US20130053264A1 - Mirna fingerprint in the diagnosis of prostate cancer - Google Patents

Mirna fingerprint in the diagnosis of prostate cancer Download PDF

Info

Publication number
US20130053264A1
US20130053264A1 US13/520,014 US201013520014A US2013053264A1 US 20130053264 A1 US20130053264 A1 US 20130053264A1 US 201013520014 A US201013520014 A US 201013520014A US 2013053264 A1 US2013053264 A1 US 2013053264A1
Authority
US
United States
Prior art keywords
hsa
mir
mirnas
prostate cancer
mirna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/520,014
Inventor
Andreas Keller
Eckart Meese
Anne Borries
Markus Beier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hummingbird Diagnostics GmbH
Original Assignee
Febit Holding GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Febit Holding GmbH filed Critical Febit Holding GmbH
Priority to US13/520,014 priority Critical patent/US20130053264A1/en
Assigned to FEBIT HOLDING GMBH reassignment FEBIT HOLDING GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KELLER, ANDREAS, MEESE, ECKART, BORRIES, ANNE, BEIER, MARKUS
Publication of US20130053264A1 publication Critical patent/US20130053264A1/en
Assigned to COMPREHENSIVE BIOMARKER CENTER GMBH reassignment COMPREHENSIVE BIOMARKER CENTER GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FEBIT HOLDING GMBH
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/112Disease subtyping, staging or classification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/178Oligonucleotides characterized by their use miRNA, siRNA or ncRNA

