EP2780485A1 - Alloy for high temperature tooling applications - Google Patents
Alloy for high temperature tooling applicationsInfo
- Publication number
- EP2780485A1 EP2780485A1 EP12813975.5A EP12813975A EP2780485A1 EP 2780485 A1 EP2780485 A1 EP 2780485A1 EP 12813975 A EP12813975 A EP 12813975A EP 2780485 A1 EP2780485 A1 EP 2780485A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- alloy
- thermal
- cycles
- stellite
- thermal fatigue
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 53
- 239000000956 alloy Substances 0.000 title claims abstract description 53
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 8
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims abstract description 7
- 239000011159 matrix material Substances 0.000 claims abstract description 7
- 239000011733 molybdenum Substances 0.000 claims abstract description 7
- 239000002245 particle Substances 0.000 claims abstract description 7
- 210000001787 dendrite Anatomy 0.000 claims abstract description 4
- 229910000531 Co alloy Inorganic materials 0.000 claims description 9
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 9
- 238000009661 fatigue test Methods 0.000 claims description 8
- 229910052742 iron Inorganic materials 0.000 claims description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 3
- 229910052799 carbon Inorganic materials 0.000 claims description 3
- 239000000203 mixture Substances 0.000 claims description 3
- 229910052804 chromium Inorganic materials 0.000 claims description 2
- 239000000126 substance Substances 0.000 claims description 2
- 229910052748 manganese Inorganic materials 0.000 claims 1
- 229910052759 nickel Inorganic materials 0.000 claims 1
- 229910000831 Steel Inorganic materials 0.000 abstract description 20
- 239000010959 steel Substances 0.000 abstract description 20
- 229910001347 Stellite Inorganic materials 0.000 abstract description 15
- AHICWQREWHDHHF-UHFFFAOYSA-N chromium;cobalt;iron;manganese;methane;molybdenum;nickel;silicon;tungsten Chemical compound C.[Si].[Cr].[Mn].[Fe].[Co].[Ni].[Mo].[W] AHICWQREWHDHHF-UHFFFAOYSA-N 0.000 abstract description 15
- 230000003647 oxidation Effects 0.000 abstract description 11
- 238000007254 oxidation reaction Methods 0.000 abstract description 11
- 150000001247 metal acetylides Chemical class 0.000 abstract description 9
- 229910000765 intermetallic Inorganic materials 0.000 abstract description 4
- 238000010099 solid forming Methods 0.000 abstract description 4
- 239000010941 cobalt Substances 0.000 abstract description 3
- 229910017052 cobalt Inorganic materials 0.000 abstract description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 abstract description 3
- 238000000034 method Methods 0.000 abstract description 3
- 230000008569 process Effects 0.000 abstract description 3
- 230000005496 eutectics Effects 0.000 abstract description 2
- 230000003278 mimic effect Effects 0.000 abstract 1
- 239000000463 material Substances 0.000 description 16
- 238000005382 thermal cycling Methods 0.000 description 8
- 239000007787 solid Substances 0.000 description 7
- QDOXWKRWXJOMAK-UHFFFAOYSA-N dichromium trioxide Chemical compound O=[Cr]O[Cr]=O QDOXWKRWXJOMAK-UHFFFAOYSA-N 0.000 description 6
- 238000005552 hardfacing Methods 0.000 description 6
- 238000005336 cracking Methods 0.000 description 5
- 229910001315 Tool steel Inorganic materials 0.000 description 4
- 238000005242 forging Methods 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 238000007493 shaping process Methods 0.000 description 3
- 230000035882 stress Effects 0.000 description 3
- 230000008646 thermal stress Effects 0.000 description 3
- 239000012895 dilution Substances 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 230000000977 initiatory effect Effects 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229910052582 BN Inorganic materials 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- QFXZANXYUCUTQH-UHFFFAOYSA-N ethynol Chemical group OC#C QFXZANXYUCUTQH-UHFFFAOYSA-N 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000007542 hardness measurement Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 230000008450 motivation Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000004227 thermal cracking Methods 0.000 description 1
- 238000002411 thermogravimetry Methods 0.000 description 1
- 230000000930 thermomechanical effect Effects 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/07—Alloys based on nickel or cobalt based on cobalt
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C30/00—Alloys containing less than 50% by weight of each constituent
Definitions
- Tool materials that can withstand the process conditions are employed in forming operations.
- the tool materials to be used in tooling for high temperature forming operations must withstand the high temperatures, the mechanical and thermal loads encountered at these temperatures, oxidation and loss of strength.
- the present invention offers a new tool material for the semi-solid processing of steels, an attractive near-net shaping process that has not been commercialized until today due to a lack of suitable die materials.
