGGGCAGCATTA (SEQ ID NO: 283)
278 HGL6.638 AACCACTGCTCAAGGAAATAAGAGAGAACACAAACAAATGAAAAAACATTCCA
TGCTCATGGATAGGAAGAATCAG (SEQ ID NO: 284)
279 HGL6.641 GGAATCGAGTGGAATCATCGAAAGAAATCGAATGGAATCATTGTCGAATGGAAT
GGAATGGAATCAAAGAATGGAATCGAAGGGAATCATTGGATGGGCT (SEQ ID NO: 285)
280 HGL6.642 AAAGAAAGACAGAGAACAAACGTAATTCAAGATGACTGTTTACATATCCAAGAA
CATTAGATGGTCAAAGACTTTAAGAAGGAATACATTCAAAGGCAAAAAGTCACT TACTGATTTTGGTGGAGTTTGCCACATGGAC (SEQ ID NO: 286)
281 HGL6.645 AAGATAGAGTTGAAACAGTGGACAATTAAAGAGTAATTTGGAAGAATGGTGAAA
TTACAGCCATGCTTTGAATCAGGCGGGTTCACTGGC (SEQ ID NO: 287) 282 HGL6.646 AAGAGTATCAACAGTAAATTACATTAGCAGAAGAATCAACAAACATGAAAATAG AAATTATGGTAGCCAAAGAACAG (SEQ ID NO: 288)
283 HGL6.647 GAAAGGAATCATCATTGAATGCAATCACATGGAATCATCACAGAATGGAATCGT
ACGGAATCATCATCGAATGGAATTGAATGGAATCATCAATTGGACTCGAATGGA ATCATCAAATGGAATCGATTGGAAGTGTCAAATGGACTCG (SEQ ID NO: 289)
284 HGL6.651 CAGCGCACCACAGCACACACAGTATACACATGACCCACAATACACACAACACAC
AACACATTCACACACCAC (SEQ ID NO: 290)
285 HGL6.655 GCAAACAGAATTCAACACTACATTAGAACGATCATTCATCACGACCTAGTAGGA
TGTTTTTCCTGGGATGCAAGGATGGTTCAACAT (SEQ ID NO: 291)
286 HGL6.656 CAATCAAAACAGCAATGAGATACCATTTTACACCAATCAAAATGGCTACTAAAA
AGTCAAAAGCAAATGCC (SEQ ID NO: 292)
287 HGL6.658 HGL6.830 AGAACCATATTGAAGAGACAGAGTGATATATAAAACTGCTAACTCAAGCAGCAC
AAGAATTAAATGAATACCAAGAAAATACTTGGCCAG (SEQ ID NO: 293)
288 HGL6.660 TGGAATAGAATGGAATCAATGTTAAGTGGAATCGAGTGGAATCATCGAAAGAAA
TCGAATGGAATCATTGTCGAATGGTATGGAATGGAATCA (SEQ ID NO: 294)
289 HGL6.661 AATGGAATGGAATCATCGCATAGAATNGAATGGAATTATCATCGAATTGAATCG
AATGGTATCAACATCAAACGGAAAAAAACGGAAATATCGAANGGAATCGAAGA GAATCATCGAACGGACC (SEQ ID NO: 295)
290 HGL6.662 ACATACGCAAATCAATAAACATAATCCATCACATAAACAGAACCAAAGACAAAA
ATCACATGATTATCTCAATAGATGCAGAAAAGGCCTTCGAC (SEQ ID NO: 296)
291 HGL6.663 AAAAAATGTTCAACATCACTAGTCAGCAGAGAAATGCAAATCAAAATCACAATG
AGATAACTTCTCACACCAGACAGCATGGC (SEQ ID NO: 297)
292 HGL6.668 GAAAAACAAAACAAAACAAACAAACAAACAATCAAAAAAGTGGTAGCAGAAAC
CAGAAAGTCCATGTATATAGCTAATTGGCCTGGTTGT (SEQ ID NO: 298)
293 HGL6.671 AACAGCAATGACAATGATCAGTAACAACAAGACTTTTAACTTTGAAAAAATCAG
GACC (SEQ ID NO: 299)
294 HGL6.672 AAGAGCCTGAATAGCTAAAGTGATCATAAGCAAAAAGAACAAAGTCGGAAGCA
TCACATTACCTGACTTCAAACTATACTCAAAGGCTATG (SEQ ID NO: 300)
295 HGL6.675 AAAAGGAAATACAAGACAACAAACACAGAAACACAACCATCGGGCATCATGAA
ACCTCGTGAAGATAATCATCAGGGT (SEQ ID NO: 301)
296 HGL6.677 AAGCAAAGAAAGAATGAAGCAGCAAAAGAACGAAAGCAGGAATTTATTGAAAA
CCAAAGTACACTCCACAGTATGGGAGCGGACCCGAGCA (SEQ ID NO: 302)
297 HGL6.679 GCAAATGATTATAAGTGCTGTTATAGAAACATTCAAAGACCAGAAAAGGACCAC
AATGGCTGACCAC (SEQ ID NO: 303)
298 HGL6.681 AGAGCAGAAACAAATGGAATTGAAATGAAGACAACAATCAAAAGCATCAATGA
AATGAAAAGTTGGGTTTTGGAAGAGAGAAACAAT (SEQ ID NO: 304)
299 HGL6.683 ACACAAACACACACACACACACACACACACACACACACACACACACACACACAC
ACACACACACACATAC (SEQ ID NO: 305)
300 HGL6.686 AACAAACAAATGAGATGATTTCAGATAGTGATAAACACTATAACATAATTAATT
CGTGCCAATCAGAGCATAACAGTGGTGTGGTGGCTGTGGAACAGATAGCAGAC
(SEQ ID NO: 306)
301 HGL6.688 AATGGAATCGAGTGGAATGGAAGGCAATGGAATAGAATGGAATGGAATCGAAA
GGAACGGAATGGAATGGAATGGAATG (SEQ ID NO: 307)
302 HGL6.689 AGCAGTGCAAGAACAACATAACATACAAGTAAACAAACACATGGGGCCAGGTA
ATAAAAAGTCAGGCTCAAGAGGTCAG (SEQ ID NO: 308)
303 HGL6.690 AGAAATGGAATCGGAGAGAATGGAAACAAATGGAATGGAATTGAATGGAATGG
AATTGAATGGAATGGGAACG (SEQ ID NO: 309)
304 HGL6.694 GCACTAGTCAGATCAAGACAGAAAGTCAACGAACAAAGAACAGACTTAAACTAC
ACTCTAGAACAAATGGACCTA (SEQ ID NO: 310)
305 HGL6.704 AAGAGAACTGCAAAACACTGCTCAAAGAAATCAGAGATGACAAAAACACATGG
AAAAACGTTTCATGCTCATGGATTGGAAGACTTA (SEQ ID NO: 311)
306 HGL6.705 AATCAACACGAATAGAATGGAACGGAATGGAATGGAATGGAATGGAATGGAAT
GGAGTGGAATGGAACAGAATGGAGTGGAAT (SEQ ID NO: 312)
307 HGL6.707 AACATCAAACGAAATCAAACGGAATTATCAAATTGAATCGAAGAGAATCATCGA
ATTGCCACGAATGCAACCATCTAATGGTATGGAATGGAATAATCCATGGACCCA GATG (SEQ ID NO: 313)
308 HGL6.714 CGGAATTATCATCGAATGTAATCGAATGGAATCAACATCAAACGGAAAAAAACG
GAATTATCGAATGGAATCGAAGAGAATCATCGAATGGACC (SEQ ID NO: 314)
309 HGL6.719 TGGACACACACGAACACACACCTACACACACGTGGACACACACGGACACATGGA
CACACACGAACACATGGACACACACACGGGGACACACACAGACACACACAGAG ACACACACGGACACATGG (SEQ ID NO: 315)
310 HGL6.720 HGL6.1044 AGCAACTTCAGCAAAGTCTCAGGATACAAAATCAATGTGCAAAAATCACAAGCA
TTCTTATACACCAATAACAGACAAACAGAGAGCC (SEQ ID NO: 316)
311 HGL6.721 HGL6.1020 AAAATCAATATGAAAACAAACACAAGCAGACAAAGAAAATTGGGCAAAAGGTT
TGAGCAGACACTTCACCAAAGAAGTACAAATGGCAAATCAGCA (SEQ ID NO: 317)
312 HGL6.724 ATCAAACGGAATCAAACGGAATTATCGAATGGAATCGAAGAGAATCATCGAATG
GACTCGAATGGAATCATCTAATGGAATGGAATGGAAGAATCCATGG (SEQ ID NO: 318)
313 HGL6.725 AACAGATTTAAACAAACCAACAAGCAAAAAACGAACAACTCCATTCAAACATGG
ACAAAAGACACGAACAGACACTTTTCAAAGAAGACATACATGTGGCC (SEQ ID NO: 319)
314 HGL6.726 AAATGGAATGGAATGCACTTGAAAGGAATAGACTGGAACAAAATGAAATCGAA
CGGTAGGAATCATACAGAACAGAAAGAAATGGAACGGAATGGAATG (SEQ ID NO: 320)
315 HGL6.727 ACCACACACAAAATACACCACACACCACACACACACCACACACTATACACACAC
CACACACCACACAC (SEQ ID NO: 321)
316 HGL6.728 AAAGAAATAGAAGGGAGTTGAACAGAATCGAATGGAATCGAATCAAATGGAAT
CGAATGGCATCAAATGGAATCGAATGGAATGTGGTGAAGTGGATTGG (SEQ ID NO: 322)
317 HGL6.729 GGAATCATCATAAAATGGAATCGAATGGAATCATCATCAAATGGAATCAAATGG
AATCATTGAACGGAATTGAATGGAATCGTCAT (SEQ ID NO: 323)
318 HGL6.730 TGGAATGGAATGGAATGAAATAAACACGAATAGAATGGAACGGAATGGAACGG
AATGGAATGGAATGGAATGGAAAG (SEQ ID NO: 324)
319 HGL6.731 AAGAATTGGACAAAACACACAAACAAAGCAAGGAAGGAATGAAAGGATTTGTT
GAAAATGAAAGTACACTCCACAGTGTGGGAGCAG (SEQ ID NO: 325)
320 HGL6.732 TAATCAGCACAATCAACTGTAGTCACAAAACAAATAGTAACGCAATGATAAAGA
AACAGAGAACTAGTTCAAATAAACATGATAAGATGGGG (SEQ ID NO: 326)
321 HGL6.733 AAGCGGAATTATCAAATGGAATCGAAGAGAATGGAAACAAATGGAATGGAATT
GAATGGAATGGAATTGAATGGAATG (SEQ ID NO: 327)
322 HGL6.734 AAGCAACTTCAGCAAAGTCTCAGGACACAAAATCAATATGCGAAAATCACAAGC
ATTCCTATACACCAATAATAGACAAACAGAGAGCCAAATCATG (SEQ ID NO: 328)
323 HGL6.736 TTCACAGCAGCATTACGCACAATAGCCAGAAGGTGGGAACAGACAAAATGCCTT
TTGATGGG (SEQ ID NO: 329)
324 HGL6.738 AGACCCTAATATCACAGTTAAACGAACTAGAGAAGGAAGAGCAAACAAATTCAA
AAGCTAGCGGAAAGCAAGAAATAACTAAGACCAG (SEQ ID NO: 330)
325 HGL6.739 TAAAAGTGTGCTCAACATCATTGATCATCAGAGAAATGCAAATCAAAACTACAA
TGAGATATCATCTCATCCCAGTCAAAGTGGCT (SEQ ID NO: 331)
326 HGL6.740 ACTTGAATCGAATGGAAAGGAATTTAATGAACTTAAATCGAATGGAATATAATG
GTATGGAATGGACTCATGGAATGGAATGGAAAGGAATC (SEQ ID NO: 332)
327 HGL6.742 TGGAATCATCATCGAAAGCAAGCGAATGGAATCATCAAATGGAAACGAATGGAA
TCATCGAATGGACTCGGATGGAATTGTTGAATGGACT (SEQ ID NO: 333)
328 HGL6.743 TGGAATCAACATCAAACGGAAAAAAACGGAATTATCGAATGGAATCGAAGAGA
ATCATCGAATGGACC (SEQ ID NO: 334)
329 HGL6.745 TAAGTGAATTGAATAGAATCAATCTGAATGTAATGAAATGGAATGGAACGGAAT
GGAATGGAATGGAATGGAATGGAATGGAATGG (SEQ ID NO: 335)
330 HGL6.747 AGGAAAATTTAATCAGCAGGAATAGAAACACACTTGAGAAATCCATGTGGAATG
AAAAGAGAATGGCTGAGCAGCAACAGATTGTCAAAAAGGAAATC (SEQ ID NO: 336)
331 HGL6.749 HGL6.897 AACATCAAACGGAAAAAAAACGGAATTATCGAATGGAATCGAAGAGAATCATC
GAATGGACC (SEQ ID NO: 337)
332 HGL6.756 GAAAATGAACAATATGAACAAACAAACAAAATTACTACCCTTACGAAAGTACGT
GCATTCTAGTATGGTGACAAAAAGGAAA (SEQ ID NO: 338)
333 HGL6.757 AGAAAACACACAGACAACAAAAAACACAGAACGACAATGACAAAATGGCCAAG
C (SEQ ID NO: 339)
334 HGL6.758 HGL6.1040 AGCAACTTCAGCAAAGACTCAGGATACAAAATCAATGTGCAAAAATCACAAGCA
TTCTTATACACCAATAACAGACAGAGAGCCAAAT (SEQ ID NO: 340)
335 HGL6.759 TGACATGCAAGAAATAAGGAAGTGCAAAAACAAACAAACAAACAACAACAACA
ACAACAACAACAACAACAAAAAACAGTCCCAAAAGGATGGGCAG (SEQ ID NO: 341)
336 HGL6.760 TAATTGAGAATAAGCATTCCAGTGGAAAAAAAACTAAACAATTTGTTGTAAAAC
ATCCTTAAAAGCATCAGAAAGTTAATACAGCAATGAAGAATTACAGGACCAAAT TAAGAATGGTATGGAAGCCTGTTA (SEQ ID NO: 342)
337 HGL6.762 TATCATCGAATGGAATCGAATGGAATCAACATCAAACGGAAAAAAACGGAATTA
TCGAATTGAATCGAAGAGAATCATCGAATGGACC (SEQ ID NO: 343)
338 HGL6.764 GAATGGAATCAAATAGAATGGAATCGAAACAAATGGAATGGAATGGAATGGGA
GCTGAGATTGTGTCACTGCAC (SEQ ID NO: 344)
339 HGL6.765 AGCAAAACAAACACAATCTGTCGTTCATGGTACTACGACATACTGGGAGAGATA
TTCAAATGATCACACAAAACAACATG (SEQ ID NO: 345)
340 HGL6.766 AAGGATTCGAATGGAATGAAAAAGAATTGAATGGAATAGAACAGAATGGAATC
AAATCGAATGAAATGGAGTGGAATAGAAAGGAATGGAATG (SEQ ID NO: 346)
341 HGL6.768 AACGGAATCAAACGGAATTATCGAATGNNNTNNAAGAGAATCATCGAACGGACT
CGAATGGAATCATCTAATGGAATGGAATGGAAGAATCCATGGACTCGAATGCAA TCATCATCGAATGGAATCGAACGGAATCATCGAATGGCC (SEQ ID NO: 347)
342 HGL6.771 AATCAACTAGATGTCAATGGAATGCAATGGAATAGAATGGAATGGAATTAACAC
GAATAGAATGGAATGGAATGGAATGGAATGG (SEQ ID NO: 348)
343 HGL6.772 TGTAACACTGCAAACCATAAAAACCGTAGAAGAAAACCTAGACAATACTATTCA
GGACATAGGCATGGGCAAAGAC (SEQ ID NO: 349)
344 HGL6.773 AATGGACTCGAATGGAATAATCATTGAACGGAATCGAATGGAATCATCATCGGA
TGGAAATGAATGGAATCATCATCGCATGGAATCG (SEQ ID NO: 350)
345 HGL6.776 GAATGGAATGATACGGAATAGAATGGAATGGAACGAAATGGAATTGAAAGGAA
AGGAATGGAATGGAATGGAATGG (SEQ ID NO: 351)
346 HGL6.777 AAAAATGACCAGAGCAATAGAATGCATTGACCAGATAAAGACCTTCACGTATGT
TGAACTAAAATGTGTGGTGCAGGTG (SEQ ID NO: 352)
347 HGL6.781 AATCATCATCGAATGGAATCGAATGGTATCATTGANTGNAATCGAATGGAATCA
TCATCANATGGAAATGAATGGAATCGTCAT (SEQ ID NO: 353)
348 HGL6.785 ACAAAATCAAACTAACCTCGATAAGAATGCAAGTGAATCAAAATGAGTTTCAAG GGGTTGTGGCTAGTACACGCTTTCTACAGCTG (SEQ ID NO: 354)
349 HGL6.787 GAATCAAATCAATGGAATCAAATCAAATGGAATGGAATGGAATTGTATGGAATG
GAATGGCATGG (SEQ ID NO: 355)
350 HGL6.789 TAATGCAGTCCAATAGAATGGAATCGAATGGCATGGAATATAAAGAAATGGAAT
CGAAGAGAATGGGAACAAATGGAATGGAATTGAGTGGAATGGAATTGAATGGA ATGGGAACGAATGGAGTG (SEQ ID NO: 356)
351 HGL6.792 TGAATAGACACACAGACCAATGGAACAGAATAGAGAACACAGAATAAATCTGC
ACACTTATAGCCAGCTGATTTTTGACAAATTTGCCAAG (SEQ ID NO: 357)
352 HGL6.797 HGL6.810, AACATCNNACGGAAAAAAACGGAATTATCGAATGGAATCGAAGAGAATCATCG
HGL6.1172, AATGGACC (SEQ ID NO: 358)
HGL6.1223
353 HGL6.801 GCCAACAATCATATGAGAAAAAGCTCAACATCACTGATCATTTCAGGAATGCAA
ATCAAAACCACAATGAGATACTATCACACATCAATCAGAATGGCT (SEQ ID NO: 359)
354 HGL6.802 HGL6.118, GAATCGAATGGAATCAACATCAAACGGAAAAAAACGGAATTATCGAATGGAATC