Definitions

  • MicroRNAs are a recently discovered class of small non-coding RNAs (17-14 nucleotides). Due to their function as regulators of gene expression they play a critical role both in physiological and in pathological processes, such as cancer (Calin and Croce 2006; Esquela-Kerscher and Slack 2006; Zhang, Pan et al. 2007; Sassen, Miska et al. 2008).
  • miRNAs are not only found in tissues but also in human blood both as free circulating nucleic acids and in mononuclear cells.
  • a recent proof-of-principle study demonstrated miRNA expression pattern in pooled blood sera and pooled blood cells, both in healthy individuals and in cancer patients including patients with lung cancer (Chen, Ba et al. 2008).
  • a remarkable stability of miRNAs in human sera was recently demonstrated (Chen, Ba et al. 2008; Gilad, Meiri et al. 2008).
  • the present invention provides novel methods for diagnosing diseases based on the determination of specific miRNAs that have altered expression levels in disease states compared to healthy controls or altered expression levels in a condition 1 (biological state or health state 1) compared to a condition 2 (biological state or health state 2).
  • the disease is particularly selected from prostate cancer.
  • miRNAs are single-stranded RNA molecules of ⁇ 21-23 nucleotides in length, which regulate gene expression. miRNAs are encoded by genes from whose DNA they are transcribed but miRNAs are not translated into protein (i.e. they are non-coding RNAs). The genes encoding miRNAs are much longer than the processed mature miRNA molecule; miRNAs are first transcribed as primary transcripts or pri-miRNA with a cap and poly-A tail and processed to short, 70-nucleotide stem-loop structures known as pre-miRNA in the cell nucleus.
  • RNA-induced silencing complex RNA-induced silencing complex
  • Dicer cleaves the pre-miRNA stem-loop, two complementary short RNA molecules are formed, but only one is integrated into the RISC.
  • This strand is known as the guide strand and is selected by the argonaute protein, the catalytically active RNase in the RISC, on the basis of the stability of the 5′ end.
  • the remaining strand is degraded as a RISC substrate. Therefore the miRNA*s are derived from the same hairpin structure like the “normal” miRNAs. So if the “normal” miRNA is then later called the “mature miRNA” or “guided strand”, the miRNA* is the passenger strand.
  • miRNA* See Also Above “miRNA”.
  • the miRNA*s also known as the anti-guide or passenger strand, are mostly complementary to the guide strand, but there are usually single-stranded overhangs on each end, there is usually one or a few mispairs and there are sometimes extra or missing bases causing single-stranded “bubbles.
  • the miRNA*s are likely to act in a regulatory fashion as the miRNAs. It is understood that according to the present invention the term “miRNA” also includes the term “miRNA*”.
  • miRBase A well established repository of validated miRNAs is the miRBase.
  • the miRBase (www.mirbase.org) is a searchable database of published miRNA sequences and annotation. Each entry in the miRBase Sequence database represents a predicted hairpin portion of a miRNA transcript (termed mir in the database), with information on the location and sequence of the mature miRNA sequence (termed miR). Both hairpin and mature sequences are available for searching and browsing, and entries can also be retrieved by name, keyword, references and annotation. All sequence and annotation data are also available for download.
  • miRNA-(expression) Profile or miRNA Fingerprint
  • a miRNA-Profile represents the collection of expression levels of a plurality of miRNAs, therefore it is a quantitative measure of individual miRNA expression levels. Hereby, each miRNA is represented by a numerical value. The higher the value of an individual miRNA the higher is the expression level of this miRNA.
  • a miRNA-profile is obtained from the RNA of a biological sample. The are various technologies to determine a miRNA-Profile, e.g. microarrays, RT-PCR, Next Generation Sequencing. As a starting material for analysis, RNA or total-RNA or any fraction thereof can be used. The plurality of miRNAs that are determined by a miRNA-profile can range from a selection of one up to all known miRNAs.
  • the pre-determined set of miRNAs or miRNA signature is understood in the present invention as a fixed defined set of miRNAs which is able to differentiate between a condition 1 and another condition 2. e.g. when condition 1 is lung cancer and condition 2 is normal control, the corresponding pre-determined set of miRNAs is able to differentiate between a samples derived from a lung cancer patient or a normal control patient. Alternatively, condition 1 is lung cancer and condition 2 is multiple sclerosis, the corresponding pre-determined set of miRNAs is able to differentiate between a lung cancer patient and a multiple sclerosis patient. In order to be able to perform the sample analysis it is required that, e.g.
  • these fixed defined set of miRNAs have to be represented by capture probes that are defined by the predetermined set of miRNAs.
  • capture probes that are defined by the predetermined set of miRNAs.
  • probes capable for detecting these 25 miRNAs have to be implemented for performing the diagnostic analysis.
  • a common miRNA signature profile is understood in the present invention as a non-fixed defined set of miRNAs or non-coding RNAs which is able to differentiate between a condition 1 and another condition 2.
  • the common miRNA or non-coding RNA signature profile is calculated “on-the-fly” from a plurality of miRNA-profiles that are stored, e.g. in database.
  • the common miRNA signature profile which is able to differentiate between a condition 1 and another condition 2 is changing as soon as an new profile is added to the database which is relevant to either to state of health 1 or another condition 2. In this respect it is different from a predetermined set of miRNAs (see above).
  • the basis for generating the common miRNA signature profile is generated from capture probes, e.g. on a matrix that is representing as much as possible different capture probes for detecting as much as possible, ideally all known, miRNAs.
  • ncRNA non-coding RNA
  • npcRNA non-protein-coding RNA
  • nmRNA non-messenger RNA
  • snmRNA small non-messenger RNA
  • fRNA functional RNA
  • small RNA (sRNA) is often used for bacterial ncRNAs.
  • the DNA sequence from which a non-coding RNA is transcribed as the end product is often called an RNA gene or non-coding RNA gene.
  • Non-coding RNA genes include highly abundant and functionally important RNAs such as transfer RNA (tRNA) and ribosomal RNA (rRNA), as well as RNAs such as snoRNAs, microRNAs, siRNAs and piRNAs and the long ncRNAs that include examples such as Xist and HOTAIR (see here for a more complete list of ncRNAs).
  • tRNA transfer RNA
  • rRNA ribosomal RNA
  • RNAs such as snoRNAs, microRNAs, siRNAs and piRNAs
  • Xist and HOTAIR see here for a more complete list of ncRNAs.
  • the number of ncRNAs encoded within the human genome is unknown, however recent transcriptomic and bioinformatic studies suggest the existence of thousands of ncRNAs. Since most of the newly identified ncRNAs have not been validated for their function, it is possible that many are non-functional.
  • a condition is understood in the present invention as status of a subject that can be described by physical, mental or social criteria. It includes as well so-called “healthy” and “diseased” conditions, therefore it is not limited to the WHO definition of health as “a state of complete physical, mental, and social well-being and not merely the absence of disease or infirmity.” but includes disease and infirmity.
  • diseases comprised, e.g. by the conditions of the present invention, it is referred to the international classification of diseases (ICD) of the WHO (http://www.who.int/classifications/icd/en /index.html).
  • ICD international classification of diseases
  • Prostate cancer is a form of cancer that develops in the prostate, a gland in the male reproductive system.
  • the cancer cells may metastasize (spread) from the prostate to other parts of the body, particularly the bones and lymph nodes.
  • Prostate cancer may cause pain, difficulty in urinating, problems during sexual intercourse, or erectile dysfunction. Other symptoms can potentially develop during later stages of the disease.
  • Prostate cancer tends to develop in men over the age of fifty and although it is one of the most prevalent types of cancer in men, many never have symptoms, undergo no therapy, and eventually die of other causes. This is because cancer of the prostate is, in most cases, slow-growing, symptom free and men with the condition often die of causes unrelated to the prostate cancer, such as heart/circulatory disease, pneumonia, other unconnected cancers, or old age. Many factors, including genetics and diet, have been implicated in the development of prostate cancer. The presence of prostate cancer may be indicated by symptoms, physical examination, prostate specific antigen (PSA), or biopsy.
  • PSA prostate specific antigen
  • Suspected prostate cancer is typically confirmed by taking a biopsy of the prostate and examining it under a microscope. Further tests, such as CT scans and bone scans, may be performed to determine whether prostate cancer has spread.
  • Treatment options for prostate cancer with intent to cure are primarily surgery, radiation therapy, and proton therapy.
  • Other treatments such as hormonal therapy, chemotherapy, cryosurgery, and high intensity focused ultrasound (HIFU) also exist, depending on the clinical scenario and desired outcome.
  • HIFU high intensity focused ultrasound
  • the age and underlying health of the man, the extent of metastasis, appearance under the microscope, and response of the cancer to initial treatment are important in determining the outcome of the disease.
  • the decision whether or not to treat localized prostate cancer (a tumour that is contained within the prostate) with curative intent is a patient trade-off between the expected beneficial and harmful effects in terms of patient survival and quality of life.
  • a “biological sample” in terms of the invention means a sample of biological tissue or fluid.
  • biological samples are sections of tissues, blood, blood fractions, plasma, serum, urine or samples from other peripheral sources. or cell cultures, cell colonies of even single cells, or a collection of single cells. Furthermore, also pools or mixture of the above mentioned samples may be employed.
  • a biological sample may be provided by removing a sample of cells from a subject, but can also be provided by using a previously isolated sample.
  • a tissue sample can be removed from a subject suspected of having a disease by conventional biopsy techniques.
  • a blood sample is taken from the subject.
  • the blood or tissue sample is obtained from the subject prior to initiation of radiotherapy, chemotherapy or other therapeutic treatment.
  • the biological sample preferably is a blood or a serum sample. Further, it is also preferred to use blood cells, e.g. erythrocytes, leukocytes or thrombocytes.
  • a biological sample from a patient means a sample from a subject suspected to be affected by a disease.
  • the term “subject” refers to any mammal, including both human and other mammals.
  • the methods of the present invention are applied to human subjects.
  • Subject-matter of the invention is a method for diagnosing a disease, comprising the steps
  • an expression profile of a predetermined set of miRNAs is determined.
  • the determination may be carried out by any convenient means for determining nucleic acids.
  • qualitative, semi-quantitative and preferably quantitative detection methods can be used. A variety of techniques are well known to those of skill in the art.
  • the determination may comprise nucleic acid hybridization and/or nucleic acid amplification steps.
  • Nucleic acid hybridization may for example be performed using a solid phase nucleic acid biochip array, in particular a microarray, or in situ hybridization.
  • the miRNA microarray technology affords the analysis of a complex biological sample for all expressed miRNAs. Nucleotides with complementarity to the corresponding miRNAs are spotted on coated carriers or are fabricated by in-situ synthesis methods on a carrier.
  • miRNAs isolated from the sample of interest are not labelled, e.g. before hybridization of the miRNAs to the complementary sequences on the carrier and the resulting signal indicating the occurrence of a distinct miRNA is generated by incorporation of a detectable label (e.g. biotin, fluorescent dye) by means of an enzyme reaction.
  • a detectable label e.g. biotin, fluorescent dye
  • miRNAs isolated from the sample of interest are labelled, e.g. fluorescently labelled, so that upon hybridization of the miRNAs to the complementary sequences on the carrier the resulting signal indicates the occurrence of a distinct miRNA.
  • labelled e.g. fluorescently labelled
  • the resulting signal indicates the occurrence of a distinct miRNA.
  • On one miRNA microarray preferably at least the whole predetermined set of miRNAs can be analyzed.
  • RT-PCR quantitative real-time polymerase chain reaction
  • Alternative methods for obtaining expression profiles may also contain sequencing, next generation sequencing or mass spectroscopy.
  • the predetermined set of miRNAs in step (a) of the above method of the invention depends on the disease to be diagnosed.
  • the inventors found out that single miRNA biomarkers lack sufficient accuracy, specificity and sensitivity, and therefore it is preferred to analyze more complex miRNA expression patterns, so-called miRNA signatures.
  • the predetermined set of miRNAs comprises one or more, preferably a larger number of miRNAs (miRNA signatures) that are differentially regulated in samples of a patient affected by a particular disease compared to healthy controls.
  • the disease can also be compared to any other defined condition (e.g. another disease).
  • the expression profile determined in the above step (a) is subsequently compared to a reference expression profile or to a plurality of reference profiles in the above step (b).
  • the reference expression profile is the expression profile of the same set of miRNAs in a biological sample originating from the same source as the biological sample from a patient but obtained from a healthy subject.
  • both the reference expression profile and the expression profile of the above step (a) are determined in a blood or serum sample or in a sample of erythrocytes, leukocytes and/or thrombocytes. It is understood that the reference expression profile is not necessarily obtained from a single healthy subject but may be an average expression profile of a plurality of healthy subjects. It is preferred to use a reference expression profile obtained from a person of the same gender, and a similar age as the patient.
  • the above method of the invention is suitable for diagnosing any diseases for which a differential expression of miRNAs compared to healthy controls or other diseases exists.
  • the method may be used for diagnosing cancer including bladder cancer, brain cancer, breast cancer, colon cancer, endometrium cancer, gastrointestinal stromal cancer, glioma, head- and neck cancer, kidney cancer, leukemia, liver cancer, lung cancer, lymph node cancer, melanoma, meninges cancer, ovarian cancer, pancreas cancer, prostate cancer, sarcoma, stomach cancer, testicular cancer, thyroid cancer, thymus cancer and Wilms' tumour or COPD.
  • the diagnosis may comprise determining type, rate and/or stage of cancer. The course of the disease and the success of therapy such as chemotherapy may be monitored.
  • the method of the invention provides a prognosis on the survivor rate and enables to determine a patient's response to drugs.
  • diseases may be diagnosed by means of the above method of the invention, if the disease state is correlated with a differential expression of miRNAs compared to a healthy control.
  • the disease may be Alzheimer's disease, multiple sclerosis, melanoma, Morbus Crohn and cardiovascular diseases.
  • the inventors succeeded in developing a generally applicable approach to arrive at miRNA signatures that are correlated with a particular disease. In more detail, the following steps are accomplished:
  • miRNAs are extracted from a biological sample of a patient, preferably a blood or serum or urine sample or a sample comprising erythrocytes, leukocytes or thrombocytes, using suitable kits / purification methods. From these samples preferably the RNA-fraction is used for analysis.
  • the information collected in 3) are used to estimate for each biomarker the diagnostic content or value. Usually, however, this diagnostic value of only one biomarker is too small to get a highly accurate diagnosis with accuracy rates, specificities and sensitivities beyond the 90% barrier.
  • the diagnostic content for our miRNAs can be found in the tables in FIGS. 2 and 5 . These tables includes the miRNAs with the sequences, and the significance value as computed by a t-test and further statistical measures.
  • the diagnostic content of each detected set can be estimated by mathematical and/or computational techniques to define the diagnostic information content of subsets.
  • step 7 The subsets, detected in step 5, which may range from only a small number (at least two) to all measured biomarkers is then used to carry out a diagnosis.
  • statistical learning/machine learning/bioinformatics/computational approaches are applied that include but are not restricted to any type of supervised or unsupervised analysis:
  • the inventors surprisingly found out that the described approach yields in miRNA signatures that provide high diagnostic accuracy, specificity and sensitivity in the determination of diseases.
  • the disease to be determined is prostate cancer.
  • the inventors succeeded in determining miRNAs that are differentially regulated in samples from prostate cancer patients as compared to healthy controls.
  • a complete overview of all miRNAs that are found to be differentially regulated in blood samples of prostate cancer patients is provided in the tables shown in FIGS. 2 and 5 .
  • the miRNAs that are found to be differentially regulated are sorted in the order of their t-test significance.
  • Another method for assessing the significance is to compute the Mutual information (MI) (Shannon, 1984) which is an adequate measure to estimate the overall diagnostic information content of single biomarkers (Keller, Ludwig et al., 2006).
  • MI Mutual information
  • MI Mutual information
  • mutual information is considered as the reduction in uncertainty about the class labels “0” for controls and “1” for tumour samples due to the knowledge of the miRNA expression.
  • the disease to be determined is prostate cancer.
  • the inventors found out that miRNAs are differentially regulated in samples from prostate cancer patients as compared to healthy controls.
  • a complete overview of all miRNAs that are found to be differentially regulated in blood samples of prostate cancer patients is provided in the table shown in FIG. 2 and FIG. 5 .
  • 241 miRNAs were found to be significantly deregulated (t-test significance ⁇ 0.05) in blood cells of prostate cancer patients as compared to the healthy controls.
  • the predetermined set of miRNAs for the diagnosis of prostate cancer comprises one or more nucleic acids selected from the deregulated miRNAs presented in the tables in FIG. 2 or FIG. 5 .
  • the predetermined set of miRNAs should preferably comprise at least 1, preferably at least 7, 10, 15, 20, 25, 30, 35, 40, 50, 75 or 100 of the indicated nucleic acids. It is particularly preferred to include the 100, 75, 50, 40, 35, 30, 25, 20, 15, 10 or at least 7 of the first mentioned miRNAs according to their order in the tables in FIG. 2 or FIG. 5 .
  • the predetermined set of miRNAs for the diagnosis of prostate cancer comprises one or more nucleic acids selected from the 241 most deregulated miRNAs.
  • the predetermined set of miRNAs comprises at least 7, preferably at least 10, 15, 20, 25, 30, 35, 40, 50, 75, 100 or all of the above-indicated nucleic acids.
  • the predetermined set of miRNAs for the diagnosis of prostate cancer comprises one or more miRNAs selected from the group consisting of hsa-miR-144*, hsa-miR-148a, hsa-miR-519b-5p, hsa-miR-1324, hsa-miR-137, hsa-miR-556-5p, hsa-miR-330-3p.
  • the predetermined set of miRNAs for the diagnosis of prostate cancer comprises one or more miRNAs selected from the group consisting of hsa-miR-144*, hsa-miR-148a, hsa-miR-519b-5p, hsa-miR-1324, hsa-miR-137, hsa-miR-556-5p, hsa-miR-330-3p, hsa-miR-361-5p, hsa-miR-891b, hsa-miR-767-5p.
  • the predetermined set of miRNAs for the diagnosis of prostate cancer comprises one or more miRNAs selected from the group consisting of hsa-miR-144*, hsa-miR-148a, hsa-miR-519b-5p, hsa-miR-1324, hsa-miR-137, hsa-miR-556-5p, hsa-miR-330-3p, hsa-miR-361-5p, hsa-miR-891b, hsa-miR-767-5p, hsa-miR-744*, hsa-miR-208b, hsa-miR-548p, hsa-miR-20a*, hsa-miR-195.
  • miRNAs selected from the group consisting of hsa-miR-144*, hsa-miR-148a, hsa-mi
  • the predetermined set of miRNAs for the diagnosis of prostate cancer comprises one or more miRNAs selected from the group consisting of hsa-miR-144*, hsa-miR-148a, hsa-miR-519b-5p, hsa-miR-1324, hsa-miR-137, hsa-miR-556-5p, hsa-miR-330-3p, hsa-miR-361-5p, hsa-miR-891 b, hsa-miR-767-5p, hsa-miR-744*, hsa-miR-208b, hsa-miR-548p, hsa-miR-20a*, hsa-miR-195, hsa-miR-33b, hsa-miR-1283, hsa-miR-519c-5p,
  • the predetermined set of miRNAs for the diagnosis of prostate cancer comprises one or more miRNAs selected from the group consisting of hsa-miR-144*, hsa-miR-148a, hsa-miR-519b-5p, hsa-miR-1324, hsa-miR-137, hsa-miR-556-5p, hsa-miR-330-3p, hsa-miR-361-5p, hsa-miR-891 b, hsa-miR-767-5p, hsa-miR-744*, hsa-miR-208b, hsa-miR-548p, hsa-miR-20a*, hsa-miR-195, hsa-miR-33b, hsa-miR-1283, hsa-miR-519c-5p,
  • the predetermined set of miRNAs for the diagnosis of prostate cancer comprises one or more miRNAs selected from the group consisting of hsa-miR-144*, hsa-miR-148a, hsa-miR-519b-5p, hsa-miR-1324, hsa-miR-137, hsa-miR-556-5p, hsa-miR-330-3p, hsa-miR-361-5p, hsa-miR-891 b, hsa-miR-767-5p, hsa-miR-744*, hsa-miR-208b, hsa-miR-548p, hsa-miR-20a*, hsa-miR-195, hsa-miR-33b, hsa-miR-1283, hsa-miR-519c-5p,
  • the predetermined set of miRNAs for the diagnosis of prostate cancer comprises one or more miRNAs selected from the group consisting of hsa-miR-144*, hsa-miR-148a, hsa-miR-519b-5p, hsa-miR-1324, hsa-miR-137, hsa-miR-556-5p, hsa-miR-330-3p, hsa-miR-361-5p, hsa-miR-891 b, hsa-miR-767-5p, hsa-miR-744*, hsa-miR-208b, hsa-miR-548p, hsa-miR-20a*, hsa-miR-195, hsa-miR-33b, hsa-miR-1283, hsa-miR-519c-5p,
  • the predetermined set of miRNAs for the diagnosis of prostate cancer comprises one or more miRNAs selected from the group consisting of hsa-miR-144*, hsa-miR-148a, hsa-miR-519b-5p, hsa-miR-1324, hsa-miR-137, hsa-miR-556-5p, hsa-miR-330-3p, hsa-miR-361-5p, hsa-miR-891 b, hsa-miR-767-5p, hsa-miR-744*, hsa-miR-208b, hsa-miR-548p, hsa-miR-20a*, hsa-miR-195, hsa-miR-33b, hsa-miR-1283, hsa-miR-519c-5p,
  • the predetermined set of miRNAs for the diagnosis of prostate cancer comprises one or more miRNAs selected from the group consisting of hsa-miR-144*, hsa-miR-148a, hsa-miR-519b-5p, hsa-miR-1324, hsa-miR-137, hsa-miR-556-5p, hsa-miR-330-3p, hsa-miR-361-5p, hsa-miR-891b, hsa-miR-767-5p, hsa-miR-744*, hsa-miR-208b, hsa-miR-548p, hsa-miR-20a*, hsa-miR-195, hsa-miR-33b, hsa-miR-1283, hsa-miR-519c-5p, h
  • the predetermined set of miRNAs for the diagnosis of prostate cancer comprises one or more miRNAs selected from the group consisting of hsa-miR-144*, hsa-miR-148a, hsa-miR-519b-5p, hsa-miR-1324, hsa-miR-137, hsa-miR-556-5p, hsa-miR-330-3p, hsa-miR-361-5p, hsa-miR-891 b, hsa-miR-767-5p, hsa-miR-744*, hsa-miR-208b, hsa-miR-548p, hsa-miR-20a*, hsa-miR-195, hsa-miR-33b, hsa-miR-1283, hsa-miR-519c-5p,
  • the predetermined set of miRNAs comprises those miRNAs that were most significantly deregulated.
  • the measured miRNA profiles were classified using statistical learning approaches in order to compute accuracy, specificity, and sensitivity for the diagnosis of prostate cancer (see FIG. 4 ).
  • the miRNAs that performed best for the diagnosis of prostate cancer according to their accuracy, specificity, and sensitivity are the 270 miRNAs shown in Table in
  • FIG. 2 (entries No. 1-270) leading to an accuracy 82.8%, a specificity of 87.5% and a sensitivity of 71.9%.
  • the predetermined set of miRNAs for the diagnosis of prostate cancer should preferably comprise at least 7, preferably at least 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, preferably all of the known miRNAs, preferably all of the 863 (see FIG. 1 , representing the current status of all known miRNAs in the version 12, 13, and 14 of the miRBase repository (www.mirbase.org).
  • kits for diagnosing a disease comprising means for determining an expression profile of a predetermined set of miRNAs in a biological sample, in particular in a blood and/or serum sample.
  • a predetermined set of miRNAs in a biological sample, in particular in a blood and/or serum sample.
  • one or more reference expression profiles are also provided which show the expression profile of the same set of miRNAs in the same type of biological sample, in particular in a blood and/or serum sample, obtained from one or more healthy subjects.
  • a comparison to said reference expression profile(s) allows for the diagnosis of the disease.
  • kits for diagnosing prostate cancer comprising means for determining the expression profile of one or more miRNAs presented in the table in FIG. 2 , preferably one or more miRNAs selected from the group consisting of hsa-miR-144*, hsa-miR-148a, hsa-miR-519b-5p, hsa-miR-1324, hsa-miR-137, hsa-miR-556-5p, hsa-miR-330-3p, hsa-miR-361-5p, hsa-miR-891 b, hsa-miR-767-5p, hsa-miR-744*, hsa-miR-208b, hsa-miR-548p, hsa-miR-20a*, hsa-miR-195, hsa-miR-33b,
  • the kit comprises means for determining at least 7, preferably at least 10, 15, 20, 25, 30, 35, 40, 50, 75, 100 or all of the indicated miRNAs. It is particularly preferred to include means for determining the 100, 75, 50, 45, 40, 35, 30, 25, 20, 15, 10 or at least 7 first mentioned miRNAs in the order of their diagnostic significance as represented by their order in the table in FIG. 2 .
  • the kit for diagnosing prostate cancer is particularly suitable for diagnosing prostate cancer in a blood and/or serum sample or in a sample comprising erythrocytes, leukocytes and/or thrombocytes.
  • the means for determining a predetermined set of miRNAs may for example comprise a microarray comprising miRNA-specific oligonucleotide probes.
  • the microarray comprises miRNA-specific oligonucleotide probes for the detection of miRNAs.
  • probes for detecting different miRNAs may be included.
  • a microarray intended for use in the diagnosis of prostate cancer preferably comprises miRNA specific oligonucleotide probes for one or more miRNAs presented in the table in FIG. 2 , preferably for one or more miRNAs selected from the group consisting of hsa-miR-144*, hsa-miR-148a, hsa-miR-519b-5p, hsa-miR-1324, hsa-miR-137, hsa-miR-556-5p, hsa-miR-330-3p, hsa-miR-361-5p, hsa-miR-891b, hsa-miR-767-5p, hsa-miR-744*, hsa-miR-208b, hsa-miR-548p, hsa-miR-20a*, hsa-miR-195, hsa-miR-
  • the microarray comprises oligonucleotide probes for determining at least 7, preferably at least 10, 15, 20, 25, 30, 35, 40, 50, 75, 100 or all of the indicated miRNAs. It is particularly preferred to include oligonucleotide probes for determining the most significant miRNAs, which is represented by their order in the table depicted in FIG. 2 .
  • the microarray can comprise oligonucleotide probes obtained from known or predicted miRNA sequences.
  • the array may contain different oligonucleotide probes for each miRNA, for example one containing the active mature sequence and another being specific for the precursor of the miRNA.
