EP1091349A2 - Verfahren und Vorrichtung zur Geräuschunterdrückung bei der Sprachübertragung - Google Patents

Verfahren und Vorrichtung zur Geräuschunterdrückung bei der Sprachübertragung Download PDF

Info

Publication number
EP1091349A2
EP1091349A2 EP00250301A EP00250301A EP1091349A2 EP 1091349 A2 EP1091349 A2 EP 1091349A2 EP 00250301 A EP00250301 A EP 00250301A EP 00250301 A EP00250301 A EP 00250301A EP 1091349 A2 EP1091349 A2 EP 1091349A2
Authority
EP
European Patent Office
Prior art keywords
layer
spectrum
noise
filter
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP00250301A
Other languages
English (en)
French (fr)
Other versions
EP1091349A3 (de
EP1091349B1 (de
Inventor
Dietmar Dr. Ruwisch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RUWISCH, DIETMAR, DR.
Original Assignee
Cortologic AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cortologic AG filed Critical Cortologic AG
Publication of EP1091349A2 publication Critical patent/EP1091349A2/de
Publication of EP1091349A3 publication Critical patent/EP1091349A3/de
Application granted granted Critical
Publication of EP1091349B1 publication Critical patent/EP1091349B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0208Noise filtering
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L25/00Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
    • G10L25/27Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 characterised by the analysis technique
    • G10L25/30Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 characterised by the analysis technique using neural networks

Definitions

  • the invention relates to a method and a device for noise suppression during voice transmission through a multi-layered, self-organizing, feedback neural network.
  • the Wiener Komolgorov filter is derived from the optimal filter theory. (S.V. Vaseghi, Advanced Signal Processing and Digital Noise Reduction, "John Wiley and Teubner publishing house, 1996). This procedure is based on the Minimize the mean square error between the actual and expected speech signal. This filter concept requires a considerable amount Computing effort. It is also like most known ones Procedure a stationary interference signal theoretical requirement.
  • the Kalman filter is based on a similar filter principle (E. Wan and A. Nelson, Removal of noise from speech using the Dual Extended Kalman Filter algorithm, Proceedings of the IEEE International Conference on Acoustics and Signal Processing (ICASSP'98), Seattle 1998).
  • This filter concept has a disadvantage the long training time it takes to complete the Determine filter parameters.
  • LPC requires the complex one Calculation of correlation matrices in order to use a linear prediction method filter coefficients calculate as from T. Arai, H. Hermansky, M. Paveland, C. Avendano, Intelligibility of Speech with Filtered Time Trajectories of LPC Cepstrum, The Journal of the Acoustical Society of Maerica, Vol. 100, No. 4, Pt. 2, p. 2756, 1996.
  • the object of the present invention is a method to create that with little computation Speech signal based on its temporal and spectral properties recognized and freed from noise can.
  • This task is solved in that a mini detection layer, a reaction layer, a diffusion layer and an integration layer a filter function Determine F (f, T) for noise filtering.
  • a network designed in this way recognizes a voice signal in its temporal and spectral properties and frees it from noise. Compared to In known methods, the computation effort required is low.
  • the process is characterized by a special short adaptation time, within which the system adjusts to the type of noise.
  • the signal delay when processing the signal very short, so that the filter in real time for telecommunications is operational.
  • FIG. 10 An overall system is shown schematically and by way of example in FIG shown for language filtering. This exists from a sampling unit 10, which is the noisy one Voice signal sampled in time t and discretized and thus generates samples x (t) that in time T can be combined into frames from n samples.
  • the Fourier transform is used to transform each frame Spectrum A (f, T) determined at time T and a filter unit 11 fed with the help of a neural Network, as shown in Figure 2, a Filter function F (f, T) calculated with which the spectrum A (f, T) of the signal is multiplied by the noise-free Generate spectrum B (f, T). Subsequently becomes the signal of a synthesis unit filtered in this way (12) passed by means of inverse Fourier transformation the noise-free from the filtered spectrum B (f, T) Speech signal y (t) synthesized.
  • FIG. 2 shows a mini detection layer, a reaction layer, a diffusion layer and one Neural network containing integration layer, which is particularly the subject of the invention and which the spectrum A (f, T) of the input signal supplied becomes, from which the filter function F (f, T) is calculated becomes.
  • Each of the modes of the spectrum that stands out distinguish the frequency f corresponds to one single neuron per layer of the network except the integration layer.
  • the individual layers are specified in more detail in the following figures.
  • M (f, T) determines.
  • M (f, T) is in fashion with frequency f the minimum of the averaged over m frames Amplitude A (f, T) within an interval of Time T, which corresponds to the length of 1 frame.
  • Figure 4 shows a neuron of the reaction layer, which with the help of a reaction function r [S (T-1)] from the integral signal S (T-1) as detailed in Figure 6 is shown, and a freely selectable parameter K, which determines the level of noise cancellation the relative spectrum R (f, T) is determined from A (f, T) and M (f, T).
  • R (f, T) has a value between zero and one.
  • the reaction layer distinguishes speech from noise based on the temporal behavior of the signal.
  • FIG. 5 shows a neuron of the diffusion layer in which a local coupling corresponding to the diffusion between the fashions.
  • the diffusion constant D determines the strength of the resulting Smoothing over the frequencies f at a fixed time T.
  • the diffusion layer determines from the relative signal R (f, T) the actual filter function F (f, T) with which the spectrum A (f, T) is multiplied by noise to eliminate.
  • Speech of sounds based on spectral properties distinguished.
  • Figure 6 shows this in the chosen embodiment of the invention only neuron of the integration layer that the Filter function F (f, T) with fixed time T over the frequencies f integrated and the integral signal thus obtained S (T) feeds back into the reaction layer, as Figure 2 shows.
  • This global coupling ensures that when there is a high noise level, the filtering is strong while noiseless speech is transmitted unadulterated.
  • FIG. 7 shows exemplary details of the filter properties of the invention for various settings of the control parameter K.
  • the picture shows the Attenuation of amplitude modulated white noise in Dependence of the modulation frequency. At modulation frequencies the damping is between 0.6 Hz and 6 Hz less than 3 dB. This interval corresponds to the typical modulation of human language.
  • a Speech signal that is affected by any background noise be sampled in a sampling unit 10 and digitized, as shown in FIG. 1.
  • samples x (t) are obtained in time t.
  • samples x (t) are combined into a frame, of which at time T using Fourier transform a spectrum A (f, T) is calculated.
  • the modes of the spectrum differ in their Frequency f.
  • the Spectrum A (f, T) generates a filter function F (f, T) and multiplied by the spectrum. This gives you that filtered spectrum B (f, T), from which in a synthesis unit through inverse Fourier transformation the noise-free Speech signal y (t) is generated. This can after digital-analog conversion in a speaker be made audible.
  • the filter function F (f, T) is performed by a neural Network that creates a mini detection layer, a reaction layer, a diffusion layer and one Integration layer contains, as Figure 2 shows.
  • the Spectrum A (f, T) generated by the sampling unit 10 is first fed to the mini detection layer, as shown in Figure 3.
  • a single neuron of this layer works independently from the other neurons of the mini-detection layer a single fashion by the frequency f is marked. The neuron averages for this fashion the amplitudes A (f, T) in time T over m frames. Of the neuron then determines these averaged amplitudes over a period in T that is the length of 1 frames the minimum for his fashion. To this In this way, the neurons of the mini detection layer generate the signal M (f, T), which is then fed to the reaction layer becomes.
  • Each neuron of the reaction layer as shown in FIG. 4 shows, edited a single mode of frequency f, independent of the other neurons in this layer.
  • all neurons also have an externally adjustable one Paramter K fed, the size of the degree of Noise suppression of the entire filter also determines the integral signal S (T-1) from the previous frame (time T-1) in the integration layer, as shown in FIG. 6 has been.
  • This signal is the argument of a non-linear reaction function r, with the help of the neurons of the reaction layer the relative spectrum R (f, T) at the time Calculate T.
  • the value range of the reaction function is on an interval [r1, r2] restricted.
  • the range of values of the resulting relative spectrum R (f, T) is limited to the interval [0, 1].
  • the temporal behavior is in the reaction layer of the speech signal to distinguish useful and Interference signal evaluated.
  • Spectral properties of the speech signal are in the Diffusion layer, as shown in FIG. 5, evaluated, whose neurons have local mode coupling according to Art perform a diffusion in the frequency domain.
  • This integral signal is fed back into the reaction layer.
  • This global coupling means that the strength of the signal manipulation in the filter from the interference level is dependent. Voice signals with low noise levels pass the filter practically unaffected, while at high noise levels a strong filter effect takes effect. This makes the Invention of classic bandpass filters, their influence on the signal only from the selected, fixed predetermined Parameters.
  • the item has the invention no frequency response in the conventional Senses.
  • the filter properties of the test signal influence When measuring with a tunable sinusoidal test signal would already change the modulation speed the filter properties of the test signal influence.
  • a suitable method for analyzing the properties the filter uses an amplitude-modulated noise signal, to the depending on the modulation frequency
  • This "modulation course" is shown in FIG. for different values of the control parameter K shown.