HGL6.590, GAAGAGAATCATCGAATGGACC (SEQ ID NO: 360)
HGL6.1051,
HGL6.1170,
HGL6.1248,
HGL6.1372
355 HGL6.804 AATCAAATGGAATGAAATCGAATGGAATTGAATCGAATGGAATGCAATAGAATG
TCTTCAAATGGAATCGAATGGAAATTGGTGAAGTGGACGGGAGTG (SEQ ID NO: 361)
356 HGL6.805 TAACAGTACCAAAAAACAGTCATAATCTTCAAGAGCTTAAATTTAGCATGAAAG
GAAGACATTCATCAAAGAATCACACAAAGGAATGTAAAATTAAATGGAGATTAG TGCCAGGAAAGAGC (SEQ ID NO: 362)
357 HGL6.808 TAATGGAATCAACATCAAACGGAAAAAAACGGAATTATCGAATGCAATCGAAGA
GAATCATCGAATGGACC (SEQ ID NO: 363)
358 HGL6.813 AGCAACTTCAGCAAAGTCTCAGCATACAAAATCAATGTGCAAAAATCACACGCA
TTCCTATACACCAATAACAGACAAACAGAGAGCC (SEQ ID NO: 364)
359 HGL6.815 GAATCAAATGGAATGGACTGTAATGGAATGGATTCGAATGGAATCGAATGGAGT
GGACTCAAATGGAATG (SEQ ID NO: 365)
360 HGL6.816 AACAAGTGGACGAAGGATATGAACAGACACTTCTCAAGACATTTATGCAGCCAA
CAGACACACGAAAAAATGCTCATCATCACTGGCCATCAG (SEQ ID NO: 366)
361 HGL6.819 AAACACACAAAGCAACAAAAGAACGAAGCAACAAAAGCATAGATTTATTGAAA
TGAAAGTACATTCTACAGAGTGGGGGCAGGCT (SEQ ID NO: 367)
362 HGL6.820 ATACAACTAAAGCAAATATAAGCAACTAAAGCAACAGTACAACTAAAGCAAAA
CAGAACAAGACTGCCAGGGCCTAGAAAAGCCAAGAAC (SEQ ID NO: 368)
363 HGL6.822 GCAATCGAATGGAATGGAATCGAACGGAATGGAATAAAATGGAAGAAAACTGG
CAAGAAATGGAATCG (SEQ ID NO: 369)
364 HGL6.825 AGCAGCCAACAAGCATATGAAATAATGCTCCACAACACTCATCATCAGAGAAAT
GCAAATCAAAACCAAAAT (SEQ ID NO: 370)
365 HGL6.826 TGGAACCGAACAAAGTCATCACCGAATGGAATTGAAATGAATCATAATCGAATG
GAATCAAATGGCATCTTCGAATTGACTCGAATGCAATCATCCACTGGGCTT (SEQ ID NO: 371)
366 HGL6.827 HGL6.829 AACGGAATCACGCGGAATTATCGAATGGAATCGAAGAGAATCATCGAATGGACT
CGAATGGAATCATCTAATGGAATGGAATGG (SEQ ID NO: 372)
367 HGL6.830 AGAACCATATTGAAGAGACAGAGTGATATATAAAACTGCTAACTCAAGCAGCACAAGAATTA
AATGAATACCAAGAAAATACTTGGCCAG (SEQ ID NO: 373)
368 HGL6.831 AAAACAAACAACAACGACAAATCATGAGACCAGAGTTAAGAAACAATGAGACC
AGGCTGGGTGTGGTG (SEQ ID NO: 374)
369 HGL6.833 AATCGAAAGGAATGCAATATTATTGAACAGAATCGAAAAGAATGGAATCAAATG
GAATGGAACAGAGTGGAATGGACTGC (SEQ ID NO: 375)
370 HGL6.836 AAGGAATCGAATGGAAGTGAATGAAATTGAATCAACAGGAATGGAAGGGAATA
GAATAGACTGTAATGGAATGGACTCG (SEQ ID NO: 376)
371 HGL6.837 AATGGACTCGAATGAAATCATCATCAAACGGAATCGAATGGAATCATTGAATGG
AATGGAATGGAATCATCATGGAATGGAAACG (SEQ ID NO: 377)
372 HGL6.838 TTGACCAGAACACATTACACAATGCTAATCAACTGCAAAGGAGAATATGAACAG
AGAGGAGGACATGGATATTTTGTG (SEQ ID NO: 378)
373 HGL6.839 AACCCGAGTGCAATAGAATGGAATCGAATGGAATGGAATGGAATGGAATGGAA
TGGAATGGAGTC (SEQ ID NO: 379)
374 HGL6.843 AAGAGTATTGAAGTTGACATATCTAGACTGATCAAGAACAAAGACAAAAGGTAC
AGATTATCAAGAAAATGAGCGGGCAAAGCAAGATGGCC (SEQ ID NO: 380)
375 HGL6.847 GAATGGAATTGAAAGGAATGGAATGCAATGGAATGGAATGGGATGGAATGGAA
TGCAATGGAATCAACTCGATTGCAATG (SEQ ID NO: 381)
376 HGL6.849 GAAAAAAACGGAATTATCNAATTGAATCNAATANAATCATCNNNNNGACCANA
NTGGAATCATCTAATGNAATGNAATGGAATAATCCATGGACTCNAATG (SEQ ID NO: 382)
377 HGL6.850 GAAAAAAACGGAATTATCGAATTGAATCGAATAGAATCATCGAACGGACCAGAA
TGGAATCATCTAATGGAATGGAATGGAATAATCCATGGACTCGAATG (SEQ ID NO: 383)
378 HGL6.853 AACCACTGCTTAAGGAAATAAGAGAGAACACAAACAAATGGAAAAACGTTCCAT
GCTCATGGATAGGAGAATCAATATCGTGAAAATGGCC (SEQ ID NO: 384)
379 HGL6.854 TATCGAATGGAATGGAAAGGAGTGGAGTAGACTCGAATAGAATGGACTGGAATG AAATAGATTCGAATGGAATGGAATGGAATGAAGTGGACTCG (SEQ ID NO: 385)
380 HGL6.855 GTATCAACATCAAACGGAAAAAAACGGAATTATCGAATGGAATCATCTAATGGA
ATGGAATGGAATAATCCATGGACTCGAATG (SEQ ID NO: 386)
381 HGL6.856 TAAATGGAGACATCATTGAATACAATTGAATGGAATCATCACATGGAATCGAAT
GGAATCATCGTAAATGCAATCAAGTGGAATCAT (SEQ ID NO: 387)
382 HGL6.857 GAATGGAATTGAAAGGTATCAACACCAAACGGAAAAAAAAACGGAATTATCGA
ATGGAATCGAAGAGAATCATCGAACGGACC (SEQ ID NO: 388)
383 HGL6.858 AGCAATTTCAGCAAAGTCTCAGGATACAAAATCAATGTACAAATTCACAAGCAT
TCTTATGGACCAACAACAG (SEQ ID NO: 389)
384 HGL6.860 AACCAAATTAGACAAATTGGAAATCATTACACATAACAAAAGTAATAAACTGTC
AGCCTCAGTAGTATTCATTGTACATAAACTGGCC (SEQ ID NO: 390)
385 HGL6.861 TATTTTACCAGATTATTCAAGCAATATATAGACAGCTTAAAGCATACAAGAAGAC
ATGTATAGATTTACATGCAAACACTGCACCACTTTACATAAGGGACTTGAGCAC
(SEQ ID NO: 391)
386 HGL6.863 GGAATCGAATGGCATCAACATCAAACGGAAAAAAACGGAATTATCGAATGGAAT
CGAATGGAATCATC (SEQ ID NO: 392)
387 HGL6.864 AAACAAAACACAGAAATGCAAAGACAAAACATAAAACGCAGCCATAAAGGACA
TATTTTAGATAACTGGGGAAATTTGTATGGGCTGTGT (SEQ ID NO: 393)
388 HGL6.866 HGL6.867 AGGAAAAGAAAGAAATAGAAAATGCGAAATGGTAAGAAAAAACAGCATAATAA
ACATTTGTATGGTGTTGATGGACAATGCATT (SEQ ID NO: 394)
389 HGL6.869 AATGGAATCAACATCAAACGGAATCAAACGGAATTATCGAATGGAATCGAAGAG
AATCATCGAACGGACTCGAATGGAATCATCTAATGGAATGGAATGGAAG (SEQ ID NO: 395)
390 HGL6.872 HGL6.1072, AATCGAATGGAATCAGCATCAAACGGAAAAAAACGGAATTATCGAATGGAATCG
HGL6.1301 AAGAGAATCATCGAATGGACC (SEQ ID NO: 396)
391 HGL6.877 AAAGAAATGGAATCGAAGAGAATGGAAACAAATGGAATGGAATTGAATGGAAT
GGAATTGAATGGAATGGGAACG (SEQ ID NO: 397)
392 HGL6.878 AGAAAGAATCAAGAGGAAATGCAAGAAATCCAAAACACTGTAACAGATATGAT
GAATAATGAGGTATGCACTCATCAGCAGACTCGACAT (SEQ ID NO: 398)
393 HGL6.879 AAACGGAATTATNNANTGGANNNNAAGNNAATCATCGAACGGANNNNANNGGA
ATCATNTNNNNGAANGGAATGGAACAATCCATGGTNTNNNN (SEQ ID NO: 399)
394 HGL6.882 HGL6.971 AGCAACTTCAGCAAAGTTTCAGGATACAAAATCAATGTGCAAAAATCACAAGCA
TTCTTATACACCAACAACAGACAAACAGAGAGCC (SEQ ID NO: 400)
395 HGL6.884 AGACAGTCAGACAATCACAAAGAAACAAGAATGAAAATGAATGAACAAAACCT
TCAAGAAATATGGGATTATGAAGAGGCCAAATGT (SEQ ID NO: 401)
396 HGL6.885 ATCATAACGACANGANCAAATTCACACACAACAATNNNNACNNNAAANNCAAA
TGGGTTAAATNNTNCAATTAAAGGATGCAGACGGGCAAATTGGATA (SEQ ID NO: 402)
397 HGL6.891 ATCATAANGACAAGANCAAATTCACACACAACAATNNNNACNNNAAANNCAAA
TGGGTTNAATGNTNCAATTAAAGGATGCAGACGGNCAAATTGGATA (SEQ ID NO: 403)
398 HGL6.895 GAATGGAATCGAATGGATTGATATCAACTGGAATGGAATGGAAGGGAATGGAAT
GGAATGGAATTGAACCAAATGTNNNNGNCTTGAATGGAATG (SEQ ID NO: 404)
399 HGL6.898 GAATCAACATCAAACGGAAAAAAACGGAATTATCGAATGGAATCGAAGAGAAT
CATCGAATGGACC (SEQ ID NO: 405)
400 HGL6.904 ATGGAATCAACATCAAACGGAATCAAACGGAATTATCGAATGGAATCAAAGAGA
ATCATCGAACGGACTCGAATGGAATCATCTAATGGAATGGAATGGAAGAATCCA TGGACTCGAATGCAATCATCATCGAAT (SEQ ID NO: 406)
401 HGL6.905 GGAATGGAATGGAATGGAGCNGAATNGAANGGANNNNANTCAAATGGAATGC
(SEQ ID NO: 407)
402 HGL6.906 AACATACGCAAATCAATAAATGTAATCCAGCATATAAACAGAACCAAAGACAA
AAACCACATGATTATCTCAATAGATGCAGAAAAGGCC (SEQ ID NO: 408)
403 HGL6.911 AAACGATTGGACAGGAATGGAATCACCATCGAATGGAAACGAATGGAATCTTCG
AATGGAATTGAATGAAATTATTGAACGGAATCAAATAGAATCATCATTGAACAG AATCAAATTGGATCAT (SEQ ID NO: 409)
404 HGL6.912 AAAAGATGCAAAAGTAGCAAATGCAATGTTAAAACAAGCAAAGAAAGAATCAG
GTGGACCACATAGTGCAGTGCTTCTC (SEQ ID NO: 410)
405 HGL6.914 AACAATAAACAAACTCCAACTAGACACAATAGTCAAATTGCTGAAAATGAAATA
TAAAGGAACAATCTCGATGGTAGCCCAAGGA (SEQ ID NO: 411)
406 HGL6.915 HGL6.916 AGTCAATAACAAGAAGACAAACAACCCAATTACAAAATGGGATATGAATTTAAT
AGATGTTACTCCAAGGAAGATACACAAATGGCCAAC (SEQ ID NO: 412)
407 HGL6.919 AAAACACCTAGGAATACAGATAACAAGGGACATTAACTACCTCTTAAAGAGAAC
TACAAACCACTGCTCAAGGAAATGAGAGAGGACACAAACACATGGAAAAACAT TCCATCCTCATGGATAGGAAGAATCAATATTGTGAAAATGGCC (SEQ ID NO: 413)
408 HGL6.921 GATATATAAACAAGAAAACAACTAATCACAACTCAATATCAAAGTGCAATGATG
GTGCAAAATGCAAGTATGGTGGGGACAGAGAAAGGATGC (SEQ ID NO: 414)
409 HGL6.923 ACACATATCAAACAAACAAAAGCAATTGACTATCTAGAAATGTCTGGGAAATGG
CAAGATATTACA (SEQ ID NO: 415)
410 HGL6.924 GGAATCATCATATAATGGAATCGAATGGAATCAACATCAAATGGAATCAAATGG
AATCATTGAACGGAATTGAATGGAATCGTCAT (SEQ ID NO: 416)
411 HGL6.926 CCCAACTTCAAATTATACTACAAGGCTACAGTAATCAAAAAAGCATAGTACTATT
ACAAAAACAGACACACAGGCCAATGGAATACAAT (SEQ ID NO: 417)
412 HGL6.927 AAACGCAGAAACAAATCAACGAAAGAACGAAGCAATGAAAGACAAAGCAACAA AAGAATGGAGTAAGAAAGCACACTCCACAAAGTGGAAGCAGGCTGGGACA (SEQ ID NO: 418)
413 HGL6.928 AACTAACACAAGAACAGAAAACCAAACATCACATGTTCTCACTCATAAGCGGGA
GCTGAACAATGAGAACACACGGACACAGGGAGAGGAACATG (SEQ ID NO: 419)
414 HGL6.929 GCCACAATTTTGAAACAACCATAATAATGAGAATACACAAGACAACTCCAATAA
TGTGGGAAGACAAACTTTGCAATTCACATCATGGC (SEQ ID NO: 420)
415 HGL6.933 AATGGAATCAACATCAAACGGAATCAAATGGAATTATCGAATGGAATCGAAGAG
AATCATCGAATTGTCACGAATGGAATCATCTAATGGAATGGAATGGAATAATCC ATGGCCCCTATGC (SEQ ID NO: 421)
416 HGL6.934 HGL6.935 TAAACAGAACCAAAGACAAAAATCACATGATTATCTCAATAGATGCAGAAAAGG
CC (SEQ ID NO: 422)
417 HGL6.937 ATCAACAGACAACAGAAACAAATCCACAAAGCACTTAGTTATTAGAACTGTCAT
ACAGACTGTACAACAACCACATTTACCAT (SEQ ID NO: 423)
418 HGL6.938 AATGGACTCGAATGAAATCATCATCAAACAGAATCGAATGGAATCATCTAATGG
AATGGAATGGCATAATCCATGGACTCGAATG (SEQ ID NO: 424)
419 HGL6.939 TAAAATGAAACAAATATACAACACGAAGGTTATCACCAGAAATATGCCAAAACT
TAAATATGAGAATAAGACAGTCTCAGGGGCCACAGAG (SEQ ID NO: 425)
420 HGL6.940 AAAATACAGCGTTATGAAAAGAATGAACACACACACACACACACACACACAGA
AAATGT (SEQ ID NO: 426)
421 HGL6.942 TACTCTCAGAAGGGAAGCAGATATTCAGCATAAATCATATTGTTTGTACAAAGA
GTCTGGGCATGGTGAATGACACT (SEQ ID NO: 427)
422 HGL6.943 CAAACAAATAGGTACCAAACAAATAACAACATAAACCTGACAACACACTTATTT
ACAAGAGACATCCCTTATATGAAAGGGTACAGAAAAGTCGATGGTAAGATGATG GGGAAAGGTATACCAACCACTAGCAGAAGG (SEQ ID NO: 428)
423 HGL6.944 TGGAATCGAATGGAATCAATATCAAACGGAAAAAAACGGAATTATCGAATGGAA
TCGAAAAGAATCATCGAATGGGCCCGAATGGAATCATCT (SEQ ID NO: 429)
424 HGL6.945 ACAAATGGAATCAACAACGAATGGAATCGAATGGAAACGCCATCGAAAGGAAA
CGAATGGAATTATCATGAAATTGAAATGGATG (SEQ ID NO: 430)
425 HGL6.947 GACAAGAGTTCAGAAAGGAAGACTACACAGAAATACGCATTTTAAAGTCACTGA
CATGGAGATGACACTTAAAACCATGAACATGGATGGG (SEQ ID NO: 431)
426 HGL6.956 AAAATAAACGCAAATTAAAATCACAAGATACCAACACATTCCCACGGCTAAGTA
CGAAGAACAAGGGCGAATGGTCAGAATTAAGCTCAAACCT (SEQ ID NO: 432)
427 HGL6.957 TAAACTGACACAAACACAGACACACAGATACACACATACATACAGAAATACACA
TTCACACACAGACCTGGTCTTTGGAGCCAGAGATG (SEQ ID NO: 433)
0 HGL6.958 GATCAATAAATGTAATTCATCATATAAACAGAGAACTAAAGACAAAAACACATG
ATTATCGCAATACATGCAGAAAAGGCC (SEQ ID NO: 434)
429 HGL6.962 AGGACATGAATAGACAATTCTCAAAAGAAGATACACAAGTGGCAAACAAACAC
ATGAAAAAAGACTCAACATTAGTAATGACCATGGAAATGCAAATC (SEQ ID NO: 435)
430 HGL6.963 ACATCAAACGGAAAAAAACGGAATTATCGAATGGAATCGAAGAGAATCATCGA
ATGGACC (SEQ ID NO: 436)
431 HGL6.965 AATGGACTCGAATAGAATTGACTGGAATGGAATGGACTCGAATGGAATGGAATG