  • the array may also contain controls such as one or more sequences differing from the human orthologs by only a few bases, which can serve as controls for hybridization stringency conditions. It is also possible to include viral miRNAs or putative miRNAs as predicted from bioinformatic tools. Further, it is possible to include appropriate controls for non-specific hybridization on the microarray.
  • a method of diagnosing a disease comprising the steps
  • RNAs including miRNAs selected from the group consisting of hsa-miR-99b*, hsa-miR-99b, hsa-miR-99a*, hsa-miR-99a, hsa-miR-98, hsa-miR-96*, hsa-miR-96, hsa-miR-95, hsa-miR-944, hsa-miR-943, hsa-miR-942, hsa-miR-941, hsa-miR-940, hsa-miR-939, hsa-miR-938, hsa-miR-937, hsa-miR-936, hsa-miR-935, hsa-miR-934, hs
  • the method according to item 1 or 2, wherein the predetermined set of non-coding RNAs, including miRNAs representative for diagnosis of prostate cancer comprises at least 1, 7, 10, 15, 20, 25, 30, 35, 40, 50, 75, 100 of non-coding RNAs including miRNAs.
  • the predetermined set of miRNAs representative for diagnosis of prostate cancer comprises at least 1, 7, 10, 15, 20, 25, 30, 35, 40, 50, 75, 100 of the miRNAs selected from the group consisting of hsa-miR-144*, hsa-miR-148a, hsa-miR-519b-5p, hsa-miR-1324, hsa-miR-137, hsa-miR-556-5p, hsa-miR-330-3p, hsa-miR-361-5p, hsa-miR-891 b, hsa-miR-767-5p, hsa-miR-744*, hsa-miR-208b, hsa-miR-548p, hsa-miR-20a*, hsa-miR-195, hsa-miR-33b, h
  • miRNA the expression profile is determined by nucleic acid hybridization, nucleic acid amplification, polymerase extension, sequencing, mass spectroscopy or any combinations thereof.
  • diagnosis comprises determining survival rate, responsiveness to drugs, and/or monitoring the course of the disease or the therapy, e.g. chemotherapy.
  • nucleic acid hybridisation is performed using a solid-phase nucleic acid biochip array, in particular a microarray or in situ hybridisation, and/or wherein the nucleic acid amplification is performed via a real-time PCR (RT-PCR).
  • RT-PCR real-time PCR
  • a kit for diagnosing and/or predicting prostate cancer of a subject comprising:
  • miRNAs have been extensively studied in tissue material. It has been found that miRNAs are expressed in a highly tissue-specific manner. Disease-specific expression of miRNAs have been reported in many human cancers employing primarily tissue material as the miRNA source. In this context miRNAs expression profiles were found to be useful in identifying the tissue of origin for cancers of unknown primary origin. Since recently it is known that miRNAs are not only present in tissues but also in other body fluid samples, including human blood. Nevertheless, the mechanism why miRNAs are found in body fluids, especially in blood, or their function in these body fluids is not understood yet.
  • miRNAs are non-invasive biomarkers for the diagnosis and/or prognosis of prostate cancer.
  • many of the miRNA biomarkers presently available for diagnosing and/or prognosing of diseases have shortcomings such as reduced sensitivity, not sufficient specificity or do not allow timely diagnosis or represent invasive biomarkers. Accordingly, there is still a need for novel and efficient miRNAs or sets of miRNAs as markers, effective methods and kits for the non-invasive diagnosis and/or prognosis of diseases such as prostate cancer.
  • the inventors of the present invention assessed for the first time the expression of miRNAs on a whole-genome level in subjects with prostate cancer as non-invasive biomarkers from body fluids, preferably in blood. They surprisingly found that miRNAs are significantly dysregulated in blood of prostate cancer subjects in comparison to healthy controls and thus, miRNAs are appropriated non-invasive biomarkers for diagnosing and/or prognosing of prostate cancer. This finding is surprising, since there is nearly no overlap of the miRNA biomarkers found in blood and the miRNA biomarkers found in tissue material representing the origin of the disease. The inventors of the present invention surprisingly found miRNA biomarkers in body fluids, especially in blood, that have not been found to be correlated to prostate cancer when tissues material was used for this kind of analysis.
  • the inventors of the invention identified for the first time miRNAs as non-invasive surrogate biomarkers for diagnosis and/or prognosis of prostate cancer.
  • the inventors of the present invention identified single miRNAs which predict prostate cancer with high specificity, sensitivity and accuracy.
  • the inventors of the present invention also pursued a multiple biomarker strategy, thus implementing sets of miRNA biomarkers for diagnosing and/or prognosing of prostate cancer leading to added specificity, sensitivity, accuracy and predictive power, thereby circumventing the limitations of single biomarker.
  • miRNA signatures unique sets of miRNAs that allow for non-invasive diagnosis of prostate cancer with even higher power, indicating that sets of miRNAs (miRNA signatures) derived from a body fluid sample, such as blood from a subject (e.g. human) can be used as novel non-invasive biomarkers.
  • the inventors of the present invention surprisingly found that miRNAs are significantly dysregulated in body fluid samples such as blood of prostate cancer subjects in comparison to a cohort of controls (healthy subjects) and thus, miRNAs are appropriated biomarkers for diagnosing and/or prognosing of prostate cancer in a non-invasive fashion. Furthermore, the predetermined sets of miRNAs of the present invention lead to high performance in diagnosing and/or prognosing of prostate cancer, thus expose very high specificity, sensitivity and accuracy. They succeeded in determining the miRNAs that are differentially regulated in body fluid samples from patients having prostate cancer compared to a cohort of controls (healthy subjects) (see experimental section for experimental details). Additionally, the inventors of the present invention performed hypothesis tests (e.g.
  • p-value is a measure for the diagnostic power of each of these single miRNAs to discriminate, for example, between the two clinical conditions: controls (healthy subjects), i.e. not suffering from prostate cancer, or diseased, i.e. suffering from prostate cancer. Since a manifold of tests are carried out, one for each miRNA, the p-values may be too optimistic and, thus, over-estimate the actual discriminatory power. Hence, the p-values are corrected for multiple testing by the Benjamini Hochberg approach.
  • body fluid sample refers to liquids originating from the body of a subject.
  • Said body fluid samples include, but are not limited to, blood, urine, sputum, breast milk, cerebrospinal fluid, cerumen (earwax), endolymph, perilymph, gastric juice, mucus, peritoneal fluid, pleural fluid, saliva, sebum (skin oil), semen, sweat, tears, vaginal secretion, vomit including components or fractions thereof.
  • Said body fluid samples may be mixed or pooled, e.g. a body fluid sample may be a mixture of blood and urine samples or blood and tissue material.
  • a “body fluid sample” may be provided by removing a body liquid from a subject, but may also be provided by using previously isolated sample material.
  • the body fluid sample from a subject e.g. human or animal
  • the body fluid sample from a subject has a volume of between 0.1 and 20 ml, more preferably of between 0.5 and 10 ml, more preferably between 1 and 8 ml and most preferably between 2 and 5 ml, i.e. 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2, 2.5, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 ml.
  • said “body fluid sample” allows for a non-invasive diagnosis/and or prognosis of a subject.
  • blood sample refers to a blood sample originating from a subject.
  • the “blood sample” may be derived by removing blood from a subject by conventional blood collecting techniques, but may also be provided by using previously isolated and/or stored blood samples.
  • a blood sample may be whole blood, plasma, serum, PBMC (peripheral blood mononuclear cells), blood cellular fractions including red blood cells (erythrocytes), white blood cells (leukocytes), platelets (thrombocytes), or blood collected in blood collection tubes (e.g. EDTA-, heparin-, citrate-, PAXgene- , Tempus-tubes) including components or fractions thereof.
  • a blood sample may be taken from a subject suspected to be affected or to be suspected to be affected by prostate cancer, prior to initiation of a therapeutic treatment, during the therapeutic treatment and/or after the therapeutic treatment.
  • the blood sample from a subject e.g. human or animal
  • the blood sample from a subject has a volume of between 0.1 and 20 ml, more preferably of between 0.5 and 10 ml, more preferably between 1 and 8 ml and most preferably between 2 and 5 ml, i.e. 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2, 2.5, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 ml.
  • said “body fluid sample” allows for a non-invasive diagnosis/and or prognosis of a subject.
  • the RNA-fraction especially the the miRNA fraction
  • special collection tubes e.g. PAXgene RNA tubes from Preanalytix, Tempus Blood RNA tubes from Applied Biosystems
  • additives e.g. RNAlater from Ambion, RNAsin from Promega
  • stabilize the RNA fraction and/or the miRNA fraction are employed.
  • the biological sample preferably the body fluid sample may be from a subject (e.g. human or mammal) that has been therapeutically treated or that has not been therapeutically treated.
  • the therapeutical treatment is monitored on the basis of the detection of the miRNA or set of miRNAs by the polynucleotide or set of polynucleotides of the invention. It is also preferred that total RNA or a subfraction thereof, isolated (e.g. extracted) from a biological sample of a subject (e.g. human or animal), is used for detecting the miRNA or set of miRNAs by the polynucleotide or set of polynucleotides or primer pairs of the invention.
  • non-invasive refers to methods for obtaining a biological sample, particularly a body fluid sample, without the need for an invasive surgical intervention or invasive medical procedure.
  • a blood drawn represents a non-invasive procedure, therefore a blood-based test (utilizing blood or fractions thereof) is a non-invasive test.
  • Other body fluid samples for non-invasive tests are e.g. urine, sputum, tears, mothers mild, cerumen, sweat, saliva, vaginal secretion, vomit, etc.
  • diagnosis refers to the process of determining a possible disease or disorder and therefore is a process attempting to define the (clinical) condition of a subject.
  • the determination of the expression level of a set of miRNAs according to the present invention correlates with the (clinical) condition of a subject.
  • the diagnosis comprises (i) determining the occurrence/presence of prostate cancer, (ii) monitoring the course of prostate cancer, (iii) staging of prostate cancer, (iv) measuring the response of a patient with prostate cancer to therapeutic intervention, and/or (v) segmentation of a subject suffering from prostate cancer.
  • prognosis refers to describing the likelihood of the outcome or course of a disease or a disorder.
  • the prognosis comprises (i) identifying of a subject who has a risk to develop prostate cancer, (ii) predicting/estimating the occurrence, preferably the severity of occurrence of prostate cancer, and/or(iii) predicting the response of a subject with prostate cancer to therapeutic intervention.
  • sensing or suspected to be suffering from prostate cancer comprises the diagnosis and/or prognosis of prostate cancer in a suspect as defined above.
  • the present invention relates to a method for diagnosing and/or prognosing of prostate cancer comprising the steps of:
  • the body fluid sample is a blood sample, particularly preferred it is a whole blood, PBMC, serum or plasma sample, more particularly preferred it is a whole blood sample.
  • the subject is a mammal including both a human and another mammal, e.g. an animal such as a mouse, a rat, a rabbit, or a monkey. It is particularly preferred that the subject is a human.
  • the predetermined set comprising at least two miRNAs is selected from the set of miRNAs listed in FIG. 2 or 5 .
  • the predetermined set comprising at least two miRNAs is selected from the sets of miRNAs listed in FIG. 6 (SNP-1 to SNP-911). It is also preferred that the predetermined set comprising at least two miRNAs comprises at least one set of miRNAs listed in FIG. 6 .
  • for determining an expression profile of the predetermined set comprising at least two miRNAs representative for prostate cancer in a body fluid sample from a subject comprises the miRNAs from one set or a plurality of sets of miRNAs listed in FIG. 6 .
  • a set comprising 30 miRNAs representative for prostate cancer in a body fluid sample from a subject comprises at least the miRNAs from one predetermined set or several sets of miRNAs listed in FIG. 6 .
  • a set comprising 29, 28, 27,26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4 or 3 miRNAs representative for prostate cancer comprises at least the miRNAs from one set or several sets of miRNAs listed in FIG. 6 .
  • for determining an expression profile of the predetermined set comprising at least two miRNAs representative for prostate cancer in a body fluid sample from a subject comprises combinations of sets of miRNAs listed in FIG. 6 .
  • said predetermined set comprising 30 miRNAs representative for prostate cancer in a body fluid sample from a subject comprises at least 2, e.g. 2, 3, 4, 5 or 6, sets of miRNAs listed in FIG. 6 .
  • said set comprising 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5 or 4 miRNAs comprises a least 2, e.g. 2, 3, 4, 5 or 6, sets of miRNAs listed in FIG. 6 .
  • the reference expression profile may be obtained from at least two subjects (e.g. human or animal).
  • the reference expression profile is an average expression profile (data) of at least 2 to 400 subjects, more preferably at least 20 to 200 subjects, and most preferably at least 40 to 150 subjects, with one known clinical condition which is prostate cancer or a specific form of prostate cancer.
  • the reference expression profile is an algorithm or mathematical function.
  • the algorithm or mathematical function is obtained from a reference expression profile (data) of at least two subjects, preferably the algorithm or mathematical function is obtained from an average reference expression profile (data) of at least 2 to 400 subjects, more preferably of at least 20 to 200 subjects, and most preferably of at least 40 to 150 subjects.
  • the algorithm or mathematical function is obtained using a machine learning approach.
  • the algorithm or mathematical function is saved on a data carrier comprised in the kit (according to the seventh aspect of the invention) or the computer program, wherein the algorithm or mathematical function is comprised, is saved on a data carrier comprised in the kit.
  • the miRNA expression profile may be generated by any convenient means, e.g. nucleic acid hybridization (e.g. to a microarray), nucleic acid amplification (PCR, RT-PCR, qRT-PCR, high-throughput RT-PCR), ELISA for quantitation, next generation sequencing (e.g. ABI SOLID, Illumina Genome Analyzer, Roche/454 GS FLX), flow cytometry (e.g. LUMINEX) and the like, that allow the analysis of differential miRNA expression levels between samples of a subject (e.g. diseased) and a control subject (e.g. healthy, reference sample).
  • nucleic acid hybridization e.g. to a microarray
  • PCR nucleic acid amplification
  • PCR RT-PCR
  • qRT-PCR high-throughput RT-PCR
  • ELISA for quantitation
  • next generation sequencing e.g. ABI SOLID, Illumina Genome Analyzer, Roche/454 GS FLX
  • Nucleic acid hybridization may be performed using a microarray/biochip or in situ hybridization. In situ hybridization is preferred for the analysis of a single miRNA or a set comprising a low number of miRNAs (e.g. a set of at least 2 to 50 miRNAs such as a set of 2, 5, 10, 20, 30, or 40 miRNAs).
  • the microarray/biochip allows the analysis of a single miRNA as well as a complex set of miRNAs (e.g. a all known miRNAs or subsets therof).
  • Nucleic acid amplification may be performed using real time polymerase chain reaction (RT-PCR) such as real time quantitative polymerase chain reaction (RT qPCR).
  • RT-PCR real time polymerase chain reaction
  • the standard real time polymerase chain reaction (RT-PCR) is preferred for the analysis of a single miRNA or a set comprising a low number of miRNAs (e.g. a set of at least 2 to 50 miRNAs such as a set of 2, 5, 10, 20, 30, or 40 miRNAs), whereas high-throughput RT-PCR technologies (e.g. OpenArray from Applied Biosystems, SmartPCR from Wafergen, Biomark System from Fluidigm) are also able to measure large sets of miRNAS (e.g. a set of 10, 20, 30, 50, 80, 100, 200 or more) or all known miRNAs in a high parallel fashion.
  • RT-PCR is particularly suitable for detecting low abandoned miRNAs.
  • the invention in a second aspect, relates to a set comprising polynucleotides for detecting a predetermined set comprising at least two miRNAs for diagnosing and/or prognosing of prostate cancer in a body fluid sample from a subject.
  • the body fluid sample is a blood sample, particularly preferred it is a whole blood, PBMC, serum or plasma sample, more particularly preferred it is a whole blood sample.
  • the subject is a mammal including both a human and another mammal, e.g. an animal such as a mouse, a rat, a rabbit, or a monkey. It is particularly preferred that the subject is a human.
  • the predetermined set comprising at least two miRNAs is selected from the set of miRNAs listed in FIG. 2 or 5 .
  • the predetermined set comprising at least two miRNAs is selected from the set of miRNAs listed in FIG. 6 . It is preferred that the predetermined set comprising at least two miRNAs comprises at least one set of miRNAs listed in FIG. 6 .
  • the polynucleotides comprised in the set of the present invention are complementary to the miRNAs comprised in the predetermined set, wherein the nucleotide sequences of said miRNAs are preferably selected from the group consisting of miRNAs listed in FIG. 2 or 5 or set of miRNAs listed in FIG. 6 , a fragment thereof, and a sequence having at least 80%, 85%, 90% or 95% sequence identity thereto.
  • the polynucleotides of the present invention are for detecting a predetermined set of 40 or 39 or 38 or 37 or 36 or 35 or 34 or 33 or 32 or 31 or 30 or 29 or 28 or 27 or 26 or 25 or 24 or 23 or 22 or 21 or 20 or 19 or 18 or 17 or 16 or 15 or 14 or 13 or 12 or 11 or 10 or 9 or 8 or 7 or 6 or 5 or 4 or 3 miRNAs wherein the set of miRNAs comprises at least one, e.g. 1, 2, 3, 4, 5 or 6, of the set of miRNAs listed in FIG. 6 .
  • the invention relates to the use of set of polynucleotides according to the second aspect of the invention for diagnosing and/or prognosing prostate cancer in a subject.
  • the invention relates to a set of at least two primer pairs for determining the expression level of a predetermined set of miRNAs in a body fluid sample of a subject suffering or suspected of suffering from prostate cancer.
  • the body fluid sample is a blood sample, particularly preferred it is a whole blood, PBMC, serum or plasma sample, more particularly preferred it is a whole blood sample.
  • the subject is a mammal including both a human and another mammal, e.g. an animal such as a mouse, a rat, a rabbit, or a monkey. It is particularly preferred that the subject is a human.
  • the predetermined set comprising at least two miRNAs is selected from the set of miRNAs listed in FIG. 2 or 5 .
  • the predetermined set comprising at least two miRNAs is selected from the sets of miRNAs listed in FIG. 6 . It is preferred that the predetermined set comprising at least two miRNAs comprises at least one set of miRNAs listed in FIG. 6 .
  • the, set of at least two primer pairs for determining the expression level of a predetermined set of miRNAs in a body fluid sample of a subject suffering or suspected of suffering from prostate cancer are primer pairs that are specific for at least one miRNA listed in FIG. 2 or 5 .
  • the set of at least two primer pairs for determining the expression level of a predetermined set of miRNAs in a body fluid sample of a subject suffering or suspected of suffering from prostate cancer are primer pairs that are specific for at least one set of miRNAs listed in FIG. 6 .
  • the set of at least two primer pairs of the present invention are for detecting a set comprising, essentially consisting of, or consisting of at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40 or more miRNAs, and wherein the set of miRNAs comprises at least one of the sets listed in FIG. 6 .
  • the set of at least two primer pairs of the present invention are for detecting a predetermined set of 40 or 39 or 38 or 37 or 36 or 35 or 34 or 33 or 32 or 31 or 30 or 29 or 28 or 27 or 26 or 25 or 24 or 23 or 22 or 21 or 20 or 19 or 18 or 17 or 16 or 15 or 14 or 13 or 12 or 11 or 10 or 9 or 8 or 7 or 6 or 5 or 4 or 3 or 2 miRNAs wherein the predetermined set of miRNAs comprises at least one of the set of miRNAs listed in FIG. 6 .
  • the said primer pairs may be used for amplifying cDNA transcripts of the predetermined set of miRNAs selected from the miRNAs listed in FIG. 2 or FIG. 5 . Furthermore, the said primer pairs may be used for amplifying cDNA transcripts of the set of miRNAs listed in FIG. 6 .
  • primer pairs for detecting a predetermined set of miRNAs may consist of specific and or non-specific primers. Additionally, the set of primer pairs may be complemented by other substances or reagents (e.g. buffers, enzymes, dye, labelled probes) known to the skilled in the art for conducting real time polymerase chain reaction (RT-PCR).
  • reagents e.g. buffers, enzymes, dye, labelled probes
  • the invention relates to the use of a set of primer pairs according to the fourth aspect of the invention for diagnosing and/or prognosing prostate cancer in a subject.
  • the invention relates to means for diagnosing and/or prognosing of prostate cancer in a body fluid sample of a subject.
  • the invention relates to means for diagnosing and/or prognosing of prostate cancer in a body fluid sample of a subject comprising
  • the body fluid sample is a blood sample, particularly preferred it is a whole blood, PBMC, serum or plasma sample, more particularly preferred it is a whole blood sample.
  • the subject is a mammal including both a human and another mammal, e.g. an animal such as a mouse, a rat, a rabbit, or a monkey. It is particularly preferred that the subject is a human.
  • the set of at least two polynucleotides or the set of at least 2 primer pairs are for detecting a predetermined set comprising at least two miRNAs for diagnosing and/or prognosing of prostate cancer in a body fluid sample, e.g. blood sample, from a subject, e.g. patient, human or animal, wherein the set of miRNAs is selected from the miRNAs listed in FIG. 2 or FIG. 5 .
  • the set of at least two polynucleotides or the set of at least 2 primer pairs are for detecting a predetermined set comprising at least two miRNAs for diagnosing and/or prognosing of prostate cancer in a body fluid sample, e.g. blood sample, from a subject, e.g. patient, human or animal, wherein the set of miRNAs is selected from the sets of miRNAs listed in FIG. 6 .
  • the set of at least two primer pairs for determining the expression level of a predetermined set of miRNAs in a body fluid sample of a subject suffering or suspected of suffering from prostate cancer are primer pairs that are specific for at least two miRNAs selected from the miRNAs listed in FIG. 2 or FIG. 5 .
  • the set of at least two primer pairs for determining the expression level of a set of miRNAs in a body fluid sample of a subject suffering or suspected of suffering from prostate cancer are primer pairs that are specific for at least one set of miRNAs listed in FIG. 6 .
  • said means for diagnosing and/or prognosing of prostate cancer comprise, of a set of beads comprising a at least two polynucleotides according to the second aspect of the present invention. It is especially preferred that the beads are employed within a flow cytometer setup for diagnosing and/or prognosing of prostate cancer, e.g. in a LUMINEX system (www.luminexcorp.com).
  • the invention relates to a kit for diagnosing and/or prognosing of prostate cancer in a subject.
  • the invention relates to a kit for diagnosing and/or prognosing of prostate cancer comprising
  • the body fluid sample is a blood sample, particularly preferred it is a whole blood, PBMC, serum or plasma sample, more particularly preferred it is a whole blood sample.
  • the subject is a mammal including both a human and another mammal, e.g. an animal such as a mouse, a rat, a rabbit, or a monkey. It is particularly preferred that the subject is a human.
  • Said means may comprise of at least two polynucleotides according to the second aspect of the present invention, a set of at least 2 primer pairs according to the fourth aspect of the invention; means according to the sixth aspect of the present invention; primers suitable to perform reverse transcriptase reaction and/or real time polymerase chain reaction such as quantitative polymerase chain reaction; and/or means for conducting next generation sequencing.
  • the invention relates to a predetermined set of miRNAs in a body fluid sample isolated from a subject for diagnosing and/or prognosing of prostate cancer.
  • the body fluid sample is a blood sample, particularly preferred it is a whole blood, PBMC, serum or plasma sample, more particularly preferred it is a whole blood sample.
  • the subject is a mammal including both a human and another mammal, e.g. an animal such as a mouse, a rat, a rabbit, or a monkey. It is particularly preferred that the subject is a human.
  • the predetermined set comprising at least two miRNAs is selected from the set of miRNAs listed in FIG. 2 or 5 .
  • the predetermined set comprising at least two miRNAs is selected from the set of miRNAs listed in FIG. 6 . It is preferred that the predetermined set comprising at least two miRNAs comprises at least one set of miRNAs listed in FIG. 6 .
  • the invention relates to the use of a set of miRNAs according to the eighth aspect of the invention for diagnosing and/or prognosing of prostate cancer in a subject.
  • FIG. 1 is a diagrammatic representation of FIG. 1 :
  • FIG. 2
  • FIG. 3 is a diagrammatic representation of FIG. 3 :
  • FIG. 4
  • FIG. 5
  • miRNAs that are found to be differentially regulated between healthy control and subjects suffering from prostate cancer.
  • SEQ ID NO sequence identification number
  • miRNA identifier of the miRNA according to miRBase
  • median g1 median intensity obtained from microarray analysis for healthy controls
  • median g2 median intensity obtained from microarray analysis for individuals with prostate cancer
  • qmedian ratio of median g1/median g2
  • logqmedian log of qmedian
  • ttest_rawp p-value obtained when applying t-test
  • ttest_adjp adjusted p-value in order to reduce false discovery rate by Benjamini-Hochberg adjustment
  • AUC Area under the curve
  • limma_rawp p-value obtained when applying limma-test
  • limma_adjp adjusted p-value in order to reduce false discovery rate by Benjamini-Hochberg adjustment.
  • FIG. 6 is a diagrammatic representation of FIG. 6 :
  • miRNA signatures SNP-1 to 911 Predetermined sets of miRNAs (miRNA signatures SNP-1 to 911) that allow for effective diagnosis and/or prognosis of subjects suffering or subjects suspected to suffering from prostate cancer.
  • SEQ ID NO sequence identification number
  • miRNA identifier of the miRNA according to miRBase
  • Acc accuracy
  • Spec specificity
  • Sens sensitivity
  • RAS is regulated by the let-7 microRNA family.” Cell 120(5): 635-47.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Pathology (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Analytical Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Hospice & Palliative Care (AREA)
  • Oncology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