- the die materials intended for semi-solid forming of steels must withstand thermo-mechanical cycles at elevated temperatures, wear and oxidation.
- the tool material described by the present invention offers a three-fold improvement in the service life with respect to that provided by cobalt-based alloys that have been the material of choice and widely used until today. Hence, it is a very attractive material for the manufacturers of forged steel parts.
- the material of the present invention whether employed as the die material or as a hardfacing alloy, offers a very significant opportunity for semi-solid processing of steels, an attractive near-net shaping process that has not been commercialized until today due to a lack of suitable die materials.
- Tooling issue is a very critical one since tool assemblies are responsible for one fifth of the part cost in plastic forming operations [1]. Dies employed in semi-solid forging of steel parts are among tooling that are faced with the most severe conditions [2-5]. Stresses originating from thermal cycles are essentially the major life-limiting factors since the mechanical stresses are limited owing to paste-like features of the feedstock to be shaped in the forming dies [6].
- Hot work tool steels are not at all suitable for tooling to be employed in semi-solid forming of steels in spite of the fact that they are very attractive from a cost standpoint [7-15].
- Cobalt-based alloys are attractive candidates for high temperature tooling applications owing to an exceptional performance in a wide temperature range [16-22].
- Stellite 6 a popular cobalt-based alloy which can be used as the die material or as a hardfacing alloy, has been shown with the present art to offer a three-fold improvement in tool service life with respect to hot work tool steels [23, 24].
- the hard and brittle carbides dispersed in between the ferrite dendrite arms have played a key role in crack growth and led to an increase in the crack growth rate.
- carbides were found to be more susceptible to oxidation in high temperature wear tests and have impaired the wear resistance of cobalt-based Stellite alloys by increasing the wear rate [25].
- the high cost of cobalt based alloys is the major impediment that limits their wide spread use.
- a novel cobalt based alloy has been developed in the present invention to be employed in the semi-solid shaping of steels.
- This novel alloy has been designed without carbon with a consideration of the negative impact of the carbides in stellite alloys on crack propagation under thermal cycles encountered at elevated temperatures.
- Another critical feature of the alloy of the present invention that is different from its counterparts is its much higher iron content (up to 12 wt%).
- compositional adjustment is intended to account for the dilution of the hardfacing layer with iron from the underlying steel substrate during hardfacing operations.
- the alloy of the present invention does not contain carbon. Besides, its iron content is much higher than its counterparts. This feature not only improves the cost aspect but also accounts for the dilution effect often encountered in hardfacing of tool steels.
- the eutectic carbides typical of stellite alloys are replaced by molybdenum-rich intermetallic compound particles dispersed at dendrite boundaries.
- the alloy of the present invention offers a three-fold improvement in the service life of dies with respect to those manufactured from stellite 6 alloy that has been identified to be the best die material tested until today under semi-solid steel forming process conditions.
- This exceptional performance of this novel material is attributed to its resistance to high temperature oxidation and to temper softening as well as to a cobalt-rich matrix phase free from the hard and brittle carbides that impair the crack growth resistance.
- Carbon-free cobalt based alloy of the present invention was prepared by melting commercial purity elements in a 2 kg capacity induction furnace under vacuum. The alloy melt thus obtained was subsequently cast into boron nitride coated permanent mould between 1580-1600 ° C under vacuum.
- the microstructure of the alloy of the present invention consists of a ferritic dendritic solid solution matrix phase and molybdenum-rich intermetallic compound particles at interdendritic sites ( Figure 1).
- Carbides in stellite alloys are replaced in the alloy of the present invention with molybdenum-rich intermetallic compound particles.
- the hardness of these particles is nearly two times higher than that of the matrix phase.
- the hardness of the matrix and the molybdenum-rich particles were measured to be 382 ⁇ 52 HV and 700 ⁇ 143 HV respectively.
- the former temperature is the temperature to which the die is heated to in plastic forming operations while the latter is the highest temperature measured at the surface of the die during semi-solid forging of steels.
- the front face of the thermal fatigue test sample was heated to 750 centigrade within 30 seconds with an oxyacetylene torch and subsequently cooled to 450 centigrade within the next 30 seconds with forced air blow (Figure 2).
- the temperature of the front and rear faces of the thermal fatigue test samples were measured with K-type thermocouples fixed into 3 mm diameter holes drilled at 0.1 mm from the respective surfaces. Thermal fatigue tests were terminated as soon as oxidation and/or thermal fatigue cracks were detected on the front face. The damage introduced with thermal cycling were evaluated qualitatively with optical and stereo microscopes.