GAATGGAAGGGACTCG (SEQ ID NO: 437)
432 HGL6.966 AAGAAAGACAGAGAACAAACGTAATTCAAGATGACTGATTACATATCCAAGAAC
ATTAGATGGTCAAAGACTTTAAGAAGGAATACATTCAAAGGCAAAACGTCACTT ACTGATTTTGGTGGAGTTTGCCACATGGAC (SEQ ID NO: 438)
433 HGL6.967 AACATAATCCATCAAATAAACAGAACCAAAGACAAAAACCACATGATTATCTCA
ATAGATGCAGAAAAGGCCTTC (SEQ ID NO: 439)
434 HGL6.969 GAATGGAATCGAATGGAATGAACATCAAACGGAAAAAAACGGAATTATCGAAT
GGAATCAAAGAGAATCATCGAATGGACCCG (SEQ ID NO: 440)
435 HGL6.972 ATGGACTCGAATGTAATAATCATTGAACGGAATCGAATGGAATCATCATCGGAT
GGAAACGAATGGAATCATCATCGAATGGAATCGAATGGGATC (SEQ ID NO: 441)
436 HGL6.974 GAATGGAATCAACATCAAACGGAATCAAACGGAATTATCGAATGGAATCGAAGA
GAATCATCGAATGGCCACGAATGGAATCATCTAATGGAATGGAATGGAATAATC CATGG (SEQ ID NO: 442)
437 HGL6.975 GAAATGGAATGGAAAGGAATAAAATCAAGTGAAATTGGATGGAATGGATTGGA
ATGGATTGGAATG (SEQ ID NO: 443)
438 HGL6.978 AAACGGAAAAAAAACGGAATTATCGAATGGAATCGAAGAGAATCATCGAACGA
ACCAGAATGGAATCATCTAATGGAATGGAATGGAATAATCCATGG (SEQ ID NO: 444)
439 HGL6.981 ATTAACCCGAATAGAATGGAATGGAATGGAATGGAACGGAACGGAATGGAATG
GAATGGAATGGAATGGAATGGATCG (SEQ ID NO: 445)
440 HGL6.982 GCAAAACACAAACAACGCCATAAAAAACTGGGCAAAGGATATGAACAGACATT
TTTCAAAACAAAACATACTTATGGCCAAC (SEQ ID NO: 446)
441 HGL6.984 AACATCAAACGGAAAAAAACGGAATTATCGTATGGAATCGAAGAGAATCATCGA
ATGGACC (SEQ ID NO: 447)
442 HGL6.985 AAATCAATAAATGTAATTCAGCATATAAACAGAACCAAAGACAAAAACCACAT
GATTATCTCAATAGATGCAGAAAAGGCCTTT (SEQ ID NO: 448)
443 HGL6.986 AGAATCAAATGGAATTGAATCGAATGGAATCGAATGGATTGGAAAGGAATAGA
ATGGAATGGAATGGAATG (SEQ ID NO: 449)
444 HGL6.988 GAATAGAATTGAATCATCATTGAATGGAATCGAGTAGAATCATTGAAATCGAAT
GGAATCATCATCGAATGGAATTGGGTGGAATC (SEQ ID NO: 450)
445 HGL6.989 CACCGAATAGAATCGAATGGAACAATCATCGAATGGACTCAAATGGAATTATCC TCAAATGGAATCGAATGGAATTATCGAATGCAATCGAATAGAATCATCGAATAG ACTCGAATGGAATCATCGAATGGAATGGAATGGAACAGTC (SEQ ID NO: 451)
446 HGL6.992 HGL6.1286 AAATCATCATCGAATGGAATCGAATGGTATCATTGAATGGAATCGAATGGAATC
ATCATCAGATGGAAATGAATGGAATCGTCAT (SEQ ID NO: 452)
447 HGL6.997 GAATGGAATCGAAAGGAATAGAATGGAATGGATCGTTATGGAAAGACATCGAAT
GGAATGGAATTGACTCGAATGGAATGGACTGGAATGGAACG (SEQ ID NO: 453)
448 HGL6.998 GAATAGAATTGAATCATCATTGAATGGAATCGAGTAGAATCATTGAAATCGAAT
GGAATCATCATCGAATGGAATTGGGTGGAATC (SEQ ID NO: 454)
449 HGL6.1001 GAAAGGAATAGAATGGAATGGATCGTTATGGAAAGACATCGAATGGGATGGAA
TTGACTCGAATGGATTGGACTGGAATGGAACGGACTCGAATGGAATGGACTGGA ATG (SEQ ID NO: 455)
450 HGL6.1003 TGGATTTCAGATATTTAACACAAAATAGTCAAAGCAGATAAATACTAGCAACTT
ATTTTTAATGGGTAACATCATATGTTCGTGCCTT (SEQ ID NO: 456)
451 HGL6.1004 ACAGCAGAAAACGAACATCAGAAAATCACTCTACATGATGCTTAAATACAGAGG
GCAAGCAACCCAAGAGAAAACACCACTTCCTAAT (SEQ ID NO: 457)
452 HGL6.1011 AACATACACAAATCAATAAACGTAATCCAGCTTATAAACAGAACCAAAGACAAA
AACCACATGATTATCTCAATAGATGCGGAAAAGGCC (SEQ ID NO: 458)
453 HGL6.1012 ACATCAAACGGAATCAAACGGAATTATCGAATGGAATCGAAAAGAATCATCGAA
CGGACTCGAATGGAATCATCTAATGGAATGGAATGGAAG (SEQ ID NO: 459)
454 HGL6.1013 ATCGAATGGAATCAACATCAAACGGAAAAAAACGGAATTATCAAATGGAATCGA
AGAGAATCATCGAATGGACC (SEQ ID NO: 460)
455 HGL6.1014 GAATAATCATTGAACGGAATCGAATGGAAACATCATCGAATGGAAACGAATGGA
ATCATCATCGAATGGAAATGAAAGGAGTCATC (SEQ ID NO: 461)
456 HGL6.1015 CATCAAACGGAATCAAACGGAATTATCGAATGGAATCGAAAAGAATCATCGAAC
GGACTCGAATGGAATCATCTAATGGAATGGAATGGAAGAATCCATGGACTCGAA TG (SEQ ID NO: 462)
457 HGL6.1016 TCCAGTCGATCATCATATAGTCAGCACTTATCATACACCAAGCCGTGTGCAAGGA
AAGGGAATACAACCATGAACATGATAGATGGATGGTT (SEQ ID NO: 463)
458 HGL6.1017 ACAAACCACTGCTCAAGGAAATAAGGACACAAACAAATGGAACAACATTCCGTG
CTCATGGATAGGAAGAATCAATATCGTGAAAATGGCCATACT (SEQ ID NO: 464)
459 HGL6.1019 ACAAAATTGATAGACCACTAGCAAGACTAATAAAGAAGAAAAGAGAGAAGAAT
CATTACCATTCAGGACATAGGCATGGGCAAGGAC (SEQ ID NO: 465)
460 HGL6.1024 AAACGGAATCAAACGGAATTATCGAATGGAATCGAAGAGAATCATCGAATGGAC
TCGAATGGAATCATCTAATGGAATGGAATGGAAGAATCCATGG (SEQ ID NO: 466)
461 HGL6.1026 ATACACAAATCAATAAATGTAATCCAGCATATAAACAGAACCAAAGACAAAAA
CCATATGATTATCTCAATGGATGCAGAAAAGGCC (SEQ ID NO: 467)
462 HGL6.1027 AATNGAATAGAATCATCGAATGGACTCGAATGGAATCATCGANNNTANTGATGG
AACAGTC (SEQ ID NO: 468)
463 HGL6.1030 TGGAATGGAATCATCGCATAGAATCGAATGGAATTACCATCGAATGGGATCGAA
TGGTATCAACATCAAACGCAAAAAAACGGAATTATCGAATGGAATCGAAGAGAA TCTTCGAACGGACCCG (SEQ ID NO: 469)
464 HGL6.1031 GAATTGAATTGAATGGAATGGAATGCAATGGAATCTAATGAAACGGAAAGGAA
AGGAATGGAATGGAATGGAATG (SEQ ID NO: 470)
465 HGL6.1033 AACAGAATGGAATCAAATCGAATGAAATGGAATGGAATAGAAAGGAATGGAAT
GAAATGGAATGGAAAGGATTCGAATGGAATGCAATCG (SEQ ID NO: 471)
466 HGL6.1034 ATGGAATGGAATGGAATGGAATTAAATGGAATGGAAAGGAATGGAATCGAATG
GAAAGGAATC (SEQ ID NO: 472)
467 HGL6.1037 HGL6.1245 GTCGAAATGAATAGAATGCAATCATCATCAAATGGAATCCAATGGAATCATCAT
CAAATAGAATCGAATGGAATCATCAAATGGAATCGAATGGAGTCATTG (SEQ ID NO: 473)
468 HGL6.1039 TGGAATTATCGAAAGCAAACGAATAGAATCATCGAATGGACTCGAATGGAATCA
TCGAATGGAATGGAATGGAACAG (SEQ ID NO: 474)
469 HGL6.1045 AAAGGAATGGAATGCAATGGAATGCAATGGAATGCACAGGAATGGAATGGAAT
GGAATGGAAAGGAATG (SEQ ID NO: 475)
470 HGL6.1046 AATCTAATGGAATCAACATCNAACGGAAAAAAACGGAATTATCGAATGGAATCN
AAGAGAATCATCNAATGGACC (SEQ ID NO: 476)
471 HGL6.1047 TACACAACAAAAGAAATACTCAACACAGTAAACAGACAACCTTCAGAACAGGA
GAAAATATTTGCAAATACATCTAACAAAGGGCTAATATCCAGAATCT (SEQ ID NO: 477)
472 HGL6.1048 NGCAATCNTAGTNTCAGATAAAACAGACATTAAACCAACAAAGATCAAAAGAG
ACAAAGAAGGCCANTAC (SEQ ID NO: 478)
473 HGL6.1052 GAATCGAATGGAATCAACATCAAACGGAAAAAAACGGAATTATCGAATGGAATC
NAAAAGAATCATCNAATGGACC (SEQ ID NO: 479)
474 HGL6.1055 ACAGTTAACAAAAACCGAACAATCTAATTACGAAATGAACAAAAGATATGAACA
GACATTTCACCCGAGAGTATACAGGGGCCAGGCATGGT (SEQ ID NO: 480)
475 HGL6.1056 AATGGAATCGAATGGAATGCAATCCAATGGAATGGAATGCAATGCAATGGAATG
GAATCGAACGGAATGCAGTGGAAGGGAATGG (SEQ ID NO: 481)
476 HGL6.1057 GAACACAGAAAAATTTCAAAGGAATAATCAACAGGGATTGATAACTAACTGGAT
TTAGAGAGCCAAGGCAAAGAGAATCAAAGCACAGGGCCTGAGTCGGAG (SEQ ID NO: 482)
477 HGL6.1058 TATACCACACAAATGCAAAAGATTATTAGCAACAATTATCAACAGCAATATGTC
AACAAGTTGACAAACCTAGAGGACATGGAT (SEQ ID NO: 483)
478 HGL6.1061 CACCATGAGTCATTAGGTAAATGCAAATCAAAACCACAATGAAATACTTCACAC CCATGAAGATGGCTATAATAAAAAAACAGACA (SEQ ID NO: 484)
479 HGL6.1067 AGTTGAATAGAACCAATCCGAATGAAATGGAATGGAATGGAACGGAATGGAATT
GAATGGAATGGAATGGAATGCAATGGA (SEQ ID NO: 485)
480 HGL6.1069 AAGTAATAAGACTGAATTAGTAATACAAAGTGTCTCAACAAAGAAAATTGCGGG
ACTGTTCATGCTCATGGACAGGAAGAATCAATATCATGAAAATGGCC (SEQ ID NO: 486)
481 HGL6.1070 AACTCGATTGCAATGGAATGTAATGTAATGGAATGGAATGGAATTAACGCGAAT
AGAATGGAATGGAATGTAATGGAACGGAATGGAATG (SEQ ID NO: 487)
482 HGL6.1074 AAGCGGAATAGAATTGAATCATCATTGAATGGAATCGAGTAGAATCATTGAAAT
CGAATGGAATCATAGAATGGAATCCAAT (SEQ ID NO: 488)
483 HGL6.1076 AAAGGAAAACTACAAAACACTGCTGAAAGAAATCATTGACAACACAAACAAAT
GGAAACACATCCCAAGATCATGGGTGGGTGGAATCAAT (SEQ ID NO: 489)
484 HGL6.1077 AATGGAATCNAAAGGAATAGAATGGAATGGATCGTTATGGAAAGATATCGAATG
GAATGGAATTGACTCGAATGGAATGGACTGGAATGGAACG (SEQ ID NO: 490)
485 HGL6.1078 TAACGGAATAATCATCGAACAGAATCAAATGGAATCATCATTGAATGGAATTGA
ATGGAATCTTCGAATAGACATGAATGGACCATCATCG (SEQ ID NO: 491)
486 HGL6.1084 AAAGACCGAAACAACAACAGAAACAGAAACAAACAACAATAAGAAAAAATGTT
AAGCAAAACAAATGATTGCACAACTTACATGATTACTGAGTGTTCTAATGGT
(SEQ ID NO: 492)
487 HGL6.1085 AAGATTTAAACATAAGACCTAAAACGACAAAAATCCTAGGAGAAAACCTAAGCA
ATACCATTCAGGACATAGGCATGGGCAAAGACTTCATG (SEQ ID NO: 493)
488 HGL6.1090 AGAAACAGCCAGAAAACAATTATTACCTACAGCATTAAAACTATTCAAATGACA
GCATATTTTTCAGCAGAAATCATGAAGGCCAGAAGGACGTGTCAT (SEQ ID NO: 494)
489 HGL6.1092 ATGTACACAAATCAATAAATGCAGTCCAGCATATAAACAGAACCAAACACAAA
AACCACATGATTATCTCAATAGATGCAGAAAAGGCCTTT (SEQ ID NO: 495)
490 HGL6.1093 AGCAACTTCAGCAAAGTCTCAGGACACAAAATCAATGTGCAAAAATCACAAGCA
TTCTTATACACCAATAACAGACAAACAGAGAGCC (SEQ ID NO: 496)
491 HGL6.1094 TTGAATCGAATGGAATCGAATGGATTGGAAAGGAATAGAATGGAATGGAATGGA
ATTGACTCAAATGGAATG (SEQ ID NO: 497)
492 HGL6.1097 HGL6.1241 AACGGAATCAAACGGAATTATCGAATGGAATCGAATAGAATCATCGAACGGACT
CGAATGGAATCATCTAATGGAATGGAATGGAAG (SEQ ID NO: 498)
493 HGL6.1098 AACATCACTGATCATTAGAAACACACAAATCAAAACCACAATAAGATACCATCT
AACACCAGTCACAATGGCTATT (SEQ ID NO: 499)
494 HGL6.1100 TAAGCAATTTCAGCAGTCTCAGGATACAAAATCAATGTGCAAAAATCACAAGCA
TTCTTATACACCAACAACAGACAAACAGAGAGCCAAATCG (SEQ ID NO: 500)
495 HGL6.1101 AGAAAAAAACAAACAGCCCATTAAAAGGTAGACAAAGGACATGAACACTTTTCA
AAAGAAGACATACATGTGGCCAAACAGCATG (SEQ ID NO: 501)
496 HGL6.1103 ATTGGAATGGAACGGAACAGAACGGAATGGAATGGAATAGAATGGAATGGAAT
GGAATGGTATGGAATGGAATGGAATGGTACG (SEQ ID NO: 502)
497 HGL6.1104 AGAGCATCCACAAGGCCCAATTCAAAGAATCTGAAATAATGTATTGTTACTGCA
ACAGTTGTGAGTACCAGTGGCATCAG (SEQ ID NO: 503)
498 HGL6.1107 AATCCACAAAGACAACAGAAGAAAAGACAACAGTAGACAAGGATGTCAACCAC
ATTTTGGAAGAGACAAGTAATCAAACACATGGCA (SEQ ID NO: 504)
499 HGL6.1109 AAACAGAACCACAGATATCTGTAAAGGATTACACTATAGTATTCAACAGAGTAT
GGAACAGAGTATAGTATTCAACAGAGTATGCAAAGAAACTAAGGCCAGAAAG
(SEQ ID NO: 505)
500 HGL6.1110 AGCAAACAAACAAACAAACAAACAAACTATGACAGGAACAAAACGTCACATAT
CAACATTAACAAAGAATGTAAACAGCCTAAATGCTTCACTTAAAAGTTATAGAC AGGGGCTGGGCATGGTGGCTCACGCC (SEQ ID NO: 506)
501 HGL6.1111 AAAAGTACAGAAGACAACAAAAAATGAGAGAGAGAAAGATAACAGACTATAGC
AGCATTGGTGATCAGAGCCACCAG (SEQ ID NO: 507)
502 HGL6.1114 TACAAGAAAATCACAGTAACATTTATAAAACACAGAAGTGTGAACACACAGCTA
TTGACCTTGAAAACAGTGAAAGAGGGTCAGCTGTAGAACTAAGACATAAGCAAA GTTTTTCAATCAAGAATACATGGGTGGCC (SEQ ID NO: 508)
503 HGL6.1116 GAATCGAATGGAATCAACATCAAACGGAAAAAAACGGAATTATCGAATGGAATC
GAAAAGAATCATCGAACGGACTCGAATGGAATCATCTAATGGAATGGAATGGAA GAATCCATGG (SEQ ID NO: 509)
504 HGL6.1117 AATGGAATCGAATGGAATCATCATCAAATGGAATCTAATGGAATCATTGAACGG
AATTGGATGGAATCGTCAT (SEQ ID NO: 510)
505 HGL6.1118 AACGGAATCAAACGGAATTATCGAATGGAATCGAAGAGAATCATCGAATGGCCA
CGAATGGAATCATCTAATGGAATGGAATGGAATAATCCATGGACCCGAATG
(SEQ ID NO: 511)
506 HGL6.1121 CAACATCAAACGGAAAAAAACGGAATTATCGAATGGAATCGAAGAGAATCATC
GAATGGACC (SEQ ID NO: 512)
507 HGL6.1122 CACAACCAAAGCAATGAAAGAAAAGCACAGACTTATTGAAATGAAAGTACACA