Landscapes

  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Multimedia (AREA)
  • Human Computer Interaction (AREA)
  • Quality & Reliability (AREA)
  • Computational Linguistics (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Reduction Or Emphasis Of Bandwidth Of Signals (AREA)
  • Telephone Function (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)
  • Transmission Systems Not Characterized By The Medium Used For Transmission (AREA)
  • Noise Elimination (AREA)

Abstract

Verfahren zur Geräuschunterdrückung bei der Sprachübertragung durch ein mehrschichtiges, selbstorganisierendes, rückgekoppeltes neuronales Netzwerk, mit einer Minimadetektionsschicht, einer Reaktionsschicht, einer Diffusionsschicht und einer Integrationsschicht, die eine Filterfunktion F(f,T) zur Geräuschfilterung bestimmen. <IMAGE>

Description

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Geräuschunterdrückung bei der Sprachübertragung durch ein mehrschichtiges, selbstorganisierendes, rückgekoppeltes neuronales Netzwerk.
Bei der Telekommunikation sowie bei der Aufzeichnung von Sprache in tragbaren Speichergeräten tritt das Problem auf, daß die Sprachverständlichkeit durch Störgeräusche stark beeinträchtigt ist. Insbesondere beim Telefonieren im Auto mit Hilfe einer Freisprecheinrichtung ist dieses Problem evident. Zur Unterdrückung der Störgeräusche werden Filter in den Signalweg eingebaut. Klassische Bandpaßfilter bieten nur einen geringen Nutzen, da Störgeräusche im allgemeinen in denselben Frequenzbereichen liegen wie das Sprachsignal. Daher werden adaptive Filter benötigt, die sich selbständig den vorhandenen Störgeräuschen und den Eigenschaften des zu übertragenden Sprachsignals anpassen. Hierzu sind verschiedene Konzepte bekannt.
Aus der optimalen Filtertheorie abgeleitet ist das Wiener-Komolgorov-Filter. (S.V. Vaseghi, Advanced Signal Processing and Digital Noise Reduction", John Wiley and Teubner-Verlag, 1996). Dieses Verfahren basiert auf der Minimierung des mittleren quadratischen Fehlers zwischen dem tatsächlichen und dem erwarteten Sprachsignal. Dieses Filterkonzept erfordert einen erheblichen Rechenaufwand. Außerdem ist wie bei meisten bekannten Verfahren ein stationäres Störsignal theoretische Voraussetzung.
Ein ähnliches Filterprinzip liegt dem Kalman-Filter zugrunde (E. Wan and A. Nelson, Removal of noise from speech using the Dual Extended Kalman Filter algorithm, Proceedings of the IEEE International Conference on Acoustics and Signal Processing (ICASSP'98), Seattle 1998). Nachteilig bei diesem Filterkonzept wirkt sich die lange Trainingszeit aus, die benötigt wird, um die Filterparameter zu ermitteln.
Ein weiteres Filterkonzept ist aus H. Hermansky and N. Morgan, RASTA processing of speech, IEEE Transactions on Speech and Audio Processing, Vol. 2, No. 4, p. 587, 1994, bekannt. Auch bei diesem Verfahren ist eine Trainingsprozedur erforderlich, außerdem erfordern unterschiedliche Störgeräusche verschiedene Parametereinstellungen.
Ein als LPC bekanntes Verfahren benötigt die aufwendige Berechnung von Korrelationsmatrizen, um mit Hilfe eines linearen Prädiktionsverfahrens Filterkoeffizienten zu berechnen, wie aus T. Arai, H. Hermansky, M. Paveland, C. Avendano, Intelligibility of Speech with Filtered Time Trajectories of LPC Cepstrum, The Journal of the Acoustical Society of Maerica, Vol. 100, No. 4, Pt. 2, p. 2756, 1996, bekannt ist.
Andere bekannte Verfahren setzen neuronale Netzwerke vom Typ eines mehrschichtigen Perzeptrons zur Sprachverstärkung ein, so wie in H. Hermansky, E. Wan, C. Avendano, Speech Enhancement Based on Temporal Processing. Proceedings of the IEEE International Conference on Acoustics and Signal Processing (ICASSP'95), Detroit, 1995, beschrieben.
Aufgabe der vorliegenden Erfindung ist es, ein Verfahren zu schaffen, das mit geringem Rechenaufwand ein Sprachsignal an seinen zeitlichen und spektralen Eigenschaften erkennt und von Störgeräuschen befreit werden kann.
Gelöst wird diese Aufgabe dadurch, daß eine Minimadetektionsschicht, eine Reaktionsschicht, eine Diffusionsschicht und eine Integrationsschicht eine Filterfunktion F(f,T) zur Geräuschfilterung bestimmen.
Ein derart ausgelegtes Netzwerk erkennt ein Sprachsignal an seinen zeitlichen und spektralen Eigenschaften und befreit dieses von Störgeräuschen. Im Vergleich zu bekannten Verfahren ist der benötigte Rechenaufwand gering. Das Verfahren zeichnet sich durch eine besonders kurze Adaptionszeit aus, innerhalb derer sich das System auf die Art des Störgeräusches einstellt. Die Signalverzögerung bei der Verarbeitung des Signals ist sehr kurz, so daß das Filter im Echtzeitbetrieb für Telekommunikation einsatzfähig ist.
Weitere vorteilhafte Maßnahmen sind in den Unteransprüchen beschrieben. Die Erfindung ist in der beiliegenden Zeichnung dargestellt und wird nachfolgend näher beschrieben; es zeigt:
Figur 1
das Gesamtsystem zur Sprachfilterung;
Figur 2
ein eine Minimadetektions-Schicht, eine Reaktions-Schicht, eine Diffusions-Schicht und eine Integrations-Schicht enthaltendes neuronales Netzwerk;
Figur 3
ein Neuron der Minima-Detektions-Schicht, welche M(f,T) ermittelt;
Figur 4
ein Neuron der Reaktions-Schicht, welches mit Hilfe einer Reaktionsfunktion r[S(T-1)] aus dem Integralsignal S(T-1) und einem frei wählbaren Parameter K, welcher den Grad der Geräuschunterdrückung bestimmt, aus A(f,T) und M(f,T) das Relativspektrum R(f,T) ermittelt;
Figur 5
Neuronen der Diffusionsschicht, in welcher eine der Diffusion entsprechende, lokale Kopplung zwischen den Moden hergestellt wird;
Figur 6