- the lowest and the highest temperatures at the rear face of the thermal fatigue sample were measured to be 486 and 580 centigrade, respectively, when the temperature of the front face was cycled between the minimum and maximum temperatures of 450 and 750 centigrade. These temperature differences between the front and rear faces have set up thermal gradients across the section of the samples. The temperature difference between the front and rear faces of the sample is as much as 192 centigrade within 27 seconds of the start of a typical thermal cycle.
- the maximum tensile and compressive stresses acting on the front face of the thermal fatigue samples were estimated to be 472 MPa and 210 MPa, respectively, with a consideration of the thermal gradients measured across the section of the samples.
- the front face of the thermal fatigue sample prepared from the alloy of the present invention faces the highest temperatures and thus the highest thermal stresses during thermal cycling and is shown in Figure 3.
- the thermal fatigue resistance of this sample revealed no signs of thermal fatigue cracking until 13000 thermal cycles and was thus identified to be exceptional.
- Several minor lines linked with the blistering and wrinkling of the surface oxide film were detected on the front face during the regular checks performed every 500 cycles after a total of 13000 thermal cycles ( Figure 3a). It has taken these minor traces another 3000 thermal cycles to develop into legitimate thermal fatigue cracks ( Figure 3b).
- a surface crack of considerable size has formed by the spallation of the surface oxides at the intersection of two surface wrinkles after a total of 16000 thermal cycles ( Figure 3b).
- the thermal fatigue test was terminated at this point and the front face of the sample was prepared for investigation with standard metallographic practices. The surface crack was found to go through the grains instead of through the grain boundaries ( Figure 3c).
- Thermal fatigue test had to be terminated after 5000 cycles when the hot work tool steel sample coated with Stellite 6 alloy hardfacing tested under exactly the same conditions. Thermal fatigue cracks had already traversed the 2 mm thick stellite 6 surface layer entirely at this point. Thermal fatigue cracking was found to start after 4500 cycles and the thermal fatigue crack was found to grow nearly 2 mm during the next 500 cycles during the regular 500 cycle inspections [24].
- Hot work tool steels could withstand the same conditions only for 1000 thermal cycles due to surface degradation linked with severe oxidation [23, 24]. Deep cracks filled with voluminous oxides were noted on the front face of the hot work tool steel sample when the thermal cycling was terminated after 15000 cycles.
- Stellite 6 alloy that has been identified to be the most successful high temperature alloy until today, whether employed as the die material itself or as weld overlay surface layer, could withstand these cycling conditions for only 5000 cycles without cracking on the front face [23]. It is thus fair to claim that the alloy of the present invention offers at least 3 and at least 10 times longer service life with respect to Stellite 6 alloy and hot work tool steel, respectively.
- the outstanding thermal fatigue performance of the alloy of the present invention evidences its exceptional resistance to high temperature oxidation.
- This oxidation resistance is attributed to chromium in the alloy composition that oxidizes preferentially and forms a slowly growing, stable and protective oxide film on the surface [23, 24].
- Cr2O3 oxide
- This stable and protective Cr2O3 layer served as a barrier to excessive oxidation under thermal cycling test conditions.
- the much lower tendency of the alloy of the present invention to oxidation with respect to hot work tool steels is evidenced also by thermo gravimetric analysis and by the metallographic analysis of sections of samples submitted to thermal cycling.
- the surface oxide of the alloy of the present invention is only 3-4 m m thick after 16000 thermal cycles, much thinner than the oxide on the surface of hot work tool steel samples, measured to be nearly 50 m m after only 500 thermal cycles.
- Cr2O3 film on the surface is claimed to be resistant to thermal stresses and retains its integrity.
- Another feature that imparts to the alloy of the present invention its high thermal fatigue resistance is its resistance to loss of strength at elevated temperatures. Resistance to softening is a key feature required in tool materials to ensure adequate resistance to crack initiation as well as to crack growth.
- a hard alloy protects its surface oxides and the surface oxides, in turn, protect the underlying die steel. Surface oxide films offer this protection by resisting against plastic deformations produced by mechanical and/or thermal stresses, against blistering, expansions and finally to cracking and spallation. Hence, surface deterioration and damage are avoided and cracking is thus delayed.
- the resistance of the alloy of the present invention to loss of strength at elevated temperatures has been confirmed with hardness measurements across the section of the samples submitted to thermal cycling.
- the softening in the present alloy is very small and is confined to the surface during the first couple of thousand cycles (Figure 5).
- the average hardness measured to be 560 HV before thermal cycling, is still 500 HV after the first 5000 cycles.
- This hardness level implies a much higher softening resistance of the present alloy with respect to hot work tool steels, the hardness of which is measured to be as low as 250 HV after the same number of thermal cycles [23].
- Hardness of the alloy of the present invention has continued to decrease steadily with increasing number of thermal fatigue cycles.