CCACAGAATGGGAGCAGGCTCAAGCAAGC (SEQ ID NO: 513)
508 HGL6.1123 HGL6.1229 ATCAAAGGGAATCAAGCGGAATTATCGAATGGAATCGAAGAGAATCATCGAATG
GACTCGAATGGAATCATGTGATGGAATGGAATGGAATAATCCACGGACT (SEQ ID NO: 514)
509 HGL6.1125 AAGAAACAATCAAAAGGAAGTGCTAGAAATAAAACACACTGTAATAGAAAAGA
AGAATGCCTTATGGGCTTATCAATAGACTAGACATGGCCAGG (SEQ ID NO: 515)
510 HGL6.1127 AGATAAGAATAAGGCAAACATAGTAATAGGGAGTTCATGAATAACACACGGAA
AGAGAACTTACAGGGCTGTGATCAGGAAACG (SEQ ID NO: 516) 511 HGL6.1128 GGAATCGAATGGAATCAATATCAAACGGAGAAAAACGGAATTATCGAATGGAAT CGAAGAGAATCATCGAATGGACC (SEQ ID NO: 517)
512 HGL6.1130 TCAGACCATAGCAGATAACATGCACATTAGCAATACGATTGCCATGACAGAGTG
GTTGGTG (SEQ ID NO: 518)
513 HGL6.1132 AGGAATGGACACGAACGGAATGCAATCGAATGGAATGGAATCTAATAGAAAGG
AATTGAATGAAATGGACTGG (SEQ ID NO: 519)
514 HGL6.1133 GGAAGGGAATCAAATGCAACAGAATGTAATGGAATGGAATGCAATGGAATGCA
ATGGAATGGAATGGAATGCAATGGAATGG (SEQ ID NO: 520)
515 HGL6.1138 AAATTGGATTGAATCGAATCGAATGGAAAAAATGAAATCAAATGAAATTGAATG
GAATCGAAATGAATGTAAACAATGGAATCCAATGGAATCCAATGGAATCGAATC AAATGGTTTTGAGTGGCGTAAAATG (SEQ ID NO: 521)
516 HGL6.1139 AAGGATTCGAATGGAATGCAATCGAATGGAATGGAATCGAACGGAATGGAATA
AAATGGAAGAAAACTGGCAAGAAATGGAATCG (SEQ ID NO: 522)
517 HGL6.1141 GAAAAATCATTGAACGGAATCGAATGGAATCATCATCGGATGGAAACGAATGGA
ATCATCATCGAATGGAAATGAAAGGAGTCATC (SEQ ID NO: 523)
518 HGL6.1147 GGTTCAACTTACAATATTTTGACTTGACAACAGTGCAAAAGCAATACACGATTAG
TAGAAACACACTTCCAATGCCCATAGGACCATTCTGC (SEQ ID NO: 524)
519 HGL6.1150 GGAATCGAATGGAATCAACATCAAACGGAGAAAAACGGAATTATCGAATGGAA
TCGAAGAGAATCATCGAATGGACC (SEQ ID NO: 525)
520 HGL6.1152 TAACCTGATTTGCCATAATCCACGATACGCTTACAACAGTGATATACAAGTTACA
TGAGAAACACAAACATTTTGCAAGGAAACTGTGGCCAGATG (SEQ ID NO: 526)
521 HGL6.1153 TAACTACTCACAGAACTCAACAAAACACTATACATGCATTTACCAGTTTATTATA
AAGATACAAGTCAGGAACAGCCAAATGGAAGAAATGTAAATGGCAAG (SEQ ID NO: 527)
522 HGL6.1155 GCTCAAAGAAATCAGAAATGACACAAGCAAATGGAAAAACATGCCATGTTCATG
AATATGAAGAATCAATATTGTTAAAATGGCCATACTGCTCA (SEQ ID NO: 528)
523 HGL6.1157 AAAGAAATGTCACTGCGTATACACACACACGCACATACACACACCATGGAATAC
TACTCAGCTATACAAAGGAATGAAATAATCCACAGCCAC (SEQ ID NO: 529)
524 HGL6.1159 GAATAGAACAGAATGGAATCAAATCGAATGAAATGGAATGGAATAGAAAGGAA
TGGAATGAAATGGAATGGAAAGGATTCGAATGGAATG (SEQ ID NO: 530)
525 HGL6.1162 TGAACGGAATCGAATGGAATCATCATCGGATGGAAACGAATGGAATCATCATCG
AATGGAAATGAAAGGAGTCATC (SEQ ID NO: 531)
526 HGL6.1165 GAATAGAACGAAATGGAATGGAATGGAATGGAATGGAAAGGAATGGAATGGAA
TGGAACG (SEQ ID NO: 532)
527 HGL6.1166 AACGTGACATACATACAAAAAGTTTTTAGAGCAAGTGAAATTTTAGCTGCTATAT
GTTAATTGGTGGTAATCCC (SEQ ID NO: 533)
528 HGL6.1169 GGAATAACAACAACAACAACCAAAAGACATATAGAAAACAAACAGCACGATGG
CAGATGTAAAGCCTACC (SEQ ID NO: 534)
529 HGL6.1174 GACAAAAAGAATCATCATCGAATAGAATCAAATGGAATCTTTGAATGGACTCAA
AAGGAATATCGTCAAATGGAATCAAAAGCCATCATCGAATGGACTGAAATGGAA TTATCAAATGGACTCG (SEQ ID NO: 535)
530 HGL6.1175 GTAACAAAACAGACTCATAGACCAATAGAACAGAATAGAGAATTCAGAAATAA
GACTGCACTTCTATGACCATGTGATCTTAGACAAACCT (SEQ ID NO: 536)
531 HGL6.1176 AGATAAAAAGAACAGCAGCCAAAATGACAAAAGCAAAAAGCAAAATCGTGTTA
GAGCCAGGTGTGGTGATGTGTGCT (SEQ ID NO: 537)
532 HGL6.1178 GCAATCTCAGGATACAAAATCAATGTGCAAAAATCACAAGCATTCTCATACACC
AATAACAGACAAACAGAGCCAAATCATG (SEQ ID NO: 538)
533 HGL6.1179 AACCAAACCAAGCAAACAAACAAACAGTAAAAACTCAATAACAACCAACAAAC
AGGAAATACCAGGTAATTCAGATTATCTAGTTATGTGCCATAGT (SEQ ID NO: 539)
534 HGL6.1181 GAATGAATTGAATGCAAACATCGAATGGTCTCGAATGGAATCATCTTCAAATGG
AATGGAATGGAATCATCGCATAGAATCGAATGGAATTATCAACGAATGGAATCG AATGGAATCATCATCAGATGGAAATGAATGGAATCGTCAT (SEQ ID NO: 540)
535 HGL6.1183 TGGAATGGAATCAAATCGCATGGAATCGAATGGAATAGAAAAGAATCAAACAG
AGTGGAATGGAATGGAATGGAATGGAATCATGCCGAATGGAATG (SEQ ID NO: 541)
536 HGL6.1184 GAATCCATGTTCATAGCACAACAACCAAACAGAAGAAATCACTGTGAAATAAGA
AACAAAGCAAAACACAGATGTCGACACATGGCA (SEQ ID NO: 542)
537 HGL6.1185 AAATGGAATAATGAAATGGAATCGAACGGAATCATCATCAAAAGGAACCGAAT
GAAGTCATTGAATGGAATCAAAGGCAATCATGGTCGAATGGAATCAAATGGAAA CAGCATTGAATAGAATTGAATGGAGTCATCACATGGAATCG (SEQ ID NO: 543)
538 HGL6.1186 GAATTAACCCGAATAGAATGGAATGGAATGGAATGGAACAGAACGGAACGGAA
TGGAATGGAATGGAATGGAATGGAATG (SEQ ID NO: 544)
539 HGL6.1188 AAGATATACAAGCAGCCAACAAACATACGAAAGAATGCTCAACATCACTAATCC
TCAGAGAAATTTAAATCAAAACCACAATGAGTTACAATCTCATACCAGTCAGAA
T (SEQ ID NO: 545)
540 HGL6.1190 AGAATTACAAACCACTGCTCAACAAAATAAAAGAGTACACAAACAAATGGAAG
AATATTCCATGCTTATGGATAGGAAGAATCAATATTGTGAAAATGGCCATACT
(SEQ ID NO: 546)
541 HGL6.1192 CATCGAATGGACTCGAATGGAATAATCATTGAACGGAATCGAAGGGAATCATCA
TCGGATGGAAACGAATGGAATCATCATCGAATGGAAATG (SEQ ID NO: 547)
542 HGL6.1194 CACCCATCTGTAGGACCAGGAAGCCTGATGTGGGAGAGAACAGCAGGCTAAATC
CAGGGTTGGTCTCTACAGCAGAGGGAATCACAAGCCTGTTAGCAAGTGAAGAAC CAACACTGGCAAGAGTGTGAAGGCC (SEQ ID NO: 548) 543 HGL6.1195 TAATGCAAACTAAAACGACAATGAGATATCAATACATAACTACCAGAAAGGCTA ACAAAAAAACAGTCATAACACACCAAAGGCTGATGAGTGAGGATGTGCAG (SEQ ID NO: 549)
544 HGL6.1196 AAAGGAATCAAACGGAATTATCGAATGGAATCGAAAAGAATCATCGAACGGACT
CGAATGGAATCATCTAATGGAATGGAATGGAAGAATCCATGGACTCGAATG
(SEQ ID NO: 550)
545 HGL6.1198 AGCAACTTCAGCAAAGTCTCAGGATACAAAATCAATGAGCAAAAATCACAAGCA
TTCTTACACACCAATAACAGACAAACAGAGAGCC (SEQ ID NO: 551)
546 HGL6.1199 GGATATAAACAAGAAAACAACTAATCACAACTCAATATCAAAGTGCAATGATGG
TGCAAAATGCAAGTATGGTGGGGACAGAGAAAGGATGC (SEQ ID NO: 552)
547 HGL6.1200 AATCAGTAAACGTAATACAGCATATAAACAGAACCAAAGACAAAAACCACATG
ATTATCTCAATAGATGCAGAAAAGGCC (SEQ ID NO: 553)
548 HGL6.1202 AACATCAAACGGAAAAAAACGGAAATATCGAATGGAATCGAAGAGAATCATCG
AATGGACC (SEQ ID NO: 554)
549 HGL6.1203 TAAAATGGAATCGAATGGAATCAACATCAAATGGAATCAAATGGAATCATTGAA
CGGAATTGAATGGAATCGTCAT (SEQ ID NO: 555)
550 HGL6.1204 AATCATCATCGAATGGAATCGAATGGTATCATTGAATGGAATCGAATGGAATCA
TCATCAGATGGAAATGAATGGAATCGTCAT (SEQ ID NO: 556)
551 HGL6.1205 CAATGCGTCAAGCTCAGACGTGCCTCACTACGGCAATGCGTCAAGCTCAGGCGT
GCCTCACTAT (SEQ ID NO: 557)
552 HGL6.1206 AAGACAGAACACTGAAACTCAACAGAGAAGTAACAAGAACACCTAAGACAAGG
AAGGAGAGGGAAGGCAGGCAG (SEQ ID NO: 558)
553 HGL6.1209 TAAGCTGATAAGCAACTTTAGCAAAGTCTCAGGATACAAAATCAATGTACAAAA
ATCACAAGCATTCTTATACACCAACAACAGACAGACGGAGAGCCAAA (SEQ ID NO: 559)
554 HGL6.1212 ATGAACACGAATGTAATGCAATCCAATAGAATGGAATCGAATGGCATGGAATAT
AAAGAAATGGAATCGAAGAGAATGGAAACAAATGGAATGGAATTGAATGGAAT GGAATTG (SEQ ID NO: 560)
555 HGL6.1216 AACAATCACTAGTCCTTAAGTAAGAGACAACACCTTTTGTCACACACAGTTTGTC
CTAACTTTATCTTGGTAATTGGGGAGACC (SEQ ID NO: 561)
556 HGL6.1217 TAATGAGAAGACACAGACAACACAAAGAATCACAGAAACATGACACAGGTGAC
AAGAACAGGCAAGGACCTGCAGTGCACAGGAGCC (SEQ ID NO: 562)
557 HGL6.1218 TGTTGAGAGAAATTAAACAAAGCACAGATAAATGGAAAAACGTGTTCATAGATT
GAAAGACTTCATGTTGTATGGTGTC (SEQ ID NO: 563)
558 HGL6.1219 ATCAAACGGAATCAAACGGAATTATCGAATGGAATCGAAGAGAATCATCGAACG
GACTCGAATGGAATCATCTAATGGAATGGGATGG (SEQ ID NO: 564)
559 HGL6.1222 ACACAACAACCAAGAAACAACCCCATTAAGAAGTGGGAAAAATACATGAATAA
ACACATCTCAAAAGAAGACAAACAAGTGGCTAAC (SEQ ID NO: 565)
560 HGL6.1225 AATGGAAAGGAATCAAATGGAATATAATGGAATGCAATGGACTCGAATGGAATG
GAATGGAATGGACCCAAATGGAATGGAATGGAATGGAATG (SEQ ID NO: 566)
561 HGL6.1226 GGAATACAACGGAATGGAATCGAAAAAAATGGAAAGGAATGAAATGAATGGAA
TGGAATGGAATGGAATGGATGGGAATGGAATGGAATGG (SEQ ID NO: 567)
562 HGL6.1227 GAATCAAGCGGAATTATCGAATGGAATCGAAGAGAATCATCGAAAGGACTCGAA
TGGAATCATCTAATGGAATGGAATGGAATAATACACGGACC (SEQ ID NO: 568)
563 HGL6.1232 AACAACAACAACAACAGGAAAACAACCTCAGTATGAAGACAAGTACATTGATTT
ATTCAACATTTACTGATCACTTTTCAGGTGGTAGGCAGACC (SEQ ID NO: 569)
564 HGL6.1233 AAGATAACCTGTGCCCAGGAGAAAAACAATCAATGGCAACAAAAGCAGAAACA
ACACAAATGATACAATTAGCAGACAGAAACATTGAGATTGCTATT (SEQ ID NO: 570)
565 HGL6.1234 AATGGACTCCAATGGAATAATCATTGAACGGAATCNAATGGAATCATCATCGGA
TGGAAATGANTGGAATCNTCNTCNAATGGAATCN (SEQ ID NO: 571)
566 HGL6.1237 ANNCNNTAAACGTAATCCATCACATAAACANGANCNAANAGNNNAACCGCNNG
ATTATCTCNNNNNNTGCNNAAAAGGCC (SEQ ID NO: 572)
567 HGL6.1240 HGL6.1277 TAATTGATTCGAAATTAATGGAATTGAATGGAATGCAATCAAATGGAATGGAAT
GTAATGCAATGGAATGTAATAGAATGGAAAGCAATGGAATG (SEQ ID NO: 573)
568 HGL6.1242 AAAGGAATGGACTTGAACAAAATGAAATCGAACGATAGGAATCGTACAGAACG
GAAAGAAATGGAACGGAATGGAATG (SEQ ID NO: 574)
569 HGL6.1243 AGCAACTTCAGCAAAATCTCAGGATACAAAATCAATGTACAAAAATCACAAGCA
TTCTTATACACCAACAACAGACAAACAGAGAGCC (SEQ ID NO: 575)
570 HGL6.1247 TGAGCAGGGAACAATGCGGATAAATTTCACAAATACAATGTTGAGCAAAAGAAA
GACACAAAANAATACACACATACACACCATATGGGCTAGG (SEQ ID NO: 576)
571 HGL6.1254 AATGGAATGGAATGTACAAGAAAGGAATGGAATGAAACCGAATGGAATGGAAT
GGACGCAAAATGAATGGAATGGAAGTCAATGG (SEQ ID NO: 577)
572 HGL6.1260 AAGTTCAAACATCAGTATTAACCTTGAACATCAATGGCCTACATGCATCACTTAA
AACATACAGACAGGCAAATTGGGTTAAGAAAACAAACAAGCAAACAAAACATG TTCCAAACATTTGTTGGCTAT (SEQ ID NO: 578)
573 HGL6.1262 GGAATAATCATTGAACGGAATCGAATGGAATCATCATCGGATGGAAACGAATGG
AATCATCATCGAATGGAAATGAAAGGAGTCATC (SEQ ID NO: 579)
574 HGL6.1264 GGAACGAAATCGAATGGAACGGAATAGAATAGACTCGAATGTAATGGATTGCTA
TGTAATTGATTCGAATGGAATGGAATCG (SEQ ID NO: 580)
575 HGL6.1265 TGAAAGGAATAGACTGGAACAAAATGAAATCGAATGGTAGGAATCATACAGAA
CAGAAAGAAATGGAACGGAATGGAATG (SEQ ID NO: 581)
576 HGL6.1266 AACCCGAATAGAATGGAATGGAATGGAATGGAACGGAACGGAATGGAATGGAA TGGATTGGAATGGAATGGAATG (SEQ ID NO: 582)
577 HGL6.1267 AAAGAGAATCAAATGGAATTGAATCGAATGGAATCGAATGGATTGGAAAGGAA
TAGAATGGAATGGAATGGAATGGAATGGAATGGAATG (SEQ ID NO: 583)
578 HGL6.1269 AAAACACACAAACATACATGTGGATGCACATATAAACATGCACATACACACACA
CATAAATGCACAAACACACTTAACACAAGCACACATGCAAACAAACACATGG
(SEQ ID NO: 584)
579 HGL6.1270 AATGGAATCATCAGTAATGGAATGGAAAGGAATGGAAAGGACTGGAATGGAAT
GGAATGGAATGGAATGG (SEQ ID NO: 585)
580 HGL6.1271 GGAACAAAATGAAATCGAACGGTAGGAATCGTACAGAACGGAAAGAAATGGAA
CGGAATGGAATGCACTCAAATGGAAAGGAGTCCAATGGAATCGAAAGGAATAG AATGGAATGG (SEQ ID NO: 586)
581 HGL6.1272 AGAATGAGATCAAGCAGTATAATAAAGGAAGAAGTAGCAAAATTACAACAGAG
CAGTGAAATGGATATGCTTTCTGGCAATAATTGTGAAAGGTCTGGTAATGAGAA AGTAGCAACAGCTAGTGGCTGCCAC (SEQ ID NO: 587)
582 HGL6.1273 AACAAATGGAATCAACATCGAATGGAATCGAATGGAAACACCATCGAATTGAAA