ein Neuron der gezeigte Ausführung der Integrationsschicht;
Figur 7
ein Beispiel für Filtereigenschaften der Erfindung bei verschiedenen Einstellungen des Kontrollparameters K.
In der Figur 1 ist schematisch und beispielhaft ein Gesamtsystem zur Sprachfilterung dargestellt. Dieses besteht aus einer Samplingeinheit 10, die das geräuschbehaftete Sprachsignal in der Zeit t abtastet und diskretisiert und somit Samples x(t) erzeugt, die in der Zeit T zu Frames aus n Samples zusammengefaßt werden.
Von jedem Frame wird mittels Fouriertransformation das Spektrum A(f,T) zur Zeit T ermittelt und einer Filtereinheit 11 zugeführt, die mit Hilfe eines neuronalen Netzwerks, wie es in der Figur 2 dargestellt ist, eine Filterfunktion F(f,T) berechnet, mit der das Spektrum A(f,T) des Signals multipliziert wird, um das geräuschbefreite Spektrum B(f,T) zu erzeugen. Anschließend wird das so gefilterte Signal einer Syntheseeinheit (12) übergeben, die mittels inverser Fouriertransformation aus dem gefilterten Spektrum B(f,T) das geräuschbefreite Sprachsignal y(t) synthetisiert.
Die Figur 2 zeigt ein eine Minimadetektions-Schicht, eine Reaktions-Schicht, eine Diffusions-Schicht und eine Integrations-Schicht enthaltende neuronales Netzwerk, welches insbesondere Gegenstand der Erfindung ist und welchem das Spektrum A(f,T) des Eingangssignals zugeführt wird, woraus die Filterfunktion F(f,T) berechnet wird. Jeder der Moden des Spektrums, die sich durch die Frequenz f unterscheiden, entspricht dabei einem einzelnen Neuron pro Schicht des Netzwerks mit Ausnahme der Integrationsschicht. Die einzelnen Schichten werden in den folgenden Figuren genauer spezifiziert.
So zeigt Figur 3 ein Neuron der Minima-Detektions-Schicht, welche M(f,T) ermittelt. M(f,T) ist in der Mode mit Frequenz f das Minimum der über m Frames gemittelten Amplitude A(f,T) innerhalb eines Intervalls der Zeit T, welches der Länge von 1 Frames entspricht.
Figur 4 zeigt ein Neuron der Reaktions-Schicht, welches mit Hilfe einer Reaktionsfunktion r[S(T-1)] aus dem Integralsignal S(T-1), wie es in der Figur 6 im Detail dargestellt ist, und einem frei wählbaren Parameter K, welcher den Grad der Geräuschunterdrückung bestimmt, aus A(f,T) und M(f,T) das Relativspektrum R(f,T) ermittelt. R(f,T) hat einen Wert zwischen null und eins. Die Reaktionsschicht unterscheidet Sprache von Geräuschen anhand des zeitlichen Verhaltens des Signals.
Figur 5 zeigt ein Neuron der Diffusionsschicht, in welcher eine der Diffusion entsprechende, lokale Kopplung zwischen den Moden hergestellt wird. Die Diffusionskonstante D bestimmt dabei die Stärke der resultierenden Glättung über den Frequenzen f bei festgehaltener Zeit T. Die Diffusionsschicht bestimmt aus dem Relativsignal R(f,T) die eigentliche Filterfunktion F(f,T), mit der das Spektrum A(f,T) multipliziert wird, um Störgeräusche zu eliminieren. In der Diffusionsschicht wird Sprache von Geräuschen anhand spektraler Eigenschaften unterschieden.
Figur 6 zeigt das in der gewählten Ausführung der Erfindung einzige Neuron der Integrationsschicht, das die Filterfunktion F(f,T) bei festgehaltener Zeit T über die Frequenzen f integriert und das so erhaltene Integralsignal S(T) in die Reaktionsschicht zurückkoppelt, wie Figur 2 zeigt. Diese globale Kopplung sorgt dafür, daß bei hohem Störpegel stark gefiltert wird, während geräuschfreie Sprache unverfälscht übertragen wird.
Figur 7 zeigt beispielhafte Angaben der Filtereigenschaften der Erfindung für verschiedene Einstellungen des Kontrollparameters K. Die restlichen Parameter der Erfindung haben die Werte n=256 Samples/Frame, m=2.5 Frames, 1=15 Frames, D=0.25. Die Abbildung zeigt die Dämpfung von amplitudenmoduliertem weißen Rauschen in Abhängigkeit der Modulationsfrequenz. Bei Modulationsfrequenzen zwischen 0.6 Hz und 6 Hz beträgt die Dämpfung weniger als 3 dB. Dieses Intervall entspricht der typischen Modulation menschlicher Sprache.
Die Erfindung wird im folgenden anhand eines Ausführungsbeispiels näher erläutert. Zunächst wird ein Sprachsignal, das durch beliebige Störgeräusche beeinträchtigt sei, in einer Sampling-Einheit 10 abgetastet und digitalisiert, wie die Figur 1 zeigt. Auf diese Weise erhält man in der Zeit t die Samples x(t). Von diesen Samples werden jeweils n zu einem Frame zusammengefaßt, von dem zur Zeit T mittels Fouriertransformation ein Spektrum A(f,T) berechnet wird.
Die Moden des Spektrums unterscheiden sich durch ihre Frequenz f. In einer Filtereinheit 11 wird aus dem Spektrum A(f,T) eine Filterfunktion F(f,T) erzeugt und mit dem Spektrum multipliziert. Dadurch erhält man das gefilterte Spektrum B(f,T), aus dem in einer Syntheseeinheit durch inverse Fouriertransformation das geräuschbefreite Sprachsignal y(t) erzeugt wird. Dieses kann nach Digital-Analog-Wandlung in einem Lautsprecher hörbar gemacht werden.
Die Filterfunktion F(f,T) wird von einem neuronalen Netzwerk erzeugt, das eine Minimadetektions-Schicht, eine Reaktions-Schicht, eine Diffusions-Schicht und eine Integrationsschicht enthält, wie Figur 2 zeigt. Das von der Samplingeinheit 10 erzeugte Spektrum A(f,T) wird zunächst der Minimadetektions-Schicht zugeführt, wie sie die Figur 3 zeigt.
Ein einzelnes Neuron dieser Schicht bearbeitet unabhängig von den anderen Neuronen der Minimadetektions-Schicht eine einzelne Mode, die durch die Frequenz f gekennzeichnet ist. Für diese Mode mittelt das Neuron die Amplituden A(f,T) in der Zeit T über m Frames. Von diesen gemittelten Amplituden bestimmt das Neuron sodann über einen Zeitraum in T, der der Länge von 1 Frames entspricht, für seine Mode das Minimum. Auf diese Weise erzeugen die Neuronen der Minimadetektionsschicht das Signal M(f,T), das sodann der Reaktionsschicht zugeführt wird.