MicroRNAs (miRNA) are a recently discovered class of small non-coding RNAs (17-14 nucleotides). Due to their function as regulators of gene expression they play a critical role both in physiological and in pathological processes, such as cancer. The present invention provides novel methods for diagnosing a state of health based on the determination of specific miRNAs that have altered expression levels in different conditions, e.g. disease states compared to healthy controls.

Description

    BACKGROUND OF THE INVENTION
  • MicroRNAs (miRNA) are a recently discovered class of small non-coding RNAs (17-14 nucleotides). Due to their function as regulators of gene expression they play a critical role both in physiological and in pathological processes, such as cancer (Calin and Croce 2006; Esquela-Kerscher and Slack 2006; Zhang, Pan et al. 2007; Sassen, Miska et al. 2008).
  • There is increasing evidence that miRNAs are not only found in tissues but also in human blood both as free circulating nucleic acids and in mononuclear cells. A recent proof-of-principle study demonstrated miRNA expression pattern in pooled blood sera and pooled blood cells, both in healthy individuals and in cancer patients including patients with lung cancer (Chen, Ba et al. 2008). In addition, a remarkable stability of miRNAs in human sera was recently demonstrated (Chen, Ba et al. 2008; Gilad, Meiri et al. 2008). These findings make miRNA a potential tool for diagnostics for various types of diseases based on blood analysis.
  • Thus, although various markers have been proposed to indicate specific types of disorders such as prostate cancer, Wilms' tumour or COPD (Chronic obstructive pulmonary disease) there is still a need for more efficient and effective methods and compositions for the diagnosis of diseases.
  • SUMMARY OF THE INVENTION
  • The present invention provides novel methods for diagnosing diseases based on the determination of specific miRNAs that have altered expression levels in disease states compared to healthy controls or altered expression levels in a condition 1 (biological state or health state 1) compared to a condition 2 (biological state or health state 2). The disease is particularly selected from prostate cancer.
  • Definitions
  • miRNA
  • microRNAs (miRNA or μRNA) are single-stranded RNA molecules of ˜21-23 nucleotides in length, which regulate gene expression. miRNAs are encoded by genes from whose DNA they are transcribed but miRNAs are not translated into protein (i.e. they are non-coding RNAs). The genes encoding miRNAs are much longer than the processed mature miRNA molecule; miRNAs are first transcribed as primary transcripts or pri-miRNA with a cap and poly-A tail and processed to short, 70-nucleotide stem-loop structures known as pre-miRNA in the cell nucleus. This processing is performed in animals by a protein complex known as the Microprocessor complex, consisting of the nuclease Drosha and the double-stranded RNA binding protein Pasha. These pre-miRNAs are then processed to mature miRNAs in the cytoplasm by interaction with the endonuclease Dicer, which also initiates the formation of the RNA-induced silencing complex (RISC). When Dicer cleaves the pre-miRNA stem-loop, two complementary short RNA molecules are formed, but only one is integrated into the RISC. This strand is known as the guide strand and is selected by the argonaute protein, the catalytically active RNase in the RISC, on the basis of the stability of the 5′ end. The remaining strand, known as the miRNA*, anti-guide or passenger strand, is degraded as a RISC substrate. Therefore the miRNA*s are derived from the same hairpin structure like the “normal” miRNAs. So if the “normal” miRNA is then later called the “mature miRNA” or “guided strand”, the miRNA* is the passenger strand.
  • miRNA* (See Also Above “miRNA”)
  • The miRNA*s, also known as the anti-guide or passenger strand, are mostly complementary to the guide strand, but there are usually single-stranded overhangs on each end, there is usually one or a few mispairs and there are sometimes extra or missing bases causing single-stranded “bubbles. The miRNA*s are likely to act in a regulatory fashion as the miRNAs. It is understood that according to the present invention the term “miRNA” also includes the term “miRNA*”.
  • miRBase
  • A well established repository of validated miRNAs is the miRBase. The miRBase (www.mirbase.org) is a searchable database of published miRNA sequences and annotation. Each entry in the miRBase Sequence database represents a predicted hairpin portion of a miRNA transcript (termed mir in the database), with information on the location and sequence of the mature miRNA sequence (termed miR). Both hairpin and mature sequences are available for searching and browsing, and entries can also be retrieved by name, keyword, references and annotation. All sequence and annotation data are also available for download.
  • miRNA-(expression) Profile or miRNA Fingerprint
  • A miRNA-Profile represents the collection of expression levels of a plurality of miRNAs, therefore it is a quantitative measure of individual miRNA expression levels. Hereby, each miRNA is represented by a numerical value. The higher the value of an individual miRNA the higher is the expression level of this miRNA. A miRNA-profile is obtained from the RNA of a biological sample. The are various technologies to determine a miRNA-Profile, e.g. microarrays, RT-PCR, Next Generation Sequencing. As a starting material for analysis, RNA or total-RNA or any fraction thereof can be used. The plurality of miRNAs that are determined by a miRNA-profile can range from a selection of one up to all known miRNAs.
  • Pre-determined Set of miRNAs or miRNA Signature
  • The pre-determined set of miRNAs or miRNA signature is understood in the present invention as a fixed defined set of miRNAs which is able to differentiate between a condition 1 and another condition 2. e.g. when condition 1 is lung cancer and condition 2 is normal control, the corresponding pre-determined set of miRNAs is able to differentiate between a samples derived from a lung cancer patient or a normal control patient. Alternatively, condition 1 is lung cancer and condition 2 is multiple sclerosis, the corresponding pre-determined set of miRNAs is able to differentiate between a lung cancer patient and a multiple sclerosis patient. In order to be able to perform the sample analysis it is required that, e.g. on the matrix that will be used to determine a miRNA profile, these fixed defined set of miRNAs have to be represented by capture probes that are defined by the predetermined set of miRNAs. For example, when the predetermined set of miRNAs for diagnosing lung cancer from healthy controls consists of 25 miRNAs, probes capable for detecting these 25 miRNAs have to be implemented for performing the diagnostic analysis.
  • Common miRNA Signature Profile
  • A common miRNA signature profile is understood in the present invention as a non-fixed defined set of miRNAs or non-coding RNAs which is able to differentiate between a condition 1 and another condition 2. The common miRNA or non-coding RNA signature profile is calculated “on-the-fly” from a plurality of miRNA-profiles that are stored, e.g. in database. The common miRNA signature profile which is able to differentiate between a condition 1 and another condition 2 is changing as soon as an new profile is added to the database which is relevant to either to state of health 1 or another condition 2. In this respect it is different from a predetermined set of miRNAs (see above). Furthermore, the basis for generating the common miRNA signature profile—hence the miRNA profiles stored in the database—is generated from capture probes, e.g. on a matrix that is representing as much as possible different capture probes for detecting as much as possible, ideally all known, miRNAs.
  • Non-coding RNA
  • A non-coding RNA (ncRNA) is a functional RNA molecule that is not translated into a protein. Less-frequently used synonyms are non-protein-coding RNA (npcRNA), non-messenger RNA (nmRNA), small non-messenger RNA (snmRNA), functional RNA (fRNA). The term small RNA (sRNA) is often used for bacterial ncRNAs. The DNA sequence from which a non-coding RNA is transcribed as the end product is often called an RNA gene or non-coding RNA gene.
  • Non-coding RNA genes include highly abundant and functionally important RNAs such as transfer RNA (tRNA) and ribosomal RNA (rRNA), as well as RNAs such as snoRNAs, microRNAs, siRNAs and piRNAs and the long ncRNAs that include examples such as Xist and HOTAIR (see here for a more complete list of ncRNAs). The number of ncRNAs encoded within the human genome is unknown, however recent transcriptomic and bioinformatic studies suggest the existence of thousands of ncRNAs. Since most of the newly identified ncRNAs have not been validated for their function, it is possible that many are non-functional.
  • Condition
  • A condition (biological state or health state or state of health) is understood in the present invention as status of a subject that can be described by physical, mental or social criteria. It includes as well so-called “healthy” and “diseased” conditions, therefore it is not limited to the WHO definition of health as “a state of complete physical, mental, and social well-being and not merely the absence of disease or infirmity.” but includes disease and infirmity. For the definition of diseases comprised, e.g. by the conditions of the present invention, it is referred to the international classification of diseases (ICD) of the WHO (http://www.who.int/classifications/icd/en /index.html). When 2 or more conditions are compared according to the present invention, it is understood that this is possible for all conditions that can be defined and is not limited to a comparison of a disease versus healthy and extends to multi-way comparisons. Examples for comparison are, but not limited to:
  • Pairwise Comparisons:
      • lung cancer vs. healthy control, pancreatic cancer vs. healthy control
      • lung cancer vs. pancreatic cancer, lung cancer vs. multiple sclerosis
      • lung cancer WHO grade 1 vs. lung cancer WHO grade 2
      • lung cancer WHO grade 1 metastasing vs. lung cancer WHO grade 1 non-metastasing
      • Morbus Crohn vs. collitis
      • Pancreatic cancer vs. pancreatitis
  • Multi-Way Comparisons:
      • Lung cancer vs. pancreatic cancer vs. multiple sclerosis
      • Pancreas cancer vs. pancreatitis vs. lung cancer WHO grade 1 non-metastasing
  • Prostate Cancer
  • Prostate cancer is a form of cancer that develops in the prostate, a gland in the male reproductive system. The cancer cells may metastasize (spread) from the prostate to other parts of the body, particularly the bones and lymph nodes. Prostate cancer may cause pain, difficulty in urinating, problems during sexual intercourse, or erectile dysfunction. Other symptoms can potentially develop during later stages of the disease.
  • Rates of detection of prostate cancers vary widely across the world, with South and East Asia detecting less frequently than in Europe, and especially the United States. Prostate cancer tends to develop in men over the age of fifty and although it is one of the most prevalent types of cancer in men, many never have symptoms, undergo no therapy, and eventually die of other causes. This is because cancer of the prostate is, in most cases, slow-growing, symptom free and men with the condition often die of causes unrelated to the prostate cancer, such as heart/circulatory disease, pneumonia, other unconnected cancers, or old age. Many factors, including genetics and diet, have been implicated in the development of prostate cancer. The presence of prostate cancer may be indicated by symptoms, physical examination, prostate specific antigen (PSA), or biopsy. There is controversy about the accuracy of the PSA test and the value of screening. Suspected prostate cancer is typically confirmed by taking a biopsy of the prostate and examining it under a microscope. Further tests, such as CT scans and bone scans, may be performed to determine whether prostate cancer has spread.
  • Treatment options for prostate cancer with intent to cure are primarily surgery, radiation therapy, and proton therapy. Other treatments, such as hormonal therapy, chemotherapy, cryosurgery, and high intensity focused ultrasound (HIFU) also exist, depending on the clinical scenario and desired outcome.
  • The age and underlying health of the man, the extent of metastasis, appearance under the microscope, and response of the cancer to initial treatment are important in determining the outcome of the disease. The decision whether or not to treat localized prostate cancer (a tumour that is contained within the prostate) with curative intent is a patient trade-off between the expected beneficial and harmful effects in terms of patient survival and quality of life.
  • A “biological sample” in terms of the invention means a sample of biological tissue or fluid. Examples of biological samples are sections of tissues, blood, blood fractions, plasma, serum, urine or samples from other peripheral sources. or cell cultures, cell colonies of even single cells, or a collection of single cells. Furthermore, also pools or mixture of the above mentioned samples may be employed. A biological sample may be provided by removing a sample of cells from a subject, but can also be provided by using a previously isolated sample. For example, a tissue sample can be removed from a subject suspected of having a disease by conventional biopsy techniques. In a preferred embodiment, a blood sample is taken from the subject. In one embodiment, the blood or tissue sample is obtained from the subject prior to initiation of radiotherapy, chemotherapy or other therapeutic treatment. According to the invention, the biological sample preferably is a blood or a serum sample. Further, it is also preferred to use blood cells, e.g. erythrocytes, leukocytes or thrombocytes.
  • A biological sample from a patient means a sample from a subject suspected to be affected by a disease. As used herein, the term “subject” refers to any mammal, including both human and other mammals. Preferably, the methods of the present invention are applied to human subjects.
  • Subject-matter of the invention is a method for diagnosing a disease, comprising the steps
      • (a) determining an expression profile of a predetermined set of miRNAs in a biological sample from a patient (or subject); and
      • (b) comparing said expression profile to a reference expression profile,
        wherein the comparison of said determined expression profile to said reference expression profile allows for the diagnosis of the disease.
  • In step (a) of the above method of the invention, an expression profile of a predetermined set of miRNAs is determined. The determination may be carried out by any convenient means for determining nucleic acids. For expression profiling, qualitative, semi-quantitative and preferably quantitative detection methods can be used. A variety of techniques are well known to those of skill in the art. In particular, the determination may comprise nucleic acid hybridization and/or nucleic acid amplification steps.
  • Nucleic acid hybridization may for example be performed using a solid phase nucleic acid biochip array, in particular a microarray, or in situ hybridization. The miRNA microarray technology affords the analysis of a complex biological sample for all expressed miRNAs. Nucleotides with complementarity to the corresponding miRNAs are spotted on coated carriers or are fabricated by in-situ synthesis methods on a carrier. Preferably, miRNAs isolated from the sample of interest are not labelled, e.g. before hybridization of the miRNAs to the complementary sequences on the carrier and the resulting signal indicating the occurrence of a distinct miRNA is generated by incorporation of a detectable label (e.g. biotin, fluorescent dye) by means of an enzyme reaction.
  • According to another embodiment of the invention, miRNAs isolated from the sample of interest are labelled, e.g. fluorescently labelled, so that upon hybridization of the miRNAs to the complementary sequences on the carrier the resulting signal indicates the occurrence of a distinct miRNA. On one miRNA microarray, preferably at least the whole predetermined set of miRNAs can be analyzed.
  • Further, quantitative real-time polymerase chain reaction (RT-PCR) can be used to detect miRNAs even at very low abundance.
  • Alternative methods for obtaining expression profiles may also contain sequencing, next generation sequencing or mass spectroscopy.
  • The predetermined set of miRNAs in step (a) of the above method of the invention depends on the disease to be diagnosed. The inventors found out that single miRNA biomarkers lack sufficient accuracy, specificity and sensitivity, and therefore it is preferred to analyze more complex miRNA expression patterns, so-called miRNA signatures. The predetermined set of miRNAs comprises one or more, preferably a larger number of miRNAs (miRNA signatures) that are differentially regulated in samples of a patient affected by a particular disease compared to healthy controls. Alternatively, the disease can also be compared to any other defined condition (e.g. another disease).
  • The expression profile determined in the above step (a) is subsequently compared to a reference expression profile or to a plurality of reference profiles in the above step (b). The reference expression profile is the expression profile of the same set of miRNAs in a biological sample originating from the same source as the biological sample from a patient but obtained from a healthy subject. Preferably, both the reference expression profile and the expression profile of the above step (a) are determined in a blood or serum sample or in a sample of erythrocytes, leukocytes and/or thrombocytes. It is understood that the reference expression profile is not necessarily obtained from a single healthy subject but may be an average expression profile of a plurality of healthy subjects. It is preferred to use a reference expression profile obtained from a person of the same gender, and a similar age as the patient.
  • The above method of the invention is suitable for diagnosing any diseases for which a differential expression of miRNAs compared to healthy controls or other diseases exists. In particular, the method may be used for diagnosing cancer including bladder cancer, brain cancer, breast cancer, colon cancer, endometrium cancer, gastrointestinal stromal cancer, glioma, head- and neck cancer, kidney cancer, leukemia, liver cancer, lung cancer, lymph node cancer, melanoma, meninges cancer, ovarian cancer, pancreas cancer, prostate cancer, sarcoma, stomach cancer, testicular cancer, thyroid cancer, thymus cancer and Wilms' tumour or COPD. The diagnosis may comprise determining type, rate and/or stage of cancer. The course of the disease and the success of therapy such as chemotherapy may be monitored. The method of the invention provides a prognosis on the survivor rate and enables to determine a patient's response to drugs.
  • In addition to cancer, also different types of diseases may be diagnosed by means of the above method of the invention, if the disease state is correlated with a differential expression of miRNAs compared to a healthy control. For example the disease may be Alzheimer's disease, multiple sclerosis, melanoma, Morbus Crohn and cardiovascular diseases. The inventors found out that also these diseases are correlated with a specific expression profile of miRNAs.
  • The inventors succeeded in developing a generally applicable approach to arrive at miRNA signatures that are correlated with a particular disease. In more detail, the following steps are accomplished:
  • 1. miRNAs are extracted from a biological sample of a patient, preferably a blood or serum or urine sample or a sample comprising erythrocytes, leukocytes or thrombocytes, using suitable kits / purification methods. From these samples preferably the RNA-fraction is used for analysis.
  • 2. The respective samples are measured using experimental techniques. These techniques include but are not restricted to:
      • Array based approaches
      • Real time quantitative polymerase chain reaction
      • Sequencing
      • Next Generation Sequencing
      • Mass Spectroscopy
  • 3. Mathematical approaches are applied to gather information on the value and the redundancy of single biomarkers. These methods include, but are not restricted to:
      • basic mathematic approaches (e.g. Fold Quotients, Signal to
      • Noise ratios, Correlation)
      • statistical methods as hypothesis tests (e.g. t-test, Wilcoxon-Mann-Whitney test), the Area under the Receiver operator Characteristics Curve
      • Information Theory approaches, (e.g. the Mutual Information, Cross-entropy)
      • Probability theory (e.g. joint and conditional probabilities)
      • Combinations and modifications of the previously mentioned examples
  • 4. The information collected in 3) are used to estimate for each biomarker the diagnostic content or value. Usually, however, this diagnostic value of only one biomarker is too small to get a highly accurate diagnosis with accuracy rates, specificities and sensitivities beyond the 90% barrier. Please note that the diagnostic content for our miRNAs can be found in the tables in FIGS. 2 and 5. These tables includes the miRNAs with the sequences, and the significance value as computed by a t-test and further statistical measures.
  • 5. Thus statistical learning/machine learning/bioinformatics/computational approaches are applied to define subsets of biomarkers that are tailored for the detection of diseases. These techniques includes but are not restricted to
      • Wrapper subset selection techniques (e.g. forward step-wise, backward step-wise, combinatorial approaches, optimization approaches)
      • Filter subset selection methods (e.g. the methods mentioned in 3)
      • Principal Component Analysis
      • Combinations and modifications of such methods (e.g. hybrid approaches)
  • 6. The diagnostic content of each detected set can be estimated by mathematical and/or computational techniques to define the diagnostic information content of subsets.
  • 7. The subsets, detected in step 5, which may range from only a small number (at least two) to all measured biomarkers is then used to carry out a diagnosis. To this end, statistical learning/machine learning/bioinformatics/computational approaches are applied that include but are not restricted to any type of supervised or unsupervised analysis:
      • Classification techniques (e.g. naïve Bayes, Linear Discriminant Analysis, Quadratic Discriminant Analysis Neural Nets, Tree based approaches, Support Vector Machines, Nearest Neighbour Approaches)
      • Regression techniques (e.g. linear Regression, Multiple Regression, logistic regression, probit regression, ordinal logistic regression ordinal Probit-Regression, Poisson Regression, negative binomial Regression, multinomial logistic Regression, truncated regression)
      • Clustering techniques (e.g. -means clustering, hierarchical clustering, PCA)
      • Adaptations, extensions, and combinations of the previously mentioned approaches
  • The inventors surprisingly found out that the described approach yields in miRNA signatures that provide high diagnostic accuracy, specificity and sensitivity in the determination of diseases.
  • According to a preferred embodiment of the invention, the disease to be determined is prostate cancer.
  • The inventors succeeded in determining miRNAs that are differentially regulated in samples from prostate cancer patients as compared to healthy controls. A complete overview of all miRNAs that are found to be differentially regulated in blood samples of prostate cancer patients is provided in the tables shown in FIGS. 2 and 5.
  • In the tables shown in FIGS. 2 and 5, the miRNAs that are found to be differentially regulated are sorted in the order of their t-test significance. Another method for assessing the significance is to compute the Mutual information (MI) (Shannon, 1984) which is an adequate measure to estimate the overall diagnostic information content of single biomarkers (Keller, Ludwig et al., 2006). According to the invention mutual information is considered as the reduction in uncertainty about the class labels “0” for controls and “1” for tumour samples due to the knowledge of the miRNA expression. The higher the value of the MI of a miRNA, the higher is the diagnostic content of the respective miRNA.
  • Diagnosis of Prostate Cancer
  • According to a preferred embodiment of the invention, the disease to be determined is prostate cancer. Surprisingly, the inventors found out that miRNAs are differentially regulated in samples from prostate cancer patients as compared to healthy controls. A complete overview of all miRNAs that are found to be differentially regulated in blood samples of prostate cancer patients is provided in the table shown in FIG. 2 and FIG. 5. In FIG. 2 in total, 241 miRNAs were found to be significantly deregulated (t-test significance <0.05) in blood cells of prostate cancer patients as compared to the healthy controls.
  • Preferably, the predetermined set of miRNAs for the diagnosis of prostate cancer comprises one or more nucleic acids selected from the deregulated miRNAs presented in the tables in FIG. 2 or FIG. 5.
  • The predetermined set of miRNAs should preferably comprise at least 1, preferably at least 7, 10, 15, 20, 25, 30, 35, 40, 50, 75 or 100 of the indicated nucleic acids. It is particularly preferred to include the 100, 75, 50, 40, 35, 30, 25, 20, 15, 10 or at least 7 of the first mentioned miRNAs according to their order in the tables in FIG. 2 or FIG. 5.
  • Thus, preferably the predetermined set of miRNAs for the diagnosis of prostate cancer comprises one or more nucleic acids selected from the 241 most deregulated miRNAs.
  • Preferably, the predetermined set of miRNAs comprises at least 7, preferably at least 10, 15, 20, 25, 30, 35, 40, 50, 75, 100 or all of the above-indicated nucleic acids.
  • In a further embodiment the predetermined set of miRNAs for the diagnosis of prostate cancer comprises one or more miRNAs selected from the group consisting of hsa-miR-144*, hsa-miR-148a, hsa-miR-519b-5p, hsa-miR-1324, hsa-miR-137, hsa-miR-556-5p, hsa-miR-330-3p.
  • In a further embodiment the predetermined set of miRNAs for the diagnosis of prostate cancer comprises one or more miRNAs selected from the group consisting of hsa-miR-144*, hsa-miR-148a, hsa-miR-519b-5p, hsa-miR-1324, hsa-miR-137, hsa-miR-556-5p, hsa-miR-330-3p, hsa-miR-361-5p, hsa-miR-891b, hsa-miR-767-5p.
  • In a further embodiment the predetermined set of miRNAs for the diagnosis of prostate cancer comprises one or more miRNAs selected from the group consisting of hsa-miR-144*, hsa-miR-148a, hsa-miR-519b-5p, hsa-miR-1324, hsa-miR-137, hsa-miR-556-5p, hsa-miR-330-3p, hsa-miR-361-5p, hsa-miR-891b, hsa-miR-767-5p, hsa-miR-744*, hsa-miR-208b, hsa-miR-548p, hsa-miR-20a*, hsa-miR-195.
  • In a further embodiment the predetermined set of miRNAs for the diagnosis of prostate cancer comprises one or more miRNAs selected from the group consisting of hsa-miR-144*, hsa-miR-148a, hsa-miR-519b-5p, hsa-miR-1324, hsa-miR-137, hsa-miR-556-5p, hsa-miR-330-3p, hsa-miR-361-5p, hsa-miR-891 b, hsa-miR-767-5p, hsa-miR-744*, hsa-miR-208b, hsa-miR-548p, hsa-miR-20a*, hsa-miR-195, hsa-miR-33b, hsa-miR-1283, hsa-miR-519c-5p, hsa-miR-497, hsa-miR-9*.
  • In a further embodiment the predetermined set of miRNAs for the diagnosis of prostate cancer comprises one or more miRNAs selected from the group consisting of hsa-miR-144*, hsa-miR-148a, hsa-miR-519b-5p, hsa-miR-1324, hsa-miR-137, hsa-miR-556-5p, hsa-miR-330-3p, hsa-miR-361-5p, hsa-miR-891 b, hsa-miR-767-5p, hsa-miR-744*, hsa-miR-208b, hsa-miR-548p, hsa-miR-20a*, hsa-miR-195, hsa-miR-33b, hsa-miR-1283, hsa-miR-519c-5p, hsa-miR-497, hsa-miR-9*, hsa-miR-200a, hsa-miR-338-3p, hsa-miR-515-5p, hsa-miR-31*, hsa-miR-551 b*.
  • In a further embodiment the predetermined set of miRNAs for the diagnosis of prostate cancer comprises one or more miRNAs selected from the group consisting of hsa-miR-144*, hsa-miR-148a, hsa-miR-519b-5p, hsa-miR-1324, hsa-miR-137, hsa-miR-556-5p, hsa-miR-330-3p, hsa-miR-361-5p, hsa-miR-891 b, hsa-miR-767-5p, hsa-miR-744*, hsa-miR-208b, hsa-miR-548p, hsa-miR-20a*, hsa-miR-195, hsa-miR-33b, hsa-miR-1283, hsa-miR-519c-5p, hsa-miR-497, hsa-miR-9*, hsa-miR-200a, hsa-miR-338-3p, hsa-miR-515-5p, hsa-miR-31*, hsa-miR-551b*, hsa-miR-518e*, hsa-miR-127-5p, hsa-miR-21*, hsa-miR-216a, hsa-miR-452*.
  • In a further embodiment the predetermined set of miRNAs for the diagnosis of prostate cancer comprises one or more miRNAs selected from the group consisting of hsa-miR-144*, hsa-miR-148a, hsa-miR-519b-5p, hsa-miR-1324, hsa-miR-137, hsa-miR-556-5p, hsa-miR-330-3p, hsa-miR-361-5p, hsa-miR-891 b, hsa-miR-767-5p, hsa-miR-744*, hsa-miR-208b, hsa-miR-548p, hsa-miR-20a*, hsa-miR-195, hsa-miR-33b, hsa-miR-1283, hsa-miR-519c-5p, hsa-miR-497, hsa-miR-9*, hsa-miR-200a, hsa-miR-338-3p, hsa-miR-515-5p, hsa-miR-31*, hsa-miR-551 b*, hsa-miR-518e*, hsa-miR-127-5p, hsa-miR-21*, hsa-miR-216a, hsa-miR-452*, hsa-miR-183*, hsa-miR-500, hsa-miR-1826, hsa-miR-625*, hsa-miR-513b.
  • In a further embodiment the predetermined set of miRNAs for the diagnosis of prostate cancer comprises one or more miRNAs selected from the group consisting of hsa-miR-144*, hsa-miR-148a, hsa-miR-519b-5p, hsa-miR-1324, hsa-miR-137, hsa-miR-556-5p, hsa-miR-330-3p, hsa-miR-361-5p, hsa-miR-891 b, hsa-miR-767-5p, hsa-miR-744*, hsa-miR-208b, hsa-miR-548p, hsa-miR-20a*, hsa-miR-195, hsa-miR-33b, hsa-miR-1283, hsa-miR-519c-5p, hsa-miR-497, hsa-miR-9*, hsa-miR-200a, hsa-miR-338-3p, hsa-miR-515-5p, hsa-miR-31*, hsa-miR-551 b*, hsa-miR-518e*, hsa-miR-127-5p, hsa-miR-21*, hsa-miR-216a, hsa-miR-452*, hsa-miR-183*, hsa-miR-500, hsa-miR-1826, hsa-miR-625*, hsa-miR-513b, hsa-miR-526a, hsa-miR-33a, hsa-miR-1243, hsa-miR-517*, hsa-miR-541.