CGAATGGAATTATCATGAAATTGAAATGGATGGACTCATCATCG (SEQ ID NO: 588)
583 HGL6.1278 TAACATGCAGCATGCACACACGAATACACAACACACAAACATGTATGCACGCAC
ACGTGAATACACAACACACACAAACATGCATGCATGCATACATGAATACACAGC ACACAAATATCCAGCAT (SEQ ID NO: 589)
584 HGL6.1279 GAATGGAATCAACATCAAACGGAAAAAAAACGGAATTATCGAATGGAATCGAA
TAGAATCATCGAATGGACC (SEQ ID NO: 590)
585 HGL6.1281 AATCGAATGAAATGGAGTCAAAAGGAATGGAATCGAATGGCAAGAAATCGAAT
GTAATGGAATCGCAAGGAATTGATGTGAACGGAACGGAATGGAAT (SEQ ID NO: 591)
586 HGL6.1282 AATGGAATTGAACGGAAACATCAGCGAATGGAATCGAAAGGAATCATCATGGA
ATAGATTCGAATGGAATGGAAAGGAATGGAATGGAATG (SEQ ID NO: 592)
587 HGL6.1283 ATGGAATCAACATCAAACAGAATCAAACGGAATTATCGAATGGAATCGAAGACA
ATCATCGAATGGACTCGAATGGAATCATCTAATGGAATGGAATGGAAGAATCCA TGGTCTCGAATGCAATCATCATCG (SEQ ID NO: 593)
588 HGL6.1284 GAATAATCATTGAACGGAATCGAATGGAATCATCTTCGGATGGAAACGAATGGA
ATCATCATCGAATGGAAATGAAAGGAGTCATC (SEQ ID NO: 594)
589 HGL6.1288 AATGGACTCGAATGGAATAATCATTGAACGGAATCGAATGGAATCATCATCGGA
TGGAAATGAGTGGAATCATCATCGAATGGAATCG (SEQ ID NO: 595)
590 HGL6.1290 AAATGAAATCGAACGGTAGGAATCGTACAGAACGGAAAGAAATGGAACGGAAT
GGAATGCAATCGAATGGAAAGGAGTCCAATGGAAGGGAATCGAAT (SEQ ID NO: 596)
591 HGL6.1291 TACCAAACATTTAAAGAACAAATATCAATCCTACGCAAACCATTCTGAAACACA
GAGATGGAGGATATACAGCGAAACTCATTCTACATGGCC (SEQ ID NO: 597)
592 HGL6.1292 TATTGGAATGGAATGGAATGGAGTCGAATGGAACGGAATGCACTCGAATGGAAG
GCAATGCAATGGAATGCACTCAACAGGAATAGAATGGAATGGAATGGAATGG
(SEQ ID NO: 598)
593 HGL6.1294 AGAGAGTATTCATCATGAGGAGTATTACTGGACAAATAATTCACAAACGAACAA
ACCAAAGCGATCATCTTTGTACTGGCTGGCTA (SEQ ID NO: 599)
594 HGL6.1295 GGAATTTAATAGAATGTACCCGAATGGAACGGAATGGAATGGAATTGTATGGCA
TGGAATGGAA (SEQ ID NO: 600)
595 HGL6.1298 GCAATCCANTANAATGGAATCGAATGGCATGGAATATAAAGAAATGGAATCGAA
GAGAATGGAGACAAATGGAATGGAATTGAATGGAATGGAATTG (SEQ ID NO: 601)
596 HGL6.1299 AATGGAATCGAATGGAATCATCATCAAATGGAATCTAATGGAATCATTGAACGG
AATTAAATGGAATCGTCATCGAATGAATTCAATGCAATCAACGAATGGTCTCGA ATGGAACCAC (SEQ ID NO: 602)
597 HGL6.1300 AATTGCAAAAGAAACACACATATACACATATAAAACTCAAGAAAGACAAAACTA
ACCTATGGTGATAGAAATCAGAAAAGTACAGTACATTGGTTGTCTTGGTGGG
(SEQ ID NO: 603)
598 HGL6.1303 TGACATCATTATTATCAAGAAACATTCTTACCACTGTTACCAACTTCCCAACACA
GACTATGGAGAGAGAGATAAGACAGAATAGCATT (SEQ ID NO: 604)
599 HGL6.1305 GGAATCTATAATACAGCTGTTTATAGCCAAGCACTAAATCATATGATACAGAAA
ACAAATGCAGATGGTTTGAAGGGTGGG (SEQ ID NO: 605)
600 HGL6.1308 AAAGAATTGAATTGAATAGAATCACCAATGAATTGAATCGAATGGAATCGTCAT
CGAATGGAATCGAAGGGAATCATTGGATGGGCTCA (SEQ ID NO: 606)
601 HGL6.1311 ATCATCGAATGGAATCGAATGGAATCAATATCAAACGGAAAAAAACGGAATTAT
CGAATGGAATCGAATAGAATCATCGAATGGACC (SEQ ID NO: 607)
602 HGL6.1314 GAATGAAATCGTATAGAATCATCGAATGCAACTGAATGGAATCATTAAATGGAC
TTGAAAGGAATTATTATGGAATGGAATTG (SEQ ID NO: 608)
603 HGL6.1316 TAAGCAACTTCAGCAAAGTCTCAGGATACAAAATCAATGTGCAAAAATCTCAAG
CATTCTTATACACGAACAACAGACAAACAGAGAGCT (SEQ ID NO: 609)
604 HGL6.1317 ACTCAAAAGGAATTGATTCGAATGGAATAGAATGGCAAGGAATAGTATTGAATT
GAATGGAATGGAATGGACCCAAATG (SEQ ID NO: 610)
605 HGL6.1319 GAATGGAATTTAAAGGAATAGAATGGAAGGAATCGGATGGAATGGAATGGAAT
AGAATGGAGTCGAATGGAATAGAATCGAATGGAATGGCATTG (SEQ ID NO: 611)
606 HGL6.1323 AACAAAAAATGAGTCAAGCCTTAAATAAAATCAGAGCCAAAAAAGAAGACATT
ACATCTGATAAGACAAAAATTCAAAGGACCATC (SEQ ID NO: 612)
607 HGL6.1324 AACCCAGTGGAATTGAATTGAATGGAATTGAATGGAATGGAAAGAATCAATCCG AGTCGAATGGAATGGTATGGAATGGAATGGCATGGAATCAAC (SEQ ID NO: 613)
608 HGL6.1327 ATCAACATCAAACGGAAAAAAAACGGAATTATCGAATGGAATCGAAGAGAATC
ATCGAATGGACC (SEQ ID NO: 614)
609 HGL6.1331 AAGGAATGGAATGGTACGGAATAGAATGGAATGGAACGAATTGTAATGGAATG
GAATTTAATGGAACGGAATGGAATGGAATGGAATCAACG (SEQ ID NO: 615)
610 HGL6.1334 AACGGAATGGAAAGCAATTTAATCAAATGCAATACAGTGGAATTGAAGGGAATG
GAATGGAATGGC (SEQ ID NO: 616)
611 HGL6.1335 AATCGAATGGAACGGAATAGAATAGACTCGAATGTAATGGATTGCTATGTAATT
GATTCGAATGGAATGGAATCGAATGGAATGCAATCCAATGGAATGGAATGCAAT GCAATGGAATGGAATCGAACGGAATGCAGTGGAAGGGAATGG (SEQ ID NO: 617)
612 HGL6.1336 TAGCAACATTTTAGTAACATGATAGAAACAAAACAGCAACATAGCAATGCAATA
GTAACACAACAGCAACATCATAACATGGCAGCA (SEQ ID NO: 618)
613 HGL6.1337 GGACAAATTGCTAGAAATAAACAAATTACCAAAAATGATTCAAGTAGAGACAGA
GAATCAAAATAGAACTACACATAAGTGGGCCAAG (SEQ ID NO: 619)
614 HGL6.1340 AAAATAGAATGAAAGAGAATCAAATGGAATTGAATCGAATGGAATCGAATGGA
TTGGAAAGGAATAGAATGGAATGGAATGGAATG (SEQ ID NO: 620)
615 HGL6.1342 AGCAAACAAGTGAATAAACAAGCAAACAAGTGAACAAGCAAACAAGTGAATAA
ACAAGCAAACAAGTGAACAAGCAAACAAGTGAATAAACAAGCAAACAAGTGAA CAAGGAAACAAGTGAATAAACAAAGGCTCT (SEQ ID NO: 621)
616 HGL6.1346 AATGGAATCAACACGAGTGCAATTGAATGGAATCGAATGGAATGGAATGGAATG
GAATGAATTCAACCCGAATGGAATGGAAAGGAATGGAATC (SEQ ID NO: 622)
617 HGL6.1347 AATATACGCAAATCAATAAATGTAATCCAGCATATAAACAGTACTAAAGACAAA
AACCACATGATTATCTCAATAGATGCAGAAAAGGCC (SEQ ID NO: 623)
618 HGL6.1352 GAATCGAATGGAATCAACATCAAACGGAAAAAAACGGAATTATCGAATGGAATC
GAAGAGNNNNNNCGAATGGACC (SEQ ID NO: 624)
619 HGL6.1354 AACACGAATGTAATGCAATCCAATAGAATGGAATCGAATGGCATGGAATATAAA
GAAATGGAATCGAAGAGAATGGAAACAAACGGAATGGAATTGAATGGAATGGA ATTGAATGGAATGGGAACGAATGGAGTGAAATTG (SEQ ID NO: 625)
620 HGL6.1355 GAATGGAACGGAATAGAACAGACTCGAATGTAATGGATTGCTATGTAATTGATT
CGAATGGAATGGAATCGAATGGAATGCAATCCAATGGAATGGAATGCAATGCAA TGGAATGGAATCGAATGGAATGCAGTGGAAGGGAATGG (SEQ ID NO: 626)
621 HGL6.1356 GAATCGAATGGAATCAATATCAAACGGAAAAAAACGGAATTATCGAATGGAATC
GAAGAGAATCATCGAATGGACC (SEQ ID NO: 627)
622 HGL6.1359 TAAACAACGAGAACACATGAACACAAAGAGGGGAACAACAGACACCAAGACCT
TCTTGAGGGTGGAGGATGGGAGGAGGGAG (SEQ ID NO: 628)
623 HGL6.1360 AGCAACTTCAGCAGTCTCAGTATACAAAAACAATGTGCAAAAATCACAAGCATT
CCTATATGCCAATAACAGACAAACAGAGAGCC (SEQ ID NO: 629)
624 HGL6.1361 ATCAAAAGAAAAGCAACCTAACAAATACGGGAAGAATATTTGAATAGACATTTC
ACAGGAAAAGATATATGAATGGCCAAAAAGCAAATGAAAAG (SEQ ID NO: 630)
625 HGL6.1364 ATAAACATCAAACGGAATCAAACGGAATTATCGAATGGAATCGAAGAGAATAAT
CGAATGGACTCAAATGGAGTCATCTAATGGAATGGTATGGAAGAATCCATGGAC TCCAACGCAATCATCAGCGAATGGAATC (SEQ ID NO: 631)
626 HGL6.1365 AAAAGAAAAGACAAAAGACACCAATTGCCAATACTGAAATGAAAAAACAGGTA
ATAACTATTGATCCCATGGACATTAAAATGATGTTGAAGGAACACCAC (SEQ ID NO: 632)
627 HGL6.1368 AGCAATAACCAAACAACCTCATTAAAAAGTAGGCAAAGGACATAAACAGACACT
TTTCAAAAGAAGACATACACGTGGCCAACAAACATATG (SEQ ID NO: 633)
628 HGL6.1370 AGCAACTTCAGCAAAGTCTCAGGATACAAAATCGATGTGCAAAAATCACAAGCA
TTCTTATACACCAATAACAGGCAAACAGAGAGCC (SEQ ID NO: 634)
629 HGL6.1371 GTCATATTTGGGATTTATCATCTGTTTCTATTGTTGTTGTTTTAGTACACACAAAG
CCACAATAAATATTCTAGGCT (SEQ ID NO: 635)
630 HGL6.1373 ATCATCGAATGGAATAGAATGGTATCAACATCAAACGGAGAAAAACGGAATTAT
CGAATGGAATCGAAGAGAATCTTCGAACGGACC (SEQ ID NO: 636)
631 HGL6.1374 AAATAAGCCAACGGTCATAAATTGCAAAGCCTTTTACAATCCAAACATGATGGA
AACGATATGCCATTTTGAAGGTGATTTGAAAAGCACATGGTTT (SEQ ID NO: 637)
632 HGL6.1375 GAATGGAATCATCGCATAGAATCGGATGGAATTATCATCGAATGGAATCGAATG
GTATCAACATCAAACGGAAAAAAACGGAATTATCGAATGGAATCGAATTGAATC ATCGAACGGACCCG (SEQ ID NO: 638)
633 HGL6.1378 AATGGACTCGAATGGAATAATCATTGAACGGAATCGAATGGAATCATCATCGGA
TGGAAATGAATGGAATAATCCATGGACTCGAATGCAATCATCATCGAATGGAAT CGAATGGAATCATCGAATGGACTCG (SEQ ID NO: 639)
634 HGL6.1379 AATGCAATCATCAACTGGCTTCGAATGGAATCATCAAGAATGGAATCGAATGGA
ATCATCGAATGGACTC (SEQ ID NO: 640)
635 HGL6.1380 AAGAGACCAATAAGGANTANGTAAGCAACANGAGGAAGGAGANANGGGCAAG
AGAGATGACCAGAGTT (SEQ ID NO: 641)
636 HGL6.1382 TGGAATCATCATAAAATGGAATCGAATGGAATCAACATCAAATGGAATCAAATG
GAATCATTGAACGGAATTGAATGGAATCGTCAT (SEQ ID NO: 642)
637 HGL6.1383 GGAATCATCGCATAGAATCGAATGGAATTATCATCGAATGGAATCGAATGGAAT
CAACATCAAACGAAAAAAAACCGGAATTATCGAATGGAATCGAAGAGAATCATC GAACGGACC (SEQ ID NO: 643)
638 HGL6.1384 AAATCATCATCGAATGGGATCGAATGGTATCCTTGAATGGAATCGAATGGAATC
ATCATCAGATGGAAATGAATGGAATCGTCAT (SEQ ID NO: 644)
639 HGL6.1386 GGAATGTAATAGAACGGAAAGCAATGGAATGGAACGCACTGGATTCGAGTGCA
ATGGAATCTATTGGAATGGAATCGAATGGAATGGTTTGGCATGGAATGGAC (SEQ ID NO: 645)
References
1. R. J. Jackson, C. U. T. Hellen, T. V. Pestova, Nat. Rev. Mol. Cell Biol. 10, 1 13 (2010).
2. N. Sonenberg, A. G. Hinnebusch, Cell 136, 731 (2009).
3. C. U. T. Hellen, P. Sarnow, Genes Dev. 15, 1593 (2001).
4. S. Vagner, B. Galy, S. Pyronnet, EMBO Rep. 2, 893 (2001).
5. M. Stoneley, A. E. Willis, Oncogene 23, 3200 (2004).
6. J. S. Kieft, A. Grech, P. Adams, J. A. Doudna, Cold Spring Harbor Symp. on Quant. Biol. 66, 277 (2001).
7. N. Malys, J. E. G. McCarthy, Cell. Mol. Life Sci. 68, 991 (201 1).
8. T. A. Hughes, Trends Genet. 22, 1 19 (2006).
9. X. Qin, P. Sarnow, J. Biol. Chem. 279, 13721 (2004).
10. M. Bushell et al, Mol. Cell 23, 401 (2006).
1 1. J. D. Thomas, G. J. Johannes, RNA 13, 1 116 (2007).
12. G. Johannes, M. S. Carter, M. B. Eisen, P. O. Brown, P. Sarnow, Proc. Natl.
Acad. Sci. USA 96, 131 18 (1999).
13. S. Braunstein et al, Mol. Cell 28, 501 (2007).
14. K. A. Spriggs, M. Stoneley, M. Bushell, A. E. Willis, Biol. Cell 100, 27
(2008).
15. S. D. Baird, M. Turcotte, R. G. Korneluk, M. Holcik, RNA 12, 1755 (2006).
16. R. W. Roberts, J. W. Szostak, Proc. Natl. Acad. Sci. USA 94, 12297 (1997).
17. T. T. Takahashi, R. J. Austin, R. W. Roberts, Trends Biochem. Sci. 28, 159 (2003).
18. W. J. Kent, Genome Res. 12, 656 (2002).
19. J. O. Korbel et al., Science 318, 420 (2007).
20. M. Kasowski et al., Science 328, 232 (2010).
21. K. Salehi-Ashtiani, A. Luptak, A. Litovchick, J. W. Szostak, Science 313,
1788 (2006).
22. E. S. Lander et al., Nature 409, 860 (2001).
23. R. Cordaux, M. A. Batzer, Nat. Rev. Genet. 10, 691 (2009).
24. B. T. Baranick et al., Proc. Natl. Acad. Sci. USA 105, 4733 (2008).
25. T. R. Fuerst, E. G. Niles, F. W. Studier, B. Moss, Proc. Natl. Acad. Sci. USA
83, 8122 (1986). 26. W. V. Gilbert, K. H. Zhou, T. K. Butler, J. A. Doudna, Science 317, 1224 (2007).
27. M. Kozak, Nuc. Acids Res. 15, 8125 (1987).
28. Q. Yang, P. Samow, Nuc. Acids Res. 25, 2800 (1997).
29. I. Huez et al, Mol. Cell. Biol. 18, 6178 (1998).