- the hardness of the alloy of the present invention even after 16000 thermal cycles is 400 HV, and is thus higher than the hardness measured in Stellite 6 alloy after 5000 cycles. It is fair to conclude in view of the foregoing that the high resistance to softening of the alloy of the present invention makes a favourable impact on its high thermal fatigue resistance.
- Figure 1 Microstructure of the alloy of the present invention: (a) dendritic matrix phase, (b) Molybdenum-rich intermetallic phase.
- Figure 2 Change in temperatures measured on the front and rear faces of the sample during a typical thermal cycle.
- Figure 3 Surface blistering detected on the front face of the thermal fatigue test sample of the cobalt-based alloy of the present invention after 13000 thermal cycles (a), (b, c) development of this surface blister into a thermal fatigue crack after 16000 cycles. (a and b) scanning electron and (c) optical microscope micrographs.
- Figure 4 Section view of the thermal fatigue crack after 16000 thermal cycles.
- Figure 5 Change in hardness across the section of the thermal fatigue sample with number of thermal cycles.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Forging (AREA)
- Molds, Cores, And Manufacturing Methods Thereof (AREA)
Abstract
Description
- Tool materials that can withstand the process conditions are employed in forming operations. The tool materials to be used in tooling for high temperature forming operations must withstand the high temperatures, the mechanical and thermal loads encountered at these temperatures, oxidation and loss of strength. The present invention offers a new tool material for the semi-solid processing of steels, an attractive near-net shaping process that has not been commercialized until today due to a lack of suitable die materials.
- The die materials intended for semi-solid forming of steels must withstand thermo-mechanical cycles at elevated temperatures, wear and oxidation. The tool material described by the present invention offers a three-fold improvement in the service life with respect to that provided by cobalt-based alloys that have been the material of choice and widely used until today. Hence, it is a very attractive material for the manufacturers of forged steel parts. The material of the present invention, whether employed as the die material or as a hardfacing alloy, offers a very significant opportunity for semi-solid processing of steels, an attractive near-net shaping process that has not been commercialized until today due to a lack of suitable die materials.
- Tooling issue is a very critical one since tool assemblies are responsible for one fifth of the part cost in plastic forming operations [1]. Dies employed in semi-solid forging of steel parts are among tooling that are faced with the most severe conditions [2-5]. Stresses originating from thermal cycles are essentially the major life-limiting factors since the mechanical stresses are limited owing to paste-like features of the feedstock to be shaped in the forming dies [6].
- Hot work tool steels are not at all suitable for tooling to be employed in semi-solid forming of steels in spite of the fact that they are very attractive from a cost standpoint [7-15].
- Cobalt-based alloys are attractive candidates for high temperature tooling applications owing to an exceptional performance in a wide temperature range [16-22]. Stellite 6, a popular cobalt-based alloy which can be used as the die material or as a hardfacing alloy, has been shown with the present art to offer a three-fold improvement in tool service life with respect to hot work tool steels [23, 24]. However, the hard and brittle carbides dispersed in between the ferrite dendrite arms have played a key role in crack growth and led to an increase in the crack growth rate. Additionally, carbides were found to be more susceptible to oxidation in high temperature wear tests and have impaired the wear resistance of cobalt-based Stellite alloys by increasing the wear rate [25]. The high cost of cobalt based alloys is the major impediment that limits their wide spread use.
- A novel cobalt based alloy has been developed in the present invention to be employed in the semi-solid shaping of steels. This novel alloy has been designed without carbon with a consideration of the negative impact of the carbides in stellite alloys on crack propagation under thermal cycles encountered at elevated temperatures. Another critical feature of the alloy of the present invention that is different from its counterparts is its much higher iron content (up to 12 wt%).
- This compositional adjustment is intended to account for the dilution of the hardfacing layer with iron from the underlying steel substrate during hardfacing operations.
- Another motivation for this change is to provide a substantial cost reduction in the cobalt based alloy.
- The alloy of the present invention does not contain carbon. Besides, its iron content is much higher than its counterparts. This feature not only improves the cost aspect but also accounts for the dilution effect often encountered in hardfacing of tool steels.
- Owing to the chemical composition of the present alloy, the eutectic carbides typical of stellite alloys are replaced by molybdenum-rich intermetallic compound particles dispersed at dendrite boundaries.
- The alloy of the present invention offers a three-fold improvement in the service life of dies with respect to those manufactured from stellite 6 alloy that has been identified to be the best die material tested until today under semi-solid steel forming process conditions. This exceptional performance of this novel material is attributed to its resistance to high temperature oxidation and to temper softening as well as to a cobalt-rich matrix phase free from the hard and brittle carbides that impair the crack growth resistance.