  • In a further embodiment the predetermined set of miRNAs for the diagnosis of prostate cancer comprises one or more miRNAs selected from the group consisting of hsa-miR-144*, hsa-miR-148a, hsa-miR-519b-5p, hsa-miR-1324, hsa-miR-137, hsa-miR-556-5p, hsa-miR-330-3p, hsa-miR-361-5p, hsa-miR-891b, hsa-miR-767-5p, hsa-miR-744*, hsa-miR-208b, hsa-miR-548p, hsa-miR-20a*, hsa-miR-195, hsa-miR-33b, hsa-miR-1283, hsa-miR-519c-5p, hsa-miR-497, hsa-miR-9*, hsa-miR-200a, hsa-miR-338-3p, hsa-miR-515-5p, hsa-miR-31*, hsa-miR-551 b*, hsa-miR-518e*, hsa-miR-127-5p, hsa-miR-21*, hsa-miR-216a, hsa-miR-452*, hsa-miR-183*, hsa-miR-500, hsa-miR-1826, hsa-miR-625*, hsa-miR-513b, hsa-miR-526a, hsa-miR-33a, hsa-miR-1243, hsa-miR-517*, hsa-miR-541, hsa-miR-217, hsa-miR-621, hsa-miR-518d-5p, hsa-miR-873, hsa-miR-103-as, hsa-miR-450b-5p, hsa-miR-545, hsa-miR-1251, hsa-miR-885-5p, hsa-miR-922.
  • In a further embodiment the predetermined set of miRNAs for the diagnosis of prostate cancer comprises one or more miRNAs selected from the group consisting of hsa-miR-144*, hsa-miR-148a, hsa-miR-519b-5p, hsa-miR-1324, hsa-miR-137, hsa-miR-556-5p, hsa-miR-330-3p, hsa-miR-361-5p, hsa-miR-891 b, hsa-miR-767-5p, hsa-miR-744*, hsa-miR-208b, hsa-miR-548p, hsa-miR-20a*, hsa-miR-195, hsa-miR-33b, hsa-miR-1283, hsa-miR-519c-5p, hsa-miR-497, hsa-miR-9*, hsa-miR-200a, hsa-miR-338-3p, hsa-miR-515-5p, hsa-miR-31*, hsa-miR-551b*, hsa-miR-518e*, hsa-miR-127-5p, hsa-miR-21*, hsa-miR-216a, hsa-miR-452*, hsa-miR-183*, hsa-miR-500, hsa-miR-1826, hsa-miR-625*, hsa-miR-513b, hsa-miR-526a, hsa-miR-33a, hsa-miR-1243, hsa-miR-517*, hsa-miR-541, hsa-miR-217, hsa-miR-621, hsa-miR-518d-5p, hsa-miR-873, hsa-miR-103-as, hsa-miR-450b-5p, hsa-miR-545, hsa-miR-1251, hsa-miR-885-5p, hsa-miR-922, hsa-miR-628-5p, hsa-miR-548f, hsa-miR-802, hsa-miR-25, hsa-miR-423-3p, hsa-miR-522*, hsa-miR-519a*, hsa-miR-455-3p, hsa-miR-1245, hsa-miR-362-5p, hsa-miR-1184, hsa-miR-191, hsa-miR-487a, hsa-miR-216b, hsa-miR-525-5p, hsa-miR-509-3-5p, hsa-miR-27a*, hsa-miR-488*, hsa-miR-1226, hsa-miR-646, hsa-miR-527, hsa-miR-635, hsa-miR-1825, hsa-let-7i*.
  • Most preferably, the predetermined set of miRNAs comprises those miRNAs that were most significantly deregulated.
  • In a further embodiment, the measured miRNA profiles were classified using statistical learning approaches in order to compute accuracy, specificity, and sensitivity for the diagnosis of prostate cancer (see FIG. 4). The miRNAs that performed best for the diagnosis of prostate cancer according to their accuracy, specificity, and sensitivity are the 270 miRNAs shown in Table in
  • FIG. 2 (entries No. 1-270) leading to an accuracy 82.8%, a specificity of 87.5% and a sensitivity of 71.9%.
  • The predetermined set of miRNAs for the diagnosis of prostate cancer should preferably comprise at least 7, preferably at least 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, preferably all of the known miRNAs, preferably all of the 863 (see FIG. 1, representing the current status of all known miRNAs in the version 12, 13, and 14 of the miRBase repository (www.mirbase.org).
  • Another embodiment of the present invention is a kit for diagnosing a disease, comprising means for determining an expression profile of a predetermined set of miRNAs in a biological sample, in particular in a blood and/or serum sample. Preferably, one or more reference expression profiles are also provided which show the expression profile of the same set of miRNAs in the same type of biological sample, in particular in a blood and/or serum sample, obtained from one or more healthy subjects. A comparison to said reference expression profile(s) allows for the diagnosis of the disease.
  • Another preferred embodiment of the present invention is a kit for diagnosing prostate cancer, comprising means for determining the expression profile of one or more miRNAs presented in the table in FIG. 2, preferably one or more miRNAs selected from the group consisting of hsa-miR-144*, hsa-miR-148a, hsa-miR-519b-5p, hsa-miR-1324, hsa-miR-137, hsa-miR-556-5p, hsa-miR-330-3p, hsa-miR-361-5p, hsa-miR-891 b, hsa-miR-767-5p, hsa-miR-744*, hsa-miR-208b, hsa-miR-548p, hsa-miR-20a*, hsa-miR-195, hsa-miR-33b, hsa-miR-1283, hsa-miR-519c-5p, hsa-miR-497, hsa-miR-9*, hsa-miR-200a, hsa-miR-338-3p, hsa-miR-515-5p, hsa-miR-31*, hsa-miR-551 b*, hsa-miR-518e*, hsa-miR-127-5p, hsa-miR-21*, hsa-miR-216a, hsa-miR-452*, hsa-miR-183*, hsa-miR-500, hsa-miR-1826, hsa-miR-625*, hsa-miR-513b, hsa-miR-526a, hsa-miR-33a, hsa-miR-1243, hsa-miR-517*, hsa-miR-541, hsa-miR-217, hsa-miR-621, hsa-miR-518d-5p, hsa-miR-873, hsa-miR-103-as, hsa-miR-450b-5p, hsa-miR-545, hsa-miR-1251, hsa-miR-885-5p, hsa-miR-922.
  • In a preferred embodiment the kit comprises means for determining at least 7, preferably at least 10, 15, 20, 25, 30, 35, 40, 50, 75, 100 or all of the indicated miRNAs. It is particularly preferred to include means for determining the 100, 75, 50, 45, 40, 35, 30, 25, 20, 15, 10 or at least 7 first mentioned miRNAs in the order of their diagnostic significance as represented by their order in the table in FIG. 2. The kit for diagnosing prostate cancer is particularly suitable for diagnosing prostate cancer in a blood and/or serum sample or in a sample comprising erythrocytes, leukocytes and/or thrombocytes.
  • The means for determining a predetermined set of miRNAs may for example comprise a microarray comprising miRNA-specific oligonucleotide probes. In a preferred embodiment, the microarray comprises miRNA-specific oligonucleotide probes for the detection of miRNAs. Depending on the intended use of the microarray in the diagnosis or prognosis of a particular disease, probes for detecting different miRNAs may be included.
  • A microarray intended for use in the diagnosis of prostate cancer preferably comprises miRNA specific oligonucleotide probes for one or more miRNAs presented in the table in FIG. 2, preferably for one or more miRNAs selected from the group consisting of hsa-miR-144*, hsa-miR-148a, hsa-miR-519b-5p, hsa-miR-1324, hsa-miR-137, hsa-miR-556-5p, hsa-miR-330-3p, hsa-miR-361-5p, hsa-miR-891b, hsa-miR-767-5p, hsa-miR-744*, hsa-miR-208b, hsa-miR-548p, hsa-miR-20a*, hsa-miR-195, hsa-miR-33b, hsa-miR-1283, hsa-miR-519c-5p, hsa-miR-497, hsa-miR-9*, hsa-miR-200a, hsa-miR-338-3p, hsa-miR-515-5p, hsa-miR-31*, hsa-miR-551 b*, hsa-miR-518e*, hsa-miR-127-5p, hsa-miR-21*, hsa-miR-216a, hsa-miR-452*, hsa-miR-183*, hsa-miR-500, hsa-miR-1826, hsa-miR-625*, hsa-miR-513b, hsa-miR-526a, hsa-miR-33a, hsa-miR-1243, hsa-miR-517*, hsa-miR-541, hsa-miR-217, hsa-miR-621, hsa-miR-518d-5p, hsa-miR-873, hsa-miR-103-as, hsa-miR-450b-5p, hsa-miR-545, hsa-miR-1251, hsa-miR-885-5p, hsa-miR-922.
  • In a preferred embodiment the microarray comprises oligonucleotide probes for determining at least 7, preferably at least 10, 15, 20, 25, 30, 35, 40, 50, 75, 100 or all of the indicated miRNAs. It is particularly preferred to include oligonucleotide probes for determining the most significant miRNAs, which is represented by their order in the table depicted in FIG. 2.
  • The microarray can comprise oligonucleotide probes obtained from known or predicted miRNA sequences. The array may contain different oligonucleotide probes for each miRNA, for example one containing the active mature sequence and another being specific for the precursor of the miRNA. The array may also contain controls such as one or more sequences differing from the human orthologs by only a few bases, which can serve as controls for hybridization stringency conditions. It is also possible to include viral miRNAs or putative miRNAs as predicted from bioinformatic tools. Further, it is possible to include appropriate controls for non-specific hybridization on the microarray.
  • In summary the present invention is composed of the following items:
  • 1. A method of diagnosing a disease, comprising the steps
      • (a) determining an expression profile of a predetermined set of non-coding RNAs, including miRNAs, in a biological sample from a patient; and
      • (b) comparing said expression profile to a reference expression profile,
      • wherein the comparison of said determined expression profile to said reference expression profile allows for the diagnosis of the disease, wherein the disease is prostate cancer.
  • 2. The method according to any one of item 1, wherein the expression profile is determined of non-coding RNAs, including miRNAs selected from the group consisting of hsa-miR-99b*, hsa-miR-99b, hsa-miR-99a*, hsa-miR-99a, hsa-miR-98, hsa-miR-96*, hsa-miR-96, hsa-miR-95, hsa-miR-944, hsa-miR-943, hsa-miR-942, hsa-miR-941, hsa-miR-940, hsa-miR-939, hsa-miR-938, hsa-miR-937, hsa-miR-936, hsa-miR-935, hsa-miR-934, hsa-miR-933, hsa-miR-93*, hsa-miR-93, hsa-miR-92b*, hsa-miR-92b, hsa-miR-92a-2*, hsa-miR-92a-1*, hsa-miR-92a, hsa-miR-924, hsa-miR-922, hsa-miR-921, hsa-miR-920, hsa-miR-9*, hsa-miR-9, hsa-miR-892b, hsa-miR-892a, hsa-miR-891 b, hsa-miR-891a, hsa-miR-890, hsa-miR-889, hsa-miR-888*, hsa-miR-888, hsa-miR-887, hsa-miR-886-5p, hsa-miR-886-3p, hsa-miR-885-5p, hsa-miR-885-3p, hsa-miR-877*, hsa-miR-877, hsa-miR-876-5p, hsa-miR-876-3p, hsa-miR-875-5p, hsa-miR-875-3p, hsa-miR-874, hsa-miR-873, hsa-miR-802, hsa-miR-770-5p, hsa-miR-769-5p, hsa-miR-769-3p, hsa-miR-767-5p, hsa-miR-767-3p, hsa-miR-766, hsa-miR-765, hsa-miR-764, hsa-miR-762, hsa-miR-761, hsa-miR-760, hsa-miR-759, hsa-miR-758, hsa-miR-744*, hsa-miR-744, hsa-miR-720, hsa-miR-7-2*, hsa-miR-718, hsa-miR-711, hsa-miR-7-1*, hsa-miR-708*, hsa-miR-708, hsa-miR-7, hsa-miR-675*, hsa-miR-675, hsa-miR-671-5p, hsa-miR-671-3p, hsa-miR-670, hsa-miR-668, hsa-miR-665, hsa-miR-664*, hsa-miR-664, hsa-miR-663b, hsa-miR-663, hsa-miR-662, hsa-miR-661, hsa-miR-660, hsa-miR-659, hsa-miR-658, hsa-miR-657, hsa-miR-656, hsa-miR-655, hsa-miR-654-5p, hsa-miR-654-3p, hsa-miR-653, hsa-miR-652, hsa-miR-651, hsa-miR-650, hsa-miR-649, hsa-miR-648, hsa-miR-647, hsa-miR-646, hsa-miR-645, hsa-miR-644, hsa-miR-643, hsa-miR-642, hsa-miR-641, hsa-miR-640, hsa-miR-639, hsa-miR-638, hsa-miR-637, hsa-miR-636, hsa-miR-635, hsa-miR-634, hsa-miR-633, hsa-miR-632, hsa-miR-631, hsa-miR-630, hsa-miR-629*, hsa-miR-629, hsa-miR-628-5p, hsa-miR-628-3p, hsa-miR-627, hsa-miR-626, hsa-miR-625*, hsa-miR-625, hsa-miR-624*, hsa-miR-624, hsa-miR-623, hsa-miR-622, hsa-miR-621, hsa-miR-620, hsa-miR-619, hsa-miR-618, hsa-miR-617, hsa-miR-616*, hsa-miR-616, hsa-miR-615-5p, hsa-miR-615-3p, hsa-miR-614, hsa-miR-613, hsa-miR-612, hsa-miR-611, hsa-miR-610, hsa-miR-609, hsa-miR-608, hsa-miR-607, hsa-miR-606, hsa-miR-605, hsa-miR-604, hsa-miR-603, hsa-miR-602, hsa-miR-601, hsa-miR-600, hsa-miR-599, hsa-miR-598, hsa-miR-597, hsa-miR-596, hsa-miR-595, hsa-miR-593*, hsa-miR-593, hsa-miR-592, hsa-miR-591, hsa-miR-590-5p, hsa-miR-590-3p, hsa-miR-589*, hsa-miR-589, hsa-miR-588, hsa-miR-587, hsa-miR-586, hsa-miR-585, hsa-miR-584, hsa-miR-583, hsa-miR-582-5p, hsa-miR-582-3p, hsa-miR-581, hsa-miR-580, hsa-miR-579, hsa-miR-578, hsa-miR-577, hsa-miR-576-5p, hsa-miR-576-3p, hsa-miR-575, hsa-miR-574-5p, hsa-miR-574-3p, hsa-miR-573, hsa-miR-572, hsa-miR-571, hsa-miR-570, hsa-miR-569, hsa-miR-568, hsa-miR-567, hsa-miR-566, hsa-miR-564, hsa-miR-563, hsa-miR-562, hsa-miR-561, hsa-miR-559, hsa-miR-558, hsa-miR-557, hsa-miR-556-5p, hsa-miR-556-3p, hsa-miR-555, hsa-miR-554, hsa-miR-553, hsa-miR-552, hsa-miR-551 b*, hsa-miR-551 b, hsa-miR-551 a, hsa-miR-550*, hsa-miR-550, hsa-miR-549, hsa-miR-548q, hsa-miR-548p, hsa-miR-548o, hsa-miR-548n, hsa-miR-548m, hsa-miR-5481, hsa-miR-548k, hsa-miR-548j, hsa-miR-548i, hsa-miR-548h, hsa-miR-548g, hsa-miR-548f, hsa-miR-548e, hsa-miR-548d-5p, hsa-miR-548d-3p, hsa-miR-548c-5p, hsa-miR-548c-3p, hsa-miR-548b-5p, hsa-miR-548b-3p, hsa-miR-548a-5p, hsa-miR-548a-3p, hsa-miR-545*, hsa-miR-545, hsa-miR-544, hsa-miR-543, hsa-miR-542-5p, hsa-miR-542-3p, hsa-miR-541*, hsa-miR-541, hsa-miR-539, hsa-miR-532-5p, hsa-miR-532-3p, hsa-miR-527, hsa-miR-526b*, hsa-miR-526b, hsa-miR-526a, hsa-miR-525-5p, hsa-miR-525-3p, hsa-miR-524-5p, hsa-miR-524-3p, hsa-miR-523*, hsa-miR-523, hsa-miR-522*, hsa-miR-522, hsa-miR-521, hsa-miR-520h, hsa-miR-520g, hsa-miR-520f, hsa-miR-520e, hsa-miR-520d-5p, hsa-miR-520d-3p, hsa-miR-520c-5p, hsa-miR-520c-3p, hsa-miR-520b, hsa-miR-520a-5p, hsa-miR-520a-3p, hsa-miR-519e*, hsa-miR-519e, hsa-miR-519d, hsa-miR-519c-5p, hsa-miR-519c-3p, hsa-miR-519b-5p, hsa-miR-519b-3p, hsa-miR-519a*, hsa-miR-519a, hsa-miR-518f*, hsa-miR-518f, hsa-miR-518e*, hsa-miR-518e, hsa-miR-518d-5p, hsa-miR-518d-3p, hsa-miR-518c*, hsa-miR-518c, hsa-miR-518b, hsa-miR-518a-5p, hsa-miR-518a-3p, hsa-miR-517c, hsa-miR-517b, hsa-miR-517a, hsa-miR-517*, hsa-miR-516b*, hsa-miR-516b, hsa-miR-516a-5p, hsa-miR-516a-3p, hsa-miR-515-5p, hsa-miR-515-3p, hsa-miR-514, hsa-miR-513c, hsa-miR-513b, hsa-miR-513a-5p, hsa-miR-513a-3p, hsa-miR-512-5p, hsa-miR-512-3p, hsa-miR-511, hsa-miR-510, hsa-miR-509-5p, hsa-miR-509-3p, hsa-miR-509-3-5p, hsa-miR-508-5p, hsa-miR-508-3p, hsa-miR-507, hsa-miR-506, hsa-miR-505*, hsa-miR-505, hsa-miR-504, hsa-miR-503, hsa-miR-502-5p, hsa-miR-502-3p, hsa-miR-501-5p, hsa-miR-501-3p, hsa-miR-500*, hsa-miR-500, hsa-miR-499-5p, hsa-miR-499-3p, hsa-miR-498, hsa-miR-497*, hsa-miR-497, hsa-miR-496, hsa-miR-495, hsa-miR-494, hsa-miR-493*, hsa-miR-493, hsa-miR-492, hsa-miR-491-5p, hsa-miR-491-3p, hsa-miR-490-5p, hsa-miR-490-3p, hsa-miR-489, hsa-miR-488*, hsa-miR-488, hsa-miR-487b, hsa-miR-487a, hsa-miR-486-5p, hsa-miR-486-3p, hsa-miR-485-5p, hsa-miR-485-3p, hsa-miR-484, hsa-miR-483-5p, hsa-miR-483-3p, hsa-miR-455-5p, hsa-miR-455-3p, hsa-miR-454*, hsa-miR-454, hsa-miR-453, hsa-miR-452*, hsa-miR-452, hsa-miR-451, hsa-miR-450b-5p, hsa-miR-450b-3p, hsa-miR-450a, hsa-miR-449c*, hsa-miR-449c, hsa-miR-449b*, hsa-miR-449b, hsa-miR-449a, hsa-miR-448, hsa-miR-433, hsa-miR-432*, hsa-miR-432, hsa-miR-431*, hsa-miR-431, hsa-miR-429, hsa-miR-425*, hsa-miR-425, hsa-miR-424*, hsa-miR-424, hsa-miR-423-5p, hsa-miR-423-3p, hsa-miR-422a, hsa-miR-421, hsa-miR-412, hsa-miR-411*, hsa-miR-411, hsa-miR-410, hsa-miR-409-5p, hsa-miR-409-3p, hsa-miR-384, hsa-miR-383, hsa-miR-382, hsa-miR-381, hsa-miR-380*, hsa-miR-380, hsa-miR-379*, hsa-miR-379, hsa-miR-378*, hsa-miR-378, hsa-miR-377*, hsa-miR-377, hsa-miR-376c, hsa-miR-376b, hsa-miR-376a*, hsa-miR-376a, hsa-miR-375, hsa-miR-374b*, hsa-miR-374b, hsa-miR-374a*, hsa-miR-374a, hsa-miR-373*, hsa-miR-373, hsa-miR-372, hsa-miR-371-5p, hsa-miR-371-3p, hsa-miR-370, hsa-miR-369-5p, hsa-miR-369-3p, hsa-miR-367*, hsa-miR-367, hsa-miR-365*, hsa-miR-365, hsa-miR-363*, hsa-miR-363, hsa-miR-362-5p, hsa-miR-362-3p, hsa-miR-361-5p, hsa-miR-361-3p, hsa-miR-34c-5p, hsa-miR-34c-3p, hsa-miR-34b*, hsa-miR-34b, hsa-miR-34a*, hsa-miR-34a, hsa-miR-346, hsa-miR-345, hsa-miR-342-5p, hsa-miR-342-3p, hsa-miR-340*, hsa-miR-340, hsa-miR-33b*, hsa-miR-33b, hsa-miR-33a*, hsa-miR-33a, hsa-miR-339-5p, hsa-miR-339-3p, hsa-miR-338-5p, hsa-miR-338-3p, hsa-miR-337-5p, hsa-miR-337-3p, hsa-miR-335*, hsa-miR-335, hsa-miR-331-5p, hsa-miR-331-3p, hsa-miR-330-5p, hsa-miR-330-3p, hsa-miR-329, hsa-miR-328, hsa-miR-326, hsa-miR-325, hsa-miR-324-5p, hsa-miR-324-3p, hsa-miR-323-5p, hsa-miR-323-3p, hsa-miR-320d, hsa-miR-320c, hsa-miR-320b, hsa-miR-320a, hsa-miR-32*, hsa-miR-32, hsa-miR-31*, hsa-miR-31, hsa-miR-30e*, hsa-miR-30e, hsa-miR-30d*, hsa-miR-30d, hsa-miR-30c-2*, hsa-miR-30c-1*, hsa-miR-30c, hsa-miR-30b*, hsa-miR-30b, hsa-miR-30a*, hsa-miR-30a, hsa-miR-302f, hsa-miR-302e, hsa-miR-302d*, hsa-miR-302d, hsa-miR-302c*, hsa-miR-302c, hsa-miR-302b*, hsa-miR-302b, hsa-miR-302a*, hsa-miR-302a, hsa-miR-301 b, hsa-miR-301 a, hsa-miR-300, hsa-miR-29c*, hsa-miR-29c, hsa-miR-29b-2*, hsa-miR-29b-1*, hsa-miR-29b, hsa-miR-29a*, hsa-miR-29a, hsa-miR-299-5p, hsa-miR-299-3p, hsa-miR-298, hsa-miR-297, hsa-miR-296-5p, hsa-miR-296-3p, hsa-miR-28-5p, hsa-miR-28-3p, hsa-miR-27b*, hsa-miR-27b, hsa-miR-27a*, hsa-miR-27a, hsa-miR-26b*, hsa-miR-26b, hsa-miR-26a-2*, hsa-miR-26a-1*, hsa-miR-26a, hsa-miR-25*, hsa-miR-25, hsa-miR-24-2*, hsa-miR-24-1*, hsa-miR-24, hsa-miR-23b*, hsa-miR-23b, hsa-miR-23a*, hsa-miR-23a, hsa-miR-2278, hsa-miR-2277, hsa-miR-2276, hsa-miR-224*, hsa-miR-224, hsa-miR-223*, hsa-miR-223, hsa-miR-222*, hsa-miR-222, hsa-miR-221*, hsa-miR-221, hsa-miR-220c, hsa-miR-220b, hsa-miR-220a, hsa-miR-22*, hsa-miR-22, hsa-miR-219-5p, hsa-miR-219-2-3p, hsa-miR-219-1-3p, hsa-miR-218-2*, hsa-miR-218-1*, hsa-miR-218, hsa-miR-217, hsa-miR-216b, hsa-miR-216a, hsa-miR-215, hsa-miR-214*, hsa-miR-214, hsa-miR-212, hsa-miR-2117, hsa-miR-2116*, hsa-miR-2116, hsa-miR-2115*, hsa-miR-2115, hsa-miR-2114*, hsa-miR-2114, hsa-miR-2113, hsa-miR-2110, hsa-miR-211, hsa-miR-210, hsa-miR-21*, hsa-miR-21, hsa-miR-20b*, hsa-miR-20b, hsa-miR-20a*, hsa-miR-20a, hsa-miR-208b, hsa-miR-208a, hsa-miR-206, hsa-miR-2054, hsa-miR-2053, hsa-miR-2052, hsa-miR-205*, hsa-miR-205, hsa-miR-204, hsa-miR-203, hsa-miR-202*, hsa-miR-202, hsa-miR-200c*, hsa-miR-200c, hsa-miR-200b*, hsa-miR-200b, hsa-miR-200a*, hsa-miR-200a, hsa-miR-19b-2*, hsa-miR-19b-1*, hsa-miR-19b, hsa-miR-19a*, hsa-miR-19a, hsa-miR-199b-5p, hsa-miR-199b-3p, hsa-miR-199a-5p, hsa-miR-199a-3p, hsa-miR-198, hsa-miR-1979, hsa-miR-1978, hsa-miR-1977, hsa-miR-1976, hsa-miR-1975, hsa-miR-1974, hsa-miR-1973, hsa-miR-1972, hsa-miR-197, hsa-miR-196b*, hsa-miR-196b, hsa-miR-196a*, hsa-miR-196a, hsa-miR-195*, hsa-miR-195, hsa-miR-194*, hsa-miR-194, hsa-miR-193b*, hsa-miR-193b, hsa-miR-193a-5p, hsa-miR-193a-3p, hsa-miR-192*, hsa-miR-192, hsa-miR-1915*, hsa-miR-1915, hsa-miR-1914*, hsa-miR-1914, hsa-miR-1913, hsa-miR-1912, hsa-miR-1911*, hsa-miR-1911, hsa-miR-1910, hsa-miR-191*, hsa-miR-191, hsa-miR-190b, hsa-miR-1909*, hsa-miR-1909, hsa-miR-1908, hsa-miR-190, hsa-miR-18b*, hsa-miR-18b, hsa-miR-18a*, hsa-miR-18a, hsa-miR-188-5p, hsa-miR-188-3p, hsa-miR-187*, hsa-miR-187, hsa-miR-186*, hsa-miR-186, hsa-miR-185*, hsa-miR-185, hsa-miR-184, hsa-miR-183*, hsa-miR-183, hsa-miR-1827, hsa-miR-1826, hsa-miR-1825, hsa-miR-182*, hsa-miR-182, hsa-miR-181d, hsa-miR-181c*, hsa-miR-181 c, hsa-miR-181 b, hsa-miR-181a-2*, hsa-miR-181a*, hsa-miR-181a, hsa-miR-17*, hsa-miR-17, hsa-miR-16-2*, hsa-miR-16-1*, hsa-miR-16, hsa-miR-15b*, hsa-miR-15b, hsa-miR-15a*, hsa-miR-15a, hsa-miR-155*, hsa-miR-155, hsa-miR-154*, hsa-miR-154, hsa-miR-1539, hsa-miR-1538, hsa-miR-1537, hsa-miR-153, hsa-miR-152, hsa-miR-151-5p, hsa-miR-151-3p, hsa-miR-150*, hsa-miR-150, hsa-miR-149*, hsa-miR-149, hsa-miR-148b*, hsa-miR-148b, hsa-miff-148a*, hsa-miR-148a, hsa-miR-147b, hsa-miR-1471, hsa-miR-1470, hsa-miR-147, hsa-miR-146b-5p, hsa-miR-146b-3p, hsa-miR-146a*, hsa-miR-146a, hsa-miR-1469, hsa-miR-1468, hsa-miR-145*, hsa-miR-145, hsa-miR-144*, hsa-miR-144, hsa-miR-143*, hsa-miR-143, hsa-miR-142-5p, hsa-miR-142-3p, hsa-miR-141*, hsa-miR-141, hsa-miR-140-5p, hsa-miR-140-3p, hsa-miR-139-5p, hsa-miR-139-3p, hsa-miR-138-2*, hsa-miR-138-1*, hsa-miR-138, hsa-miR-137, hsa-miR-136*, hsa-miR-136, hsa-miR-135b*, hsa-miR-135b, hsa-miR-135a*, hsa-miR-135a, hsa-miR-134, hsa-miR-133b, hsa-miR-133a, hsa-miR-1324, hsa-miR-1323, hsa-miR-1322, hsa-miR-1321, hsa-miR-132*, hsa-miR-132, hsa-miR-130b*, hsa-miR-130b, hsa-miR-130a*, hsa-miR-130a, hsa-miR-1308, hsa-miR-1307, hsa-miR-1306, hsa-miR-1305, hsa-miR-1304, hsa-miR-1303, hsa-miR-1302, hsa-miR-1301, hsa-miR-1299, hsa-miR-1298, hsa-miR-1297, hsa-miR-1296, hsa-miR-129-5p, hsa-miR-1295, hsa-miR-1294, hsa-miR-129-3p, hsa-miR-1293, hsa-miR-1292, hsa-miR-1291, hsa-miR-1290, hsa-miR-129*, hsa-miR-1289, hsa-miR-1288, hsa-miR-1287, hsa-miR-1286, hsa-miR-1285, hsa-miR-1284, hsa-miR-1283, hsa-miR-1282, hsa-miR-1281, hsa-miR-1280, hsa-miR-128, hsa-miR-1279, hsa-miR-1278, hsa-miR-1277, hsa-miR-1276, hsa-miR-127-5p, hsa-miR-1275, hsa-miR-1274b, hsa-miR-1274a, hsa-miR-127-3p, hsa-miR-1273, hsa-miR-1272, hsa-miR-1271, hsa-miR-1270, hsa-miR-1269, hsa-miR-1268, hsa-miR-1267, hsa-miR-1266, hsa-miR-1265, hsa-miR-1264, hsa-miR-1263, hsa-miR-1262, hsa-miR-1261, hsa-miR-1260, hsa-miR-126*, hsa-miR-126, hsa-miR-125b-2*, hsa-miR-125b-1*, hsa-miR-125b, hsa-miR-125a-5p, hsa-miR-125a-3p, hsa-miR-1259, hsa-miR-1258, hsa-miR-1257, hsa-miR-1256, hsa-miR-1255b, hsa-miR-1255a, hsa-miR-1254, hsa-miR-1253, hsa-miR-1252, hsa-miR-1251, hsa-miR-1250, hsa-miR-1249, hsa-miR-1248, hsa-miR-1247, hsa-miR-1246, hsa-miR-1245, hsa-miR-1244, hsa-miR-1243, hsa-miR-124*, hsa-miR-124, hsa-miR-1238, hsa-miR-1237, hsa-miR-1236, hsa-miR-1234, hsa-miR-1233, hsa-miR-1231, hsa-miR-1229, hsa-miR-1228*, hsa-miR-1228, hsa-miR-1227, hsa-miR-1226*, hsa-miR-1226, hsa-miR-1225-5p, hsa-miR-1225-3p, hsa-miR-1224-5p, hsa-miR-1224-3p, hsa-miR-122*, hsa-miR-122, hsa-miR-1208, hsa-miR-1207-5p, hsa-miR-1207-3p, hsa-miR-1206, hsa-miR-1205, hsa-miR-1204, hsa-miR-1203, hsa-miR-1202, hsa-miR-1201, hsa-miR-1200, hsa-miR-1197, hsa-miR-1185, hsa-miR-1184, hsa-miR-1183, hsa-miR-1182, hsa-miR-1181, hsa-miR-1180, hsa-miR-1179, hsa-miR-1178, hsa-miR-10b*, hsa-miR-10b, hsa-miR-10a*, hsa-miR-10a, hsa-miR-107, hsa-miR-106b*, hsa-miR-106b, hsa-miR-106a*, hsa-miR-106a, hsa-miR-105*, hsa-miR-105, hsa-miR-103-as, hsa-miR-103-2*, hsa-miR-103, hsa-miR-101*, hsa-miR-101, hsa-miR-100*, hsa-miR-100, hsa-miR-1, hsa-let-7i*, hsa-let-7i, hsa-let-7g*, hsa-let-7g, hsa-let-7f-2*, hsa-let-7f-1*, hsa-let-7f, hsa-let-7e*, hsa-let-7e, hsa-let-7d*, hsa-let-7d, hsa-let-7c*, hsa-let-7c, hsa-let-7b*, hsa-let-7b, hsa-let-7a-2*, hsa-let-7a*, hsa-let-7a, hsa-life-1, hsa-life-2, hsa-life-2-AS, hsa-life-3, hsa-life-4, hsa-life-6-5p, hsa-life-6-3p, hsa-life-7-AS, hsa-life-7, hsa-life-9, hsa-life-9-AS, hsa-life-11, hsa-life-12-5p, hsa-life-12-3p, hsa-life-13-3p, hsa-life-13-5p, hsa-life-14-3p, hsa-life-14-5p, hsa-life-17, hsa-life-21, hsa-life-22, hsa-life-26-3p, hsa-life-26-5p, hsa-life-27, hsa-life-31-5p, hsa-life-31-3p, hsa-life-33-AS, hsa-life-33, hsa-life-36-3p, hsa-life-36-5p, hsa-life-37-3p, hsa-life-37-5p, hsa-life-5-5p, hsa-life-5-3p, hsa-life-8, hsa-life-10, hsa-life-15-3p, hsa-life-15-5p, hsa-life-16-5p, hsa-life-16-3p, hsa-life-18, hsa-life-19-5p, hsa-life-19-3p, hsa-life-20-3p, hsa-life-20-5p, hsa-life-23-3p, hsa-life-23-5p, hsa-life-24, hsa-life-25, hsa-life-28-3p, hsa-life-28-5p, hsa-life-29, hsa-life-30, hsa-life-32-AS, hsa-life-32, hsa-life-34-3p, hsa-life-34-5p, hsa-life-35.
  • 3. The method according to item 1 or 2, wherein the predetermined set of non-coding RNAs, including miRNAs representative for diagnosis of prostate cancer comprises at least 1, 7, 10, 15, 20, 25, 30, 35, 40, 50, 75, 100 of non-coding RNAs including miRNAs.
  • 4. The method according to item 1, 2 or 3, wherein the predetermined set of miRNAs representative for diagnosis of prostate cancer comprises at least 1, 7, 10, 15, 20, 25, 30, 35, 40, 50, 75, 100 of the miRNAs selected from the group consisting of hsa-miR-144*, hsa-miR-148a, hsa-miR-519b-5p, hsa-miR-1324, hsa-miR-137, hsa-miR-556-5p, hsa-miR-330-3p, hsa-miR-361-5p, hsa-miR-891 b, hsa-miR-767-5p, hsa-miR-744*, hsa-miR-208b, hsa-miR-548p, hsa-miR-20a*, hsa-miR-195, hsa-miR-33b, hsa-miR-1283, hsa-miR-519c-5p, hsa-miR-497, hsa-miR-9*, hsa-miR-200a, hsa-miR-338-3p, hsa-miR-515-5p, hsa-miR-31*, hsa-miR-551 b*, hsa-miR-518e*, hsa-miR-127-5p, hsa-miR-21*, hsa-miR-216a, hsa-miR-452*, hsa-miR-183*, hsa-miR-500, hsa-miR-1826, hsa-miR-625*, hsa-miR-513b, hsa-miR-526a, hsa-miR-33a, hsa-miR-1243, hsa-miR-517*, hsa-miR-541, hsa-miR-217, hsa-miR-621, hsa-miR-518d-5p, hsa-miR-873, hsa-miR-103-as, hsa-miR-450b-5p, hsa-miR-545, hsa-miR-1251, hsa-miR-885-5p, hsa-miR-922, hsa-miR-628-5p, hsa-miR-548f, hsa-miR-802, hsa-miR-25, hsa-miR-423-3p, hsa-miR-522*, hsa-miR-519a*, hsa-miR-455-3p, hsa-miR-1245, hsa-miR-362-5p, hsa-miR-1184, hsa-miR-191, hsa-miR-487a, hsa-miR-216b, hsa-miR-525-5p, hsa-miR-509-3-5p, hsa-miR-27a*, hsa-miR-488*, hsa-miR-1226, hsa-miR-646, hsa-miR-527, hsa-miR-635, hsa-miR-1825, hsa-let-7i*.
  • 5. The method according to any one of items 1-4 wherein said biological sample is selected from blood and/or serum or urine samples.
  • 6. The method according to any one of items 1-5 wherein miRNA the expression profile is determined by nucleic acid hybridization, nucleic acid amplification, polymerase extension, sequencing, mass spectroscopy or any combinations thereof.
  • 7. The method according to any one of items 1-6, wherein the miRNA expression profile of said subject and the reference expression profiles and optionally the predetermined set of miRNAs are stored in a database.
  • 8. The method according to any one of items 1-7, wherein the biological sample is not labeled prior to determination of the expression profile.
  • 9. The method according to any one of items 1-8 wherein the diagnosis comprises determining survival rate, responsiveness to drugs, and/or monitoring the course of the disease or the therapy, e.g. chemotherapy.
  • 10. The method of item 6 wherein the nucleic acid hybridisation is performed using a solid-phase nucleic acid biochip array, in particular a microarray or in situ hybridisation, and/or wherein the nucleic acid amplification is performed via a real-time PCR (RT-PCR).
  • 11. A kit for diagnosing and/or predicting prostate cancer of a subject, comprising:
      • (a) means for determining the miRNA expression profile of a RNA sample of a subject, and
      • (b) at least one reference set of miRNA profile characteristic for a particular condition.
  • So far, miRNAs have been extensively studied in tissue material. It has been found that miRNAs are expressed in a highly tissue-specific manner. Disease-specific expression of miRNAs have been reported in many human cancers employing primarily tissue material as the miRNA source. In this context miRNAs expression profiles were found to be useful in identifying the tissue of origin for cancers of unknown primary origin. Since recently it is known that miRNAs are not only present in tissues but also in other body fluid samples, including human blood. Nevertheless, the mechanism why miRNAs are found in body fluids, especially in blood, or their function in these body fluids is not understood yet.
  • Various miRNA biomarkers found in tissue material have been proposed to be correlated with certain diseases, e.g. cancer. However, there is still a need for novel miRNAs as biomarkers for the detection and/or prediction of these and other types of diseases. Especially desirable are non-invasive biomarkers, that allow for quick, easy and cost-effective diagnosis/prognosis which cause only minimal stress for the patient eliminating the need for surgical intervention.
  • Particularly, the potential role of miRNAs as non-invasive biomarkers for the diagnosis and/or prognosis of prostate cancer has not been systematically evaluated yet. In addition, many of the miRNA biomarkers presently available for diagnosing and/or prognosing of diseases have shortcomings such as reduced sensitivity, not sufficient specificity or do not allow timely diagnosis or represent invasive biomarkers. Accordingly, there is still a need for novel and efficient miRNAs or sets of miRNAs as markers, effective methods and kits for the non-invasive diagnosis and/or prognosis of diseases such as prostate cancer.
  • The inventors of the present invention assessed for the first time the expression of miRNAs on a whole-genome level in subjects with prostate cancer as non-invasive biomarkers from body fluids, preferably in blood. They surprisingly found that miRNAs are significantly dysregulated in blood of prostate cancer subjects in comparison to healthy controls and thus, miRNAs are appropriated non-invasive biomarkers for diagnosing and/or prognosing of prostate cancer. This finding is surprising, since there is nearly no overlap of the miRNA biomarkers found in blood and the miRNA biomarkers found in tissue material representing the origin of the disease. The inventors of the present invention surprisingly found miRNA biomarkers in body fluids, especially in blood, that have not been found to be correlated to prostate cancer when tissues material was used for this kind of analysis. Therefore, the inventors of the invention identified for the first time miRNAs as non-invasive surrogate biomarkers for diagnosis and/or prognosis of prostate cancer. The inventors of the present invention identified single miRNAs which predict prostate cancer with high specificity, sensitivity and accuracy. The inventors of the present invention also pursued a multiple biomarker strategy, thus implementing sets of miRNA biomarkers for diagnosing and/or prognosing of prostate cancer leading to added specificity, sensitivity, accuracy and predictive power, thereby circumventing the limitations of single biomarker. In detail, by using a machine learning algorithms, they identified unique sets of miRNAs (miRNA signatures) that allow for non-invasive diagnosis of prostate cancer with even higher power, indicating that sets of miRNAs (miRNA signatures) derived from a body fluid sample, such as blood from a subject (e.g. human) can be used as novel non-invasive biomarkers.
  • The inventors of the present invention surprisingly found that miRNAs are significantly dysregulated in body fluid samples such as blood of prostate cancer subjects in comparison to a cohort of controls (healthy subjects) and thus, miRNAs are appropriated biomarkers for diagnosing and/or prognosing of prostate cancer in a non-invasive fashion. Furthermore, the predetermined sets of miRNAs of the present invention lead to high performance in diagnosing and/or prognosing of prostate cancer, thus expose very high specificity, sensitivity and accuracy. They succeeded in determining the miRNAs that are differentially regulated in body fluid samples from patients having prostate cancer compared to a cohort of controls (healthy subjects) (see experimental section for experimental details). Additionally, the inventors of the present invention performed hypothesis tests (e.g. t-test, limma-test) or other measurements (e.g. AUC, mutual information) on the expression level of the found miRNAs, in all controls (healthy subjects) and subjects suffering from prostate cancer. These tests resulted in a significance value (p-value) for each miRNA. This p-value is a measure for the diagnostic power of each of these single miRNAs to discriminate, for example, between the two clinical conditions: controls (healthy subjects), i.e. not suffering from prostate cancer, or diseased, i.e. suffering from prostate cancer. Since a manifold of tests are carried out, one for each miRNA, the p-values may be too optimistic and, thus, over-estimate the actual discriminatory power. Hence, the p-values are corrected for multiple testing by the Benjamini Hochberg approach.