Claims

We claim
1. A nucleic acid library comprising a plurality of linear recombinant double stranded DNA constructs, wherein each double stranded DNA construct comprises
(a) a promoter;
(b) a heterologous coding region downstream from the promoter, wherein the coding region encodes a detectable polypeptide;
(c) a heterologous cross-linking region downstream of the coding region;
(d) a heterologous polynucleotide sequence of between 20-500 base pairs in length located downstream of the promoter and upstream of the coding region; and (e) a first PCR primer binding site and a second PCR primer binding site, wherein the first PCR primer binding site is upstream of the polynucleotide sequence and the second PCR primer site is downstream of the polynucleotide sequence; wherein at least 1013 different polynucleotide sequences are represented in the plurality of double stranded nucleic acid constructs, and wherein the first PCR primer and the second PCR primer are the same for each construct in the plurality of double stranded nucleic acid constructs.
2. The nucleic acid library of claim 1, wherein expressed RNA from the cross- linking region can serve as a site for ligation to a linker containing a 3 '-puromycin residue.
3. The nucleic acid library of claim 2, wherein mRNA expressed from the cross linking region is complementary to a DNA linker sequence to be used.
4. The nucleic acid library of any one of claims 1-3, wherein the polynucleotide sequence of between 20-500 base pairs are genomic fragments.
5. The nucleic acid library of any one of claims 1-4, wherein the polynucleotide sequence of between 20-500 base pairs are synthetic sequences.
6. The nucleic acid library of any one of claims 1-5, wherein the polynucleotide sequence is between 20-400 base pairs in length.
7. The nucleic acid library of any one of claims 1-6, wherein the library comprises at least 1014 different polynucleotide sequences.
8. The nucleic acid library of any one of claims 1-7, wherein the double stranded nucleic acid constructs further comprise
(a) one or more unique restriction sites upstream of the polynucleotide sequence and downstream of the promoter, and (b) one or more unique restriction sites downstream of the polynucleotide sequence.
9. The nucleic acid library of any one of claims 1-8, wherein the first (5') or second (3') primer binding site is upstream of the coding region in the double stranded nucleic acid construct.
10. An mRNA pool resulting from transcription of the library of any one of claims 1-9.
1 1. A method for identifying translational enhancing elements (TEEs), comprising
(a) contacting the nucleic acid library of any one of claims 1-9 with reagents for RNA transcription under conditions to promote transcription of RNA from the double stranded nucleic acid constructs, resulting in an RNA expression product;
(b) contacting the RNA expression product with reagents for ligating a linker containing a puromycin residue to the 3 ' end of the RNA expression product, resulting in a labeled RNA expression product;
(c) contacting the labeled RNA expression product with reagents for protein expression under conditions to promote protein translation from the labeled RNA expression product, resulting in a RNA-polypeptide fusion product;
(d) isolating RNA-polypeptide fusion products;
(e) converting the isolated RNA-polypeptide fusion products to cDNA by reverse transcription-PCR using a primer to the 3 ' end of the isolated RNA- polypeptide fusion products;
(f) amplifying the cDNA by PCR using primers to the 5' and 3' end of the cDNA; and
(g) repeating steps (a)-(f) a desired number of times, wherein the amplified polynucleotide sequence fragments comprise TEEs.
12. The method of claim 11, wherein the primers used in step (f) add a promoter to the 5' end and a cross-linking region to the 3 ' end of the cDNA after each round of selection.
13. The method of claim 11 or 12, wherein the linker comprises a DNA linker complementary to the RNA expression product.
14. The method of any one of claims 1 1-13, wherein the polynucleotide sequences in the library comprise genomic fragments, and wherein a starting pool of library constructs contains at least a five- fold coverage of the genome of interest.
15. The method of any one of claims 11-14, wherein the method further comprises testing polynucleotide sequences identified as TEEs for TEE activity in vivo.
16. An isolated polynucleotide, comprising a nucleic acid sequence according to any one of SEQ ID NOS: 1-5 and 7-645.
17. The isolated polynucleotide of claim 16, wherein the polynucleotide is selected from the group consisting of SEQ ID NO: 1-5, 448, 495, 623, 408, 12, 54, 401, 553, 434, 458, 214, 327, 397, 471, 398, 301, 310 and 583.
18. An isolated polynucleotide comprising a nucleic acid sequence according to SEQ ID NO: 1.
19. The isolated polynucleotide of claim 18, comprising a nucleic acid sequence according to SEQ ID NO:2.
20. The isolated polynucleotide of claim 18, comprising a nucleic acid sequence according to SEQ ID NO:3.
21. An isolated polynucleotide comprising a nucleic acid sequence according to SEQ ID NO:4.
22. The isolated polynucleotide of any one of claims 16-21, wherein the polynucleotide is 200 nucleotides or less in length.
23. An expression vector comprising
(a) a promoter;
(b) a heterologous TEE downstream of the promoter, where the TEE comprises a polynucleotide according to any one of claims 16-22; and
(c) a cloning site suitable for cloning of an protein-encoding nucleic acid of interest located upstream of the TEE, and downstream of the promoter.
24. The expression vector of claim 23, further comprising a protein-encoding nucleic acid cloned into the cloning site.
25. A recombinant host cell comprising the expression vector of claim 23 or 24.
26. A method for protein expression, comprising contacting the expression vector of claim 24 with reagents and under conditions suitable for promoting expression of the polypeptide encoded by the protein-encoding nucleic acid.
28. The method of claim 26, wherein the protein expression is carried out in vitro. 29. The method of claim 26, wherein the protein expression is carried out in a recombinant host cell according to claim 25.
PCT/US2011/044198 2010-07-16 2011-07-15 Methods to identify synthetic and natural rna elements that enhance protein translation WO2012009644A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/703,561 US20130230884A1 (en) 2010-07-16 2011-07-15 Methods to Identify Synthetic and Natural RNA Elements that Enhance Protein Translation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US36513310P 2010-07-16 2010-07-16
US61/365,133 2010-07-16