Auch jedes Neuron der Reaktionsschicht, wie sie Figur 4 zeigt, bearbeitet eine einzelne Mode der Frequenz f, unabhängig von den anderen Neuronen in dieser Schicht. Dazu wird allen Neuronen außerdem ein extern einstellbarer Paramter K zugeführt, dessen Größe den Grad der Geräuschunterdrückung des gesamten Filters bestimmt Zusätzlich steht diesen Neuronen das Integralsignal S(T-1) vom vorigen Frame (Zeitpunkt T-1) zur Verfügung, das in der Integrations-Schicht, wie sie Figur 6 zeigt, berechnet wurde.
Dieses Signal ist das Argument einer nichtlinearen Reaktionsfunktion r, mit deren Hilfe die Neuronen der Reaktionsschicht das Relativspektrum R(f,T) zum Zeitpunkt T berechnen.
Der Wertebereich der Reaktionsfunktion ist auf ein Intervall [r1, r2] eingeschränkt. Der Wertebereich des auf diese Weise resultierenden Relativspektrums R(f,T) beschränkt sich auf das Intervall [0, 1].
In der Reaktionsschicht wird das zeitliche Verhalten des Sprachsignals zur Unterscheidung von Nutz- und Störsignal ausgewertet.
Spektrale Eigenschaften des Sprachsignals werden in der Diffusionsschicht, wie sie die Figur 5 zeigt, ausgewertet, deren Neuronen eine lokale Modenkopplung nach Art einer Diffusion im Frequenzraum durchführen.
In der von den Neuronen der Diffusions-Schicht erzeugten Filterfunktion F(f,T) führt dies zu einer Angleichung benachbarter Moden, deren Stärke durch die Diffusionskonstante D bestimmt wird. Ähnliche Mechanismen, wie sie in der Reaktions- und der Diffusionsschicht am Werke sind, führen in sogenannten dissipativen Medien zu Strukturbildungsphänomenen, die ein Forschungsgegenstand der nichtlinearen Physik sind.
Alle Moden der Filterfunktion F(f,T) werden zum Zeitpunkt T mit den entsprechenden Amplituden A(f,T) multipliziert. Auf diese Weise resultiert das von Störgeräuschen befreite Spektrum B(f,T), das mittels inverser Fouriertransformation in das geräuschbefreite Sprachsignal y(t) verwandelt wird. Über die Moden der Filterfunktion F(f,T) wird in der Integrations-Schicht integriert, so daß das Integralsignal S(T) resultiert, wie es Figur 6 zeigt.
Dieses Integralsignal wird in die Reaktions-Schicht zurückgekoppelt. Diese globale Kopplung führt dazu, daß die Stärke der Signalmanipulation im Filter vom Störpegel abhängig ist. Sprachsignale mit geringer Geräuschbelastung passieren das Filter praktisch unbeeinflußt, während bei hohem Geräuschpegel ein starker Filtereffekt wirksam wird. Dadurch unterscheidet sich die Erfindung von klassischen Bandpaßfiltern, deren Einfluß auf das Signal nur von den gewählten, fest vorgegebenen Parametern abhängig ist.
Anders als ein klassisches Filter besitzt der Gegenstand der Erfindung keinen Frequenzgang im herkömmlichen Sinne. Bei der Messung mit einem durchstimmbaren sinusförmigen Testsignal würde bereits die Modulationsgeschwindigkeit des Testsignals die Filtereigenschaften beeinflussen.
Ein geeignetes Verfahren zur Analyse der Eigenschaften des Filters benutzt ein amplitudenmoduliertes Rauschsignal, um in Abhängigkeit der Modulationsfrequenz die Dämpfung des Filters zu bestimmen, wie die Figur 7 zeigt. Dazu setzt man die eingangs- und ausgangsseitige mittlere integrale Leistung zueinander ins Verhältnis und trägt diesen Wert gegen die Modulationsfrequenz des Testsignals auf. In Figur 7 ist dieser "Modulationsgang" für verschiedene Werte des Kontrollparameters K dargestellt.
Für Modulationsfrequenzen zwischen 0.6 Hz und 6 Hz beträgt die Dämpfung für alle gezeigten Werte des Kontrollparameters K weniger als 3 dB. Dieses Intervall entspricht der Modulation menschlicher Sprache, die den Filter daher optimal passieren kann. Signale außerhalb des genannten Modulationsfrequenzintervalls werden dagegen als Störgeräusche identifiziert und in Abhängigkeit der Einstellung des Parameters K stark gedämpft.
Bezugszeichen
10
Samplingeinheit, die ein Sprachsignal x(t) abtastet, digitalisiert, in Frames zerlegt und durch Fouriertransformation das Spektrum A(f,T) ermittelt
11
Filtereinheit, die aus dem Spektrum A(f,T) eine Filterfunktion F(f,T) berechnet und damit das geräuschbefreite Spektrum B(f,T) erzeugt
12
Syntheseeinheit, die aus dem gefilterten Spektrum B(f,T) das geräuschbefreite Sprachsignal y(t) erzeugt
A(f,T)
Signalspektrum, d.h. Amplitude der Mode der Frequenz f zum Zeitpunkt T
B(f,T)
spektrale Amplitude der Mode der Frequenz f zum Zeitpunkt T nach der Filterung
D
Diffusionskonstante, die die Stärke der Glättung in der Diffusions-Schicht bestimmt
F(f,T)
Filterfunktion, die B(f,T) aus A(f,T) erzeugt: B(f,T)=F(f,T)A(f,T) für alle f zur Zeit T
f
Frequenz, durch die sich die Moden eines Spektrums unterscheiden
K
Parameter zum Einstellen der Stärke der Geräuschunterdrückung.
l
Anzahl der Frames, aus denen man M(f,T) als Minimum der gemittelten A(f,T) erhält
m
Anzahl der Frames, über die bei der Bestimmung von M(f,T) gemittelt wird
n
Anzahl der Abtastwerte (Samples) pro Frame
M(f,T)
Minimum der über m Frames gemittelten Amplitude A(f,T) innerhalb von 1 Frames.
R(f,T)
Relativspektrum, das von der Reaktionsschicht erzeugt wird
r[S(T)]
Reaktionsfunktion der Neuronen in der Reaktionsschicht
r1, r2
Grenzen des Wertebereichs der Reaktionsfunktion r1<r(S(T))<r2
S(T)
Integralsignal, das dem Integral von F(f,T) über f zum Zeitpunkt T entspricht
t
Zeit in der das Sprachsignal abgetastet wird
T
Zeit in der das Zeitsignal zu Frames und diese zu Spektren verarbeitet werden
x(t)
Samples des geräuschbehafteten Sprachsignals
y(t)
Samples des geräuschbefreiten Sprachsignals