- Carbon-free cobalt based alloy of the present invention was prepared by melting commercial purity elements in a 2 kg capacity induction furnace under vacuum. The alloy melt thus obtained was subsequently cast into boron nitride coated permanent mould between 1580-1600 ° C under vacuum.
- The microstructure of the alloy of the present invention consists of a ferritic dendritic solid solution matrix phase and molybdenum-rich intermetallic compound particles at interdendritic sites (Figure 1).
- Carbides in stellite alloys are replaced in the alloy of the present invention with molybdenum-rich intermetallic compound particles. The hardness of these particles is nearly two times higher than that of the matrix phase. The hardness of the matrix and the molybdenum-rich particles were measured to be 382 ± 52 HV and 700 ± 143 HV respectively.
- Samples of the present alloy, 25mmx25mmx20mm in size, were submitted to thermal fatigue testing in order to identify their performance. The minimum and the maximum temperatures of the thermal cycle were selected to be 450 centigrade and 750 centigrade, respectively, with a consideration of the die surface temperatures encountered in the conventional forging and semi-solid forging operations. The former temperature is the temperature to which the die is heated to in plastic forming operations while the latter is the highest temperature measured at the surface of the die during semi-solid forging of steels. The front face of the thermal fatigue test sample was heated to 750 centigrade within 30 seconds with an oxyacetylene torch and subsequently cooled to 450 centigrade within the next 30 seconds with forced air blow (Figure 2). The temperature of the front and rear faces of the thermal fatigue test samples were measured with K-type thermocouples fixed into 3 mm diameter holes drilled at 0.1 mm from the respective surfaces. Thermal fatigue tests were terminated as soon as oxidation and/or thermal fatigue cracks were detected on the front face. The damage introduced with thermal cycling were evaluated qualitatively with optical and stereo microscopes.
- The lowest and the highest temperatures at the rear face of the thermal fatigue sample were measured to be 486 and 580 centigrade, respectively, when the temperature of the front face was cycled between the minimum and maximum temperatures of 450 and 750 centigrade. These temperature differences between the front and rear faces have set up thermal gradients across the section of the samples. The temperature difference between the front and rear faces of the sample is as much as 192 centigrade within 27 seconds of the start of a typical thermal cycle. The maximum tensile and compressive stresses acting on the front face of the thermal fatigue samples were estimated to be 472 MPa and 210 MPa, respectively, with a consideration of the thermal gradients measured across the section of the samples.
- The front face of the thermal fatigue sample prepared from the alloy of the present invention faces the highest temperatures and thus the highest thermal stresses during thermal cycling and is shown in Figure 3. The thermal fatigue resistance of this sample revealed no signs of thermal fatigue cracking until 13000 thermal cycles and was thus identified to be exceptional. Several minor lines linked with the blistering and wrinkling of the surface oxide film were detected on the front face during the regular checks performed every 500 cycles after a total of 13000 thermal cycles (Figure 3a). It has taken these minor traces another 3000 thermal cycles to develop into legitimate thermal fatigue cracks (Figure 3b). Finally, a surface crack of considerable size has formed by the spallation of the surface oxides at the intersection of two surface wrinkles after a total of 16000 thermal cycles (Figure 3b). The thermal fatigue test was terminated at this point and the front face of the sample was prepared for investigation with standard metallographic practices. The surface crack was found to go through the grains instead of through the grain boundaries (Figure 3c).
- Thermal fatigue test had to be terminated after 5000 cycles when the hot work tool steel sample coated with Stellite 6 alloy hardfacing tested under exactly the same conditions. Thermal fatigue cracks had already traversed the 2 mm thick stellite 6 surface layer entirely at this point. Thermal fatigue cracking was found to start after 4500 cycles and the thermal fatigue crack was found to grow nearly 2 mm during the next 500 cycles during the regular 500 cycle inspections [24].
- It takes 13000 thermal cycles for thermal cracking to start and another 3000 cycles for the thermal fatigue crack that has formed to grow only 1 mm. (Figure 4).
- This simple comparison evidences that the crack growth rate in the alloy of the present invention is at least 10 times lower than that in the Stellite 6 alloy. It is fair to claim from the foregoing that the alloy of the present invention offers not only an outstanding thermal fatigue crack initiation but also to thermal fatigue crack growth resistance. This exceptional crack growth resistance of the alloy of the present invention is attributed to its microstructure free of brittle carbides that were shown to encourage crack propagation in Stellite 6 alloy [24, 26].
- The potential of the alloy of the present invention under thermal cycling conditions at elevated temperatures is appreciated more when the performance of the hot work tool steels under the same conditions are considered. Hot work tool steels could withstand the same conditions only for 1000 thermal cycles due to surface degradation linked with severe oxidation [23, 24]. Deep cracks filled with voluminous oxides were noted on the front face of the hot work tool steel sample when the thermal cycling was terminated after 15000 cycles.