Publications (2)

Publication Number Publication Date
WO2012009644A2 true WO2012009644A2 (en) 2012-01-19
WO2012009644A3 WO2012009644A3 (en) 2012-03-08

Family

ID=44504191

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2011/044198 WO2012009644A2 (en) 2010-07-16 2011-07-15 Methods to identify synthetic and natural rna elements that enhance protein translation

Country Status (2)

Country Link
US (1) US20130230884A1 (en)
WO (1) WO2012009644A2 (en)

Cited By (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013063348A1 (en) * 2011-10-28 2013-05-02 Arizona Board Of Regents, A Body Corporate Of The State Of Arizona, Acting For And On Behalf Of Arizona State University Genetic element that enhances protein translation
WO2013185042A3 (en) * 2012-06-08 2014-02-20 Arizona Board Of Regents, A Body Corporate Of The State Of Arizona, Acting For And On Behalf Of Arizona State University Rapid affinity measurement of peptide ligands and reagents therefor
WO2014081507A1 (en) 2012-11-26 2014-05-30 Moderna Therapeutics, Inc. Terminally modified rna
WO2014093924A1 (en) 2012-12-13 2014-06-19 Moderna Therapeutics, Inc. Modified nucleic acid molecules and uses thereof
WO2014113089A2 (en) 2013-01-17 2014-07-24 Moderna Therapeutics, Inc. Signal-sensor polynucleotides for the alteration of cellular phenotypes
WO2017049245A2 (en) 2015-09-17 2017-03-23 Modernatx, Inc. Compounds and compositions for intracellular delivery of therapeutic agents
WO2017066781A1 (en) 2015-10-16 2017-04-20 Modernatx, Inc. Mrna cap analogs with modified phosphate linkage
WO2017066782A1 (en) 2015-10-16 2017-04-20 Modernatx, Inc. Hydrophobic mrna cap analogs
WO2017066789A1 (en) 2015-10-16 2017-04-20 Modernatx, Inc. Mrna cap analogs with modified sugar
WO2017066791A1 (en) 2015-10-16 2017-04-20 Modernatx, Inc. Sugar substituted mrna cap analogs
WO2017066793A1 (en) 2015-10-16 2017-04-20 Modernatx, Inc. Mrna cap analogs and methods of mrna capping
WO2017112865A1 (en) 2015-12-22 2017-06-29 Modernatx, Inc. Compounds and compositions for intracellular delivery of agents
WO2017127750A1 (en) 2016-01-22 2017-07-27 Modernatx, Inc. Messenger ribonucleic acids for the production of intracellular binding polypeptides and methods of use thereof
WO2017180917A2 (en) 2016-04-13 2017-10-19 Modernatx, Inc. Lipid compositions and their uses for intratumoral polynucleotide delivery
WO2017201342A1 (en) 2016-05-18 2017-11-23 Modernatx, Inc. Polynucleotides encoding jagged1 for the treatment of alagille syndrome
WO2017201350A1 (en) 2016-05-18 2017-11-23 Modernatx, Inc. Polynucleotides encoding interleukin-12 (il12) and uses thereof
WO2017218704A1 (en) 2016-06-14 2017-12-21 Modernatx, Inc. Stabilized formulations of lipid nanoparticles
WO2018089540A1 (en) 2016-11-08 2018-05-17 Modernatx, Inc. Stabilized formulations of lipid nanoparticles
WO2018170336A1 (en) 2017-03-15 2018-09-20 Modernatx, Inc. Lipid nanoparticle formulation
WO2018170306A1 (en) 2017-03-15 2018-09-20 Modernatx, Inc. Compounds and compositions for intracellular delivery of therapeutic agents
WO2018231990A2 (en) 2017-06-14 2018-12-20 Modernatx, Inc. Polynucleotides encoding methylmalonyl-coa mutase
WO2018232120A1 (en) 2017-06-14 2018-12-20 Modernatx, Inc. Compounds and compositions for intracellular delivery of agents
WO2019036638A1 (en) 2017-08-18 2019-02-21 Modernatx, Inc. Methods of preparing modified rna
WO2019046809A1 (en) 2017-08-31 2019-03-07 Modernatx, Inc. Methods of making lipid nanoparticles
EP3461904A1 (en) 2014-11-10 2019-04-03 ModernaTX, Inc. Alternative nucleic acid molecules containing reduced uracil content and uses thereof
US10512662B2 (en) 2016-02-25 2019-12-24 Memorial Sloan Kettering Cancer Center Replication competent attenuated vaccinia viruses with deletion of thymidine kinase with and without the expression of human Flt3L or GM-CSF for cancer immunotherapy
US10548930B2 (en) 2015-04-17 2020-02-04 Memorial Sloan Kettering Cancer Center Use of MVA or MVAΔE3L as immunotherapeutic agents against solid tumors
WO2020061367A1 (en) 2018-09-19 2020-03-26 Modernatx, Inc. Compounds and compositions for intracellular delivery of therapeutic agents
WO2020061457A1 (en) 2018-09-20 2020-03-26 Modernatx, Inc. Preparation of lipid nanoparticles and methods of administration thereof
US10639366B2 (en) 2015-02-25 2020-05-05 Memorial Sloan Kettering Cancer Center Use of inactivated nonreplicating modified vaccinia virus Ankara (MVA) as monoimmunotherapy or in combination with immune checkpoint blocking agents for solid tumors
WO2020160430A1 (en) 2019-01-31 2020-08-06 Modernatx, Inc. Vortex mixers and associated methods, systems, and apparatuses thereof
WO2020160397A1 (en) 2019-01-31 2020-08-06 Modernatx, Inc. Methods of preparing lipid nanoparticles
US10736962B2 (en) 2016-02-25 2020-08-11 Memorial Sloan Kettering Cancer Center Recombinant MVA or MVADELE3L expressing human FLT3L and use thereof as immuno-therapeutic agents against solid tumors
US10849920B2 (en) 2015-10-05 2020-12-01 Modernatx, Inc. Methods for therapeutic administration of messenger ribonucleic acid drugs
WO2021204179A1 (en) 2020-04-09 2021-10-14 Suzhou Abogen Biosciences Co., Ltd. Nucleic acid vaccines for coronavirus
WO2021204175A1 (en) 2020-04-09 2021-10-14 Suzhou Abogen Biosciences Co., Ltd. Lipid nanoparticle composition
WO2022002040A1 (en) 2020-06-30 2022-01-06 Suzhou Abogen Biosciences Co., Ltd. Lipid compounds and lipid nanoparticle compositions
WO2022020811A1 (en) 2020-07-24 2022-01-27 Strand Therapeutics, Inc. Lipidnanoparticle comprising modified nucleotides
US11242509B2 (en) 2017-05-12 2022-02-08 Memorial Sloan Kettering Cancer Center Vaccinia virus mutants useful for cancer immunotherapy
WO2022037652A1 (en) 2020-08-20 2022-02-24 Suzhou Abogen Biosciences Co., Ltd. Lipid compounds and lipid nanoparticle compositions
WO2022150712A1 (en) 2021-01-08 2022-07-14 Strand Therapeutics, Inc. Expression constructs and uses thereof
WO2022152141A2 (en) 2021-01-14 2022-07-21 Suzhou Abogen Biosciences Co., Ltd. Polymer conjugated lipid compounds and lipid nanoparticle compositions
WO2022152109A2 (en) 2021-01-14 2022-07-21 Suzhou Abogen Biosciences Co., Ltd. Lipid compounds and lipid nanoparticle compositions
WO2022247755A1 (en) 2021-05-24 2022-12-01 Suzhou Abogen Biosciences Co., Ltd. Lipid compounds and lipid nanoparticle compositions
EP4101930A1 (en) 2015-09-17 2022-12-14 ModernaTX, Inc. Polynucleotides containing a stabilizing tail region
EP4162950A1 (en) 2021-10-08 2023-04-12 Suzhou Abogen Biosciences Co., Ltd. Nucleic acid vaccines for coronavirus
WO2023056917A1 (en) 2021-10-08 2023-04-13 Suzhou Abogen Biosciences Co., Ltd. Lipid compounds and lipid nanoparticle compositions
WO2023056914A1 (en) 2021-10-08 2023-04-13 Suzhou Abogen Biosciences Co., Ltd. Lipid compounds and lipid nanoparticle compositions
WO2023212618A1 (en) 2022-04-26 2023-11-02 Strand Therapeutics Inc. Lipid nanoparticles comprising venezuelan equine encephalitis (vee) replicon and uses thereof
WO2023215498A2 (en) 2022-05-05 2023-11-09 Modernatx, Inc. Compositions and methods for cd28 antagonism
WO2024026490A1 (en) 2022-07-28 2024-02-01 Sqz Biotechnologies Company Polynucleotides encoding linked antigens and uses thereof
WO2024037578A1 (en) 2022-08-18 2024-02-22 Suzhou Abogen Biosciences Co., Ltd. Composition of lipid nanoparticles
WO2024097639A1 (en) 2022-10-31 2024-05-10 Modernatx, Inc. Hsa-binding antibodies and binding proteins and uses thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021178557A1 (en) * 2020-03-03 2021-09-10 Arizona Board Of Regents On Behalf Of Arizona State University Rational design of upstream enhancement rna for circuit dynamics regulation and viral diagnostics optimization

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5922601A (en) * 1995-01-19 1999-07-13 Biotransplant, Inc. High efficiency gene trap selection of regulated genetic loci
JP2002515754A (en) * 1996-11-12 2002-05-28 キュービーアイ エンタプライジズ リミテッド Methods for identifying translationally controlled genes
AU775997B2 (en) * 1998-12-02 2004-08-19 Bristol-Myers Squibb Company DNA-protein fusions and uses thereof
EP1274838A1 (en) * 2000-01-28 2003-01-15 The Scripps Research Institute Synthetic internal ribosome entry sites and methods of identifying the same
AU3483001A (en) * 2000-02-04 2001-08-14 Corixa Corp Compositions and methods for the therapy and diagnosis of ovarian cancer
EP1176196A1 (en) * 2000-07-24 2002-01-30 Message Pharmaceuticals, Inc. Functional genomic screen for post-transcriptional 5' and 3' regulatory elements
JP5225087B2 (en) * 2005-08-24 2013-07-03 ザ スクリプス リサーチ インスティチュート Translation enhancer element-dependent vector system
CA2904904A1 (en) * 2007-12-11 2009-06-18 The Scripps Research Institute Compositions and methods related to mrna translational enhancer elements

Non-Patent Citations (29)

* Cited by examiner, † Cited by third party
Title
B. T. BARANICK ET AL., PROC. NATL. ACAD. SCI. USA, vol. 105, 2008, pages 4733
C. U. T. HELLEN, P. SARNOW, GENES DEV., vol. 15, 2001, pages 1593
E. S. LANDER ET AL., NATURE, vol. 409, 2001, pages 860
G. JOHANNES, M. S. CARTER, M. B. EISEN, P. O. BROWN, P. SARNOW, PROC. NATL. ACAD. SCI. USA, vol. 96, 1999, pages 13118
I. HUEZ ET AL., MOL. CELL. BIOL., vol. 18, 1998, pages 6178
J. D. THOMAS, G. J. JOHANNES, RNA, vol. 13, 2007, pages 1116
J. O. KORBEL ET AL., SCIENCE, vol. 318, 2007, pages 420
J. S. KIEFT, A. GRECH, P. ADAMS, J. A. DOUDNA, COLD SPRING HARBOR SYMP. ON QUANT. BIOL., vol. 66, 2001, pages 277
K. A. SPRIGGS, M. STONELEY, M. BUSHELL, A. E. WILLIS, BIOL. CELL, vol. 100, 2008, pages 27
K. SALEHI-ASHTIANI, A. LUPTAK, A. LITOVCHICK, J. W. SZOSTAK, SCIENCE, vol. 313, 2006, pages 1788
M. BUSHELL ET AL., MOL. CELL, vol. 23, 2006, pages 401
M. KASOWSKI ET AL., SCIENCE, vol. 328, 2010, pages 232
M. KOZAK, NUC. ACIDS RES., vol. 15, 1987, pages 8125
M. STONELEY, A. E. WILLIS, ONCOGENE, vol. 23, 2004, pages 3200
N. MALYS, J. E. G. MCCARTHY, CELL. MOL. LIFE SCI., vol. 68, 2011, pages 991
N. SONENBERG, A. G. HINNEBUSCH, CELL, vol. 136, 2009, pages 731
Q. YANG, P. SARNOW, NUC. ACIDS RES., vol. 25, 1997, pages 2800
R. CORDAUX, M. A. BATZER, NAT. REV. GENET., vol. 10, 2009, pages 691
R. J. JACKSON, C. U. T. HELLEN, T. V. PESTOVA, NAT. REV. MOL. CELL BIOL., vol. 10, 2010, pages 113
R. W. ROBERTS, J. W. SZOSTAK, PROC. NATL. ACAD. SCI. USA, vol. 94, 1997, pages 12297
S. BRAUNSTEIN ET AL., MOL. CELL, vol. 28, 2007, pages 501
S. D. BAIRD, M. TURCOTTE, R. G. KOMELUK, M. HOLCIK, RNA, vol. 12, 2006, pages 1755
S. VAGNER, B. GALY, S. PYRONNET, EMBO REP., vol. 2, 2001, pages 893
T. A. HUGHES, TRENDS GENET., vol. 22, 2006, pages 119
T. R. FUERST, E. G. NILES, F. W. STUDIER, B. MOSS, PROC. NATL. ACAD. SCI. USA, vol. 83, 1986, pages 8122
T. T. TAKAHASHI, R. J. AUSTIN, R. W. ROBERTS, TRENDS BIOCHEM. SCI., vol. 28, 2003, pages 159
W. J. KENT, GENOME RES., vol. 12, 2002, pages 656
W. V. GILBERT, K. H. ZHOU, T. K. BUTLER, J. A. DOUDNA, SCIENCE, vol. 317, 2007, pages 1224
X. QIN, P. SARNOW, J. BIOL. CHEM., vol. 279, 2004, pages 13721