Claims (20)

  1. Verfahren zur Geräuschunterdrückung bei der Sprachübertragung durch ein mehrschichtiges, selbstorganisierendes, rückgekoppeltes neuronales Netzwerk, dadurch gekennzeichnet, daß eine Minimadetektionsschicht, eine Reaktionsschicht, eine Diffusionsschicht und eine Integrationsschicht eine Filterfunktion F(f,T) zur Geräuschfilterung bestimmen.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das mittels der Filterfunktion F(f,T) von Störgeräuschen befreite Spektrum B(f,T) mittels inverser Fouriertransformation in ein geräuschbefreites Sprachsignal y(t) verwandelt wird.
  3. Verfahren nach den Ansprüchen 1 und 2, dadurch gekennzeichnet, daß die Signalverzögerung bei der Verarbeitung des Signals so kurz ist, daß das Filter im Echtzeitbetrieb für Telekommunikation einsatzfähig bleibt wird, wobei allen Neuronen ein extern einstellbarer Paramter K zugeführt wird, dessen Größe den Grad der Geräuschunterdrückung des gesamten Filters bestimmt.
  4. Verfahren nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, daß das Neuron der Intergrationsschicht die Filterfunktion F(f,T) bei festgehaltener Zeit T über die Frequenzen f integriert und das so erhaltene Integralsignal S(T) in die Reaktionsschicht zurückkoppelt wird.
  5. Verfahren nach den Ansprüchen 1 bis 4, dadurch gekennzeichnet, daß das von einer Samplingeinheit (10) erzeugte Spektrum A(f,T) der Minimadetektions-Schicht zugeführt wird.
  6. Verfahren nach den Ansprüchen 1 bis 5, dadurch gekennzeichnet, daß in einer Filtereinheit (11) aus dem Spektrum A(f,T) eine Filterfunktion F(f,T) erzeugt und mit dem Spektrum multipliziert wird.
  7. Verfahren nach den Ansprüchen 1 bis 6, gekennzeichnet durch einen Frame mittels dem eine Fouriertransformiation das Spektrum A(f,T) zur Zeit T ermittelt und einer Filtereinheit (11) zugeführt wird, die mit Hilfe eines neuronalen Netzwerks eine Filterfunktion F(f,T) berechnet, mit der das Spektrum A(f,T) des Signals multipliziert wird, um ein geräuschbefreites Spektrum B(f,T) zu erzeugen.
  8. Verfahren nach den Ansprüchen 1 bis 7, dadurch gekennzeichnet, daß das ein gefiltertes Signal einer Syntheseeinheit (12) übergeben wird, die mittels inverser Fouriertransformation aus dem gefilterten Spektrum B(f,T) ein geräuschbefreites Sprachsignal y(t) synthetisiert.
  9. Verfahren nach den Ansprüchen 1 bis 8, dadurch gekennzeichnet, daß ein einzelnes Neuron einer Schicht unabhängig von den anderen Neuronen der Minimadetektions-Schicht eine einzelne Mode bearbeitet, die durch die Frequenz f gekennzeichnet ist.
  10. Verfahren nach den Ansprüchen 1 bis 9, dadurch gekennzeichnet, daß die spektralen Eigenschaften des Sprachsignals in der Diffusionsschicht ausgewertet werden, deren Neuronen eine lokale Modenkopplung nach Art einer Diffusion im Frequenzraum durchführen.
  11. Verfahren nach den Ansprüchen 1 bis 10, dadurch gekennzeichnet, daß alle Moden der Filterfunktion F(f,T) zum Zeitpunkt T mit den entsprechenden Amplituden A(f,T) multipliziert werden.
  12. Verfahren nach den Ansprüchen 1 bis 11, dadurch gekennzeichnet, daß über die Moden der Filterfunktion F(f,T) in der Integrations-Schicht integriert wird, so daß das Integralsignal S(T) resultiert.
  13. Verfahren nach den Ansprüchen 1 bis 12, dadurch gekennzeichnet, daß Sprachsignale mit geringer Geräuschbelastung das Filter praktisch unbeeinflußt passieren, während bei Sprachsignalen mit hohem Geräuschpegel ein starker Filtereffekt wirksam wird.
  14. Vorrichtung zur Geräuschunterdruckung bei der Sprachübertragung, insbesondere bei einem Verfahren nach den Ansprüchen 1 bis 13, dadurch gekennzeichnet, daß ein eine Minimadetektions-Schicht, eine Reaktions-Schicht, eine Diffusions-Schicht und eine Integrations-Schicht enthaltendes neuronales Netzwerk vorgesehen ist.
  15. Vorrichtung nach Anspruch 13, dadurch gekennzeichnet, daß die Moden des Spektrums, die sich durch die Frequenz f unterscheiden, einen einzelnen Neuron pro Schicht des Netzwerks mit Ausnahme der Integrationsschicht entsprechen.
  16. Vorrichtung nach den Ansprüchen 13 bis 15, dadurch gekennzeichnet, daß ein Neuron der Minima-Detektions-Schicht die Funktion M(f,T) ermittelt, wobei M(f,T) in der Mode mit Frequenz f das Minimum der über m Frames gemittelten Amplitude A(f,T) innerhalb eines Zeitintervalls ist, welches der Länge von 1 Frames entspricht.
  17. Vorrichtung nach den Ansprüchen 13 bis 16, gekennzeichnet durch ein Neuron der Reaktions-Schicht, welches mit Hilfe einer Reaktionsfunktion r[S(T-1)] aus dem Integralsignal S(T-1) und einem frei wählbaren Parameter K, welcher den Grad der Geräuschunterdrückung bestimmt, aus A(f,T) und M(f,T) das Relativspektrum R(f,T) ermittelt, wobei das Relativspektrum R(f,T) einen Wertebereich zwischen null und eins hat.
  18. Vorrichtung nach den Ansprüchen 13 bis 17, dadurch gekennzeichnet, daß den Neuronen ein in der Integrations-Schicht berechnetes Integralsignal S(T-1) vom vorigen Frame (Zeitpunkt T-1) zur Verfügung steht.
  19. Vorrichtung nach den Ansprüchen 13 bis 18, dadurch gekennzeichnet, daß der Wertebereich der Reaktionsfunktion auf ein Intervall [r1, r2] eingeschränkt ist, wobei der Wertebereich des resultierenden Relativspektrums R(f,T) auf das Intervall [0, 1] beschränkt ist.
  20. Vorrichtung nach den Ansprüchen 13 bis 19, dadurch gekennzeichnet, daß für Modulationsfrequenzen zwischen 0.6 Hz und 6 Hz die Dämpfung für alle gezeigten Werte des Kontrollparameters K weniger als 3 dB beträgt.
EP00250301A 1999-10-06 2000-09-08 Verfahren und Vorrichtung zur Geräuschunterdrückung bei der Sprachübertragung Expired - Lifetime EP1091349B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19948308 1999-10-06
DE19948308A DE19948308C2 (de) 1999-10-06 1999-10-06 Verfahren und Vorrichtung zur Geräuschunterdrückung bei der Sprachübertragung