- Stellite 6 alloy that has been identified to be the most successful high temperature alloy until today, whether employed as the die material itself or as weld overlay surface layer, could withstand these cycling conditions for only 5000 cycles without cracking on the front face [23]. It is thus fair to claim that the alloy of the present invention offers at least 3 and at least 10 times longer service life with respect to Stellite 6 alloy and hot work tool steel, respectively.
- The outstanding thermal fatigue performance of the alloy of the present invention evidences its exceptional resistance to high temperature oxidation. This oxidation resistance is attributed to chromium in the alloy composition that oxidizes preferentially and forms a slowly growing, stable and protective oxide film on the surface [23, 24]. The presence of such an oxide (Cr2O3) film on the surface was confirmed with low angle x-ray diffraction analysis. This stable and protective Cr2O3 layer served as a barrier to excessive oxidation under thermal cycling test conditions. The much lower tendency of the alloy of the present invention to oxidation with respect to hot work tool steels is evidenced also by thermo gravimetric analysis and by the metallographic analysis of sections of samples submitted to thermal cycling. The surface oxide of the alloy of the present invention is only 3-4 m m thick after 16000 thermal cycles, much thinner than the oxide on the surface of hot work tool steel samples, measured to be nearly 50 m m after only 500 thermal cycles. Cr2O3 film on the surface is claimed to be resistant to thermal stresses and retains its integrity.
- Another feature that imparts to the alloy of the present invention its high thermal fatigue resistance is its resistance to loss of strength at elevated temperatures. Resistance to softening is a key feature required in tool materials to ensure adequate resistance to crack initiation as well as to crack growth. A hard alloy protects its surface oxides and the surface oxides, in turn, protect the underlying die steel. Surface oxide films offer this protection by resisting against plastic deformations produced by mechanical and/or thermal stresses, against blistering, expansions and finally to cracking and spallation. Hence, surface deterioration and damage are avoided and cracking is thus delayed.
- The resistance of the alloy of the present invention to loss of strength at elevated temperatures has been confirmed with hardness measurements across the section of the samples submitted to thermal cycling. The softening in the present alloy is very small and is confined to the surface during the first couple of thousand cycles (Figure 5). The average hardness measured to be 560 HV before thermal cycling, is still 500 HV after the first 5000 cycles. This hardness level implies a much higher softening resistance of the present alloy with respect to hot work tool steels, the hardness of which is measured to be as low as 250 HV after the same number of thermal cycles [23]. Hardness of the alloy of the present invention has continued to decrease steadily with increasing number of thermal fatigue cycles. However, the hardness of the alloy of the present invention even after 16000 thermal cycles is 400 HV, and is thus higher than the hardness measured in Stellite 6 alloy after 5000 cycles. It is fair to conclude in view of the foregoing that the high resistance to softening of the alloy of the present invention makes a favourable impact on its high thermal fatigue resistance.
- Figure 1: Microstructure of the alloy of the present invention: (a) dendritic matrix phase, (b) Molybdenum-rich intermetallic phase.
Figure 2: Change in temperatures measured on the front and rear faces of the sample during a typical thermal cycle.
Figure 3: Surface blistering detected on the front face of the thermal fatigue test sample of the cobalt-based alloy of the present invention after 13000 thermal cycles (a), (b, c) development of this surface blister into a thermal fatigue crack after 16000 cycles. (a and b) scanning electron and (c) optical microscope micrographs.
Figure 4: Section view of the thermal fatigue crack after 16000 thermal cycles.
Figure 5: Change in hardness across the section of the thermal fatigue sample with number of thermal cycles. - [1] E. Doege, H. Nagele, U. Schliephake, J. Eng. Manuf. 208 (1994) 111.
[2] K. Bobzin, E. Lugscheider, M. Maes, P. Immich, Solid State Phenomena, 116-117 (2006) 704.
[3] R. Kopp, J. Kallweit, T. Moller, I. Seidl, J. Mater. Process Tech. 130-131 (2002) 562.
[4] Y. Birol, Steel Res. Int., 80 (2009) 588.
[5] Y. Birol, Ironmak & Steelmak, 36 (2009) 397.
[6] Y. Birol, Steel Res. Int. 80, (2009) 165.
[7] S. Muenstermann, K. Uibel, T. Tonnesen, R. Telle, Solid State Phenomena, 116-117 (2006) 696.
[8] E. Lugscheider, K. Bobzin, C. Barimani, St. Barwulf, Th. Hornig, Adv. Eng. Mater. 2 (2000) 33.