Cited By (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013063348A1 (en) * 2011-10-28 2013-05-02 Arizona Board Of Regents, A Body Corporate Of The State Of Arizona, Acting For And On Behalf Of Arizona State University Genetic element that enhances protein translation
US20140255990A1 (en) * 2011-10-28 2014-09-11 Arizona Board Of Regents Genetic Element that Enhances Protein Translation
US9234197B2 (en) 2011-10-28 2016-01-12 Arizona Board Of Regents, A Body Corporate Of The State Of Arizona For And On Behalf Of Arizona State University Genetic element that enhances protein translation
WO2013185042A3 (en) * 2012-06-08 2014-02-20 Arizona Board Of Regents, A Body Corporate Of The State Of Arizona, Acting For And On Behalf Of Arizona State University Rapid affinity measurement of peptide ligands and reagents therefor
EP4074834A1 (en) 2012-11-26 2022-10-19 ModernaTX, Inc. Terminally modified rna
WO2014081507A1 (en) 2012-11-26 2014-05-30 Moderna Therapeutics, Inc. Terminally modified rna
JP2015535430A (en) * 2012-11-26 2015-12-14 モデルナ セラピューティクス インコーポレイテッドMo Terminal modified RNA
US10925935B2 (en) 2012-11-26 2021-02-23 Modernatx, Inc. Terminally Modified RNA
JP2018164458A (en) * 2012-11-26 2018-10-25 モデルナティエックス インコーポレイテッドModern Terminally modified RNA
US10155029B2 (en) 2012-11-26 2018-12-18 Modernatx, Inc. Terminally modified RNA
JP2017140048A (en) * 2012-11-26 2017-08-17 モデルナティエックス インコーポレイテッドModern Terminally modified RNA
WO2014093924A1 (en) 2012-12-13 2014-06-19 Moderna Therapeutics, Inc. Modified nucleic acid molecules and uses thereof
EP3434774A1 (en) 2013-01-17 2019-01-30 ModernaTX, Inc. Signal-sensor polynucleotides for the alteration of cellular phenotypes
US11708396B2 (en) 2013-01-17 2023-07-25 Modernatx, Inc. Signal-sensor polynucleotides for the alteration of cellular phenotypes
WO2014113089A2 (en) 2013-01-17 2014-07-24 Moderna Therapeutics, Inc. Signal-sensor polynucleotides for the alteration of cellular phenotypes
EP3461904A1 (en) 2014-11-10 2019-04-03 ModernaTX, Inc. Alternative nucleic acid molecules containing reduced uracil content and uses thereof
US11426460B2 (en) 2015-02-25 2022-08-30 Memorial Sloan Kettering Cancer Center Use of inactivated nonreplicating modified vaccinia virus Ankara (MVA) as monoimmunotherapy or in combination with immune checkpoint blocking agents for solid tumors
US10639366B2 (en) 2015-02-25 2020-05-05 Memorial Sloan Kettering Cancer Center Use of inactivated nonreplicating modified vaccinia virus Ankara (MVA) as monoimmunotherapy or in combination with immune checkpoint blocking agents for solid tumors
US10548930B2 (en) 2015-04-17 2020-02-04 Memorial Sloan Kettering Cancer Center Use of MVA or MVAΔE3L as immunotherapeutic agents against solid tumors
US11253560B2 (en) 2015-04-17 2022-02-22 Memorial Sloan Kettering Cancer Center Use of MVA or MVAΔE3L as immunotherapeutic agents against solid tumors
EP4286012A2 (en) 2015-09-17 2023-12-06 ModernaTX, Inc. Compounds and compositions for intracellular delivery of therapeutic agents
EP4101930A1 (en) 2015-09-17 2022-12-14 ModernaTX, Inc. Polynucleotides containing a stabilizing tail region
EP3736261A1 (en) 2015-09-17 2020-11-11 ModernaTX, Inc. Compounds and compositions for intracellular delivery of therapeutic agents
WO2017049245A2 (en) 2015-09-17 2017-03-23 Modernatx, Inc. Compounds and compositions for intracellular delivery of therapeutic agents
US11590157B2 (en) 2015-10-05 2023-02-28 Modernatx, Inc. Methods for therapeutic administration of messenger ribonucleic acid drugs
US10849920B2 (en) 2015-10-05 2020-12-01 Modernatx, Inc. Methods for therapeutic administration of messenger ribonucleic acid drugs
WO2017066791A1 (en) 2015-10-16 2017-04-20 Modernatx, Inc. Sugar substituted mrna cap analogs
WO2017066789A1 (en) 2015-10-16 2017-04-20 Modernatx, Inc. Mrna cap analogs with modified sugar
WO2017066781A1 (en) 2015-10-16 2017-04-20 Modernatx, Inc. Mrna cap analogs with modified phosphate linkage
WO2017066782A1 (en) 2015-10-16 2017-04-20 Modernatx, Inc. Hydrophobic mrna cap analogs
WO2017066793A1 (en) 2015-10-16 2017-04-20 Modernatx, Inc. Mrna cap analogs and methods of mrna capping
EP4086269A1 (en) 2015-10-16 2022-11-09 ModernaTX, Inc. Mrna cap analogs with modified phosphate linkage
EP4036079A2 (en) 2015-12-22 2022-08-03 ModernaTX, Inc. Compounds and compositions for intracellular delivery of agents
WO2017112865A1 (en) 2015-12-22 2017-06-29 Modernatx, Inc. Compounds and compositions for intracellular delivery of agents
WO2017127750A1 (en) 2016-01-22 2017-07-27 Modernatx, Inc. Messenger ribonucleic acids for the production of intracellular binding polypeptides and methods of use thereof
US10512662B2 (en) 2016-02-25 2019-12-24 Memorial Sloan Kettering Cancer Center Replication competent attenuated vaccinia viruses with deletion of thymidine kinase with and without the expression of human Flt3L or GM-CSF for cancer immunotherapy
US11285209B2 (en) 2016-02-25 2022-03-29 Memorial Sloan Kettering Cancer Center Recombinant MVA or MVAΔE3L expressing human FLT3L and use thereof as immuno-therapeutic agents against solid tumors
US11986503B2 (en) 2016-02-25 2024-05-21 Memorial Sloan Kettering Cancer Center Replication competent attenuated vaccinia viruses with deletion of thymidine kinase with and without the expression of human Flt3L or GM-CSF for cancer immunotherapy
US10736962B2 (en) 2016-02-25 2020-08-11 Memorial Sloan Kettering Cancer Center Recombinant MVA or MVADELE3L expressing human FLT3L and use thereof as immuno-therapeutic agents against solid tumors
US10765711B2 (en) 2016-02-25 2020-09-08 Memorial Sloan Kettering Cancer Center Replication competent attenuated vaccinia viruses with deletion of thymidine kinase with and without the expression of human FLT3L or GM-CSF for cancer immunotherapy
US11541087B2 (en) 2016-02-25 2023-01-03 Memorial Sloan Kettering Cancer Center Replication competent attenuated vaccinia viruses with deletion of thymidine kinase with and without the expression of human Flt3L or GM-CSF for cancer immunotherapy
WO2017180917A2 (en) 2016-04-13 2017-10-19 Modernatx, Inc. Lipid compositions and their uses for intratumoral polynucleotide delivery
WO2017201350A1 (en) 2016-05-18 2017-11-23 Modernatx, Inc. Polynucleotides encoding interleukin-12 (il12) and uses thereof
WO2017201342A1 (en) 2016-05-18 2017-11-23 Modernatx, Inc. Polynucleotides encoding jagged1 for the treatment of alagille syndrome
EP4186518A1 (en) 2016-05-18 2023-05-31 ModernaTX, Inc. Polynucleotides encoding interleukin-12 (il12) and uses thereof
WO2017218704A1 (en) 2016-06-14 2017-12-21 Modernatx, Inc. Stabilized formulations of lipid nanoparticles
WO2018089540A1 (en) 2016-11-08 2018-05-17 Modernatx, Inc. Stabilized formulations of lipid nanoparticles
EP4186888A1 (en) 2017-03-15 2023-05-31 ModernaTX, Inc. Compound and compositions for intracellular delivery of therapeutic agents
WO2018170336A1 (en) 2017-03-15 2018-09-20 Modernatx, Inc. Lipid nanoparticle formulation
WO2018170306A1 (en) 2017-03-15 2018-09-20 Modernatx, Inc. Compounds and compositions for intracellular delivery of therapeutic agents
US11242509B2 (en) 2017-05-12 2022-02-08 Memorial Sloan Kettering Cancer Center Vaccinia virus mutants useful for cancer immunotherapy
US11884939B2 (en) 2017-05-12 2024-01-30 Memorial Sloan Kettering Cancer Center Vaccinia virus mutants useful for cancer immunotherapy
WO2018231990A2 (en) 2017-06-14 2018-12-20 Modernatx, Inc. Polynucleotides encoding methylmalonyl-coa mutase
WO2018232120A1 (en) 2017-06-14 2018-12-20 Modernatx, Inc. Compounds and compositions for intracellular delivery of agents
WO2019036638A1 (en) 2017-08-18 2019-02-21 Modernatx, Inc. Methods of preparing modified rna
WO2019046809A1 (en) 2017-08-31 2019-03-07 Modernatx, Inc. Methods of making lipid nanoparticles
WO2020061367A1 (en) 2018-09-19 2020-03-26 Modernatx, Inc. Compounds and compositions for intracellular delivery of therapeutic agents
WO2020061457A1 (en) 2018-09-20 2020-03-26 Modernatx, Inc. Preparation of lipid nanoparticles and methods of administration thereof
WO2020160430A1 (en) 2019-01-31 2020-08-06 Modernatx, Inc. Vortex mixers and associated methods, systems, and apparatuses thereof
WO2020160397A1 (en) 2019-01-31 2020-08-06 Modernatx, Inc. Methods of preparing lipid nanoparticles
WO2021204179A1 (en) 2020-04-09 2021-10-14 Suzhou Abogen Biosciences Co., Ltd. Nucleic acid vaccines for coronavirus
WO2021204175A1 (en) 2020-04-09 2021-10-14 Suzhou Abogen Biosciences Co., Ltd. Lipid nanoparticle composition
WO2022002040A1 (en) 2020-06-30 2022-01-06 Suzhou Abogen Biosciences Co., Ltd. Lipid compounds and lipid nanoparticle compositions
WO2022020811A1 (en) 2020-07-24 2022-01-27 Strand Therapeutics, Inc. Lipidnanoparticle comprising modified nucleotides
WO2022037652A1 (en) 2020-08-20 2022-02-24 Suzhou Abogen Biosciences Co., Ltd. Lipid compounds and lipid nanoparticle compositions
WO2022150712A1 (en) 2021-01-08 2022-07-14 Strand Therapeutics, Inc. Expression constructs and uses thereof
WO2022152109A2 (en) 2021-01-14 2022-07-21 Suzhou Abogen Biosciences Co., Ltd. Lipid compounds and lipid nanoparticle compositions
WO2022152141A2 (en) 2021-01-14 2022-07-21 Suzhou Abogen Biosciences Co., Ltd. Polymer conjugated lipid compounds and lipid nanoparticle compositions
WO2022247755A1 (en) 2021-05-24 2022-12-01 Suzhou Abogen Biosciences Co., Ltd. Lipid compounds and lipid nanoparticle compositions
WO2023056914A1 (en) 2021-10-08 2023-04-13 Suzhou Abogen Biosciences Co., Ltd. Lipid compounds and lipid nanoparticle compositions
WO2023056917A1 (en) 2021-10-08 2023-04-13 Suzhou Abogen Biosciences Co., Ltd. Lipid compounds and lipid nanoparticle compositions
EP4162950A1 (en) 2021-10-08 2023-04-12 Suzhou Abogen Biosciences Co., Ltd. Nucleic acid vaccines for coronavirus
WO2023212618A1 (en) 2022-04-26 2023-11-02 Strand Therapeutics Inc. Lipid nanoparticles comprising venezuelan equine encephalitis (vee) replicon and uses thereof
WO2023215498A2 (en) 2022-05-05 2023-11-09 Modernatx, Inc. Compositions and methods for cd28 antagonism
WO2024026490A1 (en) 2022-07-28 2024-02-01 Sqz Biotechnologies Company Polynucleotides encoding linked antigens and uses thereof
WO2024037578A1 (en) 2022-08-18 2024-02-22 Suzhou Abogen Biosciences Co., Ltd. Composition of lipid nanoparticles
WO2024097639A1 (en) 2022-10-31 2024-05-10 Modernatx, Inc. Hsa-binding antibodies and binding proteins and uses thereof

Also Published As

Publication number Publication date
WO2012009644A3 (en) 2012-03-08
US20130230884A1 (en) 2013-09-05

Similar Documents

Publication Publication Date Title
US20130230884A1 (en) Methods to Identify Synthetic and Natural RNA Elements that Enhance Protein Translation
JP6438126B2 (en) Method and reagent kit for constructing nucleic acid single-stranded circular library
Wellensiek et al. Genome-wide profiling of human cap-independent translation-enhancing elements
Namy et al. Impact of the six nucleotides downstream of the stop codon on translation termination
JP5934196B2 (en) Direct cloning
CN106995813B (en) New technology for direct cloning of large genome segment and DNA multi-molecule assembly
US20170233762A1 (en) Scaffold rnas
US20060240451A1 (en) Compositions and methods employing 5&#39; phosphate-dependent nucleic acid exonucleases
KR20220110778A (en) Novel MAD nuclease
Kumazawa et al. Gene rearrangements in gekkonid mitochondrial genomes with shuffling, loss, and reassignment of tRNA genes
JP7305553B2 (en) DNA assembly
Nguyen et al. Novel promoters derived from Chinese hamster ovary cells via in silico and in vitro analysis
CN112384620A (en) Method for screening and identifying functional lncRNA
EP3105254B1 (en) Hybrid proteins and uses thereof
Nisbet et al. Transcripts in the Plasmodium apicoplast undergo cleavage at tRNAs and editing, and include antisense sequences
CN111051509A (en) Composition for dielectric calibration containing C2CL endonuclease and method for dielectric calibration using the same
US20200190534A1 (en) Method of Off-Target Recording of Spacer Sequences within a Cell In Vivo
CN111094587A (en) Transposase compositions, methods of preparation and screening methods
US20230183678A1 (en) In-cell continuous target-gene evolution, screening and selection
US7323313B2 (en) Methods for protein interaction determination
CN113366105A (en) Method for screening in vitro display library in cells
US20100216649A1 (en) Methods for protein interaction determination
Wang et al. Rapid and accurate synthesis of TALE genes from synthetic oligonucleotides
Chutia et al. Recent developments in RACE-PCR for the full-length cDNA identification
CN111334531A (en) High signal-to-noise ratio negative genetic screening method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11738111

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13703561

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11738111

Country of ref document: EP

Kind code of ref document: A2