Publications (3)

Publication Number Publication Date
EP1091349A2 true EP1091349A2 (de) 2001-04-11
EP1091349A3 EP1091349A3 (de) 2002-01-02
EP1091349B1 EP1091349B1 (de) 2005-02-09

Family

ID=7924812

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00250301A Expired - Lifetime EP1091349B1 (de) 1999-10-06 2000-09-08 Verfahren und Vorrichtung zur Geräuschunterdrückung bei der Sprachübertragung

Country Status (6)

Country Link
US (1) US6820053B1 (de)
EP (1) EP1091349B1 (de)
AT (1) ATE289110T1 (de)
CA (1) CA2319995C (de)
DE (2) DE19948308C2 (de)
TW (1) TW482993B (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1585112A1 (de) * 2004-03-30 2005-10-12 Dialog Semiconductor GmbH Geräuschunterdrückung ohne Signalverzögerung
EP2151822A1 (de) * 2008-08-05 2010-02-10 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung und Verfahren zur Verarbeitung eines Audiosignals zur Sprachverstärkung unter Anwendung einer Merkmalsextraktion
CN104036784A (zh) * 2014-06-06 2014-09-10 华为技术有限公司 一种回声消除方法及装置
CN114944154A (zh) * 2022-07-26 2022-08-26 深圳市长丰影像器材有限公司 音频调整方法、装置、设备及存储介质