[9] M.Z. Omar, E.J Palmiere, A.A. Howe, H.V. Atkinson, P. Kapranos, Mater. Sci. Eng. A395 (2005) 53.
[10] E. Lugscheider, Th. Hornig, D. Neuschutz, O. Kyrylov, R. Prange, in: G.L. Chiarmetta, M. Rosso (Eds.) Proc. 6th Int. Conf.On Semi-Solid Processing of Alloys and Composites, Turin, 2000, pp. 587-592.
[11] R. Telle, S. Muenstermann, C. Beyer, Solid State Phenomena, Vol. 116-117 (2006) 690.
[12] Y. Birol, Ironmak & Steelmak, 36 (2009) 555.
[13] Y. Birol, Steel Research Int., 80 (2009) 165.
[14] Y. Birol, Int. J. Mater. Form. 3 (2010) 65.
[15] Y. Birol, Ironmak. Steelmak. 37 (2010) 41.
[16] J.C. Shin, J.M. Doh, J.K. Yoon, D.K. Lee, J.S. Kim, Surf. Coat. Tech. 166 (2003) 117.
[17] I. Radu, D.Y. Li, Wear 259 (2005) 453.
[18] J.N. Aoh, Y.R. Jeng, E.L. Chu, L.T. Wu, Wear 225-229 (1999) 1114.
[19] H. Kashani, A. Amadeh, H.M. Ghasemi, Wear 262 (2007) 800.
[20] M.X. Yao, J.B.C. Wu, Y. Xie, Mat. Sci. Eng. A 407 (2005) 234.
[21] C. Navas, A. Conde, M. Cadenas and J. de Damborenea, Surf. Eng. 22 (2006) 26.
[22] B.F. Levin, J.N. DuPont, A.R. Marder, Wear 181-183 (1995) 810.
[23] Y. Birol, Mater. Sci. Eng. A527 (2010) 1938.
[24] Y. Birol, Mater. Sci. Eng. A 527 (2010) 6091.
[25] Y. Birol, Wear, 269 (2010) 664.
[26] Y. Birol, A. Kayihan, Metal. Mater. Trans., 42 (2011) 3277
Claims (4)
- A cobalt based alloy with no carbon and 9-15 wt% iron in its chemical composition.
- An alloy according to claim 1, with a ferritic dendritic matrix phase and molybdenum-rich intermetallic particles at dendrite boundaries.
- An alloy according to claim 1, the extent of softening after 5000 cycles in thermal fatigue test of which, is less than %15.
- An alloy according to claim 1, containing 0.72 wt% Si, 1.58 wt% Mn, 29.22 wt% Cr, 5.50 wt% Mo, 3.77 wt% Ni, wt% 11.50 Fe, the balance being Co.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TR201111434 | 2011-11-18 | ||
PCT/IB2012/056511 WO2013072899A1 (en) | 2011-11-18 | 2012-11-16 | Alloy for high temperature tooling applications |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2780485A1 true EP2780485A1 (en) | 2014-09-24 |
EP2780485B1 EP2780485B1 (en) | 2018-10-24 |
Family
ID=47557408
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP12813975.5A Active EP2780485B1 (en) | 2011-11-18 | 2012-11-16 | Alloy for high temperature tooling applications |
Country Status (5)
Country | Link |
---|---|
US (1) | US20140334968A1 (en) |
EP (1) | EP2780485B1 (en) |
CN (1) | CN104080933B (en) |
TR (1) | TR201819886T4 (en) |
WO (1) | WO2013072899A1 (en) |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3410732A (en) * | 1965-04-30 | 1968-11-12 | Du Pont | Cobalt-base alloys |
JPS5613454A (en) * | 1979-04-12 | 1981-02-09 | Far Fab Assortiments Reunies | Ductile magnetic alloy and production |
JPS63118041A (en) * | 1986-11-07 | 1988-05-23 | Sankin Kogyo Kk | Antibacterial alloy |
FR2733416B1 (en) * | 1995-04-28 | 1997-07-25 | Bourrelly Georges | ALLOY FOR DENTAL PROSTHESES BASED ON COBALT-CHROME ALUMINUM |
JP3865293B2 (en) * | 2001-05-30 | 2007-01-10 | 日立粉末冶金株式会社 | Abrasion resistant hard phase forming alloy powder and method for producing wear resistant sintered alloy using the same |
DE10252776A1 (en) * | 2002-11-07 | 2004-07-22 | Dentaurum J.P. Winkelstroeter Kg | Dental casting alloy |
SE0300881D0 (en) * | 2003-03-27 | 2003-03-27 | Hoeganaes Ab | Powder metal composition and method for producing components thereof |
WO2007066555A1 (en) * | 2005-12-05 | 2007-06-14 | Japan Science And Technology Agency | Co BASED ALLOY AND PROCESS FOR PRODUCING THE SAME |
JP5472704B2 (en) * | 2009-08-26 | 2014-04-16 | 三菱マテリアル株式会社 | Co-based alloy member for electric melting furnace and electric melting furnace for high-level radioactive waste vitrification treatment |
-
2012
- 2012-11-16 TR TR2018/19886T patent/TR201819886T4/en unknown
- 2012-11-16 EP EP12813975.5A patent/EP2780485B1/en active Active
- 2012-11-16 CN CN201280056717.7A patent/CN104080933B/en not_active Expired - Fee Related
- 2012-11-16 US US14/359,105 patent/US20140334968A1/en not_active Abandoned
- 2012-11-16 WO PCT/IB2012/056511 patent/WO2013072899A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
WO2013072899A1 (en) | 2013-05-23 |
EP2780485B1 (en) | 2018-10-24 |
TR201819886T4 (en) | 2019-01-21 |
CN104080933A (en) | 2014-10-01 |
CN104080933B (en) | 2016-03-30 |
US20140334968A1 (en) | 2014-11-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Rassili et al. | A review on steel thixoforming | |
US9638075B2 (en) | High performance nickel-based alloy | |
Birol | A novel C-free Co-based alloy for high temperature tooling applications | |
US9034121B2 (en) | Low alloy steel for geothermal power generation turbine rotor, and low alloy material for geothermal power generation turbine rotor and method for manufacturing the same | |