  • The term “body fluid sample”, as used in the context of the present invention, refers to liquids originating from the body of a subject. Said body fluid samples include, but are not limited to, blood, urine, sputum, breast milk, cerebrospinal fluid, cerumen (earwax), endolymph, perilymph, gastric juice, mucus, peritoneal fluid, pleural fluid, saliva, sebum (skin oil), semen, sweat, tears, vaginal secretion, vomit including components or fractions thereof. Said body fluid samples may be mixed or pooled, e.g. a body fluid sample may be a mixture of blood and urine samples or blood and tissue material. A “body fluid sample” may be provided by removing a body liquid from a subject, but may also be provided by using previously isolated sample material. Preferably, the body fluid sample from a subject (e.g. human or animal) has a volume of between 0.1 and 20 ml, more preferably of between 0.5 and 10 ml, more preferably between 1 and 8 ml and most preferably between 2 and 5 ml, i.e. 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2, 2.5, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 ml. In the context of the present invention said “body fluid sample” allows for a non-invasive diagnosis/and or prognosis of a subject.
  • The term “blood sample”, as used in the context of the present invention, refers to a blood sample originating from a subject. The “blood sample” may be derived by removing blood from a subject by conventional blood collecting techniques, but may also be provided by using previously isolated and/or stored blood samples. For example a blood sample may be whole blood, plasma, serum, PBMC (peripheral blood mononuclear cells), blood cellular fractions including red blood cells (erythrocytes), white blood cells (leukocytes), platelets (thrombocytes), or blood collected in blood collection tubes (e.g. EDTA-, heparin-, citrate-, PAXgene- , Tempus-tubes) including components or fractions thereof. For example, a blood sample may be taken from a subject suspected to be affected or to be suspected to be affected by prostate cancer, prior to initiation of a therapeutic treatment, during the therapeutic treatment and/or after the therapeutic treatment. Preferably, the blood sample from a subject (e.g. human or animal) has a volume of between 0.1 and 20 ml, more preferably of between 0.5 and 10 ml, more preferably between 1 and 8 ml and most preferably between 2 and 5 ml, i.e. 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2, 2.5, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 ml. In the context of the present invention said “body fluid sample” allows for a non-invasive diagnosis/and or prognosis of a subject.
  • Preferably, when the blood sample is collected from the subject the RNA-fraction, especially the the miRNA fraction, is guarded against degradation. For this purpose special collection tubes (e.g. PAXgene RNA tubes from Preanalytix, Tempus Blood RNA tubes from Applied Biosystems) or additives (e.g. RNAlater from Ambion, RNAsin from Promega) that stabilize the RNA fraction and/or the miRNA fraction are employed.
  • The biological sample, preferably the body fluid sample may be from a subject (e.g. human or mammal) that has been therapeutically treated or that has not been therapeutically treated. In one embodiment, the therapeutical treatment is monitored on the basis of the detection of the miRNA or set of miRNAs by the polynucleotide or set of polynucleotides of the invention. It is also preferred that total RNA or a subfraction thereof, isolated (e.g. extracted) from a biological sample of a subject (e.g. human or animal), is used for detecting the miRNA or set of miRNAs by the polynucleotide or set of polynucleotides or primer pairs of the invention.
  • The term “non-invasive”, as used in the context of the present invention, refers to methods for obtaining a biological sample, particularly a body fluid sample, without the need for an invasive surgical intervention or invasive medical procedure. In the context of the present invention, a blood drawn represents a non-invasive procedure, therefore a blood-based test (utilizing blood or fractions thereof) is a non-invasive test. Other body fluid samples for non-invasive tests are e.g. urine, sputum, tears, mothers mild, cerumen, sweat, saliva, vaginal secretion, vomit, etc.
  • The term “diagnosis” as used in the context of the present invention refers to the process of determining a possible disease or disorder and therefore is a process attempting to define the (clinical) condition of a subject. The determination of the expression level of a set of miRNAs according to the present invention correlates with the (clinical) condition of a subject. Preferably, the diagnosis comprises (i) determining the occurrence/presence of prostate cancer, (ii) monitoring the course of prostate cancer, (iii) staging of prostate cancer, (iv) measuring the response of a patient with prostate cancer to therapeutic intervention, and/or (v) segmentation of a subject suffering from prostate cancer.
  • The term “prognosis” as used in the context of the present invention refers to describing the likelihood of the outcome or course of a disease or a disorder. Preferably, the prognosis comprises (i) identifying of a subject who has a risk to develop prostate cancer, (ii) predicting/estimating the occurrence, preferably the severity of occurrence of prostate cancer, and/or(iii) predicting the response of a subject with prostate cancer to therapeutic intervention.
  • The term “suffering or suspected to be suffering from prostate cancer” as used in the context of the present invention comprises the diagnosis and/or prognosis of prostate cancer in a suspect as defined above.
  • In a first aspect, the present invention relates to a method for diagnosing and/or prognosing of prostate cancer comprising the steps of:
      • (i) determining an expression profile of a predetermined set comprising at least two miRNAs representative for prostate cancer in a body fluid sample from a subject, and
      • (ii) comparing said expression profile to a reference expression profile, wherein the comparison of said expression profile to said reference expression profile allows for the diagnosis and/or prognosis of prostate cancer.
  • It is preferred that the body fluid sample is a blood sample, particularly preferred it is a whole blood, PBMC, serum or plasma sample, more particularly preferred it is a whole blood sample.
  • It is preferred that the subject is a mammal including both a human and another mammal, e.g. an animal such as a mouse, a rat, a rabbit, or a monkey. It is particularly preferred that the subject is a human.
  • Preferably, the predetermined set comprising at least two miRNAs is selected from the set of miRNAs listed in FIG. 2 or 5.
  • It is preferred that the predetermined set comprising at least two miRNAs is selected from the sets of miRNAs listed in FIG. 6 (SNP-1 to SNP-911). It is also preferred that the predetermined set comprising at least two miRNAs comprises at least one set of miRNAs listed in FIG. 6.
  • Further, in a preferred embodiment of the method of the present invention, for determining an expression profile of the predetermined set comprising at least two miRNAs representative for prostate cancer in a body fluid sample from a subject comprises the miRNAs from one set or a plurality of sets of miRNAs listed in FIG. 6.
  • For example, a set comprising 30 miRNAs representative for prostate cancer in a body fluid sample from a subject comprises at least the miRNAs from one predetermined set or several sets of miRNAs listed in FIG. 6. Alternatively, a set comprising 29, 28, 27,26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4 or 3 miRNAs representative for prostate cancer comprises at least the miRNAs from one set or several sets of miRNAs listed in FIG. 6.
  • Further, in another preferred embodiment of the method of the present invention, for determining an expression profile of the predetermined set comprising at least two miRNAs representative for prostate cancer in a body fluid sample from a subject comprises combinations of sets of miRNAs listed in FIG. 6.
  • For example, said predetermined set comprising 30 miRNAs representative for prostate cancer in a body fluid sample from a subject comprises at least 2, e.g. 2, 3, 4, 5 or 6, sets of miRNAs listed in FIG. 6. Alternatively, said set comprising 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5 or 4 miRNAs comprises a least 2, e.g. 2, 3, 4, 5 or 6, sets of miRNAs listed in FIG. 6.
  • The reference expression profile may be obtained from at least two subjects (e.g. human or animal). Preferably the reference expression profile is an average expression profile (data) of at least 2 to 400 subjects, more preferably at least 20 to 200 subjects, and most preferably at least 40 to 150 subjects, with one known clinical condition which is prostate cancer or a specific form of prostate cancer.
  • It is particularly preferred that the reference expression profile is an algorithm or mathematical function. Preferably the algorithm or mathematical function is obtained from a reference expression profile (data) of at least two subjects, preferably the algorithm or mathematical function is obtained from an average reference expression profile (data) of at least 2 to 400 subjects, more preferably of at least 20 to 200 subjects, and most preferably of at least 40 to 150 subjects.
  • It is preferred that the algorithm or mathematical function is obtained using a machine learning approach.
  • Preferably, the algorithm or mathematical function is saved on a data carrier comprised in the kit (according to the seventh aspect of the invention) or the computer program, wherein the algorithm or mathematical function is comprised, is saved on a data carrier comprised in the kit.
  • It is preferred that the miRNA expression profile may be generated by any convenient means, e.g. nucleic acid hybridization (e.g. to a microarray), nucleic acid amplification (PCR, RT-PCR, qRT-PCR, high-throughput RT-PCR), ELISA for quantitation, next generation sequencing (e.g. ABI SOLID, Illumina Genome Analyzer, Roche/454 GS FLX), flow cytometry (e.g. LUMINEX) and the like, that allow the analysis of differential miRNA expression levels between samples of a subject (e.g. diseased) and a control subject (e.g. healthy, reference sample).
  • Nucleic acid hybridization may be performed using a microarray/biochip or in situ hybridization. In situ hybridization is preferred for the analysis of a single miRNA or a set comprising a low number of miRNAs (e.g. a set of at least 2 to 50 miRNAs such as a set of 2, 5, 10, 20, 30, or 40 miRNAs). The microarray/biochip, however, allows the analysis of a single miRNA as well as a complex set of miRNAs (e.g. a all known miRNAs or subsets therof).
  • Nucleic acid amplification may be performed using real time polymerase chain reaction (RT-PCR) such as real time quantitative polymerase chain reaction (RT qPCR). The standard real time polymerase chain reaction (RT-PCR) is preferred for the analysis of a single miRNA or a set comprising a low number of miRNAs (e.g. a set of at least 2 to 50 miRNAs such as a set of 2, 5, 10, 20, 30, or 40 miRNAs), whereas high-throughput RT-PCR technologies (e.g. OpenArray from Applied Biosystems, SmartPCR from Wafergen, Biomark System from Fluidigm) are also able to measure large sets of miRNAS (e.g. a set of 10, 20, 30, 50, 80, 100, 200 or more) or all known miRNAs in a high parallel fashion. RT-PCR is particularly suitable for detecting low abandoned miRNAs.
  • In a second aspect, the invention relates to a set comprising polynucleotides for detecting a predetermined set comprising at least two miRNAs for diagnosing and/or prognosing of prostate cancer in a body fluid sample from a subject.
  • It is preferred that the body fluid sample is a blood sample, particularly preferred it is a whole blood, PBMC, serum or plasma sample, more particularly preferred it is a whole blood sample.
  • It is preferred that the subject is a mammal including both a human and another mammal, e.g. an animal such as a mouse, a rat, a rabbit, or a monkey. It is particularly preferred that the subject is a human.
  • Preferably, the predetermined set comprising at least two miRNAs is selected from the set of miRNAs listed in FIG. 2 or 5.
  • It is preferred that the predetermined set comprising at least two miRNAs is selected from the set of miRNAs listed in FIG. 6. It is preferred that the predetermined set comprising at least two miRNAs comprises at least one set of miRNAs listed in FIG. 6.
  • It is preferred that the polynucleotides comprised in the set of the present invention are complementary to the miRNAs comprised in the predetermined set, wherein the nucleotide sequences of said miRNAs are preferably selected from the group consisting of miRNAs listed in FIG. 2 or 5 or set of miRNAs listed in FIG. 6, a fragment thereof, and a sequence having at least 80%, 85%, 90% or 95% sequence identity thereto.
  • For example, the polynucleotides of the present invention are for detecting a predetermined set of 40 or 39 or 38 or 37 or 36 or 35 or 34 or 33 or 32 or 31 or 30 or 29 or 28 or 27 or 26 or 25 or 24 or 23 or 22 or 21 or 20 or 19 or 18 or 17 or 16 or 15 or 14 or 13 or 12 or 11 or 10 or 9 or 8 or 7 or 6 or 5 or 4 or 3 miRNAs wherein the set of miRNAs comprises at least one, e.g. 1, 2, 3, 4, 5 or 6, of the set of miRNAs listed in FIG. 6.
  • In a third aspect, the invention relates to the use of set of polynucleotides according to the second aspect of the invention for diagnosing and/or prognosing prostate cancer in a subject.
  • In a fourth aspect, the invention relates to a set of at least two primer pairs for determining the expression level of a predetermined set of miRNAs in a body fluid sample of a subject suffering or suspected of suffering from prostate cancer.
  • It is preferred that the body fluid sample is a blood sample, particularly preferred it is a whole blood, PBMC, serum or plasma sample, more particularly preferred it is a whole blood sample.
  • It is preferred that the subject is a mammal including both a human and another mammal, e.g. an animal such as a mouse, a rat, a rabbit, or a monkey. It is particularly preferred that the subject is a human.
  • Preferably, the predetermined set comprising at least two miRNAs is selected from the set of miRNAs listed in FIG. 2 or 5.
  • It is preferred that the predetermined set comprising at least two miRNAs is selected from the sets of miRNAs listed in FIG. 6. It is preferred that the predetermined set comprising at least two miRNAs comprises at least one set of miRNAs listed in FIG. 6.
  • It is preferred that the, set of at least two primer pairs for determining the expression level of a predetermined set of miRNAs in a body fluid sample of a subject suffering or suspected of suffering from prostate cancer are primer pairs that are specific for at least one miRNA listed in FIG. 2 or 5.
  • It is preferred that the set of at least two primer pairs for determining the expression level of a predetermined set of miRNAs in a body fluid sample of a subject suffering or suspected of suffering from prostate cancer are primer pairs that are specific for at least one set of miRNAs listed in FIG. 6.
  • It is preferred that the set of at least two primer pairs of the present invention are for detecting a set comprising, essentially consisting of, or consisting of at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40 or more miRNAs, and wherein the set of miRNAs comprises at least one of the sets listed in FIG. 6.
  • For example, the set of at least two primer pairs of the present invention are for detecting a predetermined set of 40 or 39 or 38 or 37 or 36 or 35 or 34 or 33 or 32 or 31 or 30 or 29 or 28 or 27 or 26 or 25 or 24 or 23 or 22 or 21 or 20 or 19 or 18 or 17 or 16 or 15 or 14 or 13 or 12 or 11 or 10 or 9 or 8 or 7 or 6 or 5 or 4 or 3 or 2 miRNAs wherein the predetermined set of miRNAs comprises at least one of the set of miRNAs listed in FIG. 6.
  • Preferably, the said primer pairs may be used for amplifying cDNA transcripts of the predetermined set of miRNAs selected from the miRNAs listed in FIG. 2 or FIG. 5. Furthermore, the said primer pairs may be used for amplifying cDNA transcripts of the set of miRNAs listed in FIG. 6.
  • It is understood that the primer pairs for detecting a predetermined set of miRNAs may consist of specific and or non-specific primers. Additionally, the set of primer pairs may be complemented by other substances or reagents (e.g. buffers, enzymes, dye, labelled probes) known to the skilled in the art for conducting real time polymerase chain reaction (RT-PCR).
  • In a fifth aspect, the invention relates to the use of a set of primer pairs according to the fourth aspect of the invention for diagnosing and/or prognosing prostate cancer in a subject.
  • In a sixth aspect, the invention relates to means for diagnosing and/or prognosing of prostate cancer in a body fluid sample of a subject.
  • Preferably, the invention relates to means for diagnosing and/or prognosing of prostate cancer in a body fluid sample of a subject comprising
      • (i) a set of at least two polynucleotides according to the second aspect of the invention or
      • (ii) a set of at least two primer pairs according the fourth aspect of the invention.
  • It is preferred that the body fluid sample is a blood sample, particularly preferred it is a whole blood, PBMC, serum or plasma sample, more particularly preferred it is a whole blood sample.
  • It is preferred that the subject is a mammal including both a human and another mammal, e.g. an animal such as a mouse, a rat, a rabbit, or a monkey. It is particularly preferred that the subject is a human.
  • Preferably, that the set of at least two polynucleotides or the set of at least 2 primer pairs are for detecting a predetermined set comprising at least two miRNAs for diagnosing and/or prognosing of prostate cancer in a body fluid sample, e.g. blood sample, from a subject, e.g. patient, human or animal, wherein the set of miRNAs is selected from the miRNAs listed in FIG. 2 or FIG. 5.
  • It is preferred that the set of at least two polynucleotides or the set of at least 2 primer pairs are for detecting a predetermined set comprising at least two miRNAs for diagnosing and/or prognosing of prostate cancer in a body fluid sample, e.g. blood sample, from a subject, e.g. patient, human or animal, wherein the set of miRNAs is selected from the sets of miRNAs listed in FIG. 6.
  • It is preferred that the set of at least two primer pairs for determining the expression level of a predetermined set of miRNAs in a body fluid sample of a subject suffering or suspected of suffering from prostate cancer are primer pairs that are specific for at least two miRNAs selected from the miRNAs listed in FIG. 2 or FIG. 5.
  • It is preferred that the set of at least two primer pairs for determining the expression level of a set of miRNAs in a body fluid sample of a subject suffering or suspected of suffering from prostate cancer are primer pairs that are specific for at least one set of miRNAs listed in FIG. 6.
  • It is also preferred that said means for diagnosing and/or prognosing of prostate cancer comprise, of a set of beads comprising a at least two polynucleotides according to the second aspect of the present invention. It is especially preferred that the beads are employed within a flow cytometer setup for diagnosing and/or prognosing of prostate cancer, e.g. in a LUMINEX system (www.luminexcorp.com).
  • In a seventh aspect, the invention relates to a kit for diagnosing and/or prognosing of prostate cancer in a subject.
  • Preferably, the invention relates to a kit for diagnosing and/or prognosing of prostate cancer comprising
      • (i) means for determining an expression profile of a predetermined set comprising at least two miRNAs representative for prostate cancer in a body fluid sample from a subject, and
      • (ii) at least one reference.
  • It is preferred that the body fluid sample is a blood sample, particularly preferred it is a whole blood, PBMC, serum or plasma sample, more particularly preferred it is a whole blood sample.
  • It is preferred that the subject is a mammal including both a human and another mammal, e.g. an animal such as a mouse, a rat, a rabbit, or a monkey. It is particularly preferred that the subject is a human.
  • Said means may comprise of at least two polynucleotides according to the second aspect of the present invention, a set of at least 2 primer pairs according to the fourth aspect of the invention; means according to the sixth aspect of the present invention; primers suitable to perform reverse transcriptase reaction and/or real time polymerase chain reaction such as quantitative polymerase chain reaction; and/or means for conducting next generation sequencing.
  • In an eighth aspect, the invention relates to a predetermined set of miRNAs in a body fluid sample isolated from a subject for diagnosing and/or prognosing of prostate cancer.
  • It is preferred that the body fluid sample is a blood sample, particularly preferred it is a whole blood, PBMC, serum or plasma sample, more particularly preferred it is a whole blood sample.
  • It is preferred that the subject is a mammal including both a human and another mammal, e.g. an animal such as a mouse, a rat, a rabbit, or a monkey. It is particularly preferred that the subject is a human.
  • Preferably, the predetermined set comprising at least two miRNAs is selected from the set of miRNAs listed in FIG. 2 or 5.
  • It is preferred that the predetermined set comprising at least two miRNAs is selected from the set of miRNAs listed in FIG. 6. It is preferred that the predetermined set comprising at least two miRNAs comprises at least one set of miRNAs listed in FIG. 6.
  • In a ninth aspect, the invention relates to the use of a set of miRNAs according to the eighth aspect of the invention for diagnosing and/or prognosing of prostate cancer in a subject.
  • The invention will now be illustrated by the following figures and the non-limiting experimental examples.
  • FIGURES
  • FIG. 1:
  • Overview of miRNA sequences published in the miRNA database 14.0 plus additional miRNA sequences.
  • FIG. 2:
  • Overview of all miRNAs that are found to be differentially regulated in blood samples of prostate cancer patients, grouped accordingly to their results in t-tests.
  • FIG. 3:
  • General overview of the method of diagnosing and/or predicting the state of health employing predetermined sets of miRNAs.
  • FIG. 4:
  • Prostate cancer patients against healthy controls - classification of: according to t-test with the 270 miRNAs with the lowest p-values (see FIG. 2) lead to an accuracy 82.8% a specificity of 87.5% and a sensitivity of 71.9%
  • red=prostate cancer patients (1=derived from 1 independent sample collection); blue=healthy controls (1,2,3,4,5=derived from 5 independent sample collections)
  • FIG. 5:
  • Overview of miRNAs that are found to be differentially regulated between healthy control and subjects suffering from prostate cancer. Experimental details: SEQ ID NO: sequence identification number, miRNA: identifier of the miRNA according to miRBase, median g1: median intensity obtained from microarray analysis for healthy controls, median g2: median intensity obtained from microarray analysis for individuals with prostate cancer, qmedian: ratio of median g1/median g2, logqmedian: log of qmedian, ttest_rawp: p-value obtained when applying t-test, ttest_adjp: adjusted p-value in order to reduce false discovery rate by Benjamini-Hochberg adjustment, AUC: Area under the curve, limma_rawp: p-value obtained when applying limma-test, limma_adjp: adjusted p-value in order to reduce false discovery rate by Benjamini-Hochberg adjustment.
  • FIG. 6:
  • Predetermined sets of miRNAs (miRNA signatures SNP-1 to 911) that allow for effective diagnosis and/or prognosis of subjects suffering or subjects suspected to suffering from prostate cancer. Experimental details: SEQ ID NO: sequence identification number, miRNA: identifier of the miRNA according to miRBase, Acc=accuracy, Spec=specificity, Sens=sensitivity
  • REFERENCES
  • Alvarez-Garcia, I. and E. A. Miska (2005). “MicroRNA functions in animal development and human disease.” Development 132(21): 4653-62.
  • Benjamini, Y. and Y. Hochberg (1995). “Controlling the false discovery rate: A practical and powerful approach to multiple testing.” J R Statist Soc B 57: 289-300.
  • Bolstad, B. M., R. A. Irizarry, et al. (2003). “A comparison of normalization methods for high density oligonucleotide array data based on variance and bias.” Bioinformatics 19(2): 185-93.
  • Calin, G. A. and C. M. Croce (2006). “MicroRNA-cancer connection: the beginning of a new tale.” Cancer Res 66(15): 7390-4.
  • Calin, G. A. and C. M. Croce (2006). “MicroRNA signatures in human cancers.” Nat Rev Cancer 6(11): 857-66.
  • Chen, X., Y. Ba, et al. (2008). “Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases.” Cell Res 18(10): 997-1006.
  • Crawford, M., E. Brawner, et al. (2008). “MicroRNA-126 inhibits invasion in non-small cell lung carcinoma cell lines.” Biochem Biophys Res Commun 373(4): 607-12.
  • Esquela-Kerscher, A. and F. J. Slack (2006). “Oncomirs—microRNAs with a role in cancer.” Nat Rev Cancer 6(4): 259-69.
  • Feitelson, M. A. and J. Lee (2007). “Hepatitis B virus integration, fragile sites, and hepatocarcinogenesis.” Cancer Lett 252(2): 157-70.
  • Gilad, S., E. Meiri, et al. (2008). “Serum microRNAs are promising novel biomarkers.” PLoS ONE 3(9): e3148.
  • Griffiths-Jones, S., R. J. Grocock, et al. (2006). “miRBase: microRNA sequences, targets and gene nomenclature.” Nucleic Acids Res 34(Database issue): D140-4.
  • Griffiths-Jones, S., S. Moxon, et al. (2005). “Rfam: annotating non-coding RNAs in complete genomes.” Nucleic Acids Res 33(Database issue): D121-4.
  • Griffiths-Jones, S., H. K. Saini, et al. (2008). “miRBase: tools for microRNA genomics.” Nucleic Acids Res 36(Database issue): D154-8.
  • Guo, L., Z. X. Huang, et al. (2008). “Differential Expression Profiles of microRNAs in NIH3T3 Cells in Response to UVB Irradiation.” Photochem Photobiol.
  • Harris, T. A., M. Yamakuchi, et al. (2008). “MicroRNA-126 regulates endothelial expression of vascular cell adhesion molecule 1.” Proc Natl Acad Sci USA 105(5): 1516-21.
  • Hayashita, Y., H. Osada, et al. (2005). “A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation.” Cancer Res 65(21): 9628-32.
  • He, L., J. M. Thomson, et al. (2005). “A microRNA polycistron as a potential human oncogene.” Nature 435(7043): 828-33.
  • Henschke, C. I. and D. F. Yankelevitz (2008). “CT screening for lung cancer: update 2007.” Oncologist 13(1): 65-78.
  • Hochberg, Y. (1988). “A sharper bonferroni procedure for multiple tests of significance.” Biometrica 75: 185-193.
  • Ichimi, T., H. Enokida, et al. (2009). “Identification of novel microRNA targets based on microRNA signatures in bladder cancer.” Int J Cancer.
  • Jemal, A., R. Siegel, et al. (2008). “Cancer statistics, 2008.” CA Cancer J Clin 58(2): 71-96.
  • Johnson, S. M., H. Grosshans, et al. (2005). “RAS is regulated by the let-7 microRNA family.” Cell 120(5): 635-47.
  • Keller, A., N. Ludwig, et al. (2006). “A minimally invasive multiple marker approach allows highly efficient detection of meningioma tumours.” BMC Bioinformatics 7: 539.
  • Lee, R. C., R. L. Feinbaum, et al. (1993). “The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14.” Cell 75(5): 843-54.
  • Lu, J., G. Getz, et al. (2005). “MicroRNA expression profiles classify human cancers.” Nature 435(7043): 834-8.
  • Mann, H. and F. Wilcoxon (1947). “On a test whether one of two random variables is stochastically larger than the other.” Ann Mat Stat 18: 50-60.
  • Sassen, S., E. A. Miska, et al. (2008). “MicroRNA: implications for cancer.” Virchows Arch 452(1): 1-10.
  • Scott, W. J., J. Howington, et al. (2007). “Treatment of non-small cell lung cancer stage I and stage II: ACCP evidence-based clinical practice guidelines (2nd edition).” Chest 132(3 Suppl): 234S-242S.
  • Shannon, C. (1984). “A mathematical theory of communication.” The Bell System Technical Journal 27: 623-656.
  • Stahlhut Espinosa, C. E. and F. J. Slack (2006). “The role of microRNAs in cancer.” Yale J Biol Med 79(3-4): 131-40.
  • Takamizawa, J., H. Konishi, et al. (2004). “Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival.” Cancer Res 64(11): 3753-6.
  • Team, R. D. C. (2008). R: A Language and Environment for Statistical Computing. Vienna, Austria, R Foundation for Statistical Computing.
  • Tong, A. W. (2006). “Small RNAs and non-small cell lung cancer.” Curr Mol Med 6(3): 339-49.
  • Vapnik, V. (2000). The Nature of Statistical Learning Theory., Springer.
  • Volinia, S., G. A. Calin, et al. (2006). “A microRNA expression signature of human solid tumours defines cancer gene targets.” Proc Natl Acad Sci USA 103(7): 2257-61.
  • Vorwerk, S., K. Canter, et al. (2008). “Microfluidic-based enzymatic on-chip labeling of miRNAs.” N Biotechnol 25(2-3): 142-9.
  • Wilcoxon, F. (1945). “Individual comparisons by ranking methods.” Biometric Bull 1: 80-83.
  • Williams, A. E. (2008). “Functional aspects of animal microRNAs.” Cell Mol Life Sci 65(4): 545-62.
  • Yanaihara, N., N. Caplen, et al. (2006). “Unique microRNA molecular profiles in lung cancer diagnosis and prognosis.” Cancer Cell 9(3): 189-98.
  • Zhang, B., X. Pan, et al. (2007). “microRNAs as oncogenes and tumour suppressors.” Dev Biol 302(1): 1-12.
  • Zhang, B., Q. Wang, et al. (2007). “MicroRNAs and their regulatory roles in animals and plants.” J Cell Physiol 210(2): 279-89.