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8606851B2 (en) 1995-06-06 2013-12-10 Wayport, Inc. Method and apparatus for geographic-based communications service
US5835061A (en) 1995-06-06 1998-11-10 Wayport, Inc. Method and apparatus for geographic-based communications service
DE102004031638A1 (de) * 2004-06-30 2006-01-26 Abb Patent Gmbh Verfahren zum Betrieb einer magnetisch induktiven Durchflussmesseinrichtung
DE102005039621A1 (de) 2005-08-19 2007-03-01 Micronas Gmbh Verfahren und Vorrichtung zur adaptiven Reduktion von Rausch- und Hintergrundsignalen in einem sprachverarbeitenden System
GB0703275D0 (en) * 2007-02-20 2007-03-28 Skype Ltd Method of estimating noise levels in a communication system
DE102007033484A1 (de) 2007-07-18 2009-01-22 Ruwisch, Dietmar, Dr. Hörgerät
US20120245927A1 (en) * 2011-03-21 2012-09-27 On Semiconductor Trading Ltd. System and method for monaural audio processing based preserving speech information
US8239196B1 (en) * 2011-07-28 2012-08-07 Google Inc. System and method for multi-channel multi-feature speech/noise classification for noise suppression
EP2590165B1 (de) 2011-11-07 2015-04-29 Dietmar Ruwisch Verfahren und Vorrichtung zur Erzeugung eines rauschreduzierten Audiosignals
US9258653B2 (en) 2012-03-21 2016-02-09 Semiconductor Components Industries, Llc Method and system for parameter based adaptation of clock speeds to listening devices and audio applications
CN104160443B (zh) 2012-11-20 2016-11-16 统一有限责任两合公司 用于音频数据处理的方法、设备和系统
US9330677B2 (en) 2013-01-07 2016-05-03 Dietmar Ruwisch Method and apparatus for generating a noise reduced audio signal using a microphone array
AU2014374349B2 (en) * 2013-10-20 2017-11-23 Massachusetts Institute Of Technology Using correlation structure of speech dynamics to detect neurological changes
US20160111107A1 (en) * 2014-10-21 2016-04-21 Mitsubishi Electric Research Laboratories, Inc. Method for Enhancing Noisy Speech using Features from an Automatic Speech Recognition System
EP3301675B1 (de) * 2016-09-28 2019-08-21 Panasonic Intellectual Property Corporation of America Parametervorhersagevorrichtung parametervorhersageverfahren zur verarbeitung akustischer signale
US11190944B2 (en) 2017-05-05 2021-11-30 Ball Aerospace & Technologies Corp. Spectral sensing and allocation using deep machine learning
CN109427340A (zh) * 2017-08-22 2019-03-05 杭州海康威视数字技术股份有限公司 一种语音增强方法、装置及电子设备
US10283140B1 (en) * 2018-01-12 2019-05-07 Alibaba Group Holding Limited Enhancing audio signals using sub-band deep neural networks
US11182672B1 (en) 2018-10-09 2021-11-23 Ball Aerospace & Technologies Corp. Optimized focal-plane electronics using vector-enhanced deep learning
US10879946B1 (en) * 2018-10-30 2020-12-29 Ball Aerospace & Technologies Corp. Weak signal processing systems and methods
WO2020117530A1 (en) 2018-12-03 2020-06-11 Ball Aerospace & Technologies Corp. Star tracker for multiple-mode detection and tracking of dim targets
US11851217B1 (en) 2019-01-23 2023-12-26 Ball Aerospace & Technologies Corp. Star tracker using vector-based deep learning for enhanced performance
US11412124B1 (en) 2019-03-01 2022-08-09 Ball Aerospace & Technologies Corp. Microsequencer for reconfigurable focal plane control
EP3726529A1 (de) * 2019-04-16 2020-10-21 Fraunhofer Gesellschaft zur Förderung der Angewand Verfahren und vorrichtung zur bestimmung eines tiefenfilters
US11488024B1 (en) 2019-05-29 2022-11-01 Ball Aerospace & Technologies Corp. Methods and systems for implementing deep reinforcement module networks for autonomous systems control
US11303348B1 (en) 2019-05-29 2022-04-12 Ball Aerospace & Technologies Corp. Systems and methods for enhancing communication network performance using vector based deep learning
EP3764358B1 (de) 2019-07-10 2024-05-22 Analog Devices International Unlimited Company Signalverarbeitungsverfahren und -systeme zur strahlformung mit windblasschutz
EP3764660B1 (de) 2019-07-10 2023-08-30 Analog Devices International Unlimited Company Signalverarbeitungsverfahren und systeme für adaptive strahlenformung
EP3764359A1 (de) 2019-07-10 2021-01-13 Analog Devices International Unlimited Company Signalverarbeitungsverfahren und systeme für mehrfokusstrahlformung
EP3764360B1 (de) 2019-07-10 2024-05-01 Analog Devices International Unlimited Company Signalverarbeitungsverfahren und -systeme zur strahlformung mit verbessertem signal/rauschen-verhältnis
EP3764664A1 (de) 2019-07-10 2021-01-13 Analog Devices International Unlimited Company Signalverarbeitungsverfahren und systeme zur strahlformung mit mikrofontoleranzkompensation
US11828598B1 (en) 2019-08-28 2023-11-28 Ball Aerospace & Technologies Corp. Systems and methods for the efficient detection and tracking of objects from a moving platform
IT201900024454A1 (it) * 2019-12-18 2021-06-18 Storti Gianampellio Apparecchio audio con basso consumo per ambienti rumorosi
US20240112690A1 (en) * 2022-09-26 2024-04-04 Cerence Operating Company Switchable Noise Reduction Profiles

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5878389A (en) * 1995-06-28 1999-03-02 Oregon Graduate Institute Of Science & Technology Method and system for generating an estimated clean speech signal from a noisy speech signal

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3610831A (en) * 1969-05-26 1971-10-05 Listening Inc Speech recognition apparatus
US5822742A (en) * 1989-05-17 1998-10-13 The United States Of America As Represented By The Secretary Of Health & Human Services Dynamically stable associative learning neural network system
US5581662A (en) * 1989-12-29 1996-12-03 Ricoh Company, Ltd. Signal processing apparatus including plural aggregates
JPH0566795A (ja) * 1991-09-06 1993-03-19 Gijutsu Kenkyu Kumiai Iryo Fukushi Kiki Kenkyusho 雑音抑圧装置とその調整装置
US5377302A (en) * 1992-09-01 1994-12-27 Monowave Corporation L.P. System for recognizing speech
DE4309985A1 (de) * 1993-03-29 1994-10-06 Sel Alcatel Ag Geräuschreduktion zur Spracherkennung
IT1270919B (it) * 1993-05-05 1997-05-16 Cselt Centro Studi Lab Telecom Sistema per il riconoscimento di parole isolate indipendente dal parlatore mediante reti neurali
US5649065A (en) * 1993-05-28 1997-07-15 Maryland Technology Corporation Optimal filtering by neural networks with range extenders and/or reducers
JP3626492B2 (ja) * 1993-07-07 2005-03-09 ポリコム・インコーポレイテッド 会話の品質向上のための背景雑音の低減
US5960391A (en) * 1995-12-13 1999-09-28 Denso Corporation Signal extraction system, system and method for speech restoration, learning method for neural network model, constructing method of neural network model, and signal processing system
US5717833A (en) * 1996-07-05 1998-02-10 National Semiconductor Corporation System and method for designing fixed weight analog neural networks

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5878389A (en) * 1995-06-28 1999-03-02 Oregon Graduate Institute Of Science & Technology Method and system for generating an estimated clean speech signal from a noisy speech signal

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ENMAJI A ET AL: "CONCEPTION OF SPEECH FILTERS BASED ON A NEURAL NETWORK" PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON SPOKEN LANGUAGE PROCESSING (ICSLP). BANFF, OCT. 12 - 16, 1992, EDMONTON, UNIVERSITY OF ALBERTA, CA, Bd. 2, 12. Oktober 1992 (1992-10-12), Seiten 1387-1390, XP000871657 *
KNECHT W G ET AL: "NEURAL NETWORK FILTERS FOR SPEECH ENHANCEMENT" IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, IEEE INC. NEW YORK, US, Bd. 3, Nr. 6, 1. November 1995 (1995-11-01), Seiten 433-438, XP000730628 ISSN: 1063-6676 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1585112A1 (de) * 2004-03-30 2005-10-12 Dialog Semiconductor GmbH Geräuschunterdrückung ohne Signalverzögerung
EP2151822A1 (de) * 2008-08-05 2010-02-10 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung und Verfahren zur Verarbeitung eines Audiosignals zur Sprachverstärkung unter Anwendung einer Merkmalsextraktion
WO2010015371A1 (en) * 2008-08-05 2010-02-11 Fraunhofer-Gesellschaft Zur Förderung Der Angewandten Forschung E . V . Apparatus and method for processing an audio signal for speech enhancement using a feature extraction
CN102124518A (zh) * 2008-08-05 2011-07-13 弗朗霍夫应用科学研究促进协会 采用特征提取处理音频信号用于语音增强的方法和装置
AU2009278263B2 (en) * 2008-08-05 2012-09-27 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E . V . Apparatus and method for processing an audio signal for speech enhancement using a feature extraction
CN102124518B (zh) * 2008-08-05 2013-11-06 弗朗霍夫应用科学研究促进协会 采用特征提取处理音频信号用于语音增强的方法和装置
US9064498B2 (en) 2008-08-05 2015-06-23 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Apparatus and method for processing an audio signal for speech enhancement using a feature extraction
CN104036784A (zh) * 2014-06-06 2014-09-10 华为技术有限公司 一种回声消除方法及装置
CN114944154A (zh) * 2022-07-26 2022-08-26 深圳市长丰影像器材有限公司 音频调整方法、装置、设备及存储介质

Also Published As

Publication number Publication date
DE19948308C2 (de) 2002-05-08
ATE289110T1 (de) 2005-02-15
EP1091349A3 (de) 2002-01-02
DE19948308A1 (de) 2001-04-19
EP1091349B1 (de) 2005-02-09
DE50009461D1 (de) 2005-03-17
TW482993B (en) 2002-04-11
US6820053B1 (en) 2004-11-16
CA2319995C (en) 2005-04-26
CA2319995A1 (en) 2001-04-06

Similar Documents

Publication Publication Date Title
DE19948308C2 (de) Verfahren und Vorrichtung zur Geräuschunterdrückung bei der Sprachübertragung
DE602004004242T2 (de) System und Verfahren zur Verbesserung eines Audiosignals
DE112009000805B4 (de) Rauschreduktion
DE60009206T2 (de) Rauschunterdrückung mittels spektraler Subtraktion
DE60027438T2 (de) Verbesserung eines verrauschten akustischen signals
DE60310725T2 (de) Verfahren und vorrichtung zur verarbeitung von subbandsignalen mittels adaptiver filter
DE60316704T2 (de) Mehrkanalige spracherkennung in ungünstigen umgebungen
DE60108401T2 (de) System zur erhöhung der sprachqualität
DE602005001048T2 (de) Erweiterung der Bandbreite eines schmalbandigen Sprachsignals
DE4126902A1 (de) Sprachintervall - feststelleinheit
EP0668007B1 (de) Mobilfunkgerät mit freisprecheinrichtung
DE69634841T2 (de) Verfahren und Vorrichtung zur Echokompensation
EP0747880B1 (de) Spracherkennungssystem
EP0642290A2 (de) Mobilfunkgerät mit einer Sprachverarbeitungseinrichtung
EP1143416A2 (de) Geräuschunterdrückung im Zeitbereich
DE112017007005B4 (de) Akustiksignal-verarbeitungsvorrichtung, akustiksignalverarbeitungsverfahren und freisprech-kommunikationsvorrichtung
DE69730721T2 (de) Verfahren und vorrichtungen zur geräuschkonditionierung von signalen welche audioinformationen darstellen in komprimierter und digitalisierter form
DE69635141T2 (de) Verfahren zur Erzeugung von Sprachmerkmalsignalen und Vorrichtung zu seiner Durchführung
EP3065417B1 (de) Verfahren zur unterdrückung eines störgeräusches in einem akustischen system
DE102013011761A1 (de) Kraftfahrzeug mit einer Freisprecheinrichtung und Verfahren zur Erzeugung eines Frequenzganges für Freisprecheinrichtungen
EP1239455A2 (de) Verfahren und Anordnung zur Durchführung einer an die Übertragungsfunktion menschilcher Sinnesorgane angepassten Fourier Transformation sowie darauf basierende Vorrichtungen zur Geräuschreduktion und Spracherkennung
EP2080197B1 (de) Vorrichtung zur geräuschunterdrückung bei einem audiosignal
DE10025655B4 (de) Verfahren zum Entfernen einer unerwünschten Komponente aus einem Signal und System zum Unterscheiden zwischen unerwünschten und erwünschten Signalkomponenten
DE102019105458B4 (de) System und Verfahren zur Zeitverzögerungsschätzung
DE4012349A1 (de) Einrichtung zum beseitigen von geraeuschen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20011206

RIN1 Information on inventor provided before grant (corrected)

Inventor name: RUWISCH, DIETMAR, DR.

AKX Designation fees paid
REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566

RBV Designated contracting states (corrected)

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

RBV Designated contracting states (corrected)

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: RUWISCH, DIETMAR, DR.

RIN1 Information on inventor provided before grant (corrected)

Inventor name: RUWISCH, DIETMAR, DR.

17Q First examination report despatched

Effective date: 20040622

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050209

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050209

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050209

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050209

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50009461

Country of ref document: DE

Date of ref document: 20050317

Kind code of ref document: P

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: KELLER & PARTNER PATENTANWAELTE AG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050509

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050509

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050509

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050520

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050908

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050930

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050930

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050930

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20051110

ET Fr: translation filed
BERE Be: lapsed

Owner name: RUWISCH, DIETMAR, DR.

Effective date: 20050930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050709

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20090923

Year of fee payment: 10

Ref country code: AT

Payment date: 20090928

Year of fee payment: 10

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100930

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100908

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20110927

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20130531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121001

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190925

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50009461

Country of ref document: DE

Representative=s name: BETTEN & RESCH PATENT- UND RECHTSANWAELTE PART, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 50009461

Country of ref document: DE

Owner name: RUWISCH PATENT GMBH, DE

Free format text: FORMER OWNER: RUWISCH, DIETMAR, DR., 12557 BERLIN, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 50009461

Country of ref document: DE

Owner name: ANALOG DEVICES INTERNATIONAL UNLIMITED COMPANY, IE

Free format text: FORMER OWNER: RUWISCH, DIETMAR, DR., 12557 BERLIN, DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20200213 AND 20200219

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20191030

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50009461

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20200907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20200907

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50009461

Country of ref document: DE

Owner name: ANALOG DEVICES INTERNATIONAL UNLIMITED COMPANY, IE

Free format text: FORMER OWNER: RUWISCH PATENT GMBH, 12459 BERLIN, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 50009461

Country of ref document: DE

Representative=s name: BETTEN & RESCH PATENT- UND RECHTSANWAELTE PART, DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20201210 AND 20201216