Birol | Thermal fatigue testing of Stellite 6-coated hot work tool steel | |
CN115698351B (en) | Deformable chromium-containing cobalt-based alloy with improved resistance to galling and chloride-induced crevice corrosion | |
US20120282480A1 (en) | High-temperature material transferring member | |
CN107760990A (en) | The forging method of nuclear steam generator flange forge piece | |
CN100370051C (en) | High-temperature wear-resistant and corrosion-resistant Fe-Cr-Si iron-based alloy material | |
CA2521318C (en) | Controlled thermal expansion of welds to enhance toughness | |
EP2780485B1 (en) | Alloy for high temperature tooling applications | |
WO2016052660A1 (en) | Composite cylinder for molding machine and process for producing same | |
Birol | A CrNiCo Alloy as a Potential Tool Material in Semi‐solid Processing of Steels | |
JP5670929B2 (en) | Ni-based alloy forging | |
Birol et al. | Thermal fatigue testing of plasma transfer arc Stellite coatings on hot work tool steels under steel thixoforming conditions | |
CN102676882A (en) | Alloy material with wear-resistance, heat-resistance, corrosion-resistance, high hardness | |
Solecka et al. | Erosive wear of inconel 625 alloy coatings deposited by CMT method | |
CN105734344B (en) | A kind of nickel-base alloy and its production technology of integral high temperature excellent performance | |
JP2967436B2 (en) | Blast furnace tuyere | |
CA3002285A1 (en) | New austenitic stainless alloy | |
Püttgen et al. | Selection of suitable tool materials and development of tool concepts for the thixoforging of steels | |
Bünck et al. | Thixocasting Steel Hand Tools using Al2O3‐coated Steel and Molybdenum Dies | |
Zhou et al. | High temperature wear resistance of cobalt-based cladding layer surfacing on H13 steel | |
JP7111092B2 (en) | Seamless steel pipe rolling plug, method for manufacturing seamless steel pipe rolling plug, seamless steel pipe rolling plug mill, method for rolling seamless steel pipe, and method for manufacturing seamless steel pipe | |
He et al. | Microstructure and wear resistance of Fe-based, Co-based and Ni-based coating of AISI H13 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20140429 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: CAKIR, OSMAN Inventor name: ALAGEYIK, FAHRI Inventor name: BIROL, YUCEL |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20161013 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20180416 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: ALAGEYIK, FAHRI Inventor name: BIROL, YUCEL Inventor name: CAKIR, OSMAN |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1056736 Country of ref document: AT Kind code of ref document: T Effective date: 20181115 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602012052668 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20181024 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1056736 Country of ref document: AT Kind code of ref document: T Effective date: 20181024 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190124 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190224 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190124 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190125 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190224 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602012052668 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181116 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181130 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181130 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20190124 |
|
26N | No opposition filed |
Effective date: 20190725 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181116 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190124 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181116 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20121116 Ref country code: MK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181024 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20221110 Year of fee payment: 11 Ref country code: FR Payment date: 20221122 Year of fee payment: 11 Ref country code: DE Payment date: 20221114 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20221125 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20231003 Year of fee payment: 12 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602012052668 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20231130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20240601 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231130 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20240601 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231116 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231116 |