Claims (22)

1. A method of diagnosing prostate cancer, comprising the steps
(a) determining an expression profile of a predetermined set of miRNAs, in a blood sample from a patient, particularly a human patient; and
(b) comparing said expression profile to a reference expression profile, wherein the comparison of said determined expression profile to said reference expression profile allows for the diagnosis of prostate cancer.
2. The method according to claim 1, wherein the expression profile is determined from miRNAs selected from FIG. 2 or FIG. 5
3. The method according to claim 1, wherein the predetermined set of miRNAs comprises at least one set of miRNAs listed in FIG. 6.
4. The method according to claim 1, wherein the predetermined set of miRNAs representative for diagnosis of prostate cancer comprises at least 1, 7, 10, 15, 20, 25, 30, 35, 40, 50, 75, 100 of miRNAs.
5. The method according to any claim 1 wherein the expression profile is determined by nucleic acid hybridization, nucleic acid amplification, polymerase extension, sequencing, mass spectroscopy, flow cytometry or any combinations thereof.
6. A set of polynucleotides for detecting a predetermined set comprising at least two miRNAs for diagnosing and/or prognosing of prostate cancer in a blood sample from a patient, particularly a human patient.
7. The set of polynucleotides according to claim 6, wherein the miRNAs are selected from the miRNAs listed in FIG. 2 or 5.
8. The set of polynucleotides claim 6, wherein the predetermined set of miRNAs is selected from the sets of miRNAs listed in FIG. 6.
9. The set of polynucleotides according to claim 6, wherein the predetermined set of miRNAs representative for diagnosis of prostate cancer comprises at least 1, 7, 10, 15, 20, 25, 30, 35, 40, 50, 75, 100 of miRNAs.
10. Use of set of polynucleotides according to claim 6 for diagnosing and/or prognosing prostate cancer in a patient, particularly a human patient.
11. A set of primer pairs for determining the expression level of a predetermined set of miRNAs in a blood sample of a patient for diagnosing and/or prognosing prostate cancer.
12. The set of primer pairs according to claim 11, wherein the miRNAs are selected from the miRNAs listed in FIG. 2 or FIG. 5.
13. The set of primer pairs according to claim 11, wherein the predetermined set of miRNAs comprises at least one set of miRNAs listed in FIG. 6.
14. The set of primer pairs according to claim 11, wherein the predetermined set of miRNAs representative for diagnosis of prostate cancer comprises at least 1, 7, 10, 15, 20, 25, 30, 35, 40, 50, 75, 100 of miRNAs.
15. Use of set of primer pairs according to claim 11 for diagnosing and/or prognosing prostate cancer in a patient, particularly a human patient.
16. Means for diagnosing and/or prognosing of prostate cancer in a blood sample of a subject comprising :
a set of at least two polynucleotides according to claim 6 or
a set of at least two primer pairs capable of determining the expression level of a predetermined set of miRNAs in a blood sample.
17. A kit for diagnosing and/or predicting prostate cancer, comprising:
(a) means for determining the miRNA expression profile of a RNA sample of a subject, and
(b) at least one reference expression profile for a particular condition.
18. The kit according to claim 17 comprising a set of polynucleotides capable of detecting a predetermined set comprising at least two miRNAs in a blood sample, or a set of at least two primer pairs capable of determining the expression level of a predetermined set of miRNAs in a blood sample.
19. A set of miRNAs isolated from a blood sample from a subject for diagnosing and/or prognosing of prostate cancer, wherein the miRNAs are selected from the miRNAs as indicated in claim 2.
20. The set of miRNAs of claim 19 bound to a carrier, e.g. a microarray.
21. Use of a set of miRNAs according to claim 19 for diagnosing and/or prognosing of prostate cancer in a subject, particularly a human subject.
22. The method of claim 1, wherein said sample is a whole blood sample.
US13/520,014 2009-12-30 2010-12-30 Mirna fingerprint in the diagnosis of prostate cancer Abandoned US20130053264A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/520,014 US20130053264A1 (en) 2009-12-30 2010-12-30 Mirna fingerprint in the diagnosis of prostate cancer

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US29107409P 2009-12-30 2009-12-30
EP09181024.2 2009-12-30
EP09181024A EP2341145A1 (en) 2009-12-30 2009-12-30 miRNA fingerprint in the diagnosis of diseases
US13/520,014 US20130053264A1 (en) 2009-12-30 2010-12-30 Mirna fingerprint in the diagnosis of prostate cancer
PCT/EP2010/070924 WO2011080315A1 (en) 2009-12-30 2010-12-30 Mirna fingerprint in the diagnosis of prostate cancer

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/070924 A-371-Of-International WO2011080315A1 (en) 2009-12-30 2010-12-30 Mirna fingerprint in the diagnosis of prostate cancer

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/823,545 Division US9745630B2 (en) 2009-12-30 2015-08-11 MiRNA fingerprint in the diagnosis of prostate cancer

Publications (1)

Publication Number Publication Date
US20130053264A1 true US20130053264A1 (en) 2013-02-28

Family

ID=41818784

Family Applications (6)

Application Number Title Priority Date Filing Date
US13/519,959 Abandoned US20130035251A1 (en) 2009-12-30 2010-12-30 miRNA FINGERPRINT IN THE DIAGNOSIS OF WILMS' TUMOUR
US13/519,957 Abandoned US20130053263A1 (en) 2009-12-30 2010-12-30 miRNA FINGERPRINT IN THE DIAGNOSIS OF COPD
US13/520,014 Abandoned US20130053264A1 (en) 2009-12-30 2010-12-30 Mirna fingerprint in the diagnosis of prostate cancer
US14/312,302 Abandoned US20150031777A1 (en) 2009-12-30 2014-06-23 miRNA FINGERPRINT IN THE DIAGNOSIS OF WILMS' TUMOUR
US14/755,261 Active US9528158B2 (en) 2009-12-30 2015-06-30 miRNA fingerprint in the diagnosis of COPD
US14/823,545 Active US9745630B2 (en) 2009-12-30 2015-08-11 MiRNA fingerprint in the diagnosis of prostate cancer

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US13/519,959 Abandoned US20130035251A1 (en) 2009-12-30 2010-12-30 miRNA FINGERPRINT IN THE DIAGNOSIS OF WILMS' TUMOUR
US13/519,957 Abandoned US20130053263A1 (en) 2009-12-30 2010-12-30 miRNA FINGERPRINT IN THE DIAGNOSIS OF COPD

Family Applications After (3)

Application Number Title Priority Date Filing Date
US14/312,302 Abandoned US20150031777A1 (en) 2009-12-30 2014-06-23 miRNA FINGERPRINT IN THE DIAGNOSIS OF WILMS' TUMOUR
US14/755,261 Active US9528158B2 (en) 2009-12-30 2015-06-30 miRNA fingerprint in the diagnosis of COPD
US14/823,545 Active US9745630B2 (en) 2009-12-30 2015-08-11 MiRNA fingerprint in the diagnosis of prostate cancer

Country Status (5)

Country Link
US (6) US20130035251A1 (en)
EP (6) EP2341145A1 (en)
DK (1) DK2519646T3 (en)
ES (1) ES2622589T3 (en)
WO (3) WO2011080316A1 (en)

Cited By (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120015830A1 (en) * 2010-06-21 2012-01-19 Diogenix, Inc. Microrna profiles for evaluating multiple sclerosis
WO2014081507A1 (en) 2012-11-26 2014-05-30 Moderna Therapeutics, Inc. Terminally modified rna
US20140162888A1 (en) * 2010-04-06 2014-06-12 Caris Life Sciences Luxembourg Holdings Circulating biomarkers for disease
WO2014093924A1 (en) 2012-12-13 2014-06-19 Moderna Therapeutics, Inc. Modified nucleic acid molecules and uses thereof
WO2014113089A2 (en) 2013-01-17 2014-07-24 Moderna Therapeutics, Inc. Signal-sensor polynucleotides for the alteration of cellular phenotypes
CN105018594A (en) * 2015-04-27 2015-11-04 广州医科大学附属第三医院 Early-diagnosis marker for colorectal cancer and related kit
WO2016115312A1 (en) * 2015-01-14 2016-07-21 Ohio State Innovation Foundation Mirna-based predictive models for diagnosis and prognosis of prostate cancer
RU2618409C1 (en) * 2016-01-12 2017-05-03 Общество с ограниченной ответственностью Научно-технический центр "БиоКлиникум" Method for prostate cancer differential diagnosis based on plasma micrornas analysis
WO2017127750A1 (en) 2016-01-22 2017-07-27 Modernatx, Inc. Messenger ribonucleic acids for the production of intracellular binding polypeptides and methods of use thereof
WO2017180587A2 (en) 2016-04-11 2017-10-19 Obsidian Therapeutics, Inc. Regulated biocircuit systems
WO2017201350A1 (en) 2016-05-18 2017-11-23 Modernatx, Inc. Polynucleotides encoding interleukin-12 (il12) and uses thereof
WO2017214436A1 (en) * 2016-06-08 2017-12-14 MiR DIAGNOSTICS Methods and compositions for prostate cancer diagnosis and treatment
WO2017218704A1 (en) 2016-06-14 2017-12-21 Modernatx, Inc. Stabilized formulations of lipid nanoparticles
WO2018002812A1 (en) 2016-06-29 2018-01-04 Crispr Therapeutics Ag Materials and methods for treatment of myotonic dystrophy type 1 (dm1) and other related disorders
WO2018002762A1 (en) 2016-06-29 2018-01-04 Crispr Therapeutics Ag Materials and methods for treatment of amyotrophic lateral sclerosis (als) and other related disorders
WO2018002783A1 (en) 2016-06-29 2018-01-04 Crispr Therapeutics Ag Materials and methods for treatment of friedreich ataxia and other related disorders
WO2018007980A1 (en) 2016-07-06 2018-01-11 Crispr Therapeutics Ag Materials and methods for treatment of pain related disorders
WO2018007976A1 (en) 2016-07-06 2018-01-11 Crispr Therapeutics Ag Materials and methods for treatment of pain related disorders
RU2646790C1 (en) * 2016-12-30 2018-03-07 Общество с ограниченной ответственностью научно-технический центр "БиоКлиникум" (ООО НТЦ "БиоКлиникум") Method of differential diagnosis of prostate cancer and benign prostatic hyperplasia
RU2647433C1 (en) * 2016-12-30 2018-03-15 Общество с ограниченной ответственностью научно-технический центр "БиоКлиникум" (ООО НТЦ "БиоКлиникум") Method of differential diagnosis of prostate cancer and benign prostatic hyperplasia
WO2018081459A1 (en) 2016-10-26 2018-05-03 Modernatx, Inc. Messenger ribonucleic acids for enhancing immune responses and methods of use thereof
WO2018089540A1 (en) 2016-11-08 2018-05-17 Modernatx, Inc. Stabilized formulations of lipid nanoparticles
US20180196924A1 (en) * 2017-01-09 2018-07-12 International Business Machines Corporation Computer-implemented method and system for diagnosis of biological conditions of a patient
WO2018144775A1 (en) 2017-02-01 2018-08-09 Modernatx, Inc. Immunomodulatory therapeutic mrna compositions encoding activating oncogene mutation peptides
WO2018154462A2 (en) 2017-02-22 2018-08-30 Crispr Therapeutics Ag Materials and methods for treatment of spinocerebellar ataxia type 2 (sca2) and other spinocerebellar ataxia type 2 protein (atxn2) gene related conditions or disorders
WO2018154418A1 (en) 2017-02-22 2018-08-30 Crispr Therapeutics Ag Materials and methods for treatment of early onset parkinson's disease (park1) and other synuclein, alpha (snca) gene related conditions or disorders
WO2018154387A1 (en) 2017-02-22 2018-08-30 Crispr Therapeutics Ag Compositions and methods for gene editing
WO2018231990A2 (en) 2017-06-14 2018-12-20 Modernatx, Inc. Polynucleotides encoding methylmalonyl-coa mutase
WO2019046809A1 (en) 2017-08-31 2019-03-07 Modernatx, Inc. Methods of making lipid nanoparticles
EP3461904A1 (en) 2014-11-10 2019-04-03 ModernaTX, Inc. Alternative nucleic acid molecules containing reduced uracil content and uses thereof
WO2019102381A1 (en) 2017-11-21 2019-05-31 Casebia Therapeutics Llp Materials and methods for treatment of autosomal dominant retinitis pigmentosa
WO2019123429A1 (en) 2017-12-21 2019-06-27 Casebia Therapeutics Llp Materials and methods for treatment of usher syndrome type 2a
WO2019152557A1 (en) 2018-01-30 2019-08-08 Modernatx, Inc. Compositions and methods for delivery of agents to immune cells
WO2019200171A1 (en) 2018-04-11 2019-10-17 Modernatx, Inc. Messenger rna comprising functional rna elements
WO2019241315A1 (en) 2018-06-12 2019-12-19 Obsidian Therapeutics, Inc. Pde5 derived regulatory constructs and methods of use in immunotherapy
WO2020061457A1 (en) 2018-09-20 2020-03-26 Modernatx, Inc. Preparation of lipid nanoparticles and methods of administration thereof
WO2020086742A1 (en) 2018-10-24 2020-04-30 Obsidian Therapeutics, Inc. Er tunable protein regulation
WO2020160397A1 (en) 2019-01-31 2020-08-06 Modernatx, Inc. Methods of preparing lipid nanoparticles
WO2020185632A1 (en) 2019-03-08 2020-09-17 Obsidian Therapeutics, Inc. Human carbonic anhydrase 2 compositions and methods for tunable regulation
WO2020263883A1 (en) 2019-06-24 2020-12-30 Modernatx, Inc. Endonuclease-resistant messenger rna and uses thereof
WO2020263985A1 (en) 2019-06-24 2020-12-30 Modernatx, Inc. Messenger rna comprising functional rna elements and uses thereof
WO2021046451A1 (en) 2019-09-06 2021-03-11 Obsidian Therapeutics, Inc. Compositions and methods for dhfr tunable protein regulation
WO2021155274A1 (en) 2020-01-31 2021-08-05 Modernatx, Inc. Methods of preparing lipid nanoparticles
WO2022020811A1 (en) 2020-07-24 2022-01-27 Strand Therapeutics, Inc. Lipidnanoparticle comprising modified nucleotides
WO2022032087A1 (en) 2020-08-06 2022-02-10 Modernatx, Inc. Methods of preparing lipid nanoparticles
JP2022524382A (en) * 2019-03-15 2022-05-02 エムアイアール サイエンティフィック,エルエルシー Methods for Predicting Prostate Cancer and Their Use
WO2022150712A1 (en) 2021-01-08 2022-07-14 Strand Therapeutics, Inc. Expression constructs and uses thereof
US11407997B2 (en) 2017-02-22 2022-08-09 Crispr Therapeutics Ag Materials and methods for treatment of primary hyperoxaluria type 1 (PH1) and other alanine-glyoxylate aminotransferase (AGXT) gene related conditions or disorders
WO2022233880A1 (en) 2021-05-03 2022-11-10 Curevac Ag Improved nucleic acid sequence for cell type specific expression
US11559588B2 (en) 2017-02-22 2023-01-24 Crispr Therapeutics Ag Materials and methods for treatment of Spinocerebellar Ataxia Type 1 (SCA1) and other Spinocerebellar Ataxia Type 1 Protein (ATXN1) gene related conditions or disorders
WO2023212618A1 (en) 2022-04-26 2023-11-02 Strand Therapeutics Inc. Lipid nanoparticles comprising venezuelan equine encephalitis (vee) replicon and uses thereof
WO2024026487A1 (en) 2022-07-29 2024-02-01 Modernatx, Inc. Lipid nanoparticle compositions comprising phospholipid derivatives and related uses
WO2024026482A1 (en) 2022-07-29 2024-02-01 Modernatx, Inc. Lipid nanoparticle compositions comprising surface lipid derivatives and related uses
WO2024026475A1 (en) 2022-07-29 2024-02-01 Modernatx, Inc. Compositions for delivery to hematopoietic stem and progenitor cells (hspcs) and related uses

Families Citing this family (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8895509B2 (en) 2010-11-23 2014-11-25 Georgia Tech Research Corporation MIR-200 family induces mesenchymal-to-epithelial transition (MET) in ovarian cancer cells
EP2668288B1 (en) * 2011-01-28 2016-01-20 Comprehensive Biomarker Center GmbH Complex mirna sets as novel biomarkers for lung diseases
HUE045731T2 (en) * 2011-02-07 2020-01-28 Gabriella Sozzi Micro-rna biomarkers for identifying risk of and/or for diagnosing lung tumour
CA2836836A1 (en) * 2011-06-01 2012-12-06 Medical Prognosis Institute A/S Methods and devices for prognosis of cancer relapse
WO2012175672A2 (en) * 2011-06-24 2012-12-27 Baden-Württemberg Stiftung Ggmbh Diagnosis and/or prognosis of parkinson's disease dementia
DE102011108254A1 (en) * 2011-07-22 2013-01-24 RUHR-UNIVERSITäT BOCHUM Diagnosing malignant diseases, preferably cancer, comprises providing sample obtained from bodily fluid or bodily waste, and determining concentration of microRNA including microRNA-1246 and microRNA-1290 in the sample
EP3135774B1 (en) * 2011-08-19 2019-10-09 Hummingbird Diagnostics GmbH Complex sets of mirnas as non-invasive biomarkers for kidney cancer
ITRM20110685A1 (en) * 2011-12-23 2013-06-24 Internat Ct For Genetic En Gineering And MICRORNA FOR CARDIAC REGENERATION THROUGH THE INDUCTION OF THE PROLIFERATION OF CARDIAC MYCYCLES
US8846316B2 (en) 2012-04-30 2014-09-30 Industrial Technology Research Institute Biomarker for human liver cancer
WO2013174692A1 (en) * 2012-05-22 2013-11-28 Ruprecht-Karls-Universität Heidelberg Therapeutic micro rna targets in chronic pulmonary diseases
KR101398547B1 (en) * 2012-05-30 2014-05-27 한국과학기술연구원 microRNAs for identification of exposure to lower alipatic saturated aldeydes the method of identification using thereof
WO2013181613A1 (en) * 2012-05-31 2013-12-05 Research Development Foundation Mirna for the diagnosis and treatment of autoimmune and inflammatory disease
KR101667169B1 (en) 2012-08-20 2016-10-17 국립연구개발법인 고쿠리츠간켄큐센터 Agent for treating cancer
CN103667282A (en) * 2012-08-30 2014-03-26 苏州博泰安生物科技有限公司 Molecular marker miR-628-3P for prostatic cancer and application of molecular marker miR-628-3P
WO2014043159A1 (en) * 2012-09-11 2014-03-20 New York University Sera based mirnas as non-invasive biomarkers in melanoma
WO2014071226A1 (en) * 2012-11-02 2014-05-08 The Regents Of The University Of California Methods and systems for determining a likelihood of adverse prostate cancer pathology
CN102965439B (en) * 2012-11-27 2014-01-08 上海交通大学医学院 Application of miR-296-3p to preparation of kit for diagnosing prostate cancer generation or migration
WO2014093504A1 (en) * 2012-12-11 2014-06-19 Duke University Microrna biomarkers for graft versus host disease
CA2834187A1 (en) * 2013-04-15 2014-10-15 Norgen Biotek Corporation Use of micrornas for screening and diagnosis of prostate cancer and benign prostatic hyperplasia
CN110237447B (en) 2013-09-27 2021-11-02 梅维昂医疗系统股份有限公司 Particle therapy system
PL405648A1 (en) 2013-10-15 2015-04-27 Warszawski Uniwersytet Medyczny Method for diagnosing primary hepatic carcinoma, application of microRNA marker for diagnosing the lesion within liver, assessment of the progression of disease and evaluation of patient's vulnerability and/or disease to the proposed treatment and diagnostic set containing such same markers
PL406033A1 (en) 2013-11-14 2015-05-25 Warszawski Uniwersytet Medyczny Method for diagnosing of thyroid papillous carcinoma, application of microRNA marker for diagnosing of the thyroid carcinoma, assessment of the disease progress and evaluation of patient and/or disease susceptibility to the proposed treatment and diagnostic set containing such markers
EP3083987B1 (en) * 2013-12-19 2020-08-05 Hummingbird Diagnostics GmbH Determination of platelet-mirnas in alzheimer's disease
US9962560B2 (en) 2013-12-20 2018-05-08 Mevion Medical Systems, Inc. Collimator and energy degrader
US10675487B2 (en) 2013-12-20 2020-06-09 Mevion Medical Systems, Inc. Energy degrader enabling high-speed energy switching
WO2015121663A1 (en) * 2014-02-13 2015-08-20 Oxford Gene Technology (Operations) Ltd Biomarkers for prostate cancer
US9661736B2 (en) 2014-02-20 2017-05-23 Mevion Medical Systems, Inc. Scanning system for a particle therapy system
EP3444362B1 (en) * 2014-05-02 2020-12-09 Ruprecht-Karls-Universität Heidelberg Circulating mirnas as early detection marker and prognostic marker
EP2942399B1 (en) * 2014-05-08 2017-03-08 Universite De Liege Method for the diagnosis of breast cancer
US10619213B2 (en) * 2014-06-12 2020-04-14 Toray Industries, Inc. Prostate cancer detection kit or device, and detection method
US10815528B2 (en) * 2014-10-28 2020-10-27 Hummingbird Diagnostics Gmbh MiRNAs as non-invasive biomarkers for inflammatory bowel disease
JP2018504915A (en) * 2015-02-11 2018-02-22 エクシコン エ/エス A microRNA-based method for early detection of prostate cancer in urine
US10358681B2 (en) 2015-02-27 2019-07-23 Aarhus Universitet Microrna-based method for assessing the prognosis of a prostate cancer patient
US11226856B2 (en) * 2015-04-24 2022-01-18 Senslytics Corporation Methods and systems correlating hypotheses outcomes using relevance scoring for intuition based forewarning
KR101693996B1 (en) * 2015-05-22 2017-01-06 강원대학교산학협력단 Use of Micro RNAs of miR-3615, miR-5701, miR-5581-3p, miR-4792 and miR-2467-5p for Diagnosis of Chronic Obstructive Pulmonary Disease
US10786689B2 (en) 2015-11-10 2020-09-29 Mevion Medical Systems, Inc. Adaptive aperture
EP3438266A4 (en) * 2016-04-01 2020-02-26 Toray Industries, Inc. Kit or device for detecting malignant brain tumor and method for detecting same
US10925147B2 (en) 2016-07-08 2021-02-16 Mevion Medical Systems, Inc. Treatment planning
WO2018049506A1 (en) * 2016-09-14 2018-03-22 Ontario Institute For Cancer Research (Oicr) Mirna prostate cancer marker
CN106636334B (en) * 2016-10-09 2020-07-03 山东大学 MicroRNA marker group and application thereof in preparation of lymph node metastasis kit for detecting gastric cancer
US11103730B2 (en) 2017-02-23 2021-08-31 Mevion Medical Systems, Inc. Automated treatment in particle therapy
EP3645111A1 (en) 2017-06-30 2020-05-06 Mevion Medical Systems, Inc. Configurable collimator controlled using linear motors
CN107354227A (en) * 2017-09-06 2017-11-17 苏州吉玛基因股份有限公司 MicroRNA probe one-step method real-time fluorescent quantitative PCR detecting methods
CN108130366B (en) * 2017-11-10 2021-02-19 中山大学 Method for constructing human miRNA sequencing library for high-throughput sequencing
WO2019123430A1 (en) 2017-12-21 2019-06-27 Casebia Therapeutics Llp Materials and methods for treatment of usher syndrome type 2a and/or non-syndromic autosomal recessive retinitis pigmentosa (arrp)
GB201800533D0 (en) * 2018-01-12 2018-02-28 Imperial Innovations Ltd Accelerated aging biomarker and target
EP3543358A1 (en) 2018-03-22 2019-09-25 Institut d'Investigació Biomèdica de Bellvitge (IDIBELL) Methods and markers for azoospermia characterisation
JP7378739B2 (en) 2018-08-10 2023-11-14 東レ株式会社 Kits, devices and methods for the detection of prostate cancer
CN109971851A (en) * 2019-01-22 2019-07-05 宁波大学 Purposes of the MiR-125b-2-3p as the molecular marker of antidiastole different subtypes renal cell carcinomas and its in metastases
US20220133767A1 (en) * 2019-02-19 2022-05-05 Beth Israel Deaconess Medical Center, Inc. Targeting micrornas to overcome drug tolerance and resistance
WO2020185544A1 (en) 2019-03-08 2020-09-17 Mevion Medical Systems, Inc. Delivery of radiation by column and generating a treatment plan therefor
US11198912B2 (en) * 2019-08-26 2021-12-14 Liquid Lung Dx Biomarkers for the diagnosis of lung cancers
KR102288359B1 (en) * 2019-12-06 2021-08-10 주식회사 레피겐엠디 Multi-Genetic Marker for Predicting Risk of Disease by Reduced Immunity and Methods of Predicting Risk of Disease Using the Same
EP3862442A3 (en) * 2020-02-04 2021-10-27 Artemisia S.p.A. Method for the early diagnosis of cancer by means of ddpcr analysis of mirna in liquid biopsy
EP3862441A3 (en) * 2020-02-04 2021-10-27 Artemisia S.p.A. Method for the early diagnosis of cancer by means of ddpcr analysis of mirna and protein markers in liquid biopsy
CN113637762B (en) * 2021-10-15 2024-02-02 北京百奥思科生物医学技术有限公司 Application of miRNA related to melanoma in diagnosis and treatment of melanoma
WO2023068220A1 (en) * 2021-10-18 2023-04-27 株式会社Preferred Networks Prediction method and biomarker

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070292878A1 (en) * 2005-01-25 2007-12-20 Rosetta Inpharmatics Llc Methods for quantitating small rna molecules
WO2008116267A1 (en) * 2007-03-26 2008-10-02 Crc For Asthma And Airways Ltd Therapeutic targets and molecules
US20100297652A1 (en) * 2009-05-22 2010-11-25 Asuragen, Inc. Mirna biomarkers of prostate disease
US20110251098A1 (en) * 2008-11-08 2011-10-13 Showe Louise C Biomarkers in Peripheral Blood Mononuclear Cells for Diagnosing or Detecting Lung Cancers

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2554818A1 (en) * 2004-02-09 2005-08-25 Thomas Jefferson University Diagnosis and treatment of cancers with microrna located in or near cancer-associated chromosomal features
CA2566519C (en) * 2004-05-14 2020-04-21 Rosetta Genomics Ltd. Micrornas and uses thereof
EP2290069A3 (en) * 2004-05-28 2011-08-10 Asuragen, Inc. Methods and compositions involving microRNA
US7642348B2 (en) * 2004-10-04 2010-01-05 Rosetta Genomics Ltd Prostate cancer-related nucleic acids
EP2808389A1 (en) * 2004-11-12 2014-12-03 Asuragen, Inc. Methods and compositions involving MIRNA and MIRNA inhibitor molecules
WO2006128245A1 (en) * 2005-06-03 2006-12-07 Southern Adelaide Health Service-Flinders Medical Centre Targeting cells with altered microrna expression
US20070065844A1 (en) * 2005-06-08 2007-03-22 Massachusetts Institute Of Technology Solution-based methods for RNA expression profiling
US8841436B2 (en) * 2007-03-15 2014-09-23 University Hospitals Cleveland Medical Center Screening, diagnosing, treating and prognosis of pathophysiologic status by RNA regulation
WO2008142567A2 (en) * 2007-05-18 2008-11-27 Karolinska Institutet Innovations Ab Microrna molecules associated with inflammatory skin disorders
EP2613149B1 (en) * 2007-07-25 2014-09-17 University Of Louisville Research Foundation, Inc. Exosome-associated microRNA as a diagnostic marker
DE102007036678B4 (en) * 2007-08-03 2015-05-21 Sirs-Lab Gmbh Use of polynucleotides to detect gene activities to distinguish between local and systemic infection
US8361714B2 (en) * 2007-09-14 2013-01-29 Asuragen, Inc. Micrornas differentially expressed in cervical cancer and uses thereof
CN104975089A (en) * 2007-09-14 2015-10-14 俄亥俄州立大学研究基金会 Mirna expression in human peripheral blood microvesicles and uses thereof
US20090123933A1 (en) * 2007-11-12 2009-05-14 Wake Forest University Health Sciences Microrna biomarkers in lupus
CA2707157A1 (en) * 2007-11-30 2009-06-04 The Ohio State University Research Foundation Microrna expression profiling and targeting in peripheral blood in lung cancer
CA2710196A1 (en) * 2007-12-20 2009-07-09 Celgene Corporation Use of micro-rna as a biomarker of immunomodulatory drug activity
WO2009086156A2 (en) * 2007-12-21 2009-07-09 Asuragen, Inc. Mir-10 regulated genes and pathways as targets for therapeutic intervention
US20090181390A1 (en) * 2008-01-11 2009-07-16 Signosis, Inc. A California Corporation High throughput detection of micrornas and use for disease diagnosis
JP2011517283A (en) * 2008-02-28 2011-06-02 ジ・オハイオ・ステイト・ユニバーシティ・リサーチ・ファウンデイション MicroRNA-based methods and compositions for prognosis and treatment of prostate related disorders
US8470999B2 (en) * 2008-05-15 2013-06-25 Luc Paquet Oligonucleotides for treating inflammation and neoplastic cell proliferation
WO2009143379A2 (en) * 2008-05-21 2009-11-26 Fred Hutchinson Cancer Research Center Use of extracellular rna to measure disease
WO2009151600A2 (en) * 2008-06-10 2009-12-17 Tufts University Smad proteins control drosha-mediated mirna maturation
EP2364367B8 (en) * 2008-11-10 2017-08-23 Battelle Memorial Institute Method utilizing microrna for detecting interstitial lung disease
US20110251086A1 (en) * 2008-12-10 2011-10-13 Joke Vandesompele Neuroblastoma prognostic multigene expression signature
US20120264626A1 (en) * 2009-05-08 2012-10-18 The Ohio State University Research Foundation MicroRNA Expression Profiling and Targeting in Chronic Obstructive Pulmonary Disease (COPD) Lung Tissue and Methods of Use Thereof
US8486909B2 (en) * 2009-06-24 2013-07-16 Board Of Regents Of The University Of Nebraska Compositions and methods for the diagnosis and treatment of inflammatory disorders and fibrotic disease

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070292878A1 (en) * 2005-01-25 2007-12-20 Rosetta Inpharmatics Llc Methods for quantitating small rna molecules
WO2008116267A1 (en) * 2007-03-26 2008-10-02 Crc For Asthma And Airways Ltd Therapeutic targets and molecules
US20110251098A1 (en) * 2008-11-08 2011-10-13 Showe Louise C Biomarkers in Peripheral Blood Mononuclear Cells for Diagnosing or Detecting Lung Cancers
US20100297652A1 (en) * 2009-05-22 2010-11-25 Asuragen, Inc. Mirna biomarkers of prostate disease

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Hoyt Dissertation entitled The Role of MicroRNA-155 And MicroRNA-146A As Putative Oncomirs in the Tumor Progression of Prostate Cancer (Virginia Commonwealth University, Richmond, Virginia, August 2008). *
Keller et al in "miRNAs in lung cancer - Studying complex fingerprints in patient's blood cells by microarray experiments" (BMC Cancer, Biomed Central, London, GB October 6, 2009: Vol 9, No. 1, entire document, IDS reference). *
Shi Xu-Bao et al in "MicroRNAs and prostate cancer" (J of Cellular and Molecular Medicine, vol. 12, no. 5A, September 2008, pages 1456-1465, IDS reference). *

Cited By (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140162888A1 (en) * 2010-04-06 2014-06-12 Caris Life Sciences Luxembourg Holdings Circulating biomarkers for disease
US9469876B2 (en) * 2010-04-06 2016-10-18 Caris Life Sciences Switzerland Holdings Gmbh Circulating biomarkers for metastatic prostate cancer
US20120015830A1 (en) * 2010-06-21 2012-01-19 Diogenix, Inc. Microrna profiles for evaluating multiple sclerosis
EP4074834A1 (en) 2012-11-26 2022-10-19 ModernaTX, Inc. Terminally modified rna
WO2014081507A1 (en) 2012-11-26 2014-05-30 Moderna Therapeutics, Inc. Terminally modified rna
WO2014093924A1 (en) 2012-12-13 2014-06-19 Moderna Therapeutics, Inc. Modified nucleic acid molecules and uses thereof
WO2014113089A2 (en) 2013-01-17 2014-07-24 Moderna Therapeutics, Inc. Signal-sensor polynucleotides for the alteration of cellular phenotypes
EP3434774A1 (en) 2013-01-17 2019-01-30 ModernaTX, Inc. Signal-sensor polynucleotides for the alteration of cellular phenotypes
EP3461904A1 (en) 2014-11-10 2019-04-03 ModernaTX, Inc. Alternative nucleic acid molecules containing reduced uracil content and uses thereof
WO2016115312A1 (en) * 2015-01-14 2016-07-21 Ohio State Innovation Foundation Mirna-based predictive models for diagnosis and prognosis of prostate cancer
US10480033B2 (en) 2015-01-14 2019-11-19 Ohio State Innovation Foundation MiRNA-based predictive models for diagnosis and prognosis of prostate cancer
CN105018594A (en) * 2015-04-27 2015-11-04 广州医科大学附属第三医院 Early-diagnosis marker for colorectal cancer and related kit
RU2618409C1 (en) * 2016-01-12 2017-05-03 Общество с ограниченной ответственностью Научно-технический центр "БиоКлиникум" Method for prostate cancer differential diagnosis based on plasma micrornas analysis
WO2017127750A1 (en) 2016-01-22 2017-07-27 Modernatx, Inc. Messenger ribonucleic acids for the production of intracellular binding polypeptides and methods of use thereof
WO2017180587A2 (en) 2016-04-11 2017-10-19 Obsidian Therapeutics, Inc. Regulated biocircuit systems
EP4186518A1 (en) 2016-05-18 2023-05-31 ModernaTX, Inc. Polynucleotides encoding interleukin-12 (il12) and uses thereof
WO2017201350A1 (en) 2016-05-18 2017-11-23 Modernatx, Inc. Polynucleotides encoding interleukin-12 (il12) and uses thereof
CN110023511A (en) * 2016-06-08 2019-07-16 Mir科學有限責任公司 For prostate cancer diagnosis and the method and composition for the treatment of
WO2017214436A1 (en) * 2016-06-08 2017-12-14 MiR DIAGNOSTICS Methods and compositions for prostate cancer diagnosis and treatment
JP2019528758A (en) * 2016-06-08 2019-10-17 エムアイアール サイエンティフィック,エルエルシー Methods and compositions for the diagnosis and treatment of prostate cancer
EP3469101A4 (en) * 2016-06-08 2020-04-22 MIR Scientific, LLC Methods and compositions for prostate cancer diagnosis and treatment
WO2017218704A1 (en) 2016-06-14 2017-12-21 Modernatx, Inc. Stabilized formulations of lipid nanoparticles
WO2018002783A1 (en) 2016-06-29 2018-01-04 Crispr Therapeutics Ag Materials and methods for treatment of friedreich ataxia and other related disorders
US11174469B2 (en) 2016-06-29 2021-11-16 Crispr Therapeutics Ag Materials and methods for treatment of Amyotrophic Lateral Sclerosis (ALS) and other related disorders
US11564997B2 (en) 2016-06-29 2023-01-31 Crispr Therapeutics Ag Materials and methods for treatment of friedreich ataxia and other related disorders
WO2018002762A1 (en) 2016-06-29 2018-01-04 Crispr Therapeutics Ag Materials and methods for treatment of amyotrophic lateral sclerosis (als) and other related disorders
WO2018002812A1 (en) 2016-06-29 2018-01-04 Crispr Therapeutics Ag Materials and methods for treatment of myotonic dystrophy type 1 (dm1) and other related disorders
US11459587B2 (en) 2016-07-06 2022-10-04 Vertex Pharmaceuticals Incorporated Materials and methods for treatment of pain related disorders
WO2018007976A1 (en) 2016-07-06 2018-01-11 Crispr Therapeutics Ag Materials and methods for treatment of pain related disorders
US11801313B2 (en) 2016-07-06 2023-10-31 Vertex Pharmaceuticals Incorporated Materials and methods for treatment of pain related disorders
WO2018007980A1 (en) 2016-07-06 2018-01-11 Crispr Therapeutics Ag Materials and methods for treatment of pain related disorders
WO2018081459A1 (en) 2016-10-26 2018-05-03 Modernatx, Inc. Messenger ribonucleic acids for enhancing immune responses and methods of use thereof
WO2018089540A1 (en) 2016-11-08 2018-05-17 Modernatx, Inc. Stabilized formulations of lipid nanoparticles
RU2647433C1 (en) * 2016-12-30 2018-03-15 Общество с ограниченной ответственностью научно-технический центр "БиоКлиникум" (ООО НТЦ "БиоКлиникум") Method of differential diagnosis of prostate cancer and benign prostatic hyperplasia
RU2646790C1 (en) * 2016-12-30 2018-03-07 Общество с ограниченной ответственностью научно-технический центр "БиоКлиникум" (ООО НТЦ "БиоКлиникум") Method of differential diagnosis of prostate cancer and benign prostatic hyperplasia
US20180196924A1 (en) * 2017-01-09 2018-07-12 International Business Machines Corporation Computer-implemented method and system for diagnosis of biological conditions of a patient
WO2018144775A1 (en) 2017-02-01 2018-08-09 Modernatx, Inc. Immunomodulatory therapeutic mrna compositions encoding activating oncogene mutation peptides
US11920148B2 (en) 2017-02-22 2024-03-05 Crispr Therapeutics Ag Compositions and methods for gene editing
WO2018154387A1 (en) 2017-02-22 2018-08-30 Crispr Therapeutics Ag Compositions and methods for gene editing
WO2018154418A1 (en) 2017-02-22 2018-08-30 Crispr Therapeutics Ag Materials and methods for treatment of early onset parkinson's disease (park1) and other synuclein, alpha (snca) gene related conditions or disorders
WO2018154462A2 (en) 2017-02-22 2018-08-30 Crispr Therapeutics Ag Materials and methods for treatment of spinocerebellar ataxia type 2 (sca2) and other spinocerebellar ataxia type 2 protein (atxn2) gene related conditions or disorders
US11559588B2 (en) 2017-02-22 2023-01-24 Crispr Therapeutics Ag Materials and methods for treatment of Spinocerebellar Ataxia Type 1 (SCA1) and other Spinocerebellar Ataxia Type 1 Protein (ATXN1) gene related conditions or disorders
US11407997B2 (en) 2017-02-22 2022-08-09 Crispr Therapeutics Ag Materials and methods for treatment of primary hyperoxaluria type 1 (PH1) and other alanine-glyoxylate aminotransferase (AGXT) gene related conditions or disorders
WO2018231990A2 (en) 2017-06-14 2018-12-20 Modernatx, Inc. Polynucleotides encoding methylmalonyl-coa mutase
WO2019046809A1 (en) 2017-08-31 2019-03-07 Modernatx, Inc. Methods of making lipid nanoparticles
WO2019102381A1 (en) 2017-11-21 2019-05-31 Casebia Therapeutics Llp Materials and methods for treatment of autosomal dominant retinitis pigmentosa
WO2019123429A1 (en) 2017-12-21 2019-06-27 Casebia Therapeutics Llp Materials and methods for treatment of usher syndrome type 2a
WO2019152557A1 (en) 2018-01-30 2019-08-08 Modernatx, Inc. Compositions and methods for delivery of agents to immune cells
WO2019200171A1 (en) 2018-04-11 2019-10-17 Modernatx, Inc. Messenger rna comprising functional rna elements
WO2019241315A1 (en) 2018-06-12 2019-12-19 Obsidian Therapeutics, Inc. Pde5 derived regulatory constructs and methods of use in immunotherapy
WO2020061457A1 (en) 2018-09-20 2020-03-26 Modernatx, Inc. Preparation of lipid nanoparticles and methods of administration thereof
WO2020086742A1 (en) 2018-10-24 2020-04-30 Obsidian Therapeutics, Inc. Er tunable protein regulation
WO2020160397A1 (en) 2019-01-31 2020-08-06 Modernatx, Inc. Methods of preparing lipid nanoparticles
WO2020185632A1 (en) 2019-03-08 2020-09-17 Obsidian Therapeutics, Inc. Human carbonic anhydrase 2 compositions and methods for tunable regulation
JP2022524382A (en) * 2019-03-15 2022-05-02 エムアイアール サイエンティフィック,エルエルシー Methods for Predicting Prostate Cancer and Their Use
WO2020263883A1 (en) 2019-06-24 2020-12-30 Modernatx, Inc. Endonuclease-resistant messenger rna and uses thereof
WO2020263985A1 (en) 2019-06-24 2020-12-30 Modernatx, Inc. Messenger rna comprising functional rna elements and uses thereof
WO2021046451A1 (en) 2019-09-06 2021-03-11 Obsidian Therapeutics, Inc. Compositions and methods for dhfr tunable protein regulation
WO2021155274A1 (en) 2020-01-31 2021-08-05 Modernatx, Inc. Methods of preparing lipid nanoparticles
WO2022020811A1 (en) 2020-07-24 2022-01-27 Strand Therapeutics, Inc. Lipidnanoparticle comprising modified nucleotides
WO2022032087A1 (en) 2020-08-06 2022-02-10 Modernatx, Inc. Methods of preparing lipid nanoparticles
WO2022150712A1 (en) 2021-01-08 2022-07-14 Strand Therapeutics, Inc. Expression constructs and uses thereof
WO2022233880A1 (en) 2021-05-03 2022-11-10 Curevac Ag Improved nucleic acid sequence for cell type specific expression
WO2023212618A1 (en) 2022-04-26 2023-11-02 Strand Therapeutics Inc. Lipid nanoparticles comprising venezuelan equine encephalitis (vee) replicon and uses thereof
WO2024026487A1 (en) 2022-07-29 2024-02-01 Modernatx, Inc. Lipid nanoparticle compositions comprising phospholipid derivatives and related uses
WO2024026482A1 (en) 2022-07-29 2024-02-01 Modernatx, Inc. Lipid nanoparticle compositions comprising surface lipid derivatives and related uses
WO2024026475A1 (en) 2022-07-29 2024-02-01 Modernatx, Inc. Compositions for delivery to hematopoietic stem and progenitor cells (hspcs) and related uses

Also Published As

Publication number Publication date
US20130053263A1 (en) 2013-02-28
EP2519646A1 (en) 2012-11-07
EP2519646B1 (en) 2017-03-15
US20130035251A1 (en) 2013-02-07
EP3124625B1 (en) 2019-07-24
EP2519650A1 (en) 2012-11-07
WO2011080316A1 (en) 2011-07-07
EP2519650B1 (en) 2014-04-16
US20150337393A1 (en) 2015-11-26
WO2011080315A1 (en) 2011-07-07
EP2341145A1 (en) 2011-07-06
US20150031777A1 (en) 2015-01-29
EP2772551A1 (en) 2014-09-03
WO2011080318A1 (en) 2011-07-07
EP2519648B1 (en) 2016-09-28
ES2622589T3 (en) 2017-07-06
US9745630B2 (en) 2017-08-29
US9528158B2 (en) 2016-12-27
EP2519648A1 (en) 2012-11-07
EP3124625A1 (en) 2017-02-01
DK2519646T3 (en) 2017-04-24
US20150292020A1 (en) 2015-10-15

Similar Documents

Publication Publication Date Title
US9745630B2 (en) MiRNA fingerprint in the diagnosis of prostate cancer
US20220042102A1 (en) Mirna fingerprint in the diagnosis of lung cancer
US9822416B2 (en) miRNA in the diagnosis of ovarian cancer
US20120219958A1 (en) MicroRNA Signatures Differentiating Uterine and Ovarian Papillary Serous Tumors
US20130065778A1 (en) MicroRNA Signatures Predicting Responsiveness To Anti-HER2 Therapy
Class et al. Patent application title: miRNA FINGERPRINT IN THE DIAGNOSIS OF PROSTATE CANCER Inventors: Andreas Keller (Puettlingen, DE) Andreas Keller (Puettlingen, DE) Eckart Meese (Huetschenhausen, DE) Eckart Meese (Huetschenhausen, DE) Anne Borries (Heidelberg, DE) Anne Borries (Heidelberg, DE) Markus Beier (Weinheim, DE) Markus Beier (Weinheim, DE) Assignees: Comprehensive Biomarker Center GmbH
Jiang et al. Signatures containing miR-133a identified from Large Scale Micro RNA Expression Profiling in Bladder Cancer Tissue

Legal Events

Date Code Title Description
AS Assignment

Owner name: FEBIT HOLDING GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KELLER, ANDREAS;MEESE, ECKART;BORRIES, ANNE;AND OTHERS;SIGNING DATES FROM 20120824 TO 20121005;REEL/FRAME:029124/0010

AS Assignment

Owner name: COMPREHENSIVE BIOMARKER CENTER GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FEBIT HOLDING GMBH;REEL/FRAME:031784/0467

Effective date: 20131001

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION